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Abstract

We show that if C is the category of models for a theory in the sense of Linton
over an arbitrary base category, then a full subcategory of C is closed under
Homomorphic images that split in the underlying category, under M -Subobjects
for a class M of monomorphisms and under Products if and only if it is an
intersection of a nest of subcategories, each determined from the preceding by a
class of “Horns”, in which the crucial arrow lies in the class E of epimorphisms
orthogonal to M .

1 Introduction

A celebrated theorem of Garrett Birkhoff states (in modern language) that a subcate-
gory of the category of models of a (finitary) equational theory is defined by equations
if and only if it is closed under Homomorphic images, Subobjects and Products (HSP)
[Birkhoff, 1935]. The theorem survives unchanged when the finitary restriction is
dropped. Recently Vaughan Pratt asked if there was such a theorem for theories based
on the category of partially ordered sets (hereafter called posets). The answer in case
of posets is developed in [Barr, to appear], which may be read as an introduction to
this paper.

There are several differences between the theory developed here and Birkhoff’s. In
the first place, the result depends on how you define HSP, in particular, what kind of
subobjects are allowed. Second, the idea of satisfying an equation has to be generalized
to that of satisfying a certain Horn clause, using only the predicates available in the base
category. Third, a single set (or even class) of equations may not suffice, since an HSP
subcategory may allow new equations that were not even be stateable in the original.

The second point above needs some amplification. The kinds of Horn clauses that
are allowed have the form ∧

φi(~x)⇒ ψ(~τ(~x))
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where the φi and ψ are predicates stateable in the base category, ~x is a string of
variables of the appropriate type and ~τ is a string of operations that can apply to a
string of type ~x . It is assumed that these implications are properly typed. The only
predicates available in the category of sets are membership and equality. A Horn clause
built using only those two predicates is the same thing as an equation. An equation
specifies membership by its domain and equality of variables by using a diagonal. For
example, the Horn clause x = y ⇒ τ(x, y, z) = z is normally rendered in an equational
theory by the equation τ(x, x, z) = z . For a theory defined over posets, this would
allow the use of Horn clauses using both equalities and inequalities.

The notion of theory we use is essentially that of Linton [1969]: a category that
has the same objects as the base and whose arrows include all the arrows of the base
and more. The extra arrows correspond to the operations that a model must possess.
We prefer to work in the dual of Linton’s theory category, but that is a matter of
convenience only.

2 Preliminaries

2.1 Factorization systems. We will be dealing with a factorization system on a
category. This consists of two classes of arrows, which we will denote E and M , each
closed under composition and including all the isomorphisms. These have the property
that each arrow of the category factors uniquely, up to isomorphism, as an arrow in
E , followed by an arrow of M . We use a doubled-headed arrow →→ to indicate that
an arrow is in E and a tailed arrow )−→ to indicate that an arrow is in M . In this
paper, we will assume that all arrows in E are epimorphisms and all arrows in M are
monomorphisms. This is well known to imply that all regular epimorphisms are in E
and all regular monomorphisms are in M . It also follows that in any square

C D--
m

A B--e

?

f

?

g

with e ∈ E and m ∈ M , there is a unique arrow h:B −→ C , called the “diagonal
fill-in”, for which h ◦ e = f and m ◦ h = g . One way of stating this condition, which we
will use later in the paper is the following. Fix e ∈ E and m ∈M . Then the condition
states that for any f :A −→ C and g:B −→ D such that m ◦ f = g ◦ e , then there is a
unique h:B −→ C such that h ◦ e = f and m ◦ h = g . This is precisely the statement
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that

Hom(B,D) Hom(A,D)-
Hom(e,D)

Hom(B,C) Hom(A,C)-Hom(e, C)

?

Hom(B,m)

?

Hom(A,m)

is a pullback.
Another important property of factorization systems is that an arrow is in E ∩M

if and only if it is an isomorphism. One way is assumed and the other follows from the
uniqueness, up to isomorphism, of the factorization.

We will denote this factorization system E /M .

2.2 Proposition. Suppose E /M is a factorization system. Suppose A is an ob-
ject and {Ai} is a class of M -subobjects of A whose intersection exists. Then that
intersection is also an M -subobject of A.

This is relevant to the application of Proposition 5.10. Note that we do not assume
that this class is a set, only that it have an intersection.

Proof. Suppose we factor the inclusion f :
⋂
Ai −→ A as f = m ◦ e with m ∈ M and

e ∈ E . Then we have, for any i , a diagram

Aj A--

⋂
Ai A′--e

? ?

m

The diagonal fill-in shows that A′ ⊆ Aj for each j and hence A′ ⊆ ⋂Aj . The opposite
inclusion is given by e , which has to be monic, despite being in E .

2.3 Proposition. Let B be a complete category. Suppose E /M is a factorization
system in B and assume that either B is M -well-powered or that an arbitrary class
of M -subobjects of an objects of B has an intersection. Let T be a triple on B and
suppose C = BT is the category of Eilenberg-Moore algebras with U : C −→ B and F : B
−→ C the free and underlying functors, respectively. Then there is a unique factorization
system E T/M T on C for which M T = U−1(M ). Moreover, F (E ) ⊆ E T .

Proof. Let M T = U−1(M ). We say that the arrow C1 −→ C2 is in E T if it cannot
be factored as C1 −→ C ′ )−→C2 with C ′ )−→C2 a non-isomorphism in U−1(M ). I claim
that any f :C1 −→ C2 in E T is an epimorphism. If not, there would be distinct arrows
g, h:C2 −→ C3 with g ◦ f = h ◦ f . But then the equalizer k:C4 −→ C2 of g and h
would be a proper subobject of C2 through which f factors. But Uk is a regular
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monic and therefore belongs to the M part of every epi/mono factorization system so
that k ∈M T . This contradicts the assumption that f factors through no proper M T

subobject of C2 .
Given an arbitrary morphism f :C1 −→ C2 , Let C3 ⊆ C2 be the intersection of all

the M T -subalgebras of C2 . These exist because U creates arbitrary limits and we are
assuming that such intersections exist in B . The preceding proposition implies that
the inclusion C3 −→ C2 is in M T . It is also clear that C1 −→ C3 is in E T from its
definition. This gives the required factorization in C .

Suppose that f :B1 −→ B2 belongs to E . If

C1 C2
--

g

FB1 FB2
-Ff

? ?

is a commutative square in C with g ∈M T , it corresponds by adjointness to a square

UC1 UC2
--

Ug

B1 B2
--f

? ?

which gives a diagonal fill-in B2 −→ UC1 that corresponds via adjointness to an arrow
FB2 −→ C1 . This shows that Ff ∈ E T .

3 B-based sketches

3.1 Sketches. Let B be a category. By a B -based sketch we mean a diagram

B K

B0

V
�

�
��	

F
@
@
@@R

in which B0 is a graph and V : B0 −→ B is the inclusion of a subgraph, K is a graph
with diagrams and F : B0 −→ K is a graph morphism that is an isomorphism on nodes
(objects).
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One way to think of this is that K is a graph with diagrams whose nodes are
objects of B and some of whose arrows are identified as arrows of B . In accordance
with this perception, we will often say, “Let K be a B -based sketch,” even though all
the components are needed.

There are two kinds of sketches that are of special interest. In the first, B0 is
a small graph, often finite. In the second kind, B0 is the graph underlying B , the
morphism V is the identity, K is the graph with diagrams underlying a category and
F ◦ V −1 is a functor. In that case F ◦ V −1: B −→ K is a theory in the sense defined
below (Section 4) with T = K op . Let us call such a sketch a theory-type sketch. Since
V is the identity we will ignore it and say that F : B −→ K is a theory-type sketch.

3.2 Models. Given such a sketch, a model in the category of sets is a pair (B,M)
where B is an object of B and M : K op −→ Set is a graph morphism that takes
the diagrams of K to commutative diagrams. Thus M is a model of the graph with
diagrams K . In addition B and M must fit together so that

MF = B(V−, B)

A morphism (f, φ): (B,M) −→ (B′,M ′) consists of a morphism f :B −→ B′ and a
natural transformation φ:M −→M ′ such that

B(V B0, B) B(V B0, B
′)-

B(V B0, f)

MFB0 M ′FB0
-φFB0

?

=

?

=

commutes for every object B0 of B0 .
The notation is intended to suggest that a model is an object of B with structure

and that M defines the structure. Let us see that this is the case. Let (B,M) be a
model. Every object of K has the form FB0 for a unique object B0 of B0 . Thus
M is determined on objects by the formula MFB0 = B(V B0, B). The other thing
that M provides is an arrow Mf : B(V B0, B) −→ B(V B′0, B) for each arrow f :FB0

−→ FB′0 of K , subject to the condition MFg = B(V g,B) for g ∈ B0 and subject
also to the commutativity conditions determined by the diagrams of K .

The idea of this is that a morphism from B0 to B is a B0 -type in B . Then a model
tells how to give, for each FB0 −→ FB′0 in K , a map from B0 -types in B to B′0 -types
in B and is thus a kind of structure on B .

3.3 Adjoints. Let Mod(K ) denote the category of models as just described. There
is an obvious functor U : Mod(K ) −→ B such that U(B,M) = B and U(f, φ) =
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f . It is easy to see that this functor creates limits. We are interested in knowing
conditions under which this functor has a left adjoint. Although it does not in general,
the following three theorems give conditions under which the adjoint exists that cover
most cases of interest.

3.4 Theorem. If B is a locally presentable category and the graph B0 is small,
then U has a left adjoint.

Proof. To give the object B the structure of a model requires giving an arrow V B′0
−→ B for every arrow FB′0 −→ FB0 in K and every arrow V B0 −→ B in B , subject
to certain conditions. Leaving the conditions aside for the moment, this requires an
arrow SB −→ B where

SB =
∑

K (FB′0, FB0)×B(V B0, B)× V B′0
the sum taken over all pairs (B0, B

′
0) of objects of K . We use the notation X × B

for a set X and object B of B to denote the sum of an X -fold of copies of B . The
category of objects B equipped with an arrow SB −→ B is denoted (S : B).

At this point, we require,

3.5 Lemma. The category (S : B) is accessible and the underlying functor to B is
an accessible functor with a left adjoint.

Proof. Since B0 is small, the functor Ŝ(B0): B −→ Set given by

Ŝ(B0)B = B(V B0, B)

is accessible, essentially by definition. The products in the definition of S are symbolic
and really represent sums. Since colimits commute with colimits, the functor S: B
−→ B is also accessible. The category (S : B) is an example of a weighted bilimit and
thus the lemma follows from Theorem 5.1.6 of [Makkai & Paré, 1990].

The category of models of K is a full subcategory of (S: B) determined by condi-
tions of two kinds. The first is that for any object f :SB −→ B , the two composites

∑
B0(B′0, B0)×B(V B0, B)× V B′0

∑
(F × id× id)−−−−−−−−−−−−−→

∑
K (FB′0, FB0)×B(V B0, B)× V B′0 = SB

f−−→ B

and ∑
B0(B′0, B0)×B(V B0, B)× V B′0

∑
(V × id× id)−−−−−−−−−−−−−→

∑
B(V B′0, V B0)×B(V B0, B)× V B′0

∑
(compose× id)−−−−−−−−−−−−−−→

∑
B(V B′0, B)× V B′0

∑
(apply)−−−−−−−−→

∑
B
∇−−→ B

6



be equal. Here ∇ is the codiagonal arrow, that is the morphism on the sum that is the
identity on each component.

In order to state the second condition we require some notation. Let h:SB −→ B
be an object of (S :B), let (B′0, B

′′
0 ) be a pair of objects of B0 and let f :FB′0 −→ FB′′0

be an arrow of K . Then by restricting h to the summand of SB indexed by the pair
(B′0, B

′′
0 ), we get an arrow

h(B′0, B
′′
0 ): K (FB′0, FB

′′
0 )×B(V B′′0 , B)× V B′0 −→ B

Applied to f ∈ K (FB′0, B
′′
0 ), we get an arrow

h(B′0, B
′′
0 , f): B(V B′′0 , B)× V B′0 −→ B

The second condition is that for any diagram

FB0 FC1
-

g0

FB0 FB1
-f0

?

=

· · ·-
g1

· · ·-f1

FCm−1
-

gm−2

FBn−1
-fn−2

FBn
-

gm−1

FBn
-fn−1

?

= (∗)

in K , we have

h(B0, Bn, fn−1 ◦ · · · ◦ f0) = h(B0, Bn, gm−1 ◦ · · · ◦ g0): B(V Bn, B)× V B0 −→ B

Since B0 is small, we can define W : (S : B) −→ B by

W (SB −→ B) =
∑

B0(B′0, B0)×B(V B0, B)× V B′0 +
∑

B(V Bn, B)× V B0

The first sum is taken over all pairs (B0, B
′
0) of objects of B0 and the second sum is

taken over all the diagrams of the form (∗). Then what we have described above are
two natural transformations W −→ U such that a T -algebra is a model of K if and
only if the two natural transformations agree on it. It is straightforward to show that
W preserves limits and hence by Corollary 4.4 of [Barr, 1991] the full subcategory on
which these two transformations agree is reflective in (S : B).

3.6 Theorem. If B is locally presentable and F : B −→ K is a theory-type sketch
in which K is an accessible category and F an accessible functor, then U has a left
adjoint.

Proof. The argument is similar, for in this case even if K is large, it might as well
be small. In fact, choose a cardinal κ large enough that B and K are κ-accessible
categories and F is a κ-accessible functor. Let B0 and K0 be the full subcategories
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of B and K , respectively, consisting of the κ-accessible objects. Then any model of
K0 has a unique extension to a model of K . In fact, let (B,M) be such a model. We
must provide, for any objects FB′0 and FB0 of K a map

K (FB′0, FB0)×B(V B0, B) −→ B(V B′0, B)

Suppose first that B′0 is κ-accessible. Then any element f ∈ K (FB′0, FB0) factors
through a κ-accessible object B′′0 −→ B0 . We have

K (FB′0, FB
′′
0 )×B(V B0, B) −→ K (FB′0, FB

′′
0 )×B(V B′′0 , B) −→ B(V B′0, B)

since now both FB′0 and FB′′0 belong to K0 . Write a general B′0 as a κ-filtered colimit
of κ-accessible objects and take limits on both sides. The uniqueness follows similarly
from the fact that these categories are κ-accessible.

3.7 Theorem. Suppose that F : B −→ K is a theory-type sketch and that F has a
right adjoint. Then U has a left adjoint.

Proof. Let R be right adjoint to F . Begin by defining an embedding J : K −→
Mod(K ). It is, up to isomorphism, the Yoneda embedding. For an object A of K ,
we let J(A) be the pair (RFA,M) where M(FB) = B(B,RFA) ∼= K (FB,FA). If
f :FA′ −→ FA is an arrow, then Jf is the composite

B(B,RFA′) ∼= K (FB,FA′)
K (FB, f)−−−−−−−−−→ K (FB,FA) −→ B(B,RFA)

Then we have
K Mod(K )-J

B

U

�
�

�
��	

F

@
@
@
@@I

R

@
@
@
@@R

with F left adjoint to R . I claim that JF is left adjoint to U . In fact,

Mod(K )(JFA, (M ′P ′)) ∼= NT (K (−, FA),M ′) ∼= M ′FA

∼= B(A,P ′) ∼= B(A,U(M ′, P ′))

This completes the proof.

3.8 The Kleisli category. Let T = (T, η, µ) be a triple on B . The Kleisli
category [Kleisli, 1965] K of the triple has as objects those of B with homsets given
by

K (A,B) = B(A, TB)
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The multiplication and unit of the triple give the composition and identities of K . We
have functors F : B −→ K and right adjoint R: K −→ B . The functor F is the identity
function on objects, while on arrows it is given by f :A −→ B goes to ηB ◦ f = Tf ◦ ηA .
On objects, RB = TB while on an arrow f :A −→ B in K , meaning f :A −→ TB in
B , we let Uf = µB ◦ Tf . Details are found in [Barr & Wells, 1985].

The situation F : B −→ K is, with V the identity functor, an example of a B -based
sketch.

We also have the well-known category BT of Eilenberg-Moore algebras, together
with the functors UT: BT −→ B right adjoint to FT: B −→ BT . The relation between
the Eilenberg-Moore category and the Kleisli category is given by the following.

3.9 Theorem. The Kleisli category of a triple is isomorphic to the full image of the
left adjoint FT . The Eilenberg-Moore category is isomorphic to the category of models
of the Kleisli category.

The first assertion is well-known and is found in many places, for example in [Barr
& Wells, 1985]. For the second, see Theorem 4.1 below.

3.10 Horns. Let us now assume fixed an E /M factorization system in B . By a
Horn on K (relative to the given factorization system), we mean a diagram in K of
the form

FA′ FA′′

FA

Ff

@
@
@@I g

�
�
���

in which f ∈ E .
A model (B,M) of K satisfies the Horn if there is a function h:MFA′′ −→MFA′

such that the diagram

MFA′ MFA′′� h

MFA

MFf
@
@
@@R

Mg
�
�

��	

commutes. This is equivalent to the commutation of

B(A′, B) B(A′′, B)� h

B(A,B)

B(f,B)

@
@
@
@@R

R

Mg

�
�

�
��	
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where B(f,B) is monic since f is epic. That implies that the factorization, if it exists,
is unique. Thus there is a full subcategory of models consisting of those for which such
a factorization exists.

The fact that the objects appearing in the Horn are free is what determines that
the Horn clauses are restricted to predicates available in B .

3.11 HSP subcategories. Again we assume fixed a factorization system on B and
the associated system in the category C of models. By an HSP subcategory C0 ⊆ C
(relative to the given factorization system), we mean a full subcategory that is closed
under U -split epimorphisms, M monics and products.

4 Functorial semantics

The primary reference for functorial semantics in a general setting (that is other than
over the category of sets) is [Linton, 1969]. We give an outline of the main construction
here.

Let B be a category. A theory over B is a category T equipped with a functor
G: Bop −→ T that is an isomorphism on objects. It is usual to suppose that G pre-
serves limits, but in fact, we really require that it have a left adjoint. If we were to
restrict to accessible categories and functors, these assumptions are equivalent.

Assuming that G has a left adjoint then, up to equivalence, K = T op is the
Kleisli category for the triple associated to the adjunction. We find it more convenient
to work with the Kleisli category directly. Hence for us the functorial semantics setting
is a category B a category K and a functor F : B −→ K that has a right adjoint and
is an isomorphism on objects.

A Kleisli category can always be viewed as the theory-type sketch

B K

B

id
�

��	
F

@
@@R

A model of the Kleisli category is exactly the same as for any other sketch. It consists of
the assignment, corresponding to each morphism σ:FB1 −→ FB2 of K , of a morphism
σB: B(B1, B) −→ B(B2, B) subject to two restrictions:

1. If σ = τ ◦ ρ , then σB = τB ◦ ρB .

2. If σ = Ff , then σB = B(f,B).

We will freely use this description of a model. A morphism of models is as above
in 3.2.
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Let C = Mod(K ) denote the category of models of K (although they are really
models of F : B −→ K , but we will make the usual abuse of notation) and natural
transformations between the functors. Since a natural transformation between repre-
sentable functors is induced by a unique morphism between the representing objects a
natural transformation between the functors also gives an arrow between the objects.
Thus there is a functor U : C −→ B that takes the pair (B,M) to the object B . This
functor has an adjoint that takes the object B to the pair (K (−, FB), TB).

The following is more-or-less proved (but not stated explicitly) in [Linton, 1969] (see
Section 6, especially 6.2) and stated (with proof) in the unpublished [Linton, 1974].

4.1 Theorem. Let T be a triple on B with Kleisli category K and let C be the
category of models of the resultant theory-type sketch. Then the underlying functor U : C
−→ B is tripleable and the triple is T.

Proof. We begin by showing that the underlying functor reflects isomorphisms. If
(f, µ): (B,M) −→ (B′,M ′) is such that f is an isomorphism then for every σ:FB1

−→ FB2 in K , the horizontal arrows in the commutative diagram

B(B2, B) B(B2, B
′)-

B(B2, f)

B(B1, B) B(B1, B
′)-B(B1, f)

?
σB

?
σB′

are isomorphisms, their inverses given by B(B1, f
−1) and B(B2, f

−1), respectively.
But if a square of this form commutes, it continues to commute with the inverses and
hence f−1 is also a morphism of models, clearly inverse to the original one.

Finally, we verify Beck’s criterion. Suppose

(B′,M ′)
(d0, µ0)−−−−−−→−−−−−−→
(d1, µ1)

(B,M)

is a U -split coequalizer, which means there is a split coequalizer diagram in B

B′
d0

−−→−−→
d1

B
d−−→ B′′
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This means that for any σ:FB1 −→ FB2 in K , the top (and bottom) row of the
following diagram is a coequalizer

B(B2, B
′) B(B2, B)

B(B1, B
′) B(B1, B)

?
σB′

?
σB

B(B2, B) B(B2, B
′′)-

B(B1, B) B(B1, B
′′)---

--

That implies there is a unique arrow σB′′: B(B1, B
′′) −→ B(B2, B

′′) such that the
right hand square commutes. This defines the arrows σB′′ for all the operations of
the theory. That the equations are satisfied is a similar computation that uses the fact
that B(B1, B)→→B(B1, B

′′) is surjective and can be canceled from the relation for B .
The commutativity of the right hand square in the diagram above (when it is filled
in) shows that the arrow B −→ B′′ is a morphism of models and the fact that it is
the required coequalizer follows similarly from the cancellability of surjections. In fact,
given (f, µ): (B,M) −→ (B′′′,M ′′′) with f ◦ d0 = f ◦ d1 , we first use the fact that B′′ is
the coequalizer of d0 and d1 to get the required arrow B′′ −→ B′′′ . The only thing left
is to show that it is a morphism of models. For any σ:FB1 −→ FB2 , the outer square
of

B(B2, B) B(B2, B
′′)-

B(B1, B) B(B1, B
′′)--

?
σB

B(B2, B
′′′)-

B(B1, B
′′′)-

?
σB′′

?
σB′′′

commutes and the surjection can be canceled to show that the right hand square also
commutes, which completes the proof.

The next theorem implies that an HSP subcategory of a category tripleable over B
is also tripleable over B .

4.2 Theorem. Let U : C −→ B be tripleable and suppose I: D −→ C is the inclusion
of a reflective subcategory that is closed under U -split epimorphic images. Then UI is
also tripleable.

Proof. The functor UI has a left adjoint because both U and I do. Similarly, it reflects
isomorphisms. Suppose that

D1

d0

−−→−−→
d1

D0

is a UI -split coequalizer pair. Then there is an object C of C and an arrow d:D0

−→ C such that

D1

d0

−−→−−→
d1

D0
d−−→ C
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is a coequalizer that is preserved by U . But then d is a U -split epi whose domain is
in D and hence so is C .

5 The main HSP theorem

5.1 Theorem. Let B be a complete base category with a factorization system E /M .
Let F : B −→ K the free functor for a Kleisli category and H a class of Horns with
respect to the factorization system. Then the full subcategory of C = Mod(K ) consisting
of all models that satisfy all the Horns of H is an HSP subcategory of C .

Proof. Let C0 denote the full subcategory. It is immediate that this subcategory is
closed under limits. Let (B,M) be an object of C0 and (B0,M0) )−→(B,M) be an
arrow of M . Let

FA′ FA′′

FA

Ff

@
@
@@I

@
@
@@I g

�
�
���

be a Horn in H . We must show we can fill in the top rear arrow in the diagram

B(A′, B) B(A′′, B)�

B(A′, B0) B(A′′, B0)

?

?

?

?

B(A,B0)

����

HHHj
j

HHHj
j

B(A,B)

����?

?

To do this it is sufficient to show that the left front square is a pullback. But this
follows from the properties of factorization systems as described in 2.1, applied to the
square

B(A′, B) B(A,B)-

B(A′, B0) B(A,B0)-

? ?
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Finally, let (B,M) −→ (B0,M0) be such that B −→ B0 is a split epi and suppose
that (B,M) is in C0 . We must be able to fill in the lower rear arrow in the diagram

B(A′, B0) B(A′′, B0)

B(A′, B) B(A′′, B)�

?? ??
B(A,B)

����

HHHj
j

HHHj
j

B(A,B0)

����??

This comes from the diagonal fill-in in the square

B(A′, B) B(A,B0)--

B(A′′, B) B(A′′, B0)--

?

B(A′′, B0)
?

?

The converse is not true as it stands. The reason is that when Horns are imposed,
the possibility of new Horns emerges. Thus the process may be iterated. That is, we
may now look at Horns on the Kleisli category of C0 and get a new category C1 and
so on. And it can happen that these Horns couldn’t have been imposed on C since the
necessary elements weren’t there. It is time for an example.

5.2 Example. Let B be the category of posets and let 2 , 3 , · · · denote the chains
with two elements, three elements, . . . . Let 1, 1 + 1, 1 + 1 + 1, . . . denote the discrete
posets with one element, two elements, three elements, . . . . Begin with a theory that
has, in addition to the operations provided by B one 2-ary operation we denote σ
and one equation σ(x, x) = x . More precisely, begin with the category C for which
an object is a poset B together with an operation that assigns to each chain x ≤ y of
B an element σ(x, y) ∈ B , subject to the condition that σ(x, x) = x . It is immediate
that the underlying functor U : C −→ B has a left adjoint and is tripleable. The Kleisli
category in question is that of this triple.

The free algebra on 2 is actually 1 + 2 , consisting of x ≤ y and σ(x, y). The
lack of any comparison between x or y and σ(x, y), combined with the equation we
assume implies that there are no other elements in this free algebra. Now we impose
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the following Horn condition:

F2 F2

F (1 + 1)

Ff

@
@
@@I

@
@
@@I 〈y, σ〉

�
�
���

Here we continue to denote the two elements of 2 by x ≤ y . The function f : 1 + 1
−→ 2 is the inclusion function and is immediately seen to be epic. Thus this is a Horn
condition with respect to the epi/regular-mono factorization system in B . The effect
of this condition on an algebra is to force the condition y ≤ σ(x, y). The result of
this condition is that the free algebra on 2 now contains not only the three elements
it used to, but also elements such as σ(x, σ(x, y)), σ(y, σ(x, y)) and much, much more.
More to the point, there is also the possibility of new conditions that couldn’t even be
stated in the previous theory. As an example, the equation σ(x, σ(x, y)) = σ(x, y) is
an equation that could not be stated in the previous theory, because one of the terms
wasn’t there. Instead of an equality, we could have introduced an inequality. Thus the
possibility of iterating the Horn condition construction must be allowed in any converse
to the HSP theorem. First we state the obvious corollary to the theorem.

5.3 Corollary. Suppose we have an ordinal chain of full subcategories

· · · ⊆ Cκ+1 ⊆ Cκ ⊆ · · · ⊆ C1 ⊆ C0 = C

such that each is determined from the next by a class of Horn conditions and at limit
ordinals κ, Cκ =

⋂
λ<κ Cλ . Then

⋂
κ Cκ is an HSP subcategory of C .

Proof. This is an easy consequence of the facts that being HSP is transitive and closed
under intersection.

5.4 Theorem. Let C be E -well-co-powered (for example, suppose that C is acces-
sible). Suppose that F : B −→ K is the free functor into a Kleisli category for which C
is the category of algebras. Suppose that D is an HSP subcategory of C . Then there is
an ordinal chain

· · · ⊆ Cκ+1 ⊆ Cκ ⊆ . . . ⊆ C1 ⊆ C0 = C

of subcategories defined by Horns and by intersections at the limit ordinals such that⋂
κ Cκ = D .

We begin with:

5.5 Proposition. Let FB be a free object of C that is not in D . Then there is a
Horn that is satisfied by every object of D , but not by FB .

Proof. Let I: C −→ D be the inclusion. If C is an object of C and D an object of
D any arrow f :C −→ D has an E /M factorization C→→D0 )−→D and D0 is in D .
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Since C is well-co-powered, it follows that the set of such D0 is a solution set for the
adjoint. Hence D is a reflective subcategory. It is also immediate that if L: C −→ D
is the reflector with adjunction natural transformations α: id −→ IL and β:LI −→ id
adjunction natural transformations, then αC ∈ E T for every object C of C . Let ε:FU
−→ id and η: id −→ UF be the natural transformations corresponding to the adjunction
U F .

Since αFB is in E T and not an isomorphism, it is not in M T = U−1(M ) and
hence UαFB is not in M . Then we can factor UαFB = g ◦ f with f :UFB −→ B′ in
E and g ∈M and f is not an isomorphism. Now we consider the Horn

FB′ FB

FUFB

Ff

@
@
@@I

εFB

�
�
���

I claim that every object of D satisfies this Horn. We must show that there is an arrow
h: C (FB,D) −→ C (FB′, D) such that the diagram

C (FB′, D) C (FB,D)� h

C (FUFB,D)

C (Ff,D)
@
@
@@R

R

C (εFB,D)
�
�
��	

commutes. So suppose k:FB −→ D is an element of C (FB,D). We must show that
there is an arrow l:FB′ −→ D such that

FB′ D-
l

FUFB FB-εUB

?

Ff

?
k
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commutes. The universal mapping property of α implies that there is an arrow m: ILFB
−→ D such that k = m ◦ αFB . Then the diagram

FB ILFB-
αFB

?
εFB

?
εILFB

FUFB FB′-Ff
FUILFB-Fg

D

k

@
@
@
@@R

m

�
�

�
��	

commutes. The top square commutes by the naturality of ε since Fg ◦ Ff = FUαFB .
Then l = m ◦ εILFB ◦ Fg is the required map.

Now we must show that FB does not satisfy the Horn. If FB satisfies the Horn,
there is an h: C (FB,FB) −→ C (FB′, FB) such that the triangle

C (FB′, FB) C (FB,FB)� h

C (FUFB,FB)

C (Ff, FB)

@
@
@
@@R

R

C (εFB, FB)

�
�
�

��	

commutes. Let m:FB′ −→ FB be h(idFB). The commutation implies that m ◦ Ff =
εFB . This shows that the diagram

UFB

B′ UFB′-ηB
′

6
f

UFB-Um

UFf

@
@
@@I

UεFB

�
�
���

FUFB-
ηUFB

commutes. Since UεFB ◦ ηUFB = id, we see that f is a split monomorphism. But we
began with f ∈ E and thus f is an isomorphism, contrary to its construction. This
establishes the proposition.

Proof of the theorem: Every algebra is the target of a U -split epimorphism whose
source is a free model. Thus if D contains every free model, it contains every model.
Hence if D is a proper subcategory, there is some free algebra FB that it does not
contain.
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Each instance of such a free algebra not in D gives a Horn and the class of all of
them determines an HSP subcategory C1 ⊆ C such that D ⊆ C1 . It follows from The-
orem 4.2 that C1 is tripleable over B and it is obvious that D is an HSP subcategory
of C1 . If the inclusion D ⊆ C1 is proper, then we may repeat the construction to get a
subcategory C2 ⊆ C1 defined by a class of Horns of C . In this way, we get a descending
ordinal sequence of HSP subcategories. At limit ordinals, we take the intersection of
the subcategories. Let Uλ: Cλ −→ B be the underlying functor and Fλ: B −→ Cλ be its
left adjoint.

Each of these subcategories is an HSP and therefore E -reflective subcategory of all
the preceding ones. Thus we have for all pairs of ordinals κ > λ an inclusion Iκλ : Cκ

−→ Cλ with a left adjoint Lλκ: Cλ −→ Cκ such that the adjunction morphism αλκ: id
−→ IλκL

κ
λ is in E . For a fixed object C of C , the class {α0

λC:C −→ Iλ0L
0
λC} is only

a set because of well-co-poweredness hypothesis. Hence there is a λ such that for all
µ > λ , there is a κ > µ for which ακλ is an isomorphism. That is to say, at least
one of the objects in the quotient lattice of C appears cofinally in the sequence. From
αλκ = αµκ ◦ α

λ
µ we conclude that αµλ is a monomorphism and hence an isomorphism for

all µ > λ . This means that the αλλ+1C are isomorphisms for all sufficiently large λ ,
depending on C .

Since UλIκλ = Uκ , we conclude that Fκ = LλκFλ . Suppose that C is in every Cλ .
Choose λ sufficiently large that αλλ+1FλU

λC is an isomorphism. If the object C is not
in D , then neither is FλU

λC . Thus αλλ+1FλU
λC is not an isomorphism, contradicting

the choice of λ . This shows that C is in Cλ and establishes the theorem.

5.6 The case of regular epis. There is one case that is of special interest. This
is the case that for each object B of B , the arrow FB −→ ILFB is a U -regular
epimorphism (meaning that U applied to it gives a regular epimorphism).

5.7 Theorem. Suppose that D ⊆ C is an HSP subcategory of the category of
algebras with the property that for each object of B , the adjunction FB −→ ILFB is
both a regular epimorphism and a U -regular epimorphism. Then D is the category of
models of the Horns satisfied by D .

In other words, in this case, we don’t have to go to a sequence of such subcategories;
a single step is sufficient. Before beginning the proof, we require a diagram chasing
lemma.

5.8 Lemma. Let
A B

-- C-

A′ B′-- C ′-
?? ? ?
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be a diagram whose rows are coequalizers, whose squares serially commute and whose
left hand vertical arrow is an epimorphism. Then the right hand square is a pushout.

Proof. The dual is a simple diagram chase using elements.

Proof of the theorem We construct the Horns by factoring the arrow UFB −→
UILFB which we are supposing to be a regular epi and hence in the epi part of any
factorization system. Let C −→−→ FB be the kernel pair of FB −→ ILFB . Then UC is
the kernel pair of UFB −→ UILFB , which is a regular epi. It follows from standard
category theory that UC −→−→ UFB −→ UILFB is a coequalizer. But free functors
preserve coequalizers, so that FUC −→−→ FUFB −→ FUILFB is a coequalizer as well.
We can now apply the lemma to the diagram

FUC FUFB
-- FUILFB-

C FB
-- UILFB-

?? ? ?

to conclude that

FB ILFB-

FUFB FUILFB-

? ?

is a pushout. Now consider the way in which a Horn is constructed over B . We begin
by factoring the arrow UFB −→ UILFB . But is already a regular epi, hence cannot
be further factored. Thus the B′ of the construction is UILFB and the Horn is

FUILFB

FUFB FB-

?

whose pushout is ILFB . From this it follows from the definition of what it means
to satisfy the Horn that for any object D that does satisfy it, every map FB −→ D
induces a unique map ILUFB −→ D . But this is possible if and only if D is already
in D .

5.9 Extremal monics. There is one important special case that should be men-
tioned. In the case that M is the class of extremal monomorphisms it will not be
necessary to show that an HSP category is closed under all the extremal monics, pro-
vided B is complete. We begin with a well-known property of extremal monics.
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5.10 Proposition. Suppose B is a complete category in which every class of subob-
jects of an object has an intersection. Let M be a class of monics in B that includes all
regular monics and is closed under composition and all intersections. Then M includes
all extremal monics.

Note that an accessible category is well-powered, so the intersection condition fol-
lows from completeness.

Proof. Let f :A −→ B be an extremal monic not in M , if possible. Let C by the
intersection of all its M subobjects of B that include A . Since M is closed under
arbitrary intersection, C is an M subobject of A . Also C can have no proper M
subobject that includes A , since that would be an M subobject of B . If A −→ C were
an epimorphism, it would be both epic and extremal monic and hence an isomorphism
and hence a regular monic. Thus there are two arrows g 6= h:C −→ D for some D such
that g ◦ f = h ◦ f . The equalizer of g and h is then a proper M subobject of C that
includes A , a contradiction.

5.11 Corollary. Under the same hypotheses, in order that a reflective subcategory
D ⊆ C be an HSP subcategory for the class of extremal monics, it is sufficient that it
be closed under U -split epics, regular monics and products.

Proof. Let M be the class defined by f :A )−→B in M if f is monic and if B in D ,
then A in D . Of course, this means that M contains every subobject of an object not
in D , but that is of no significance. It is immediate that M is closed under composition
and intersection. Thus M contains all extremal subobjects. In particular, D is closed
under extremal subobjects.

6 Examples

6.1 Example. We see how this works in the category of posets. There are two
distinct factorization systems (and others that do not appear to be interesting for this
purpose). One is regular-epi/mono and the other is epi/regular-mono. If we take a
theory whose operations are defined on all tuples, then the resultant triple will pre-
serve regular epimorphisms and the regular image of a morphism of algebras will be
an algebra for the theory. It follows that the conditions of Theorem 5.7 are satisfied
for the regular-epi/mono factorization system. Of course, this system is not really very
interesting. The only conditions that can be imposed are equational.

Much more interesting is the case of epi/regular-mono factorization. The reason is
that such arrows as 1 + 1 −→ 2 is an epi, but not a regular epi. A Horn based on that
epi is a way of imposing an order relation among terms. We have already seen this in
the case of the theory with one 2-ary operation. Here is another interesting example.

Begin with the theory with one ω -ary operation, call it lim. Thus to every ω
indexed sequence x0 ≤ x1 ≤ · · · there is an element we denote lim xi . We now want to
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say that for all j , we have xj ≤ limxi . This is easily done by using the Horn

F2 Fω

F (1 + 1)

Ff

@
@

@@I

@
@

@@I g

�
�
���

where f : 1 + 1 −→ 2 is the inclusion and g:F (1 + 1) −→ F (ω) takes the first generator
of F (1 + 1) to the integer j and the second generator to the element lim i . It should
be understood that in the free algebra, every subsequence of ω has a different “limit”,
including even the constant ones. Now an arrow F (ω) −→ C is uniquely determined
by a sequence x0 ≤ x1 ≤ · · · of elements of C . The composite with g takes such a
sequence to the map F (1 + 1) −→ C that takes the two generators to xj and lim xi .
This factors through 2 if and only if xj ≤ limxi . A model satisfies this condition for
all j if and only if lim xi is an upper bound for the sequence.

It is made into a least upper bound in a similar way. Take the Horn

F2 F (ω + 1)

F (1 + 1)

Ff

@
@
@@I

@
@
@@I

h

�
�
���

where h is the arrow that takes the first generator to lim i and the second to ω . A
morphism F (ω + 1) −→ C is determined by a sequence x0 ≤ x1 ≤ · · · and an upper
bound xω . The Horn is satisfied for this sequence if and only if lim xi ≤ xω . Since xω
is an arbitrary upper bound, the Horn is satisfied if and only if lim xi precedes every
upper bound of the sequence. Thus all these conditions are satisfied if and only if lim xi
is the least upper bound for the sequence. The category of algebras for this theory is
precisely the category of ω -CPOs.

Here is another example based on posets. Take the sketch with one everywhere
defined binary operation. This means that the sketch consists of one arrow σ: 1 −→ 1+1.
A model is a poset together with a binary operation that is not assumed to satisfy any
condition. Let f : 1 + 1 −→ 2 denote the inclusion. Now look at the Horn

2 2 + 2

1 + 1

f

@
@
@@I

@
@
@@I

�
�
���

The arrow going up the right is 〈σ ◦〈0, 0〉, σ ◦〈1, 1〉〉 . On a model P it takes ((x0, x1), (y0, y1))
such that x0 ≤ x1 and y0 ≤ y1 to (σ(x0, y0), σ(y0, y1) and P satisfies the Horn if and
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only if for all such 4-tuples, we have σ(x0, y0) ≤ σ(x1, y1). Thus a model P satisfies
the Horn if and only if it satisfies the Horn

x0 ≤ x1 ∧ y0 ≤ y1 ⇒ σ(x0, y0) ≤ σ(x1, y1)

6.2 Example. A nice base category is the category of graphs, Gph . Let us denote
by n the graph with n objects 0, 1, . . . , n − 1 and one arrow i − 1 −→ i for i = 1,
. . . , n− 1. Thus 1 is the graph with one object and no morphisms and 2 is the graph
with two objects and one arrow between them. Note that 1 is not the terminal graph;
that is the graph with one object and one endomorphism. An operation 2 −→ 3 in a
theory is modeled by a function Gph(3, G) −→ Gph(2, G) on a graph Gph . If this is
forced to be associative, it determines a composition law among arrows on a graph. An
operation ∅ −→ 1 gives an object in a model and an operation ∅ −→ 2 gives an arrow.
With the proper equations, this gives identity arrows and so we get a theory on graphs
whose models are the category of small categories.

With a little more work, we can, for example create a theory whose models are
categories with terminal objects. Begin by adding to the sketch described above an
operation ∅ −→ 1 . This is a constant of type object, intended to represent the terminal
object. We then add an operation of type 1 −→ 2 . This assigns to each object an
arrow. By a suitable equation, we can make the domain of that arrow be the object in
question and the codomain be the intended terminal object. The result will be a theory
whose models are categories with a specified weak terminal object.

Now consider the full subcategory consisting of those small categories for which the
specified object is actually terminal. It is clear that this is closed under products and
subobjects. (Note: the inclusion of a subobject must take the specified weak terminal
object of the one category to that of the second. If the latter is actually terminal, so is
the former.) Finally, we must show that this subcategory is closed under the formation
of quotients that split at the level of underlying graph.

So suppose φ: A −→ B is a functor such that there is graph morphism ψ: B −→ A
such that φ ◦ ψ = idB . We will simplify somewhat by assuming that B is a subgraph
of A and ψ is the inclusion.

By elaborating this kind of construction, we can construct more complicated theories
based on graphs whose algebras are categories with equalizers, or with all finite limits
or toposes. This has been carried in detail in Burroni [1981], (see also Lambek [1982]
and Lambek and Scott [1987] for a somewhat easier exposition of some of the details).

6.3 Example. We will give an outline of how the category of H -spaces is the
category of models of a theory based on the category of topological spaces. It is clear
that construction can be elaborated to give An or En spaces for n an integer or infinity.

First off, we need a multiplication, which is an operation of type 2 −→ 1, these
being the discrete spaces with 2 and 1 elements, respectively. Then a unit of type 0
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−→ 1 and equations to make its value be a left and right unit. Up to this point, there is
nothing to make these operations continuous. The algebras for what we have are simply
topological spaces with a multiplication and unit on its underlying set. Morphisms are
continuous functions that preserve the operations. Call this category C and let D be
the full subcategory of those models on which the multiplication is continuous. Let
U : C −→ Top be the underlying functor to topological spaces.

6.4 Proposition. The full subcategory D is closed under products, extremal subob-
jects and U -split quotients.

Proof. The closure under limits is obvious. Suppose Y ⊆ X is an extremal submodel
where the multiplication on X is continuous. The topology on Y is that a subset U is
open if and only if it has the form Y ∩V where V is an open subset of X . Let µX :X2

−→ X and µY :Y 2 −→ Y be the operations on X and Y , respectively. Then

µ−1
Y (U) = µ−1

Y (V ∩ Y ) = µ−1
X (V ) ∩ Y 2

which is the intersection with Y 2 of an open set in X2 . This shows that the multipli-
cation in Y is continuous.

Suppose now that f :X→→Y is a map of models that is a retraction to a sub-
space in Top and that the multiplication in X is continuous. let µX and µY be
the multiplication as above. For U open in Y , f−1(U) is open in X and hence
µ−1
X f−1(U) = (f 2)−1µ−1

Y (U) is open in X2 . But then so is

µ−1
Y (U) = Y 2 ∩ (f 2)−1µ−1

Y (U)

6.5 Corollary. Under the same hypotheses, D is an HSP subcategory of C for the
epi/extremal-monic factorization system.

Proof. The only thing left to show is that is that the subcategory is reflective. But epis
are surjective, hence from which it follows that if X→→Y , then X2→→Y 2 . From this
it is easy to see that the extremal image of a morphism of models is a model. Also the
category is well-co-powered. Thus the solution set for some model X consists of all the
epimorphic images of X for which the multiplication is continuous.

The next step is to add the homotopy. This is an operation of type 3 −→ [0, 1]
that assigns to each 3-tuple (x, y, z) of elements of a model X a homotopy between
µ(x, µ(y, z)) and µ(µ(x, y), z). The equations for this are immediate. Thus the category
of H -spaces (and maps that preserve the operation and the homotopy) is the category
of models of a theory on Top.
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6.6 Example. In this example, we take for base category the category whose
objects are metric spaces (that allow points to be infinitely far apart) and morphisms
are functions that do not increase distance. This category is complete and cocomplete
and it is not hard to show it is locally ℵ1 -presentable. In fact, using Theorem 2.5.1
of [Makkai & Paré] with P the set of one and two point metric spaces gives a quick
proof it is accessible, but doesn’t give us the cardinal. Actually a representative sample
of the metric spaces that have at most countably many points are an ℵ1 -accessible
generating set. (Interestingly, the semi-metric spaces—distinct points are allowed to be
at zero distance—even form an ℵ0 -accessible category. You can take for generators all
the finite semi-metric spaces.) Let S and S+ denote, respectively, the spaces consisting
of all the 1/n , n ∈ N and that space together with 0. Then a sketch built with the
single operation of type S −→ S+ assigns to each sequence of type {1/n} (that is each
sequence of elements x1 , x2 , . . . , such that d(xn, xm) ≤ |1/n − 1/m|) a convergent
sequence of the same type. With appropriate equations, we can force the non-limit
terms of the second sequence to be the same as those of the first. Thus a model will
satisfy this equation if and only if every such sequence converges. it is easy to see that
this is so if and only if the space is complete. Thus the complete metric spaces are an
HSP subcategory of the models of this operation.

6.7 Example. Consider now the category N whose objects are sets with a real
value function, say ‖ − ‖:X −→ R . We will call this function a norm and define an
arrow in this category to be a function that doesn’t increase norms. We call this the
category of normed sets. For λ ∈ R , let G(λ) denote the set with one element of norm
λ . The set N (G(λ), X) is the subset of X consisting of those elements whose norm is
at most λ . Now build a sketch that has, for each λ1 < 1/2 and λ2 < 1/2 an operation
of type

G(λ1 + λ2) −→ G(λ1) +G(λ2)

for each λ < 1/2 an operation (−)−1:G(λ) −→ G(λ) and an operation ι: ∅ −→ G(0) and
operations G(λ) −→ G(λ), defined for λ〈1/2. A model is a normed set with a set of
partial multiplication, defined when both arguments have norm less than 1/2 and a set
of inverses defined on the same range. In addition there is a constant of norm 0. The
next thing is to add equations that say that if ‖x‖ < 1/2 and ‖y‖ < 1/2, then all the
multiplications defined for x and y are the same. With similar equations for the unary
operation, which we will denote ()−1 we get a set with a partial binary operation we
denote ∗ , defined for all x , y both of norm less than 1/2, an inverse in the same range
and a constant of norm 0. Notice that we have insured that ‖x ∗ y‖ ≤ ‖x‖ + ‖y‖ and
that ‖x−1‖ ≤ ‖x‖ . We next impose the equation that for all λ < 1/2, for all x with
‖x‖ < λ , we have x ∗ ι = ι ∗x = x and x ∗x−1 = x−1 ∗x = ι and for all λ , µ , ν all less
than 1/4 and all x , y , z of norm λ , µ , ν , respectively, we have x ∗ (y ∗ z) = (x ∗ y) ∗ z .
We call the resultant category the category of normed local groups.
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Any sufficiently small neighborhood of the identity in a Lie groups, for example, will
give a normed local group with an appropriate norm.

6.8 Example. A coherence space [Girard, 1989] is a poset with a bottom in which
the down segment of each element is a complete atomic boolean algebra (CABA) and in
which each set of elements of which any two have a common upper bound has an upper
bound (and therefore a sup, since the down segment of that sup is a CABA). It is well-
known that the property of being a CABA can be defined equationally among complete
boolean algebras; the equations are the infinitary distributive laws. A morphism of
coherence spaces is an order preserving function that preserves the structure of the
CABAs. More precisely, if C and C ′ are coherence spaces, let x↓ denote the down
segment of the elements that are below x (including x). Then a morphism is an order
preserving f :C −→ C ′ such that for each x ∈ C , the restriction of f induces a complete
boolean homomorphism from x↓ −→ f(x)↓ .

This can be made into the category of models of a theory on poset as follows. For
every set X , let X> denote the poset consisting of the discrete set X plus one more
element above every element of X . There is a nullary operation that chooses a bottom
element and equations that make it be the bottom. For each set X there is an X> -ary
operation that is thought of as taking a set with an upper bound to its sup and another
taking a set with an upper bound to its inf. A 1> -ary operation takes a pair y ≤ x to
the relative complement of y in x↓ . Equations will force these operations to have the
appropriate properties to be the sup, inf and relative complement. So far, a model will
be a poset with bottom in which down segments are CABAs.

For each set X let X̂ denote a set that is the union of all the subsets of X with
at most two elements, ordered by inclusion. We add to the theory above an X̂ -ary
operation for each X that is thought of as taking a set of elements, each pair of which
has a common upper bound, to a common upper bound. Equations will guarantee that
the value of the operation is an upper bound for the set.

This example illustrates as well as any the power of building a theory using a sketch
of it. In this case, the sketch happens not to be finite, or even small, but it is nonetheless
very simple and is clearly based on the way we perceive the theory.

7 Related work

There is an unpublished paper of Kelly and Power [to appear] which deals with related
material. Their hypotheses are quite different since they deal with finitary theories,
but their categories enriched over closed categories. I don’t think that finitariness is
essential for their results (although some adjoints won’t automatically exist but will
have to be assumed) and the results of this paper can no doubt be generalized to
the enriched context. But their emphasis is on presenting every tripleable category
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as an equational subcategory of a category of algebras for some operations. In terms
of the results in this paper, what they prove is that if you put in enough operations,
then equations are enough. By contrast, we are interested in how to describe all HSP
subcategories of a category of algebras already given.

Nonetheless their results do show that in the locally presentable case, every theory
can be presented with operations and equations. One way to see this is to take the
graph underlying a small generating subcategory of the Kleisli category as operations.
Then the equations are the commutative diagrams.

On the other hand, this doesn’t appear to work with topological spaces (Exam-
ple 6.3) because you would almost surely need a proper class of operations that is made
manageable only by the equations.

Another related work is that of Andréka and Németi [1982]. This is a generalization
in a completely different direction. The base category remains sets, but they are inter-
ested in SP subcategories and in partial algebras and similar things. They give several
references to further related work.

It seems likely that both of these papers illustrate useful ways in which the ideas of
the current paper might be extended. It can be done over a V -based category for a
closed category V and there may well an interesting theory for SP subcategories and
for partial algebras.
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