
Journal of Purr and Applied Algebra 19 (1980) 2lL-12 

P North-Holland Publishing Company 

ABSTRACT GALOIS THEORY 

Michael BARR 

Deparrtnenr of .Llathematics. .ClcCill UniLfersii.v, .Wontreal, Quebec. Canada 

Introduction 

This paper arose after several discussions with D.K. Harrison on the possibility of 

applying the methods which I had developed to describe a certain class of toposes 
- the finite atomic toposes of Section 7.A below - to an exposition of the Galois 

theory of commutative algebras as well to some closely related theories. It is indeed 

possible, and the required theory is developed here. 

I presented the earlier work on finite atomic toposes - now absorbed into this 

one - in a series of lectures-at the University of Chicago in the Spring of 1979. 

Saunders even managed to come to some of the lectures; he sandwiched them in 

between meetings of the American Philosophical Society in Philadelphia and the 

National Science Board in Washington. 

I would like to give thanks to the University of Chicago for inviting me there for a 

month as well as to the Departement de I’Education du Quebec and the National 

Science and Engineering Research Council for supporting this research. 

1. Statement of results 

This paper is concerned with a category v that satisfies some or all of the con- 

ditions listed below. 

(1) (Regular) monomorphism condirion ((R)MC). Every morphism in 7~ is a 

(regular) monomorphism. 

(2) Amalgamafion properfy (AP). Every pair of morphisms B-A-C can be put 

into a commutative square 

A b B 

(3) Uniformly bounded multisums (UBM). For each object A there is a natural 

number R(A) (which will always be assumed to be as small as possible so that in the 



inequality below, equality is always attained at least once) with the property that for 

all B there are objects CI,...,~, and pairs of morphisms A-C,-B such that 

nor and whenever A -C-B there is a unique i and a unique C,-C for which 

commutes. 

(4) inifial objecf (IO). There is an initial object 0. 

(5) Exactness condition (EC). Every parallel pair A =t B has an equalizer and 

coproducts in n .-f preserve them. 

This last condition will be explained more fully in Section 2 below. For the present 

it is sufficient to think of .V as the category of finite extensions of a field k in which 

case n .Y is the category of commutative semi-simple k-algebras, each is of which is a 

finite product of fields. 
An object A of -, is called normal if for any A $ B there is an automorphism o of 

A for which fcr = g. A mapf : A -, B is called a normal envelope of A if B is normal 

and every normal object that contains A contains B. 
The main purpose of this paper is to prove: 

Theorem 1. Suppose -1 satisfies MC, AR, UBivI and IO. Then every object of .-I has 
a normal envelope. 

Theorem 2. Suppose .I satisfies, in addition, RMC and EC. Then .l”P is equivalent 
to the category of transitive discrete G-sets for a uniquely determined profinite 
group G. (Conversely, such a category satisfies all these conditions.) 

In the process we will see how most of the elementary properties of the category 

of finite extensions of a field follow from these few properties. As well we will 

derive the finitary connected part of the theory of covering spaces of [7], the finitary 

part of the covering simplicial complexes of [8] and the Galois theory of connected 

commutative rings [2, 41 as applications. 

2. The category H.-i 

It will be our uniform hypothesis that .V is a category satisfying MC, AP, UBM 

and IO. 

The category fl.~/ has objects formal finite products of objects of .v. If nielA; 

and n;e~ Bj are two such formal products a map nA;- n Bj is a J-indexed family 
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of maps flA,-B; which is clearly necessary if nL$ is to be the product. A map 

fl,4,-Z3 is a composite nA;-+A,+B for one ~EI. The composition of these maps is 

obvious and gives a category, denoted n.:< which contains .-Jas a full subcategory 

and for which each object is a finite product of objects of .z/. fl.Y may also be 

efficiently described as the opposite of the full subcategory of the functor category 

%” whose objects are finite sums of representable functors. A map f : flie/ A; 

+ nj,~ Bj may be described as a pair (a,rp) where D : J-Z and cp : J--.-i are 

functions such that vj : Aaj+Bj. 

2.1. Proposition. The category n Y’has finite colimits. 

Proof. It is evident that the initial object remains initial. If A -D-B are maps in .Y, 

let CI, . . ., C,, and A + C;+B be as in the definition of UBM. I claim that fl C, wherej 

ranges over all indices for which 

I I 
B -C J 

commutes, is the pushout. If we have a commutative square 

I I 
B ’ c 

there is a unique i and unique map C;-C for which the triangles in 

commute. Since the outer square commutes and C;-C is mono, so does the inner 

square. 
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Next, given 

heh 

I 
,rr.rJi 

For each pair of indices i E I, j E J such that ~-i = rj = k, let 

A, ’ Kyl 

be a pushout, where IE L,,. Then 

is easily seen to be a pushout, first with respect to objects of -1, then those of n -i. 

Notation. If 

I I 
c l D 

is a pushout in n.:/, write D= B@,-IC. If A =O, then we write B@C for the sum. 

2.2. Proposition. If .-/satisfies RMC and has equalizers it has intersections. 

Proof. Given A-C-B, if A-C is the simultaneous equalizer of a set of pairs of 

maps C =t D,, it is the equalizer in fl .-/of the single pair C =t C@.AC. This means that 

even in .-/ it is the equalizer of a finite set of pairs of maps. The simultaneous 

equalizer of the set of pairs B-+C*D, is easily seen to be the intersection of A and B. 
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2.3. Proposition. Suppose ,_Y has intersections. Then fl ..Y’has finite limits. 

Proof. Given 

let 

be a pullback (intersection). Then Cj is a subobject of Ao, and A:j. For each index i, 
a finite number (perhaps none) of the subobjects of A, thus appear. Let D, be the 

intersection of all the subobjects of A, which arise in this way. The empty inter- 

section is of course A,. Then 

is the equalizer. 

2.4. Proposition. Suppose v’satisfies RIMC and EC. Then fl .-j has finite limits and 
for each A in fl 9, A@- commutes with them. 

Proof. 

is also 

Begin with A in .Y. If B-C is the equalizer of a single pair of maps C=?D, 

A@B-A@C*A@D 

an equalizer by hypothesis. If E-C is another subobject EnC is the 

equalizer of the two maps E =t D. Then 

A@(EnC)-A@E*A@D 

is an equalizer. But (A@B)n(A @E) is, by the same reasoning, the equalizer of 

ABE =t A@D so they are equal. An obvious induction gives the same result when 

B-C is a finite composite of equalizers of pairs, which is the general case. Thus 

A@- commutes with intersections. It also commutes with products as it is im- 

mediate from the formal nature of products that n At% B, has the universal mapping 

property of A @ n Bi. The way pullbacks are constructed out of products and inter- 

sections implies that A@- commutes with pullbacks. The terminal object 1 (empty 

n) is the domain of no map except its own identity from which ,+l@ 1 = 1 is evident. 

3. The factorization system 

For generalities on factorizations, see [6]. We will construct here a class i of epis 
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and a class //of monos of n ..:/ssuch that every map in n .?/factors uniquely (up to 

isomorphism) as a map in A followed by one in N. Moreover, N is stable under 

pushout. We say that (cr,O) : fllel A,- fl,E/ Bi is in l/if 0 : J-I is onto and is in 8 

if o is l-l and for eachjEJ, Oj is an isomorphism. It is clear that a map in Cl. //is 

an isomorphism and conversely. To get the basic factorization, begin with (o, 0) as 

above. Factor o as JAKSI with T onto and g l-l. Then we have 

which is evidently a factorization of the required kind. The uniqueness is immediate. 

To see that //is stable under pushouts, consider 

where o : J-Z is onto. For each k, let i = yk be such that ai = rk. Let 

be a commutative square whose existence is guaranteed by AP. The result is a 

commutative square 

in which the lower arrow belongs to ./I. That the pullback also belongs to .//is a 

consequence of the fact that when every map in A is epi, // is closed under left 

cancellation. 

As usual we denote a map in li (resp. .R) by - (resp. H). 

4. Proof of Theorem 1 

If A is an object of HA and n a natural number, let nA denote the sum (tensor 
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product) of n copies of A. If ft, . . .,f,, : A + B there is induced a unique map nA -+ B 
whose restriction to the ith sum of nA is A. 

4.1. Proposition. Let A, B in .T/andfi , . . ., fm : A + B be distincr. Then m I R(A). 

Proof. Let A AC,& B, i= 1, . . . . n be as in UBM. For each j= 1, . . . . m there 

is a unique i dependent on j and map g; : A -C, such that p,g, = 1 and qig, = f,. Since 

p; is mono we can cancel on the left from plq,p;=p, to get g,p! = 1 so that p; is an 

isomorphism, g, =p,y ’ and f; = 49; ’ . Thus the number of distinct maps A-B is 

exactly the number of Ci for which pi is an isomorphism. 

4.2. Corollary. Every map A-A is an isomorphism. 

Proof. For Hom(A, A) is a finite monoid with left cancellation, hence a group. 

It follows that the maps from A to B are in 1 - 1 correspondence with the i for 

which C;rA. Let r(A) be the least integer such that for all B in .:/, Hom(A, B) has 

sr(A) elements. Being the least upper bound, it is of course attained. Suppose 

m = r(A) and C is chosen in .-Jfor which there are m distinct maps 

Sl, ..-, gm : A-C. 

There is induced a single map g : mA-C where, of course, mA is no longer an 

object of .-/: This map has an r:, //factorization 

If the components off are f,, . . ..f.,,, then hf, =gi. The maps gt, . . ..g. are all distinct, 

so a fortiori are fi, . . . . f,,,. Note that B belongs to .:Y since a map in .//cannot have 

more components in the domain than range. 

We are going to show that B is a normal envelope of A. Until that proof - which 

will demonstrate Theorem 1 - is finished let A and B be as above. 

4.3. Proposition. Suppose gl, . . . . gm : A-C are distinct. Then there is a map 
h : B-C and a permutation o of 2,. . ., m such gl = fi h and g,, =Jh, i = 2,. . ., m. 

Proof. Begin by finding a commutative square 
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Now observe that since k, I are mono, each of the sets of maps If], . . . . If,,, and 

kg1 , . . ., kg,,, are a set of r(A) distinct maps A +D. Since that is the largest possible 

number, the two sets must be permutations of each other. Thus there is a permu- 

tation o of 1 ,...,m with Cfi=kg,i, i= 1 , . . . . m. Since Ifi = kgl, al = 1. Finally since 

every morphism in r/belongs to //, we have 

mA 
/ 

-c 

I I 
B‘D 

whose diagonal fill-in (see [6]) is the desired map. 

4.4. Corollary. For any i, j there is an h : B-B with hfi =f/. 

4.5. Proposition. B is normal. 

Proof. Let g, h : B-C. We want to find k : B-B such that h =gk. As above the sets 

{&I and {hf,) P as ermutations of each other so that there is a permutation o of 

1 , *.., m such that & = hf;. Then the diagonal fill-in in 

mA / 
*B 

B-C 

gives the required k : B-B. 

4.6. Proposition. Let C be normal. Then C@C= n C, a finite power of C. 

Proof. This is essentially the definition of normal. Form flC, indexed by 

Hom(C, C) and for f : C-C let U, : nC-C be the projection. Let U, v : C- nC 

by #u = 1 and cf)v=f, If g, h : C-D then from the definition of normal there is 

an f : C-C such that g= hf. Since h is mono, f is unique. Then h(fl : l-j C-D is 

the unique map such that hOu= h and h(f)v=g, thus showing that nC has the 

universal mapping property of the sum. 

4.1. Corollary. Let C be normal. Then mC is a power of C for any finite m. 

Proof. This follows easily from the previous proposition and the distributivity 

sums over products. 

of 
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4.8. Corollary. Suppose C is normai. If Horn@, C) is non-empty, so is Horn@, C). 

Proof. Let g : A-C and consider the pushout 

mg I I 
mC ++D 

in which the lower map is in i; because the epi half of a factorization is always stable 
under pushout. It is clear from the definition of i that D can only be a power of C 
indexed by a subset of the index set. Since B-D, there is some map B-C’. 

4.9. Corollary. Suppose C is normal. Then every map A + C extends to a map B-C. 

Proof. The fact that there is a map B-C implies there are m maps A-C and (4.3) 
gives the conclusion. 

This completes the proof of Theorem 1. 

5. Proof of Theorem 2 

We will prove Theorem 2 by showing that (n .-/)“P is a “galois category” (cate- 
gorie galoisienne) in the sense of [3, V.41. We must verify the existence of a functor 
M : (n .Y/)OP+ .i/fin, the category of finite sets, that preserves finite limits and 
colimits. We will give two equivalent descriptions of M, one useful for showing it 
preserves limits and the second for preserving colimits. 

Let A = HA;. By repeatedly using IO, AP and Theorem 1 we can find an object B 
which is normal and which admits a morphism from each A;. Let 

MA=Hom(nA,,B)=UHom(A,,B). 

If C is another normal object containing all the A;, there is a normal D containing B 
and C. Then each of 
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is an isomorphism. This shows that MA does not depend on the choice of B. If 
A ‘-+A, choose B sufficient for A and A ‘. Then MA --MA ’ is induced. Given a finite 
colimit diagram in .Y: a B can be found which is normal and which contains every 
object in the diagram. Then Hom(--, B) converts it to a limit diagram. This shows 
that M preserves finite limits. It is evident that &I preserves coproducts. 

Before we can begin showing that IM preserves coequalizers, we observe that in 
any category ,-J, there is a natural transformation a(A, C) : A @ C+CHom(*4*C) where 
restriction to C gives the identity in each factor and to A has the value g in the coor- 
dinate corresponding to g : A +C. Moreover, if f : A -+ B, the diagram 

A@C 
ac.4. C) + cHomk4.C) 

commutes. 

5.1. Proposition. Suppose C contains a norma/ envelope of A. Then a(A, C) is an 
isomorphism. 

Note. By (4.9) any normal object containing A contains a normal envelope of A. 

Proof. Since A has r(A) maps to its normal envelope, it has that many maps to C. If 

AfDkC, the composite of h with the r(A) maps A-C gives r(A) maps A-D. 

That is as many as there can be so g must be among them. That is, there is a 
k : A+C such that hk =g. Of course, h is mono so k is unique. For k : A-C, let 
(k) : CMA -C denote the corresponding projection. Define u.~ : A*CbtA by 

(k)u~=k and ug : C-I?“,~ by (k)us=l. For A&D&C, h(k) : C”“-+D is the 
required map and shows that a(A, C) is an isomorphism. 

Now we are in a position to use EC to prove that A4 preserves coequalizers. For if 

A+B=tC 

is an equalizer, let D be a normal object containing C. Then 

A@D-+B@D*C@D 

is an equalizer. This is 

DwA + DEB rt ~wc 

which is an equalizer iff for any object E of 4, 

Hom(E,DMA)~Hom(E,LY’B)=tHom(E,PC) 
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is. This sequence is 

Hom(E, DFLL4 + Hom(E, D).“B~ Hom(E, DFLfc. (0) 

Now choose E and D so that Hom(E, D) has at least two elements. For example, if D 
is any normal object different from 0, O-D is a regular mono so that there is an 
equalizer 

O-+D=tD@&zDx.--xD 

and so there are non-identity maps D-D. Write (*) as 

Hom(AA4, X)- Hom(MB, X)* Hom(MC’, X) 

with X= Hom(E, D). Now any set with two or more elements is a cogenerator in the 
category of sets so the above is an equalizer iff 

MC*MB--MA 

is a coequalizer. 
The only remaining condition on a Galois category that is not immediate is (G3). 

We have to show that every map in h is a product projection (that ,is obvious) and 
that every one in //is a strict mono. But a map in //is a product of maps of the form 
/l-B] x s.0 x Bn. That is a composite 

A-A”-BI x...xB,j 

and the first is a split, hence strict mono while in the presence of RMC, the second is 
a product of regular, hence strict monos. Since strict monos are stable under compo- 
sition and product, the conclusion follows. Grothendieck’s theorem 4.1 now implies 
that n.Pp is equivalent to the category of finite G-sets for a profinite group G, 
from which our Theorem 2 follows. 

6. Alternate hypotheses 

In this section, we examine some alternate hypotheses that might be useful in 
certain applications. The most important of these is that EC may be replaced by the 
same hypothesis with respect to a group of automorphisms. That is we suppose for 
each A and each group G of automorphisms of A, the equalizer of all the maps in G 
exists and is preserved by sums. This is not altogether surprising since Grothen- 
dieck’s theorem only requires such equalizers exist and be preserved but that hypo- 
thesis is on all of n._~. Call this new hypothesis ECG (exactness condition for 
groups). We could either show that ECG for .:dimplies the same for n.,~or that in 
the presence of the remaining hypotheses of Theorem 2, ECG implies EC. So let 
A*B be a parallel pair in .A Suppose C is a normal object that contains B, hence 
also A. Choose a map A w C. We have 
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A- A+JA l B 

with AOAF+C@C because .//is stable under pushouts. If A@A =A! x.--xA,~, 

the function o : n-m is onto. The map AOA -B factors through one index i and 
there is a non-empty subset jcn such that there is a factorization 

c- C”’ * CJ 

Moreover, with A;hB, the equalizer of the two maps A-A, are the same as that of 
A=rB. Thus we have a commutative diagram 

A - Ai 

4 c 

C - CJ 

The equalizer of two maps C=tCJ is the simultaneous equalizer of a set of pairs 
fk,gk : C-C which is the simultaneous equalizer of all pairs, 1, ok =fk’gk. This is 
the same as the equalizer of the subgroup G generated by the ok. We now suppose 
by ECG that the equalizer exists. Thus we have 

L c 

D + c =====3 ci 

and it is immediate that AnD, if it exists, is the required equalizer. But by RMP, 
A -+ C is the equalizer of the two maps C* C@;ICS C’ and by a similar argument it 
is the equalizer of a group H of automorphisms of C. If K is the subgroup of aut(C) 
generated by G and H, the equalizer of K is the required intersection. As for preser- 
vation, once we have that both rows of 

E l A - A; 
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are equalizers, tensor with an arbitrary F to get 

E@F . A@F j A,OF 

E@F - C@F I C’@F 

If the second row is an equalizer, so is the first. 
The second potentially useful variation on a hypothesis would be to replace UBM 

by the suppositions that finite multisiums exist and for each A there is an r(A) such 
that for any B there are no more than r(A) maps A-B. Then the proof of Theorem 
1 would go through almost without change. Moreover, I claim R(A) exists and is 
equal to r(A). As seen earlier it is only necessary to show that R(A)rr(A). So let B 

be any object. Let C be any object that contains B as well as a normal envelope of A. 

Such exists by applying AP to D+O-+B, where D a normal envelope of A. Then 

B-C 

is a pushout. Thus A@B has no more components that A@Cr CeA) by (5. I). 
Somewhat surprisingly, it seems that in actual applications it is UBM rather than 

the above variation which seems most useful. 

7. Applications 

A. Finite atomic toposes 

A finite atomic topos (FAT) is one in which the dual of the subcategory of atoms 
satisfies UBM. The terminal object in an atomic topos (AT) is an atom iff the topos 
is connected. (Any AT is a Cartesian product - as a category - of connected 
ATs.) The remaining hypotheses of Theorem 2 - in particular EC - are auto- 
matic. The result is that the full subcategory of atoms in a connected FAT is the 
category of transitive G-sets for a profinite group G. If the topos is also complete, it 
is the category of all G-sets. Conversely, the category G-sets is a complete connected 
FAT for any profinite group G. 

B. Galois theory 

Let K be a commutative ring with no idempotents except 0 and 1. In that case 
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spec(K) is connected. In fact a closed set is classified by an ideal and if /I and I: are 

two ideals for which every maximal ideal contains either II or ZZ and none contains 

both, we must have II + Z? = K and every element of fllz must be nilpotent. Write 

1= Ed + e:, e, E I;. Then (etez)” = 0 for some n. Let el and e: be chosen as above so that 

n is as small as possible. If n > 1, we have 

1 = l3 =&et + 3e2) + &(3et + ez) 

and &et + 3ez), &3et + er) is another representation with a smaller exponent than 

n. Hence we can suppose elez = 0 from which it is immediate that they are ortho- 

gonal idempotents. Hence one of them, say et = 1, while e? = 0. Now given a finitely 

generated projective module E, the sheaf over spec K corresponding to E is locally a 

sum of a certain number of copies of K. The function that assigns to each prime P 
the rank of Ep is continuous, hence constant, on spec K. To see that it is sufficient 

to find an element a 6 P with E, free. For the free rank of E, is then the rank at all Q 

with a B Q which is an open neighborhood of P. To find a, let XI, . . ..sE E be 

elements which give a basis of Ep. Then we have an exact sequence 

O-C-+F-E-D-+0 

where F is free of rank r mapping in the obvious way to (XI, . . ..x~). Since E is finitely 

generated so is D. Since Dp=O, there is a be P with Db =O. We then have an exact 

sequence 

of Rb modules. Since Eb is projective, Cb is finitely generated projective so there is 

an element c/b” d Pb with c/b”Cb = 0 from which CC = 0. Then a = bc B P and both 

UC = aD = 0, whence E0 is free. Thus we have, 

7.1. Proposition. If K has no idempotents other than 0 and 1, then for each finitely 
generated projective module E, there is a number R(E) such that at any prime P, Ep 
is free of rank R(E). If E’ is another finitely generated projective, R(E@E? = R(E) 
+ R(E’), R(E@E’J = R(E)R(E?. 

All K-algebras will be understood to be commutative rings with 1 which are 
unitary K-modules. 

A strongly separable K-algebra is a K-algebra A which is K-projective as well as 

ABA-projective (here and below, an undecorated @ is 0~). If A is such an 

algebra, ABA a A @J and we can write 1 = e + e’ with e in the first summand and e’ 

in the second. Evidently e is idempotent and if p : ABA-A is multiplication, 

p(e) = 1. Since J is the kernel of p, it is generated by all a@ 1 - 1 @a, a E A, we have 

(a@l)e=(l@a)e. We often refer to e as the separability idempotent of A. Fix a 

representation e = C <@<. 
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1.2. Proposition. Let A be strongly separable. Then A is finitely generated over K. 

Proof. Since A is K projective, there is a family {A) of maps A -K and a family (a;) 
of elements of A such that for all a E A, f/(a) # 0 for only finitely many indices and 

a = CfXaMj. 

This is just a formulation of the existence of a retraction A-J*K-A. We let 

l@f, : ABA-A be defined by (l@fi)(a’@a”)=aIf/(a”). It is purely formal that 

a’@a”= C (1 @l;)(a’@a’y(l @aj), where A acts on the left factor of A @A. In 

particular, 

(*) e= C (I @f/)(4(1 @a,). 

The crucial observation is that the above sum is finite. For any a E A, 

a=p(a@ 1) =p((a@ 1)e) 

=.uu((aO 1) C (1 OJ;)(e)(lOa,)) 

= A C ((08 1 N 1 Of/MM 1 @aiN 

= P( C (1 O_lX@O 1 P)( 1 @a,)) 

=P( C (1 @A)((1 OaM(l @a,)) 

=H C 4W 4?Oaj) 
1.1 

= C f,(a 4?4a, 
/. 1 

where the sum is taken over the finite set of indices i as well as over the finite set ofj 

involved in the equation (*) above. Thus {a,‘aj} is a K-generating set for A. 

For future reference, we temporarily suspend, for the next proposition, the 

standing hypothesis that K has no idempotents. 

7.3. Proposition. Suppose A is a K-algebra which is a finitely generated projective 
K-module and u : K-A is the structural homomorphism. Then both the kernel and 
cokernel of u are K-projective. 

Remark. It follows ker u is an ideal generated by an idempotent. If there are no non- 

zero idempotents, u is a split mono. 

Proof. Since K and A are finitely generated projectives, C=coker u is finitely 

presented. Then by [l, II. 3.3, Proposition 12, corollary 11, A-C splits iff it does 

locally at each prime. If Ap=O at some prime, then obviously Ap+Cp splits. 

Otherwise, Ap is a non-zero free Kpmodule and any set of elements which give a 

basis mod P are already a basis of A. But Ap/PAp is a non-zero Kp/PKp-module 



36 M. Barr 

and the latter is a field so that there is always a basis beginning with the unit 
element. The remaining elements give a basis for Cp which is then Kp-projective so 
the map splits. The fact that ker u is projective is trivial. 

7.4. Proposition. Let A be a strongly separable K-algebra. Then any A-module that 
is k-projective is A-projective. 

Proof. Let e be the separability idempotent in A@A. If M and M’ are A-modules, 
Horn&V&M’) is an A@A-module by ((a@a2f)(m) =af(a’m). If g : M’-M” is A- 
linear, g((a@aZf= (a@a’-)gf. Since (a@ l)e= (1 @a)e, ef E HomA(M,M’J whenever 
fe HomK(M,M’). Also the fact that p(e)= 1 implies that ef =f whenever 
f E HomA(M, M’). Then we have, for a sequence of A-modules 

().+_M’+_M--“- M”-+O 

with M” K-projective, there is a K-linear map s : M”+M with ps= 1. Then 
es : M”dM is A-linear and p(es) = e ps = e 1 = 1. 

It follows that if f : A-B is a homomorphism of strongly separable K-algebras, 
then B is A-projective. If f is 1 - 1, it has an A-linear splitting. 

We say that the strongly separable algebra A is connected if it has no non-trivial 
idempotents. We denote by .&he category of connected strongly separable algebras. 
I leave to the reader the easy job of verifying that n.dis equivalent to the category 
of all strongly separable algebras. We will now verify the hypotheses of Theorem 1 
for .9. 

We begin with UBM. If A and B are connected and strongly separable, A@B is 
readily seen to strongly separable. If there are idempotents, let 1 = el + e-e + en be a 
decomposition as a sum of orthogonal ones. Then A@B= CI x .a. x C,, where 
C;=(A@B)e;. For each i, we have B-C;, which is 1 - 1 by (7.3) so that R(B) 
sR(Ci). Thus nR(B)s CR(C;)=R(A@B)=R(A)R(B) so that nSR(A). Now if 
A@B is not connected it can be written as CI x C2. If one or the other of these is not 
connected, it can be further decomposed. Each such decomposition leads to a set of 
orthogonal idempotents. No such decomposition can be into more that R(A) 
factors. The only halt in the process comes when there is a decomposition into 
connected algebras, at most R(A) in number. 

Next consider a map f : A-B. There is an A-linear s : BdA with sf = 1. Then 
1 @s : B@B+B. If 1 @b = b@ 1, apply 1 @s to get s(b) = 6. Thus b EA and we see 
that A-rB=tB&B is an equalizer. Decomposing B@AB as above, we conclude that 
AdB is a regular mono in a% 

If B+A-+C is given in 4 let D be any component of B@AC to verify AP. 
Evidently, K is the initial object. This shows that the hypotheses of Theorem 1 are 

satisfied. We are now in a position to give another characterization of strongly 
separable algebras. A K-module B is called faithfully flat if B@ - is exact and 
faithful. In view of (7.3) it is clear that any K-projective K-algebra B > K is faithfully 
flat. 
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7.5. Theorem. The following conditions are equivalent for a algebra A over the 
connected ring K. 

(i) A is strongly separable. 
(ii) There is a connected strongly separable B such that the canonical map 

(Section 5) 

a(A, B) : A@ B+BHomcrl,@ 

is an isomorphism. 
(iii) There is a faithfully flat K-algebra B such that A @B z B” as a B-algebra for 

some finite integer n. 

That (i)=(ii) follows from (5.1) (in whic.h only the hypotheses of Theorem 1 are 

used). The next implication is obvious, given the fact that cz is a B-algebra homo- 

morphism. To prove (iii) = (i) requires some preparation. 

7.6. Proposition. Let the K-algebra B be faithfully flat and M be a K-module. Then, 
(i) If B@M is finitely generated as a B-module, M is finitely generated over K. 

(ii) If B@M is finitely presented as a B-module, M is finitely presented over K. 
(iii) If B@M is a finitely generated projective B-module, M is finitely generated 

projective over K. 

Proof. Let B@M be generated by the elements { C, b,j@mvlj= 1, . . ..n). Then M’ 
be the K-submodule of M generated by all the m,-. Then we have 

O-M’-M-M”-0 

exact which gives 

O-B@M’-B@M+B@M”-+O 

exact. Clearly B@M’=B@M, so B@M”=O which implies M”=O and M’=M. 
This shows (i). Next suppose B@M is finitely presented over B and we have 

with N finitely generated over B. Since M is at least finitely generated over K, we 
also have an exact sequence 

O-M’-K?‘-M-O 

which gives an exact sequence 

O+B@M’-B”dB@M+O. 

By Schanuel’s lemma, N@B”‘z(B@M’)@B” and hence B@M’ is finitely 

generated. Hence M’ is finitely generated and M finitely presented. Now let B@M 
be finitely generated projective. Then M is a finitely presented K-module so that 
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Hom(M, -) commutes with filtered colimits. Now for a K-module E, there is a 
natural map 

EOH~~K(M,N)-H~~K(M,EON) (*) 

which is an isomorphism when ES K, hence by finite additivity when E is finite free. 
I will sketch below a proof that every flat module is a filtered colimit of finite free 
modules. Given that, (8) is an isomorphism when M is finitely presented and E is 
flat. The result is that 

the latter isomorphism is standard. If B@M is B-projective it is now straight- 
forward to show that M is K-projective. 

Finally, let E be a flat module. The functor defined by T(M) = E%M is, like all 
functors from Mod K to Ab, a colimit of representables. Using the fact that T is 
right exact, the standard diagram may be replaced by the subdiagram consisting of 
free modules. Using that T preserves filtered colimits, the diagram may be further 
refined to finite free modules. The left exactness implies the standard diagram is 
filtered and it is easy to see, using right exactness again, that the subdiagrams 
described above are filtered as well. Now if F is a finite free module, Hom(F, -) 
SF*@ - where F’ = Hom(F, K). 

Thus 

whence E 3 colim F * . 
To finish (7.5), suppose B@A zB”. Then B@A is B-projective so that A is K- 

projective. Moreover, B@A is (B@A)@e(B@A) projective (trivial). This may be 
written as asserting that (BOA @A)&gd is BOA @A-projective. Assuming 
B@A @A is faithfully flat as an A @A-module, this implies, by another application 
of (7.6) that A is A @A-projective. But 

(B@A@A)@AB/I - nB@ - 

and thus the functor on the left is also faithful and exact. 
It is clear that (7.5) could be generalized by replacing B by a family {B;} of flat K- 

algebras that are collectively faithful. 
Now we can verify EC. For if A=tB is a pair of maps in .Y, let 

C-+A*B 

be the equalizer in K-algebras, since tensoring with a K-projective is exact, we get, 
for a normal envelope D of B, 

COD,DHom(A.D)=tDi-(om(B.D) 

and so C@DaDX where 

Hom(B, D)=tHom(A, D)-X 
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is a coequalizer (see the argument of Section 5). Hence C is strongly separable from 
(7.5). 

It is left as a trivial exercise to apply (7.5) to show that A-6 is a map in -1, B is a 
strongly separable A-algebra. 

It now follows that .PY satisfies Theorem 2 and is dual to the category of transitive 
G-sets. All the usual Galois theory of commutative rings - and fields - follows 
immediately. In particular, G is the inverse limit of a functor into the category of 
finite G-sets. Turning that around we get a functor into the category of strongly 
separable K-algebras whose direct limit-taken in the category of all K-algebras - is 
the separable closure of K. 

The results here are known and are found by combining results of [2], and work 
of Harrison found in Section 1 of [4]. 

In the next two examples we will construct a “profinite fundamental group”. 
Where the usual fundamental group classifies covering maps of arbitrary size, this 
one is only for finite covering maps. See [5, 8.41 for a construction valid in a general 
connected topos. I do not understand what further hypothesis has to be made to 
carry out the construction of the genuine fundamental group. When there is a 
fundamental group, the construction here gives only its profinite completion. 

C. Simplicial complexes 

This is the profinite approximation of the theory developed in [8]. A simplicial 
complex (SC) is a set together with a set of finite subsets called simplexes which are 
stable under the formation of further subsets. If X and Y are two such sets on 
admissible map from Y to X is a function/ : Y-+X such thatftakes a simplex to a 
simplex. An n-simplex in X is a simplex consisting of n+ 1 distinct elements. f is 
called a (finite) covering map if the inverse image under f of an n-simplex is a 
disjoint union of (a finite number of) n-simplexes of Y. 

The SC X is called connected if it is not possible to write X=X1 +X2 where XI 
and X2 are disjoint and non-empty and such that every simplex of X is wholly 
contained in XI or X2. It is easily seen to be equivalent to the assertion that for all 
a, PC X simplexes, there is a sequence of simplexes LT = yi, yz, . . ., y,, = /3 such that for 
all 1 I: ic n, y;fl y;+ I = 0. For take XI to be the union of all p that can be “chained” 
to a in that way and Xz the complement. Iff : Y+X is a finite covering map and X 
is connected then the number of simplexes above each (r is the same. When 0#PCa 
this is clear. For the general case, use the chaining condition. This number we call 
R(Y). From here on, all covering maps will be finite. The following is immediate. 

7.7. Proposition. Suppose f : Y+X is a covering map and Y= Yi + Y2 (disjoint 
union). Then fl =f 1 YI and f2 =f 1 Yz are covering maps; moreover R( YI + Y2) 
=R(Yl)+R(Yz). 

7.8. Proposition, Suppose f : Y-X and g : Z+X as covering maps. Then so is the 
canonical map h : Y x xZ’X; moreover R( Y x xZ) = R( Y)R(Z). 
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Proof. Y x x2) consists of all pairs (v, z) E Y x Z for which fy = gz. A subset 

of YxxZ is a simplex iff {yo, . . ..y”} is a simplex in Y and {zo, . . ..z.,} is a simplex in 
Z. Suppose now that R( Y) = r and f?(Z) = s. Let a = {xc, . . ., x,} be an n-simplex in X. 
This means, in particular, that xo, . . . . xn are all distinct. The simplexes in Y above a 

are {you,..., yn~>, . . . . {yo,..., y,,} and those in Z are { ZOI, . . . . trill 1. . . . . {(zosr . . . . zd}. 

Then for any of the rs choices of 1 I is T, 1 <j <s, ((~0;. zo,), . . ., (_Yni, zni)} is an n- 
simplex of YxxZ above a. Suppose p= {(,vo,zo), . . . . (yrn, z,)) is an m-simplex lying 
above a. Then {yo, . . . . ym} is a simplex in Y lying over a. If there is a repetition, say 
ye=yi while zofz~. But then {ZO,ZI} l-simplex in Z mapping to the O-simplex 
{fro,fyt} which is a contradiction as then g-‘uyo} will contain a simplex of 

dimension 2 1. Thus {yo, . . . . Y,~} is an m-simplex, and m=n. This implies that /3 is 
one of the already enumerated simplexes and finishes the proof. 

7.8. Proposition. Let f : Y-X, g : Z-, Y and h = fg be admissible maps with g onto. 
If any two are coverings, so is the third. 

Proof. In the case off and g, this is immediate. If h and f are coverings, let 

a = {YO, . . ., y,,} be an n-simplex in Y. Then g-t(a) c h-If(a) and the latter is a 
disjoint union of n-simplexes. Now suppose z Eg- ‘(a). There is an n-simplex 

/3= {z=zo,zl, . . . . z,,} in 2 mapping to f(a). Then gp= {gze,gzt,...,gzn} is an n- 
simplex in Y. See the proof of (7.7) for an argument that h, hence g is 1 - 1 on sim- 
plexes. Now a and gp are n-simplexes in f -'(f(a)) and hence are either equal or 
disjoint. Since they have yo in common, a=gp. Thus /? is an n-simplex in g-‘(a). 
Hence every element and consequently every simplex in g-i(a) can be extended to 
an n-simplex. Thus g-‘(a) is a sum of some of n-simplexes in hk’(fa). 

Next suppose that g and h are coverings. Suppose a is an n-simplex in X. Suppose 
/3 and y in f-l(a) are two simplexes with /?fl yf0 but /3U y not a simplex. Let 
&=/3ny. With g onto there is a simplex 6’CZ lying above 6. Since 6’Cg-‘(6) 
cg- t(p) there is a simplex ,8’ lying above p. Similarly there is a simplex y’ lying over 
y. P’Uy’ cannot be a simplex as g(p’Uy? =pUy isn’t. But then h-‘(a) is not a 
disjoint union of complexes. This shows that f - l(a) is a disjoint union of simplexes. 
If one of them, p, is an m-simplex, mfn, there is an m-simplex 8’ lying above 8. 
Since P’c h-l(a), P’c y’ where y’ is an n-simplex. y = gy’ is evidently an n-simplex 
containing /3 and lying over a. 

Now fix a connected X. We let .PP denote the category of non-empty connected 
coverings of X. It is readily seen that (n .?/)“P is the category of all covering maps. I 
claim that .dsatisfies the hypotheses of theorem 2. First we observe that if Z-+ Y is a 
map it is onto. Then 

zx YZ’tZ’Y 
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is a coequalizer in sets and can easily be seen to be one in the category of SCs. If we 
have 

do 

ZXYZ 7 z 
I 

’ Y 

I 
Y 

I 
W 

with g&=gd’ and both f and g coverings, the induced Y- W is also a covering by 
(7.8). Thus Z-Y is a regular epi in (n.+‘P from which it is in .+‘P by using the 
components of Zx yZ. A similar argument with Zx VW verifies the dual of AP for 
Z- Y+- W. Conditions BMS and IO are routine. We are only left to verify EC. Let 
f : Y-X be a covering and G be a group of automorphisms of Y such that of=ffor 
all oE G. Suppose a= {yo, . . . . y,,} is an n-simplex in Y and B= {yo, . . ..fm} Cx. If 
aaOaf0, we have f-‘(p)>aUaa, each being n-simplexes so that a=aa. If 
CJ_Y;=_Y~, i#j we have x,.=fyi=foy;=fyj=xj, a contradiction SO that oyi=y; is the 
only possibility. In other words the orbit of a under G is a set of disjoint n- 
simplexes. If Z is the orbit space, the inverse image of an n-simplex in Z is that set of 
disjoint n-simplexes. Hence Y-Z is a covering map and by (7.8) so is Z- Y. Now 
the image in Yx Y of the canonical maps 

G x Y 2:’ t Y, @(a,r) =y, d’(w) = ay, 

is an equivalence relation; the unit, inverse and multiplication in G give the 
reflexive, symmetric and transitive properties, respectively. Thus we have 

Gx Y- YxzYm Y H z. 

If W-X is any other covering, Wx x - is computed at the underlying set level and 
preserves regular epis. It certainly preserves kernel pairs so we have 

Wxx(G x Y)- (WxxY)xz(WxxY)- WxxY- wxxz 

from which we see that 

Gx(WxxY) m WXXY ’ wxxz 

is a coequalizer. This verifies ECG and shows that .v’ OP is equivalent to the category 
of G-sets for a profinite group G. This gives the finite part of the Galois connection 
noted in [8]. 

D. Topological spaces 

If X is a topological space, a (finite) covering of X is a map f : Y-X such that for 
all XE X there is an open neighborhood U of x with the property that f -*(CJ) is a 
disjoint union of (a finite number of) open sets mapped homeomorphically to U by 
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f. When X is connected, the number is constant and the theory proceeds almost 

identically to the preceding example. The only thing to note is that although it is not 

generally true in topological spaces that a pullback of a regular epi is a regular epi, it 

is here since a covering map is star open. The Galois connection here was first 

observed in [7]. 
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