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1 Introduction

The origin of this paper was a question by Vaughan Pratt about possible HSP theorems
for theories based on the category of posets. As it happens, he had a different (more
special) notion of theory based on posets than the one used here, but it is possible to
specialize the results here to Pratt’s notion.

Pratt gives the following explanation of his interest in the results:

As a computer science application of our techniques we may take the
action logic of [Pratt, 1990]. Action logic is a finitely based equational
theory conservatively extending the equational theory of regular expressions.
An action algebra (model of action logic) is implicitly partially ordered via
a ≤ b just when a + b = b . However a + b plays no other essential role
in action logic, and may be dropped provided we introduce the relation ≤
explicitly into the language. The equations defining the residuals a −→ b
and a← b and for star a∗ may then be rephrased as inequalities. This then
raises the sorts of foundational questions addressed in [the present] paper;
indeed [the present] paper was in direct response to my having raised them
myself.

A theory is a category equipped with certain structures and a model of that theory
is a functor (usually to sets, although various kinds of generalizations are possible) that
preserves that structure. Basically, the theory is a kind of prototype of a certain kind
of mathematical entity.

For example, the theory of monoids is a category T with finite limits that contains
a monoid object M0 with the property that for any other category C with finite limits
and any monoid object M in C there is one and only one functor T : T −→ C that
preserves finite limits such that T (M0) = M and such that the monoid structure in M
is consistent with that of M0 .

In the case at hand, we wish to deal with theories that take advantage of the spe-
cial properties of ordered sets. Among other things, this means that the domains of
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operations can be specified in terms of the ordered structure and that the output of an
operation can also be an ordered structure.

An HSP subcategory of the category of models is a subcategory that is closed under
quotients (‘homomorphic images’), subobjects and products. For example, the sub-
category of commutative monoids is an HSP subcategory of the category of monoids.
Then the HSP theorem says that HSP subcategories are determined by equations in
the theory (and conversely, but the converse is trivial).

When the theory is based on posets, things get rather more complicated. For one
thing, there are now choices to be made. What is a subobject? A quotient? And what
replaces equation? Of course, perhaps it is equation, but that seems too closely tied
to sets. After all, equality is the only first order predicate in set theory, while posets
have inequality as well. And indeed, for the appropriate notion of HSP, you may need
inequalities to cut out HSP subcategories. Unfortunately, that is not always sufficient.
You may also have to iterate the construction, even transfinitely often.

We adopt the useful convention of denoting the set of morphisms in category C
from an object C to C ′ by C (C,C ′).

2 Functorial semantics for posets

2.1 Theories on posets. Let Pos be the category of posets and monotone (in-
creasing) functions. By a theory over Pos we mean a category T and a functor
F : Pos −→ T op that is an isomorphism on objects and that has a left adjoint. We will
suppose one more property. To explain this property, let K = T op . In view of the
fact that F is an isomorphism on objects, we can treat T as a category whose ob-
jects are all posets and whose morphisms include, but are not limited to the monotone
functions. This will become much clearer after we see examples. (Actually, since F is
not assumed faithful, it would also be possible that two distinct functions become equal
as morphisms in K ; it is nonetheless useful to think of the situation as has just been
described.) The additional condition we want is that the countable (including finite)
objects are a regular generating family. This means that in order to have an arrow A
−→ B it is sufficient to have arrows fi:Ai −→ B for every subobject Ai )−→A with Ai
countable subject only to the condition that fi agree with fj on Ai ∩ Aj . Moreover,
two morphisms A −→ B that agree on every countable subobject of A are equal. This
condition is far more stringent that what is really necessary (which is that the category
K and the functor F be accessible in the sense of Makkai and Paré, [1989]), but is
certainly satisfied by any theory of interest to computer science.

2.2 Models. Classically one worked with theories, but we will find it convenient to
work with the dual category K . Let F : Pos −→ K be a theory as above. A model
of the theory is a pair (P,M) in which M : K op −→ Set is a functor and P is a poset
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such that M ◦ F op = Pos(−, P ). A morphism (f, φ): (P,M) −→ (P ′,M ′) is a pair such
that φ is a natural transformation and f is a monotone function such that for any
poset A the square

Pos(A,P ) Pos(A,P ′)-
Pos(A, f)

M(F (A)) M ′(F (A))-φF (A)

?

=

?

=

commutes. The Yoneda lemma insures that given a natural transformation φ:M −→M ′

there is a unique morphism between the representing objects. Hence

Mod(K )((P,M), (P ′,M ′)) ∼= NT (M,M ′)

the set of natural transformations.
We call the resultant category Mod(K ), the category of models of K . The functor

U : Mod(K ) −→ Pos that takes (M,P ) to P and (f, φ) to f we call the underlying
poset functor.

2.3 Seeds. By a seed of a theory, we mean a diagram

Pos K0

P

V
�
�

��	
F

@
@
@@R

in which P is a graph and V : P −→ Pos is the inclusion of a subgraph and K0 is a
graph with diagrams and F : P −→ K0 is a graph morphism that is an isomorphism on
nodes (objects). By a graph, we mean a “category without composition”. That is it has
objects (often called nodes) and arrows, but no way of composing them. Of course, one
can compose them freely to produce paths made up from these arrows and a diagram
is a pair of paths that start at the same node and finish at the same node. A model in
a category of a graph with diagrams consists of functions that takes objects to objects
and arrows to arrows and preserves source and target. Moreover, it must take diagrams
to commutative diagrams. The details are found in Barr & Wells [1985, 1990].

Given a seed of a theory as above, a model is a pair (P,M) where M is a model
of K op

0 and P a poset such that for P0 in P , we have MFP0 = Pos(P0, P ).
A seed is called small if the nodes are a set. A small seed gives rise to a theory as

we will see.
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2.4 The theory associated with a small seed. Let

Pos K0

P

V
�
�

��	
F

@
@
@@R

be a small seed. Let Mod(K0) denote the category of models. There is a functor
U : Mod(K0) −→ Set defined by U(P,M) = P and U(f, φ) = f . This is called the
underlying functor of the model category.

2.5 Proposition. Let Pos ←− P −→ K0 be a small seed. The underlying functor
Mod(K0) −→ Pos has a left adjoint.

This is proved in Barr [to appear]. The proof is based on results contained in the
remarkable book of Makkai & Paré [1990] on accessible categories.

Given this fact, we can now construct the theory associated to any seed. Let F : Pos
−→ Mod(K0) be the free functor. Let K be the full subcategory of Mod(K ) consisting
of all objects of the form FP for P a poset. This category is known as the Kleisli
category of the adjunction. By an abuse of notation we will let F : Pos −→ K also
denote the functor to that subcategory. Then it is easy to see that F op: Posop −→ T =
K op is a theory as defined. Less obvious, but also proved in the forthcoming paper,
[Barr, to appear] is the fact that Mod(K ) is isomorphic to Mod(K0). Thus a seed is
equivalent to a theory.

2.6 Example. Here is an example. We define a seed K0 . Here and elsewhere, we
let n stand for the chain of length n . So that 2 stands for the 2 element chain, while
2 = 1 + 1 is the discrete set with 2 elements. We let

.
+ stand for the ordinal sum of

ordered sets, so that 2 = 1
.
+ 1.

This seed consists of P which is the graph with two objects 1 = 1 and 2 of Pos
and no arrows. The graph K0 is P together with just one arrow σ: 1 −→ 2 . A model
(P,M) is determined by M(σ):M(2) −→ M(1) since M is already determined by its
value on maps in Pos . Now M(2) = Pos(2, P ) and M(1) = Pos(1, P ). The former is
the set of pairs of elements x ≤ y , while the latter is simply the set of elements of P .
Thus to have an M is to have a function M(σ) that assigns to each pair of elements
x ≤ y an element M(σ(x, y)). Since M takes values in the category of sets, it is not
assumed that M(σ) preserves order. As we will see, that can be added as a condition,
if wanted.

2.7 We have indicated that the underlying functor from the category of models of
a small seed has an adjoint. The same is true for a full theory; the proof is entirely
different.
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2.8 Proposition. Let F : Pos −→ K be a theory. Then the underlying functor
U : Mod(K ) −→ Pos has a left adjoint.

Proof. We begin by defining a functor J : K −→ Mod(K ) which is, up to equivalence,
the Yoneda embedding. Let V be right adjoint to F . For an object FA of K , we
let J(FA) be the pair (V FA,M) where M(FB) = Pos(B, V FA) ∼= K (FB,FA). If
f :FA′ −→ FA is an arrow, then Jf is the composite

Pos(B, V FA′) ∼= K (FB,FA′)
K (FB, f)−−−−−−−−−→ K (FB,FA) −→ Pos(B, V FA)

Then we have the situation

K Mod(K )-J

Pos

U

�
�

�
��	

F

@
@
@
@@I

V

@
@
@
@@R

with F left adjoint to V . I claim that JF is left adjoint to U . In fact,

Mod(K )(JFA, (M ′P ′)) ∼= NT (K (−, FA),M ′) ∼= M ′FA

∼= Pos(A,P ′) ∼= Pos(A,U(P ′,M ′))

This completes the proof of the adjunction.

3 HSP subcategories

We now come to the main results of this paper. In traditional universal algebra an
HSP subcategory is a full subcategory of a category of algebras that is closed under
homomorphic images, subobjects and products. In fact, the idea predates category
theory, when these were called HSP classes. The main theorem on the subject is that
HSP classes are exactly the classes of algebras that satisfy a set of equations. An
equation is asserts the equality of two terms constructed from the theory.

We will give examples to show that the proposition in this form is not true. More-
over if it were, it wouldn’t be as interesting. What is true is almost as nice and is
considerably more interesting.

The reason is that in a poset one wants to be able to say not merely that two
terms are equal, but also be able to say that one term is less than or equal to another.
In other words, to specify inequalities as well as equalities. On the other hand, the
result is false because although an HSP subcategory of an HSP subcategory is an HSP
subcategory, it can happen that one can impose equalities or inequalities on a theory
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and get a new theory that allows new equalities or inequalities involving terms that
weren’t even in the previous theory. This in turn results from the fact that, as soon
as you leave the category of sets as a base, it is no longer necessarily the case that the
image of a morphism between two models is a model.

This is best shown by example. Consider a seed that has four arrows as shown in
the diagram:

F2 F3-
Fg

F2-
Fh

F2

Ff
�
�

��	 ?

σ Ff
@
@
@@R

The arrow f : 2 −→ 2 takes both elements of 2 to the larger element; the arrows g, h: 3
−→ 2 are the two surjective arrows in Pos . The two paths in the diagram above are
each paths in this seed.

An algebra for this seed is a poset P equipped with an operation

M(σ): Pos(3, P ) −→ Pos(2, P )

which we will abbreviate σ:P3 −→ P2 such that the diagram

P2 P3�
P g P2�

P h

P2

P f

�
�
�
��� 6

σ P f

@
@
@

@@I

commutes. When this is all sorted out, it means that there is a pair of 3-ary operations,
say σ0 and σ1 such that for all x ≤ y ≤ z ,

σ0(x, y, z) ≤ σ1(x, y, z)

and that for x ≤ y ,

σ0(x, x, y) = σ1(x, x, y) = σ0(x, y, y) = σ1(x, y, y) = y

One easily discovers from these data that the free model generated by the three
element poset x ≤ y ≤ z contains just five elements, x ≤ y ≤ z and σ0(x, y, z) ≤
σ1(x, y, z). The equations that a model must satisfy force that all other terms are
equal to one of these five. Also freeness forces there to be no other inequalities than
the ones already shown. Now let us add the equation z = σ(x, y, z). The original five
terms have shrunk to four, but now there are new terms such as σ1(x, y, σ1(x, y, z)),
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σ1(x, z, σ1(x, y, z)), σ1(y, σ1(x, y, z), σ1(y, σ1(x, y, z))) and infinitely many more. More-
over, there is a possibility of new equations being added, equations that could not be
stated in the original theory because the necessary terms didn’t exist. For example,
such an equation as

σ1(x, y, σ1(x, y, z)) = σ1(x, z, σ1(x, y, z))

Conceivably, this new equation could introduce new terms and new possibilities, allow-
ing new equations and so ad infinitum.

When the base category is sets, equations can never introduce new terms; they can
only introduce identifications among terms already present.

One more point is that we might want to be able to consider subcategories deter-
mined by inequalities rather than just equalities. In order to do this, we have to look
more carefully at what we mean by an HSP subcategory. The reason is that whereas
a subobject of an object that satisfies an equality still satisfies that equality, the same
is not true for inequalities, unless we restrict our notion of subobject. For example, 2
is a subobject of 2 , but the inequality of the latter is not satisfied in the former. One
might decide to stick to regular subobjects (which means, in the context of poset, that
they have the inherited order relation). But in fact, the best approach is to leave the
notion of subobject as a parameter.

3.1 Factorization systems. By a factorization system on a category C we mean
a pair E /M of classes of arrows of the category such that

1. E ∩M is the class of isomorphisms;

2. E and M are closed under composition;

3. Every arrow f ∈ C can be factored as f = m ◦ e with m ∈M and e ∈ E ;

4. In any commutative square

C D-m

A B-e

? ?

with m ∈ M and e ∈ E there is an arrow B −→ C making both triangles
commute. This arrow is called the “diagonal fill-in”.

5. Every morphism in E is an epimorphism and every morphism in M is a monomor-
phism.
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The last condition is not always assumed. Many of the ideas can work without it
and there are certain cases in which that is useful. In that case you will usually want
to strengthen the third condition to say that the diagonal fill-in is unique.

Let us say that an arrow e is orthogonal to an arrow m if that diagonal fill-in
condition is satisfied with respect to those two arrows. We will say that a class E of
arrows is orthogonal to a class M if the diagonal fill-in condition is satisfied between
all the arrows in the first and all the arrows in the second. Note that this orthogonality
relation is not symmetric.

It is straightforward to show that in a factorization system, the two classes determine
each other. Given E , M consists of all the arrows in the category that E is orthogonal
to and given M , E consists of all the arrows that are orthogonal to M . Similarly,
if we have two distinct factorization systems, E /M and E ′/M ′ , then E ⊆ E ′ if and
only if M ′ ⊆M . Moreover the one inclusion is strict if and only if the other is.

In well-behaved categories (categories with pullbacks and pushouts in which every
class of subobjects of an object have an intersection and dually), there are two extreme
factorization systems. The first has for M0 all monomorphisms and for E0 all arrows
orthogonal to M0 . The second has for E1 the class of all epimorphisms and for M1 all
arrows that E1 is orthogonal to.

An epimorphism that is orthogonal to every monomorphism is called an extremal
epimorphism. Assuming the category has pullbacks, an epimorphism is extremal if and
only if it factors through no proper subobject of the codomain. The dual notion is
called an extremal monomorphism. These are the two extreme cases for if E /M is any
other factorization system, from M ⊆ M0 and E ⊆ E1 , it follows that E0 ⊆ E and
M1 ⊆M .

In Pos we have the two extreme factorization systems. There is at least one inter-
mediate one and may be more. Note first that all monics are injective and all epics are
surjective. This puts certain constraints on factorization systems. For example, it is
easy to see that the arrow 2 −→ 2 is both epic and monic and cannot be factored into
an epic followed by a monic unless one of the two is an isomorphism. Thus if we have
an intermediate factorization system E /M , it must be that 2 −→ 2 is in E or M . If
it is in E , then you can show that only extremal monomorphisms are in M , so that
M ⊆M1 , whence M = M1 and this is the epic/extremal monic factorization. On the
other hand, if 2 −→ 2 is in M , it does not follow that E0 ⊆ E .

Every arrow in Pos factors as an extremal epi followed by a bijection followed by
an extremal mono. Thus a factorization system is determined by its restriction to the
bijections. But a bijection is simply a set with two partial orderings on it, the second
finer than the first. So we have to say which refinements are in E and which are in
M . One possibility is to put a refinement in E if and only if all the new orderings are
among elements in the same component and in M if and only if all the new orderings
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are between elements in different components. You have to show the diagonal fill-in
condition is satisfied, but it is.

The examples below will refer only to the two extremal factorizations.

4 Subcategories defined by Horns

Throughout this section, we will suppose chosen a fixed factorization system E /M .

4.1 Horns. Let F : Pos −→ T op = K be a theory on posets. By a Horn we mean
a diagram in K

FB FC

FA

Ff

@
@

@@I

@
@

@@I g

�
�
���

in which f ∈ E . A model (P,M) of K satisfies the Horn if there is a function
h:MFC −→MFB such that the diagram

MFB MFC� h

MFA

MGf
@
@
@@R

Mg
�
�

��	

commutes. This is equivalent to the commutation of

Pos(B,P ) Pos(C,P )� h

Pos(A,P )

Pos(f, P )

@
@
@
@@R

R

Mg

�
�
�

��	

where Pos(f, P ) is monic since f is epic. That implies that the factorization, if it
exists, is unique. Thus there is a full subcategory defined by the existence of such a
factorization.

4.2 HSP subcategory. An arrow f of Mod(K ) is called a U -split epimorphism
if Uf is a split epimorphism. An arrow f is called a U/M monomorphism if Uf ∈M
We will say that a subcategory of Mod(K ) is an HSP subcategory provided it is
closed under U -split epimorphisms, U/M -monomorphisms and products. This means,
obviously, that the notion is dependent on the factorization system.
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4.3 Theorem. Let F : Pos −→ T op = K be a theory on posets and

FB FC

FA

Ff
@
@
@@R

@
@
@@R

g
�
�

��	

be a Horn. The full subcategory of objects of Mod(K ) consisting of objects that satisfy
the Horn is an HSP subcategory.

Proof. Let C denote the category of models and let C0 denote the full subcategory. It
is immediate that this subcategory is closed under limits. Suppose that (P,M) is an
object of C0 and that (P ′,M ′) )−→(P,M) is a subobject with P ′ )−→P in M . We must
show we can fill in the top arrow in the diagram

Pos(B,P ) Pos(C,P )�

Pos(B,P0) Pos(C,P0)

? ?

Pos(A,P0)
���*

HHHj
j

HHHj
j

Pos(A,P )
���*?

To do this it is sufficient to show that the right hand square is a pullback. But the
diagonal fill-in condition can be restated as asserting that for any A→→B and P )−→P0

the square

Hom(B,P ) Hom(A,P )-

Hom(B,P0) Hom(A,P0)-

? ?

is a pullback.
Finally, let (P,M) −→ (P0,M0) be such that P −→ P0 is a split epi and suppose

that (P,M) is in C0 . We must be able to fill in the missing arrow in the diagram

Pos(B,P0) Pos(C,P0)

Pos(B,P ) Pos(C,P )�

? ?

Pos(A,P )
���*

HHHj
j

HHHj
j

Pos(A,P0)
���*?
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This comes from the diagonal fill-in in the square

Pos(B,P ) Pos(A,P0)--

Pos(C,P ) Pos(C,P0)--

?

Pos(C,P0)
?

?

4.4 Corollary. The full subcategory of objects that satisfy any set of Horns is an
HSP subcategory of the category of models.

The converse is not true. The example of 3 illustrates why. An equation asserts the
equality of two terms. This means that there are two operations, say τ0, τ1:FA −→ FB
that are to become equal. This is done with the Horn

FB FA

F (A+ A)

〈id, id〉
@
@

@@I

@
@

@@I τ0 + τ1

�
�
���

It is easy to see that an algebra satisfies this Horn if and only if it satisfies τ0 = τ1 .
Note that the arrow 〈id, id〉 is split epi and split epis are easily seen to be in the epi
part of any factorization system.

We saw in that example that we could get an equation and then when that was
satisfied get a new equation whose terms didn’t even exist in the original theory. Thus
the property of being the algebras satisfying a set of Horns is not transitive, while that
of being an HSP category is. Thus the two cannot coincide. However, the next best
thing is true.

4.5 Theorem. For any accessible theory on Pos, the HSP subcategories of the
category of models of the theory are the transitive closure (possibly transfinite) of the
subcategories defined by satisfying Horns.

What this statement means is that if D is an HSP subcategory of C , then there is
an ordinal chain

D = Cλ ⊆ . . .Cκ+1 ⊆ Cκ ⊆ . . . ⊆ C1 ⊆ C0 ⊆ C

of subcategories such that for each cardinal κ , Cκ+1 is derived from Cκ as the subcat-
egory satisfying a set of Horns and if κ is a limit ordinal, then Cκ =

⋂
µ<κ Cµ .

Proof. Suppose that (P,M) is an object of C , (P ′,M ′) is an object of D and (f, φ): (P,M)
−→ (P ′,M ′) is an arrow. Let (P0,M0) be the intersection of all (P ′′,M ′′) −→ (P ′,M ′)
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such that P ′′ )−→P ′ is in M and such that P ′′ contains the image of f . Then it is a
standard property of factorization systems that P0 −→ P ′ is in M . It is also clear that
(f, φ) factors through (P0,M0). I claim that the factored map is an epimorphism. In
fact, if it isn’t, there would be two maps from (M0, P0) that were equal on that image
and their equalizer would be a strictly smaller subobject of (P,M) that factored the
map. But a regular monomorphism is automatically extremal and is thus in the monic
part of every factorization system.

In Barr [to appear] it is shown how to use the results of Makkai & Paré [1990]
on accessible categories to show that the category of models of an accessible theory is
accessible. Makkai & Reyes have also shown that an object in an accessible category
has only a set of subobjects and a set of quotient objects. From this it is easy to use
the factorization just described to construct an adjoint for the inclusion of D into C .

For similar reasons, the underlying functor U : C −→ Pos has a left adjoint F and
from the adjunction identities, we get that for any E , the arrow εE:FUE −→ E
is U -split, since UεE ◦ ηUE = idUE . Thus every model is the target of a U -split
epimorphism whose source is a free model. Hence if D is a proper subcategory, there
is some free model FP that it doesn’t contain. Suppose the front adjunction is α:FP
−→ ILFP . Since this is in E and not an isomorphism, it is not in M and thus Uα
is not in M either. Then we can factor Uα = g ◦ f with f :UFP −→ P ′ in E and
g ∈M and f is not an isomorphism. Now we consider the Horn

FP ′ FP

FUFP

Ff

@
@
@@I

@
@
@@I µFP

�
�
���

I claim that every object of D satisfies this Horn. In fact, suppose h:FP −→ D is
a morphism. Then there is a map k: ILFP −→ D such that k ◦ αFP = h . Now the
required arrow FP ′ −→ D is the composite k ◦ µILFP ◦ Fg in the diagram

FP ILFP-
?

µFP

?

µILFP

FUFP FP ′-Ff FUILFP-Fg

αFP

D

h
@
@
@@R

k
�
�

��	?

Each instance of such a free model not in D gives such a Horn clause and the
class of all of them determines an HSP subcategory C0 ⊆ C such that D ⊆ C0 . If
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this inclusion is proper, then D is an HSP subcategory of C0 and we may repeat the
construction. In this way, we get a descending ordinal sequence of HSP subcategories.
At limit ordinals, take the intersection of the subcategories. The only thing left is to
show that this process terminates. The reason for that is that the triple is accessible
and hence is determined by its values on a small subcategory. These objects are all
well-co-powered and hence there can be only a set of these quotient triples.

5 Connection with other works

There have been many generalizations of Birkhoff’s theorem. Some citations are given
in [Barr, to appear]. As far as I have been able to determine, they have all taken the
point of view that equations are given using the equality predicate alone. If you are in
a sup semilattice, for example, then a predicate of the form a ≤ b can be replaced by
the equality predicate a∨ b = b and similarly in an inf semilattice. But if you just have
a poset, then there is no alternative to using the inequality predicate directly. Thus
this paper (and its generalization to arbitrary categories that is to appear), go in a
different direction from the other generalizations. On the other hand, it is likely that
in most cases, the results of this paper can be subjected to the same generalizations as
Birkhoff’s original theorem.
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