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Abstract. A flow on a compact Hausdorff space is an automorphism. Using the
closed structure on the category of uniform spaces, a flow gives rise, by iteration, to
an action of the integers on the topological group of automorphisms of the object. We
study special classes of flows: periodic, cocyclic, and almost cocyclic, mainly in term of
the possibility of extending this action continuously to various compactifications of the
integers.

1. Introduction

By a flow, we mean a pair (X, t) where X is a topological space and t : X // X is
continuous. If (X, t) and (Y, u) are flows, a continuous map f : X // Y is a flow
morphism if uf = ft. In this paper, all the flows we consider will be ones in which X is
compact Hausdorff and t is an automorphism. A flow (X, t) is called periodic if there is
an integer n > 0 such that tn = id.

We let C(X) denote the lattice-ordered ring of all continuous functions from X to
R and let τ : C(X) // C(X) denote the homomorphism induced by t (so that τ(f)
is the composition ft). Since t is an isomorphism, it follows that tn : X // X and
τn : C(X) // C(X) are defined for all n ∈ Z.

The ring C(X) has a norm ∥ ∥, defined by ∥f∥ = supx∈X |f(x)|. It satisfies ∥τf∥ =
∥f∥.

Section 2 surveys some mostly well-known definitions and facts on uniform spaces.
Section 3.1 is a review of uniform completions of the group Z of integers. In section 4,
we define the notion of a t-periodic element of C(X). We show that a flow is periodic
if and only if every element of C(X) is t-periodic (Theorem 4.5). We define a flow to
be cocyclic if the t-periodic elements of C(X) are dense. Then we show that a flow is
cocyclic if and only if it is a filtered inverse limit of periodic flows (Theorem 4.9). We
also show that cocyclic flows are characterized by the fact that the action Z×X // X,
defined by (n, x) 7→ tnx extends to a continuous action pf(Z)×X // X, where pf(Z)
is the profinite completion of Z (Theorem 4.10). In Section 5, we define the notion of
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an almost periodic element of C(X). In Section 6, we define and study almost cocyclic
flows. These are similarly characterized by the possibility of extending the action of Z to
a continuous action by the Bohr compactification of Z (from which it is immediate that
a cocyclic flow is almost cocyclic).

2. On uniform spaces
unifsp

We refer to [Isbell, 1964] for an introduction to uniform spaces and uniform maps. Every
completely regular space has at least one uniformity that induces the same topology, but
there are usually more than one. A uniform map is continuous, but the converse is false
in general. An easy counter-example is given by the homeomorphism between the space
of positive integers and the space of their reciprocals, each given the subspace metric of
R.

However, there are two cases, each relevant here, in which the uniformity is unique
and continuous functions are uniform. The first is a compact Hausdorff space which has
a unique uniformity, in which all covers are uniform; equivalently every neighbourhood
of the the diagonal is an entourage. Every continuous function from a compact space
to a uniform space that is continuous in the uniform topologies, is also uniform. The
second case is that of an abelian topological group. Such a group does not, as a space,
have a unique uniformity, but it does as a group. A basic uniform cover is the set of all
translates of a neighbourhood of 0 by all the group elements. Should the neighbourhood
be a subgroup, this is just the cover by its cosets. All continuous homomorphisms between
abelian topological groups are uniform. Non-abelian groups have two uniformities, one
in which the left translates of neighbourhoods of the identity are the uniform covers and
one using the right translates. A continuous homomorphism between topological groups
is uniform so long as you use left translates for both or right translates for both. If one
or both groups are abelian (or if the domain is compact) then such a homomorphism
is uniform regardless. One point that should be made is that a non-abelian topological
group is not necessarily a group in the category of uniform spaces since neither the inverse
map nor the multiplication need be uniform.

On these two classes of objects, we will not distinguish between topological and uniform
structures or between continuous and uniform morphisms.

IfX and Y are uniform spaces, then hom(X, Y ) denotes the set of all uniform functions
X // Y equipped with the uniformity of uniform convergence on all of X. This means
that if V ⊆ Y ×Y is an entourage on Y , then the set

{(f, g) | (fx, gx) ∈ V for all x ∈ X }

is an entourage for the uniform structure on hom(X, Y ). This is an obvious generalization
of the sup norm when Y is metric.

For later use, we record the following property of compact spaces. It follows immedi-
ately from [Isbell, 1964, Theorem 31].
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complete

2.1. Proposition. Suppose X and Y are compact Hausdorff spaces. Then hom(X, Y )
is complete.

2.2. Definition. A uniform space is called totally bounded if it can be uniformly
embedded in a compact space. This is equivalent to the fact that every uniform cover has
a finite subcover, see [Isbell, 1964].

The following result is implicit in [Isbell, 1964, Theorem III.24] but we find the proof
somewhat opaque and therefore we include our own proof.

precpt
2.3. Theorem.When the space Z is totally bounded, then for any uniform spaces X and
Y , Hom(Z ×X, Y ) ∼= Hom(Z, hom(X, Y )).

This is true also for the internal hom, but we have no need of it. The proof is based
on the following lemma in which all entourages used in both the statement and proof will
be understood to be symmetric.

2.4. Lemma. Suppose Z,X, Y are uniform spaces with Z totally bounded and let θ :
Z // hom(X, Y ) be a uniform map. Then for each entourage V ⊆ Y ×Y there are
entourages U ⊆ X ×X and W ⊆ Z ×Z such that for all (z, z′) ∈ W and (x, x′) ∈ U , we
have (θz(x), θz′(x′)) ∈ V .

Proof. Let V̂ ⊆ Y ×Y be an entourage such that V̂ ◦ V̂ ◦ V̂ ◦ V̂ ⊆ V . Let

H = {(f, g) ∈ Hom(X, Y )×Hom(X,Y ) | (fx, gx) ∈ V̂ for all x ∈ X }

Then H is an entourage in hom(X, Y ). Since θ is a uniform map, there is an en-

tourage Ŵ ⊆ Z ×Z such that (θ× θ)(Ŵ ) ⊆ H. Let W ⊆ Ŵ be an entourage such

that W ◦W ◦W ⊆ Ŵ .
Since Z is totally bounded, there is a finite subset z1.z2, . . . , zn ∈ Z such that {W [zi]}

covers Z. For each i = 1, . . . , n, we have that θzi is a uniform map X //Y and so there is
an entourage Ui ⊆ X ×X such that whenever (x, x′) ∈ Ui, we have (θzi(x), θzi(x

′)) ∈ V̂ .

If U =
∩
Ui, then we have that for all i = 1, . . . , n and all (x, x′) ∈ U , (θzi(x), θzi(x

′)) ∈ V̂ .
Now suppose that (z, z′) ∈ W . There are indices i and j such that (zi, z) ∈ W and

(z′, zj) ∈ W . This implies that (zi, zj) ∈ W ◦W ◦W ⊆ Ŵ . We can now infer that all of

(θz, θzi), (θzi, θzj) and (θzj, θz
′) belong to H. Using the fact that (θzj(x), θzj(x

′)) ∈ V̂ ,
we see that all of (θz(x), θzi(x)), (θzi(x), θzj(x)), (θzj(x), θzj(x

′)), and (θzj(x
′), θz(x′))

belong to V̂ , whence (θz(x), θz′(x′)) ∈ V .

Proof of the theorem . The lemma implies immediately that if θ : Z //hom(X, Y )
is uniform, so is the transpose Z ×X // Y . For the converse, simply observe that if we
have a uniform map Z ×X // Y , the conclusion of the lemma is valid from which it is
immediate that the transpose Z // hom(X,Y ) is uniform.
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In general, the closed structure on the category of uniform spaces is not symmetric,
so this condition is specific to Z and it is not sufficient that X be totally bounded. It is
sufficient that X be discrete, but that will not be the case in our applications.

suprem
2.5. Proposition. The supremum of a family of totally bounded uniformities on a set
is totally bounded.

Proof. LetX be a set and let {Uα} be a family of totally bounded uniformities onX. For
each α let fα : X //Cα be a uniform map from X, equipped with the Uα uniformity, to a
compact space Cα. Then the map X //

∏
Cα whose α coordinate is fα is an embedding

of X into a compact space for which the induced uniformity on X is the supremum of the
Uα.

3. Completions and compactifications of Z

A group compactification of Z is a compact group Z and a homomorphism Z // Z
whose image is dense. We do not require the map to be injective, so that the canonical
map Z // Z/nZ, for any positive integer n, is a compactification. It is not hard to see
that these are the only finite compactifications of Z and that in all other cases, the map
Z // Z is injective. If G is a topological group, a map Z // G will be said to lift to Z
when there is a commutative diagram

Z G//___________

Z

Z
����

��
��

��
��

��
�
Z

G
��?

??
??

??
??

??
??

Although this terminology is not entirely reasonable when Z // Z fails to be injective,
we will use it anyway. When we talk of compactifications of Z we will always mean group
compactifications. Similarly, when we talk of topologies on Z, we always mean group
topologies.

ucomp
3.1. Uniform completions of Z. We will denote by Zpf the topological group whose
underlying group is the integers, but whose topology has the non-zero subgroups as its
basic neighbourhoods at 0. In the discrete topology, the integers are complete, but in this
topology they are not. We denote by pf(Z) the completion in the uniformity defined by
the topology just described. There are at least two good ways of describing it. One is as
the inverse limit of all Z/nZ as n ranges over the positive integers. When n|m, we have
a commutative diagram

Z/mZ Z/nZ//

Z

Z/mZ
����

��
��

��
��

��
�
Z

Z/nZ
��?

??
??

??
??

??
??
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More generally, if m and n are arbitrary and l their least common multiple, we have the
commutative diagram

Z/mZ Z/lZoo Z/lZ Z/nZ//

Z

Z/mZ
����

��
��

��
��

��
�
Z

Z/lZ
��

Z

Z/nZ
��?

??
??

??
??

??
??

which shows that the diagram is cofiltered.
Since for non-zero n ∈ Z a finite number of translates of the subgoup nZ covers Z, it

follows that the topology is totally bounded and the completion is compact.
Here is the second way to construct pf(Z). If p is a prime, let pf(Z)p denote p-adic

integers, which is the inverse limit of the sequence

Z/pZ oo Z/p2Z oo Z/p3Z oo · · ·

Then pf(Z) =
∏

pf(Z)p, the product over all primes. An element of pf(Z)p is an infinite
series α = a0+a1p+ · · ·+anp

n+ · · · with coefficients between 0 and p−1. Note, however,
that addition and multiplication are not mod p, but involve carries into higher powers of
p. The usual argument shows that such an element is invertible if and only if a0 ̸= 0. We
say that the element above has order n if a0 = · · · = an−1 = 0 and an ̸= 0. It will simplify
the exposition below if we let p∞ denote the 0 element of pf(Z)p and write ordp0 = ∞.

We let ρn : pf(Z) //Z/nZ and σp : pf(Z) //pf(Z)p be the canonical projections. Let
us denote by ordpλ the order of σpλ. If λ, µ ∈ pf(Z), it is clear that λ|µ if and only if, for
each prime p, ordpλ ≤ ordpµ.

ppowers
3.2. Proposition. A closed ideal in pf(Z) has the form I =

∏
Ip, where Ip is an ideal

in pf(Z)p. Every non-zero ideal in pf(Z)p is principal, generated by a power of p.

Proof. Let I be a closed ideal in pf(Z). Let ep denote the element of
∏

pf(Z)q whose pth
coordinate is 1 and all other coordinates are 0. Let Ip = epI. Clearly

∑
Ip ⊆ I ⊆

∏
Ip.

But since the sum is dense in the product and I is closed, it is clear that
∏

Ip = I.
For a non-zero ideal Ip ⊆ pf(Z)p, let pn(a0 + a1p+ · · ·), a0 ̸= 0, be an element of I of

least degree. Since the element in parentheses is invertible, we see that pn ∈ Ip. Since n
was chosen as small as possible, it is clear the Ip is generated by pn.

The Bohr compactification. The Bohr compactifcation of an abelian group G can
be defined as the value at G of the left adjoint to the underlying functor from compact
abelian groups to topological abelian groups. It can be directly constructed, as Bohr
did, using the construction from the adjoint functor theorem (it is a matter of historical
fact that Bohr’s construction was one of the motivations behind Freyd’s construction).
Another method constructs it as |G∗|∗ where ∗ is the Pontrjagin dual. A third is as the
completion under the finest totally bounded topology on G.

Let b(Z) denote the Bohr compactification of Z. We say that the topology on Z
induced by the embedding Z // b(Z) is the Bohr topology on Z and it will be denoted
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by Zb. Although this topology is not well understood, we can give some idea of the
open neighbourhoods of 0. Like all compact abelian groups, b(Z) can be embedded
algebraically and topologically into a power of the circle group T = R/Z. Thus, for some
set S, we have an embedding Zb

� � // TS. A standard argument shows that we can take
S = Hom(Zb,T) = Hom(Z,T) since every homomorphism from Z to a compact group
extends to b(Z) and thus is continuous on Zb. A homomorphism f : Z // T is entirely
determined by f(1) which can be any element of γ ∈ T and thus is multiplication mod Z
by some real number γ, which can be taken to lie in the interval [0, 1) although any real
number could be used; two reals that differ by an integer give the same homomorphism.
For each ϵ > 0, let

U(γ, ϵ) = {n ∈ Z | nγ is within ϵ of an integer}

Then the U(γ, ϵ) form a subbase for the neighbourhood system at 0 in Zb. Informally,
these sets look like “almost subgroups” or “almost periodic sets”, although we will not at-
tempt to make this notion precise. For example, when γ = π, and ϵ = 0.1, the numbers in
U(π, ϵ) between 0 and 113 consist of the multiples of 7 up to 77 together with the numbers
congruent to 1 mod 7 between 36 and 113. Since 355/113 is such a good approximation
for π, this sequence of elements of U(π, ϵ) will continue to repeat as follows. Let A denote
the set consisting of the 24 numbers {0, 7, 14, . . . , 77, 36, 43, 50, . . . , 13}. Then U(π, 0.1)
continues with the numbers of the form a + 113k, for a ∈ A and k up to approximately
3000. At some point after that, determined by a better continued fraction approximation
for π, the sequence will begin to veer off.

4. Periodic and cocyclic flows
cycflow

Recall that a flow (X, t) is called periodic if there is an n⟩0 such that tn = id. We say
that n is a period of the flow. The least such positive n will be called the minimal
period of the flow.

flowact
4.1. Action of Z on a flow. If (X, t) is a flow, then there is an action of Z on X
given by (n, x) 7→ tn(x). This gives rise to a group homomorphism φ : Z //Aut(X) given
by n 7→ tn. When n is the minimal period of t, then the kernel of Z //Aut(X) is exactly
nZ.

4.2. Proposition. The group Aut(X) becomes a topological group if we equip it with the
uniformity it inherits from hom(X,X) (see Section 2).

Proof. A neighbourhood of an automorphism s is determined by an entourage E as

E(s) = {r | (rx, sx) ∈ E for all x ∈ X}
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For the remainder of this computation, treat all set builders as indexed over all the
elements of X. Then we have

E(su) = {r | (rx, sux) ∈ E}

= {r | (ru−1y, sy) ∈ E} (replace x by u−1y)

= {vu | (vy, sy) ∈ E} (replace r by vu)

= E(s)u

In particular, E(s) = E(1)s so that the topology is given by right translates of neigh-
bourhoods of the identity. Assume now that E is a symmetric entourage. Then

E(1) = {r | (rx, x) ∈ E} = {r | (x, rx) ∈ E} = {s−1 | (x, s−1x) ∈ E}

= {s−1 | (sy, y) ∈ E} (replace x by sy)

= E(1)−1

Finally, let F be an entourage such that F ◦F op ⊆ E. Then for r, s ∈ F (1), we have
(rx, x), (sx, x) ∈ F so that (rx, sx) ∈ F ◦F op ⊆ E. But then for y = sx, (rs−1y, y) ∈ E
and so we see that F (1)F (1)−1 ⊆ E(1) and the conditions for being a topological group
are satisfied.

Notation. When Aut(X) is equipped with this topology, we will denote it by aut(X).
Since X is compact Hausdorff it is a subspace of RC(X). Thus for all f ∈ C(X), we

define φf : Z // C(X) as the composite:

Z // aut(X) // Hom(X,X) // Hom(X,RC(X))
pf // Hom(X,R) = C(X)

Then φf (n) = ftn.
We will say that an f ∈ C(X) is t-periodic if there is an n > 0 for which ftn = f .

3quiv
4.3. Theorem. Let (X, t) be a flow and f ∈ C(X). Of the following conditions, the first
three are equivalent and imply the fourth:

(1) {ftn | n ∈ Z} is finite;

(2) f is t-periodic;

(3) φf : Z // C(X) extends to a finite compactification of Z;

(4) φf : Z // C(X) extends continuously to pf(Z).

Proof. The proofs that (1) +3 (2) +3 (3) +3 (1) are trivial and left to the reader.
The proof that (3) +3 (4) follows from the fact that Z/nZ is a quotient of pf(Z).
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4.4. Example. Here is an example to show that (4) does not imply the other three. Let
X = pf(Z) and let t : X //X be given by t(x) = x+1. Then for all n ∈ Z, tn(x) = x+n
and we can evidently extend this to all z ∈ pf(Z) by tz(x) = x + z. Clearly t is not
periodic and it follows from Theorem 4.5 below that some f ∈ C(X) is not t-periodic.

Clearly, if (X, t) is periodic, then every f ∈ C(X) is t-periodic. For the converse we
have the following theorem. Note that the argument makes no use of compactness of the
space.

periodic
4.5. Theorem. Let (X, t) be a flow. If every f ∈ C∗(X) is t-periodic, then t is periodic
on X.

Proof. If t is not periodic, then there must be, for any m > 0, an infinite set Sm ⊆ X
such that tmx ̸= x for all x ∈ Sm. The set Sm might consist of a single infinite orbit, if
there is one, or a set of periodic points whose orbit size does not divide m. An obvious
argument using LCM would show that if tmx = x for all but a finite set of periodic points,
then t would be periodic.

Suppose x1 ∈ S1. Let f1 : X // [0, 1] be a continuous function such that f1(x1) = 1
and f1(tx1) = 0. Let g1 = f1/2. Clearly g1(x1) ̸= g1(tx1). Next choose x2 ∈ S2 such
that {x2, t

2x2} is disjoint from {x1, tx1}. The fact that S2 is infinite and t a bijection
allows such a choice to be made. Let f2 : X // [0, 1] be a continuous function such that
f2(x1) = f2(tx1) = 0 and{

f2(x2) = 1 and f2(t
2x2) = 0 if g1(x2) > g1(t

2x2)
f2(x2) = 0 and f2(t

2x2) = 1 if g1(x2) ≤ g1(t
2x2)

Let g2 = g1 + f2/4. Clearly g2(x1) = 1/2 while g2(tx1) = 0. If g1(x2) > g1(t
2x2), we

have that g2(x2) = g1(x2) + 1/4 > g1(t
2x2) = g2(t

2x2), while if g1(x2) ≤ g1(t
2x2), we

have g2(x2) = g1(x2) < g1(t
2x2) + 1/4 = g2(t

2x2). Thus we see that g2(xi) ̸= g2(t
ixi) for

i = 1, 2.
Suppose that points x1 ∈ S2, x2 ∈ S2, . . . , xk ∈ Sk and functions f1, f2, . . . , fk :

X // [0, 1] have been chosen so that for all j < i, fi(xj) = fi(t
jxj) = 0 and such that the

function gk =
∑k

i=1 2
−ifi satisfies gk(xi) ̸= gk(t

ixi) for all i ≤ k. As above, we can choose
xk+1 ∈ Sk+1 so that {xk+1, t

k+1xk+1} is disjoint from {x1, x2, . . . , xk, tx1, t
2x2, . . . t

kxk}.
Now let fk+1 : X //[0, 1] be a continuous function that vanishes on all of {x1, x2, . . . , xk, tx1, t

2x2, . . . t
kxk}

and such that{
fk+1(xk+1) = 1 and fk+1(t

k+1xk+1) = 0 if gk(xk+1) > gk(t
k+1xk+1)

fk+1(xk+1) = 0 and fk+1(t
k+1xk+1) = 1 if gk(xk+1) ≤ gk(t

k+1xk+1)

Let gk+1 = gk + fk+1/2
k+1. We have that for i < k + 1, gk+1(xi) = gk(xi) ̸= gk(t

ixi) =
gk+1(t

ixi). If gk(xk+1) > gk(t
k+1xk+1), we have that gk+1(xk+1) = gk(xk+1) + 1/2k+1 >

gk(t
k+1xk+1) = gk+1(t

k+1xk+1), while if gk(xk+1) ≤ gk(t
k+1xk+1), we have that gk+1(xk+1) =

gk(xk+1) < gk(t
k+1xk+1) + 1/2k+1 = gk+1(t

k+1xk+1), which completes the induction step.
We conclude by letting g =

∑∞
i=1 2

−ifi = lim gi. We readily see that g = gk+1 on the set
{x1, x2, . . . , xk, tx1, t

2x2, . . . t
kxk} so that g(xk) ̸= g(tkxk), so that g ̸= gtk for all k, which

contradicts the assumption that every bounded function on X is t-periodic.
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4.6. Definition. We say that a flow (X, t) is cocyclic if the set of t-periodic elements
of C(X) is dense.

4.7. Notation. We denote by Cn(X) the subset of C(X) consisting of all f such that
ftn = f . In other words it consists of all the t-periodic elements whose minimal period
divides n.

4.8. Proposition. Let (X, t) be a flow. Then Cn(X) is a complete t-invariant lattice-
ordered subalgebra.

Proof. All but the completeness is completely obvious. If f1, f2, . . . , fk, . . . is a sequence
of functions that converges to f , then the sequence f1t

n, f2t
n, . . . , fkt

n converges to ftn.
But that sequence is the original one.

filp
4.9. Theorem. A flow is cocyclic if and only if it is a filtered inverse limit of periodic
flows.

Proof. Assume (X, t) is cocyclic. It follows from Gelfand duality that Cn(X) ∼= C(Xn)
for a quotient space Xn of X. The family of these quotients Xn is filtered, which together
with compactness, implies that the induced map X // limXn is surjective. To see that
it is injective, let x ̸= y ∈ X. If f(x) = f(y) for all t-periodic f , the same would be true
for all functions in the closure of the algebra of the t-periodic functions, which is all of
C(X).

Conversely, suppose {(Xα, tα)} is a filtered diagram of periodic flows, such that X =
limXα and t is the flow on X uniquely determined by {tα}. By Gelfand duality, C(X) =
colimC(Xα). Since the colimit is filtered, it is just the closure of the union of the cor-
responding subalgebras of C(X) so that the t-periodic functions are dense in the union,
since they are dense in each C(Xα).

thm1
4.10. Theorem. Let (X, t) be a flow. Then the following are equivalent:

(1) (X, t) is cocyclic;

(2) The action φ̃ : Z×X // X given by φ̃(n, x) = tnx is continuous when Z is replaced
by Zpf ;

(3) The action φ̃ : Z×X // X extends to a continuous action by pf(Z).

Proof. (1) +3 (2): Assume that (X, t) is cocyclic. Then X = limXn, as seen in the proof
of Theorem 4.9. We claim that Zpf ×X // X (see 3.1) is continuous. Since X = limXn,
it is sufficient to show that the composite Zpf ×X // X // Xn is continuous for each
n ∈ Z. Clearly the composite factors through Z/nZ×X // Xn. That map is clearly
continuous since Z/nZ is discrete and each power of t is continuous.

(2) +3 (3): Assume that φ̃ is continuous on Zpf . It follows from Theorem 2.3 that
Hom(Zpf ×X,X) ∼= Hom(Zpf , hom(X,X)) so the transposed map φ : Zpf

// hom(X,X)
is continuous. But by Proposition 2.1, hom(X,X) is complete and so we can extend φ̃ to
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a map pf(Z) // hom(X,X) which, by another application of 2.3 transposes to a uniform
morphism pf(Z)×X // X. The fact that φ̃(n +m,x) = φ̃(n, φ̃(m,x)) for all n,m ∈ Z,
together with continuity and the fact that Zpf is dense in pf(Z), implies that the extension
remains a group action.

(3) +3 (1): Assume that the action of Z on X extends to an action of pf(Z) on X. We
denote φ̃(λ, x) by tλx. For n > 0 in Z, let

En = {(x, y) ∈ X ×X | y = tnℓ for some ℓ ∈ Z}

Fn = {(x, y) ∈ X ×X | y = tnλ for some λ ∈ pf(Z)}
At this point, we insert:

4.11. Lemma. Fn = cl(En) in X ×X.

Proof. We will show that En is dense in Fn and that Fn is closed. For the first, suppose
λ ∈ pf(Z). Let {ℓα} denote a net in Z that converges to λ. Then continuity of the action
implies that for all x ∈ X, the net {tnℓαx} converges to tnλx. This shows that En is
dense in Fn. To see that Fn is closed, suppose that {(xα, t

nλαxα)} is a net in Fn that
converges to (x, y). Since npf(Z) is the continuous image of the compact space pf(Z) it is
compact and hence the net {nλα} has a subnet that converges to an element nλ ∈ pf(Z).
If we restrict to this subnet, the original net converges to (x, tnλx). But the original net
converges and the space is Hausdorff, so it can only converge to (x, tnλx) and hence we
conclude that y = tnλx which shows that (x, y) ∈ Fn.

We now return to the proof of the theorem. As before, let Cn(X) denote the subalgebra
of C(X) coinsisting of all f such that f = ftn. As in 4.9, there is quotient πn : X // Xn

such that C(Xn) = Cn(X) ⊆ C(X). Let Kn
//// X be the kernel pair of πn. It is

immediate that En ⊆ Kn from which we conclude that Fn ⊆ Kn. But then X/Fn maps
surjectively onto X/Kn = Xn, whence C(X/Fn) is a subalgebra of C(Xn). But for every
(x ∈ X), (x, tnx) ∈ Fn, from which we see that every f ∈ C(X/Fn) is t-periodic of period
n. Thus C(X/Fn) = C(Xn) so that Xn

∼= X/Fn and therefore Fn = Kn.
Now suppose that x and y are distinct elements of X. We want to show that there

is an n ∈ Z such that πnx ̸= πny. Assume that πnx = πny for all n > 0. Then, since
Fn = Kn for each n > 0, there is a λ ∈ pf(Z) for which y = tλx and n divides λ. Choose
such a λ. For each prime p let λp be the projection of λ in pf(Z)p. Let ℓp = ordpλp (see
3.2 and the discussion that precedes it.) Let I[x] = {ζ ∈ pf(Z) | tζx = x}. It is readily
shown that I[x] is a closed ideal, so by Proposition 3.2, we can write I[x] =

∏
Ip, where

Ip is an ideal of pf(Z)p generated by a power, pkp . If ℓp ≥ kp for each prime p, then
λ ∈ I[x], which implies that y = tλx = x. Hence there is a prime p for which ℓp < kp
(which includes the possibility that kp = ∞). Let n = pℓp . Suppose that πnx = πny.
Then there is a µ ∈ pf(Z) such that n|µ, whence ordpµ ≥ ℓp, and also tµx = y. But
then µ − λ ∈ I[x] which means that ordp(µ − λ) ≥ kp > ℓp which is impossible since
ordpµ > ordpλ implies that ordp(µ − λ) = ordpλ = ℓp. We conclude from this that the
canonical map X // limXn is a monomorphism and as seen in the proof of 4.9 that it is
surjective and therefore a homeomorphism.
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4.12. Theorem. Let (X, t) be a flow. Then (X, t) is t-cocyclic if and only if φ :
Zpf

// aut(X) is uniform.

Proof. Suppose that (X, t) is cocyclic. Then φ̃ : Z×X // X extends continuously to
pf(Z)×X // X and thus restricts to Zpf ×X // X.

Conversely, assume that φ : Z // aut(X) is uniform on Zpf . We claim that aut(X) is
complete, since it is evidently closed in hom(X,X) and the latter is complete by Propo-
sition 2.1. Thus φ : Zpf

// aut(X) extends continuously to pf(Z) // aut(X) and then,
by Theorem 24 of the same source, to pf(Z)×X // X. The conclusion follows from the
preceding theorem.

surj
4.13. Theorem. A quotient of a cocyclic flow is cocyclic.

Proof. Let q : (X, t) // (Y, s) be a surjective flow map in compact Hausdorff spaces and

assume that (X, t) is cocyclic. We have the continuous action pf(Z)×X
φ̃ // X

q // Y
which gives a map pf(Z) //hom(X, Y ) by Theorem 2.3. This maps takes z ∈ pf(Z) to the
function x 7→ q(tzx). If E is the kernel pair of q, the coequalizer diagram E //// X // Y
gives an equalizer hom(Y, Y ) // hom(X,Y ) //// hom(E, Y ), since hom(−, Y ) has a left
adjoint. In particular, hom(Y, Y ) is closed in hom(X,Y ). We then have a commutative
square

hom(Y, Y ) hom(X, Y )//

Z

hom(Y, Y )
��

Z pf(Z)// pf(Z)

hom(X, Y )
��

in which the top arrow is dense and the bottom one is a closed inclusion, so that the
diagonal fill-in gives the map pf(Z) // hom(Y, Y ). The conclusion follows from Theorem
4.10.

4.14. Theorem. The full subcategory of cocyclic flows is a reflective subcategory of the
category of flows.

Proof. Let (X, t) be a flow. Let P (X) be the full subalgebra of C(X) consisting of the
t-periodic elements. The sum and product of t-periodic elements as well as all constants
are t-periodic so that P (X) is a subalgebra, evidently t-invariant. The topological closure
cl(P (X)) has by [Gillman & Jerison (1960), Theorem 5.14] the form C(Y ) for some
quotient Y of X. Moreover, by Gelfand duality, there is an action of t on Y that is
compatible with the quotient mapping Y // X. If (X, t) // (Z, t) is a flow map to a
cocyclic flow, then it is clear that the image of P (Z) // C(X) lies in P (X) = P (Y ) and
hence the image of C(Z) lies in C(Y ) so that the map X // Z factors through Y .

4.15. Corollary. An arbitrary limit of cocyclic flows is cocyclic.
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4.16. Proposition. A finite limit or finite colimit of periodic flows is periodic. A finite
colimit of cocyclic flows is cocyclic.

Proof. Periodic flows are obviously closed under finite products, finite sums, t-invariant
subobjects, and quotients. As for cocyclic flows, closure under finite sums is evident from
Gelfand duality: if X =

∑
Xα is a finite sum, then C(X) =

∏
C(Xα) and if the periodic

elements are dense in each factor, they are dense in the product. Closure under quotients
is given by Theorem 4.13.

4.17. Examples: Two flows that are cocyclic, but not periodic. Let [n]
denote the finite set {0, 1, . . . , n− 1} with the discrete topology and the action that takes
i to i + 1 (mod n). The first example is the one point compactification of

∑
[n]. We

extend the action to fix the point at infinity. The second example is
∏
[n]. It is easy to see

that neither flow is periodic because the periods get too large, while each is the inverse
limit of a chain of periodic flows and hence cocyclic.

5. Almost t-periodic functions
almostper

5.1. Definition. Let (X, t) be a flow. Suppose that f ∈ C(X). For each ϵ > 0, let
U(f, ϵ) denote {n ∈ Z | ∥ftn − f∥ < ϵ}.

Recall that when (X, t) is a flow and f ∈ C(X), we have defined φf : Z // C(X) by
φf (n) = ftn.

The following observation is routine and left to the reader, (The weak topology is
the coarsest topology on the domain that renders a function continuous.)

5.2. Proposition. The topology defined by the U(f, ϵ) for all ϵ > 0 is just the weak
topology from φf .

induced
5.3. Proposition. For any f ∈ C(X), the weak topology Z gets from φf is a group
topology on Z.

Proof. For any m ∈ Z, we have ∥ftm+n − ftm∥ = ∥ftn − f∥ since as x ranges over all
of X, so does tmx. Clearly U(f, ϵ/2)− U(f, ϵ/2) ⊆ U(f, ϵ).

We will call this the topology on Z induced by f .

5.4. Remark. This topology is Hausdorff if and only if f is not t-periodic.

5.5. Definition. We say that f ∈ C(X) is almost t-periodic if the topology on Z
induced by f is totally bounded. This holds if and only if for every ϵ > 0, a finite number
of translates of U(f, ϵ) covers Z. If we unwind that, it turns out to mean that for all ϵ > 0,
there is a finite set S ⊆ Z such that for all n ∈ Z there is an s ∈ S with ∥ftn − fts∥ < ϵ.
We will call such a finite set S an ϵ-span for U(f, ϵ). Although the phrase “almost
periodic” has been used in many not entirely compatible ways, our definition seems to
capture their spirit. See the first item in the following theorem.
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5.6. Theorem. Let (X, t) be a flow and f ∈ C(X). Then the following are equivalent:

(1) The closure of {ftn | n ∈ Z} is compact in the sup norm on C(X);

(2) f is almost t-periodic;

(3) The topology on Z induced by φf : Z //C(X) is totally bounded and hence the uniform
completion is compact;

(4) φf : Z // C(X) extends continuously to the Bohr compactification b(Z) of Z.

Proof. (1) +3 (2): Let A = {ftn | n ∈ Z}. For any ϵ > 0, every element of cl(A) is
within ϵ of an element of A. Thus the cover of A by ϵ-spheres around each element of A
also covers cl(A) and hence has a finite refinement, say the ϵ-spheres around the elements
fts1 , fts2 , . . . , ftsm . Clearly S = {s1, s2, . . . sm} is an ϵ-span.

(2) +3 (3): It is clear that φf : Z // C(X) is continuous when Z is topologized by the
U(f, ϵ) for all ϵ > 0. We claim this topology is totally bounded. There is, by definition,
a finite set S ⊆ Z such that for all n ∈ Z there is an s ∈ S such that ∥tfn − tf s∥ < ϵ.
But this means that n− s ∈ U(f, ϵ) and hence that Z = S +U(f, ϵ). Since every uniform
cover has a finite refinement, we conclude that Z is totally bounded, so that its uniform
completion is compact.

(3) +3 (4): Assuming the uniform completion Z♯ is compact, the map Z //C(X) extends,
since C(X) is complete, to a continuous map Z♯ // C(X). But the topology on Z is a
group topology and hence Z♯ is a group. Since every group compactification of Z is a
quotient of b(Z), we have b(Z) // Z♯ // C(X).

(4) +3 (1): Trivial since the image of b(Z) // C(X), which is compact, includes the
image of φf : Z // C(X).

Recall from 4.1 that, given a flow (X, t), we get a homomorphism φ : Z // aut(X)
defined by φ(n) = tn.

5.7. Definition. Let (X, t) be a flow. The t-induced topology on Z is the weak
topology induced by φ. This is the coarsest topology on Z for which φ is continuous and
is automatically a group topology since aut(X) is a topological group and φ is a group
homomorphism.

phicont
5.8. Proposition. A topology on Z makes φ continuous (and therefore uniform) if and
only if for each f ∈ C(X), and each ϵ > 0, the set U(f, ϵ) is a neighbourhood of 0.

Proof.Using the fact that every compact Hausdorff space is homeomorphic to a subspace
of a power of the unit interval, indexed by its maps to the interval, we have a sequence
of embeddings

aut(X) ⊆ Hom(X,X) � � // Hom(X,RC(X)) ∼= Hom(X,R)C(X)
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so that φ is continuous if and only if, for each f ∈ C(X), the composite

Z // aut(X) ⊆ Hom(X,X) � � // Hom(X,RC(X)) ∼= Hom(X,R)C(X) pf // C(X)

is continuous, where pf is the projection on the f coordinate. When the identifications
are sorted out, the composite map takes n ∈ Z to ftn. In particular the inverse image of
an ϵ-neighbourhood in R is

{m ∈ Z | ∥ftn − ftm∥ < ϵ} = {m ∈ Z |
∥∥ftn−m − f

∥∥ < ϵ}

and it follows that φ is continuous if and only if for every f ∈ C(X) and every ϵ > 0,
U(f, ϵ) is a neighbourhood of 0.

5.9. Corollary. The t-induced topology is the sup of the topologies induced by all the
f ∈ C(X) (see 5.3).

5.10. Corollary. A flow (X, t) is almost cocyclic if and only if the map Z // aut(X)
that takes n to tn is continuous in the Bohr topology on Z. (Cf. 4.12.)

Proof. Suppose the map is continuous on the Bohr topology. The uniform space aut(X)
is closed in Hom(X,X) and the latter is complete ([Isbell, 1964, Theorem III.31]). We
conclude that aut(X) is complete. Thus the map extends to the completion in the Bohr
topology, which is b(Z). The other direction is trivial.

5.11. Corollary. Suppose (X, t) is a flow and suppose that U(f, ϵ) contains a non-zero
subgroup of Z for each f ∈ C(X) and each ϵ > 0. Then (X, t) is cocyclic.

Proof. In that case φ : Z // aut(X) will be continuous in the topology generated by
those subgroups. But that topology is coarser than that of the Zpf and hence φ is also
continuous on Zpf . Now Theorems 4.10 and 2.3 give the desired conclusion.

Simultaneous almost t-periodicity. Recall that an f ∈ C(X) is almost t-periodic if
for all ϵ > 0 a finite number of translates of the set U(f, ϵ) covers Z. A set F of functions
is simultaneously almost t-periodic if a finite number of translates of

∩
f∈F U(f, ϵ)

covers Z.
I THINK WE CAN SIMPLY SAY THAT, AS A CONSEQUENCE OF suprem, IT

IS IMMEDIATE THAT ... IF WE DO THIS, THE FOLLOWING PROOF NEEDS
SLIGHT CHANCE.

5.12. Proposition. A finite set of almost t-periodic functions is simultaneously almost
t-periodic.

Proof. Suppose F = {f1, . . . , fk}. The set
∩k

i=1 U(fi, ϵ) is open in the supremum of the
topologies induced by the fi ∈ F . Since each of those topologies is totally bounded it
follows from 2.5 that the supremum is also and hence a finite number of translates covers
Z.
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Let us say that a subalgebra A ⊆ C(X) is t-invariant if f ∈ A implies that ft ∈ A.
compsub

5.13. Proposition. Let F be any set of almost t-periodic functions. Then every element
of the complete t-invariant subalgebra generated by F is almost t-periodic.

Proof. If f, g ∈ F , Then U(f ±g, ϵ) ⊇ U(f, ϵ/2)∩U(g, ϵ/2) and the preceding argument
implies that {f, g} is simultaneously almost t-periodic so that a finite number of translates
of the the right-hand side covers Z. A similar argument works for f ∧ g and f ∨ g. For
the product, it is sufficient to show that fg is almost t-periodic when ∥f∥ = ∥g∥ = 1. But
in that case we also get that U(fg, ϵ) ⊇ U(f, ϵ/2) ∩ U(g, ϵ/2). Since U(f, ϵ) = U(ft, ϵ)
we conclude that every element of the smallest t-invariant subalgebra generated by F is
almost t-periodic. Finally, suppose that f is in the closure of that subalgebra. Given
ϵ > 0, there is a g in the subalgebra such that ∥f − g∥ ≤ ϵ/3. But then a standard
argument shows that U(f, ϵ) ⊇ U(g, ϵ/3).

6. Almost cocyclic flows
almostcoc

We say that a flow is almost cocyclic if every f ∈ C(X) is almost t-periodic. We might
have defined this to mean that the almost t-periodic functions were dense, in parallel with
the definition of cocyclic, but 5.13 shows that the conditions are equivalent.

notcocyclic
6.1. Example of an almost cocyclic flow that is not cocyclic. LetX = R/Z,
the circle group. Define t : X // X as addition mod Z by an irrational number γ. It is
well known that the orbit of any point is dense. Fix an x ∈ X. For any n > 0, the orbit
of x under tn is dense. If ftn = f , then for any y ∈ X, the set {tknx} comes arbitrarily
close to y so that for some k ∈ Z, we have f(x) = ftkn(x), which is arbitrarily close to
f(y). Thus f(x) = f(y) and we conclude that the only t-periodic functions in C(X) are
the constants. Hence the flow is not cocyclic. Now let f ∈ C(X) and let ϵ > 0 be given.
Choose δ > 0 such that |x1 − x2| < δ implies |f(x1) − f(x2)| < ϵ. It is well known that
there is some n > 0 with nγ within δ of an integer and hence |tn(x)−x| < δ for all x ∈ X.
This implies that ∥ftn − f∥ < ϵ so that f is almost cocylic.

almostc
6.2. Theorem. Let (X, t) be a flow. Then the following are equivalent:

(1) (X, t) is almost cocyclic;

(2) The t-induced topology is totally bounded;

(3) The action of Z extends continuously to b(Z);

Proof. That (1) holds if and only if (2) does is obvious. That (2) holds if and only if (3)
does follows from Proposition 5.8.

quotac
6.3. Proposition. A quotient of an almost cocyclic flow is almost cocyclic.

Proof. Suppose (X, t) // (Y, s) is a quotient mapping between flows. Then C(Y ) is a
subalgebra of C(X). If the elements of C(X) are almost t-periodic, the same is true of
C(Y ).
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6.4. Proposition. Let (X, t) be almost cocyclic. For each x ∈ X, the map θx : Z //X,
defined by θx(n) = tn(x) is uniform when Z is topologized by all U(f, ϵ), f ∈ C(X) and
ϵ > 0.

Proof. From 5.8 the map Z // aut(X) and the map aut(X) // X that evaluates at x
is induced by x : 1 // X and is uniform by [Isbell, 1964, III.2].

Recall that b(Z) is the Bohr compactification of Z. Define t : b(Z) // b(Z) as the
extension to b(Z) of the map from Z // b(Z) defined by t(ζ) = ζ + 1, which is obviously
uniform.

Bohrprop1

6.5. Proposition. The flow (b(Z), t) is almost cocyclic but is not cocyclic.

Proof. For any f ∈ C(b(Z)), the restriction of f to Z is continuous in the topology on
Z induced by its inclusion in b(Z). Hence, for any ϵ > 0, U(f, ϵ) is open in that topology.
But Z is totally bounded in that topology, which comes from the inclusion into a compact
group. Hence finitely many translates of U(f, ϵ) cover Z, which implies that f is almost
t-periodic. On the other hand, the orbit of 0 under any power of t is all of Z, which is
dense in b(Z). The same argument used in 6.1 shows that only constant functions are
t-periodic and thus the flow is not cocyclic.

6.6. Definition. Let Z-Cmp denote the category of compact Hausdorff spaces equipped
with an action of Z. This name is chosen by analogy with G-set. We similarly let Z-C
denote the category of complete lattice-ordered rings equipped with an action by Z.

In either category, an object C with a Z-action is determined by an automorphism t :
C //C, with t being the value of the action at the integer 1. It must be an automorphism
since the value of the action at −1 must be t−1. Thus a Z-action is the same thing as an
automorphic flow.

6.7. Proposition. The Gelfand duality between Cmp and C extends to a duality between
Z-Cmp and Z-C .

Proof. An automorphism t : X // X in Cmp gives a morphism C(t) : C(X) // C(X),
which must be an isomorphism since C is a functor and so C(t−1) = C(t)−1. Similarly, if
R is a complete lattice-ordered ring and τ : R // R is an automorphism, then Max(τ) :
Max(R) // Max(R) is an automorphism of the maximal ideal spaces.

Now suppose that (X, t) is a flow and that R is the ring of almost t-periodic functions
with respect to t. Define an equivalence relation E on X by (x, y) ∈ E if f(x) = f(y) for
all f ∈ R. Then it follows from Gelfand duality that R = C(X/E). From the preceding
discussion it also follows that X/E has a flow we call t/E and that (X, t) // (X/E, t/E)
is a flow morphism. It is trivial that (X/E, t/E) is an almost cocyclic flow.

6.8. Theorem. The category of almost cocyclic flows is a reflective subcategory of the
category of all flows, given by (X, t) // (X/E, t/E).
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Proof.We have done everything except to exhibit the adjunction. Suppose p : (X, t) //(Y, s)
is a flow map and (Y, s) is almost cocyclic. The category C of C∗-algebras has as mor-
phisms the “norm-reducing” (which is to say, non-increasing) ring homomorphisms. It
follows that if f ∈ C(Y ), U(f, ϵ) ⊆ U(fp, ϵ) and if a finite number of translates of U(f, ϵ)
covers Z, then the same must be true of U(fp, ϵ). It follows that the image of C(Y ) in
C(X) actually lies in C(X/E). That is, we have a commutative triangle

C(Y )

C(X)
��?

??
??

??
??

??
?

C(Y ) C(X/E)// C(X/E)

C(X)
����

��
��

��
��

��

which, upon dualizing, gives

X/E Y//

X

X/E
����

��
��

��
��

��
�
X

Y
��?

??
??

??
??

??
??

as required.

6.9. Example: A flow that is periodic at each element, but is not cocyclic
or even almost cocyclic. Let X be the subset of R2 consisting of circles of radius
1 − 1/n for n = 2, 3, 4, . . . ,∞. Define t : X // X in polar coordinates by t(r, θ) =
(r, θ + π/n) when r = 1 − 1/n. The minimum period of t is 2n at a point on the circle
of radius 1 − 1/n, for n finite and 1 on the circle of radius 1, which shows immediately
that this function is not continuous. We use Theorem 6.2 to show the action is not
almost cocyclic. Suppose the action α : Z×X // X that takes (n, x) to tnx extended to
b(Z)×X //X. Let ζ ∈ b(Z) be any accumulation point of the sequence 2, 3, 4, . . .. Then
(ζ, (1, 0)) is an accumulation point of (2, (1/2, 0)), (3, (2/3, 0)), (4, (3/4, 0)), . . .. Apply α to
the sequence to get (1/2, π), (2/3, π), (3/4, π), . . ., which approaches (1, π), while clearly
t(ζ, (1, 0)) = lim t(n, (1, 0)) = (1, 0), which shows that the extended action cannot be
continuous.

References

GJ L. Gillman and M. Jerison (1960), Rings of Continuous Functions. D. Van Nostrand,
Princeton.

I John R. Isbell (1964), Uniform Spaces. Amer. Math. Soc. Colloquium Publications 13.

K John F. Kennison (2006), Spectra of finitely generated Boolean flows. Theory Appl. Cat-
egories 16, 434–459.



18

Department of Mathematics and Statistics
McGill University, Montreal, QC, H3A 2K6

Department of Mathematics and Computer Science
Clark University, Worcester, MA 01610

Department of Mathematics and Statistics
Concordia University, Montreal, QC, H4B 1R6

Email: barr@math.mcgill.ca
jkennison@clarku.edu

raphael@alcor.concordia.calastpage


