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Abstract

The purpose of this paper is to begin the study of domain theory in a context that
is also appropriate for semantic models of other aspects of computation, that is in
cartesian closed categories with a natural numbers object. I show that if D is an
internally ω -complete partial order with bottom in such a category, then the usual
construction of least fixed point of an ω -continuous endomorphism can be internalized
as an arrow from the object of ω -continuous endomorphisms of D (suitably defined)
to D itself.

1 Introduction

Since the appearance of Reynolds’ paper, Polymorphism is not set-theoretic, [1984] at least,
it has been apparent that any semantic model rich enough to include polymorphism would
have to take place in some category other than that of standard ZFC set theory. One
possibility is modest sets [Rosolini, to appear] and [Carboni, Freyd & Ščedrov, 1988], but
there are many other possibilities. It thus becomes necessary to make sense of standard
computer scientific notions in more general categories.

The purpose of this paper is to look at one aspect of domain theory in the setting of
a cartesian closed category with finite limits and a natural numbers object. We give a
definition of an ω -complete partial order in such a category and show how to define the
object of increasing sequences and an object of sup-preserving morphisms. We then show
that in this setting an ω -complete partial order with bottom has a fixed point operator in

∗This research has been partially supported by grants from NSERC and from the FCAR of Québec.
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the sense of a mapping from the object of sup-preserving endomorphisms to the object itself
that realizes the least fixed point.

The suggestion to use natural numbers objects to construct a fixed point combinator
was also made at the Boulder meeting by Phil Mulry [1988].

Many of these constructions would become simpler were we to suppose that the cate-
gory has countable limits. On the other hand, the category of modest sets does not have
countable limits. It would seem plausible that any model of polymorphism lacks countable
sums. In any case, existence of countable limits does not seem computationally reasonable.
For a countable sum, say, of copies of 1 would require an arrow to exist subject to an infi-
nite set of unrelated conditions. Denote the natural numbers object by N . For an object
X of a category with countable sums, the object XN is the set of all (including totally
uncomputable) countable sequences of elements of X . On the other hand, in a category in
which countable sums don’t exist, it may (and in the category of modest sets does) consist
of only the recursive sequences.

In the proofs below, we make use, usually without explicit mention of the possibility
of reasoning in a category just as though we had sets with elements. Of course, this can
be done only with certain kinds of arguments. One way of justifying this is by using the
equivalence between cartesian closed categories and typed λ-calculuses. See [Lambek &
Scott, 1986] for details. Another semantics for this is to interpret an element x ∈ A as
a morphism to A with unspecified domain. If, say, we construct from this an element we
call f(x) ∈ B and make no assumption about properties, then what we have really done is
construct a natural transformation Hom(−, A) −→ Hom(−, B). The Yoneda lemma ([Barr
and Wells, 1985], Section 1.5) asserts that there is one-one correspondence between such
natural transformations and morphisms A −→ B . Thus there is a morphism f :A −→ B
so that f(x) = f ◦ x . The uniqueness implies that if we can show that f(x) = g(x), then
f = g .

Unless it is explicitly mentioned otherwise we will be dealing with a category C which
is cartesian closed and has finite limits and a natural numbers object N . We let 0: 1 −→ N
and s: N −→ N denote the zero and successor morphisms, respectively. We will denote
the exponential objects mostly by [A −→ B] , but will sometimes write BA , when that is
convenient.

2 Partially ordered objects

To give a partial order on a set X one can describe a subset of ≤ ⊆ X × X , namely
{(x, y)‖x ≤ y} . Then if two functions f, g:Y −→ X are given, f(y) ≤ g(y) (that is,
f ≤ g in the pointwise order on functions) if and only if the pair 〈f, g〉:Y −→ X × X
factors through ≤ . This can be generalized in an arbitrary category, so long as it has finite
products.
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Let C be an object of C . A partial order on C is a subobject ≤ ⊆ C × C such that
for any other object A , the relation on Hom(A,C) such that f ≤ g if and only if (f, g):A
−→ C × C factors through ≤ , is a partial order. In terms of elements, this reduces to the
familiar requirements that c ≤ c , that c1 ≤ c2 and c2 ≤ c3 imply c1 ≤ c3 and that c1 ≤ c2

and c2 ≤ c1 imply c1 = c2 . These conditions can also be stated in terms of commutative
diagrams involving finite limits.

We will usually not distinguish between a partially ordered object and its underlying
object. For the most part, we will let the same symbol ≤ denote the partial order in any
partially ordered object, but will sometimes write ≤D for clarity.

For objects D and E of a cartesian closed category, there is a way to internalize the
arrow that takes f :D −→ E to f × f :D × D −→ E × E . Define [D −→ E] −→ [D × D
−→ E × E] as the exponential transpose of the composite

[D −→ E]×D ×D diag−−−−→ [D −→ E]× [D −→ E]×D ×D −→
〈p1, p3, p2, p4〉−−−−−−−−−−−→ [D −→ E]×D × [D −→ E]×D eval× eval−−−−−−−−−→ E × E

If D and E are partially ordered objects in C , we define the subobject [D −→ E]≤ ⊆ [D
−→ E] of order preserving morphisms of D to E as the pullback

[≤D −→ ≤E] [≤D −→ E × E]--

[D −→ E]≤ [D −→ E]--

?

[D ×D −→ E × E]
?

?

The upper left arrow in this diagram is the one described above. This pullback picks out
those arrows from D −→ E whose square, when restricted to the relation, come from a
morphism between the relations. There is no difficulty in extending this definition to the
object of morphisms between models of an arbitrary relation.

A global section ⊥: 1 −→ D will be called a bottom if for any object A and arrow f :A
−→ D , ⊥ ◦() ≤ f . Here we use () to denote the unique arrow from A to 1.

3 The partial ordering on the natural numbers

This section is devoted to putting a partial order on the NNO and exploring some of its
properties. We begin with the well-known fact that there is a commutative monoid structure
+ on the NNO which satisfies the equations n + 0 = n and n + s(m) = s(n + m). It is
also not hard to show that this operation gives a cancellation monoid with the additional
property that n+m = 0 implies that n = m = 0.
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We will not prove this, but just sketch how to do it. First define a morphism pred by
pred(0) = 0 and pred(sn) = n . This is easily done using recursion. Next, define m .− n by
m .− 0 = m and m .− sn = pred(m .− n). Then show that (m + n) .− n = m . From this,
the above assertions are easy.

The cancellation implies that the map p: N×N −→ N×N that takes (n,m) to (n, n+m)
is injective and hence is a binary relation we denote ≤ on N such that n ≤ n + m . The
associativity of the operation + implies that this is transitive and the fact that m+ n = 0
implies that m = n = 0 implies that it is a partial order.

It is not generally a total order, by the way. This fact is already evident in boolean-
valued models of set theory. A natural number could be 0 on one component and 1 on
another and a different one could be the reverse. Neither is greater than the other.

We say that an NNO is stable if for any objects A and B and any morphisms f0:A
−→ B and t:B −→ B , there is a unique f :A×N −→ B such that

f0
@
@@R

A

A× 0
�
���

?

f

B B�
t

A×N A×N� A× s

?

f

commutes. The object A is called an object of parameters and for that reason a stable
NNO is often referred to as a parametrized NNO. However, it is not the NNO that is
parametrized, but the definition.

In a cartesian closed category, any NNO is automatically stable. However the following
is of independent interest, so it is worth stating under weaker conditions.

3.1 Proposition. Let D be a partially ordered object in a category with pullbacks and
a stable NNO. Let f : N −→ D be a morphism such that fn ≤ f(sn) for all n. Then f
preserves the partial order.

We begin with:

3.2 Lemma. Let A be an object and A0 ⊆ A a subobject in a category with pullbacks
and an NNO. Suppose f : N −→ A is a morphism and suppose that f0 factors through A0

and that whenever fn factors through A0 so does f(sn). Then f factors through A0 .
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Proof. Form the pullback

A0 A--
a

N0 N-- n

?

f0

?

f

where a:A0 )−→A is the inclusion. By hypothesis, the 0 map factors through A0 and hence
through N0 . Since f ◦ n factors through N0 , so does f ◦ n ◦ s by a map we call g . Let s0

be the fill-in in the diagram

A0 A-a

N0 N-n

? ?

ff0

N0 N-n

s0

@
@
@@R

s
@
@
@@R

g

A
A
A
A
A
A
A
AAU

and let x be defined as the unique fill-in in the recursion diagram

0
@
@@R

1

0
�
���

?

x

N0 N0
�

s0

N N� s

?

x

Then n ◦ x = id follows immediately from the uniqueness of recursively defined maps. Thus
n is a split epi. It is also monic, being the pullback of a mono and is thus an isomorphism.
This evidently means that f factors through A0 .

Proof of the proposition. We apply the above in the category of objects over N , but
work in the original category. Let f : N −→ D satisfy the conditions of the proposition and
let g: N × N −→ N × D × D take (n,m) to (n, fn, f(n + m)). We want to complete the
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square (p is the inclusion of the order relation on N):

N×≤D N×D ×D--

N×N N×N-- p

?

g

Then (g ◦ p)(n, 0) = (n, fn, fn) certainly lies in N×≤ and if (g ◦ p)(n,m) factors through
N×≤ , then (n, fn, f(n+m)) factors through N×≤ , which means that fn ≤ f(n+m).
Moreover, f(n+m) ≤ fs(n+m) by hypothesis, which is f(n+ sm). Thus (g ◦ p)(n, sm) =
(n, fn, f(n+sm)) also factors through N×≤ . From the lemma it follows that g ◦ p factors
through N×≤ which means that f is order preserving.

3.3 Corollary. If f : N −→ D has the property that f(0) ≤ f(s0) and that f(n) ≤ f(sn)
implies that f(sn) ≤ f(ssn), then f is order preserving.

Proof. Apply Lemma 3.2 to the map g: N −→ D × D for which g(n) = (f(n), fs(n))
to conclude that f(n) < fs(n) for all n and hence by Proposition 3.1 that f is order
preserving.

Finally, as an immediate corollary to Lemma 3.2, we have:

3.4 Corollary. If f, g: N −→ D have the properties that f(0) ≤ g(0) and f(n) ≤ g(n)
implies f(sn) ≤ g(sn), then f ≤ g .

All the results of this section up to here have parametrized versions as well, which we
will use without explicit mention.

We will denote the natural numbers object with this order on it by ω . If D is any
partial order and if C is also a cartesian closed, we will denote the object [ω −→ D]≤ of
increasing sequences by Dω .

3.5 Proposition. If t:D −→ D , f0:A −→ D and f :A −→ DN are such that t is order
preserving and that

f0
@
@@R

A

A× 0
�
���

?

f̃

D D�
t

A×N A×N� A× s

?

f̃

commutes, then a necessary and sufficient condition that f factor through Dω is that f̃0 ≤
t ◦ f̃0 .
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Proof. The map f factors through Dω if and only if f̃ preserves order (where A is discrete

and A × N is given the product order). The condition f̃0 ≤ t ◦ f̃0 = f̃(s0) is clearly

necessary. If we suppose that f̃(n) ≤ f̃(sn), we have, since t is order preserving, that

t ◦ f̃(n) ≤ t ◦ f̃(sn) or f̃(sn) ≤ f̃(ssn). Thus it follows from Corollary 3.3 that f̃ is order
preserving and hence that f factors as claimed.

4 ω-complete partial orders

Let D be a partial order. We say that D is an ω -complete partial order (known as
an ω -CPO) if there is an arrow

∨
:Dω −→ D such that for any arrow f :A −→ Dω with

transpose f̃ :A× ω −→ D , we have that f̃ ≤ ∨ ◦ f ◦ p1 and if g:A −→ D is any arrow such

that f̃ ≤ g ◦ p1 , then
∨
◦ f ≤ g . The relevant diagram is

A× ω A-
p1

Dω-f
D-

∨

4.1 Proposition. Let D be an ω -CPO. Then
∨
◦ Ds =

∨
.

Proof. Let f :A −→ Dω . Showing that
∨
◦ Ds ◦ f =

∨
◦ f is equivalent to showing that for

any g:A −→ D , f̃ ≤ g ◦ p1:A ×N −→ D if and only if f̃ ◦(id× s) ≤ g . In other words, we
have to show that for all a ∈ A , f(a, n) ≤ g(a) for all n if and only if f(a, sn) ≤ g(a) for
all n ∈ N . But using Corollary 3.4, this is immediate.

4.2 Proposition. Let D be a partial order. Then there is a unique arrow, we will call
(−)ω: [D −→ D]≤ −→ [Dω −→ Dω] such that

[DN −→ DN] [Dω −→ DN]-
[Inc −→ DN]

[D −→ D]≤ [Dω −→ Dω]-(−)ω

? ?

?

[Dω −→ Inc ]

commutes. In this diagram, Inc is the inclusion map of Dω into DN .

Proof. The uniqueness comes from the fact that the right hand vertical arrow is monic. For
existence, we will construct the transpose [D −→ D]≤×Dω −→ Dω , for which it is sufficient
to construct its transpose [D −→ D]≤×Dω×ω −→ D . This takes (f, g, n) to f(g(n)) where
f is a variable of type [D −→ D]≤ , g is a variable of type Dω and n a variable of type
ω . We have to show that this preserves order on the variable of type ω . But if n ≤ m ,
g(n) ≤ g(m) since g preserves order and similarly f(g(n)) ≤ f(g(m)).
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Now we can internalize the definition of the set of ω -continuous endomorphisms of an
ω -CPO D . We define the object [D −→ D]W as the equalizer of the two arrows

[D −→ D]≤
[Dω −→ Dω]-(−)ω -[Dω −→ ∨

]

[D −→ D]-- -
[
∨ −→ D]

[Dω −→ D]

This is to be interpreted as the subobject of the object [D −→ D]≤ consisting of endo-
morphisms that commute with the

∨
operation.

We now come to the main theorem which internalizes the usual fixed point construction
in ω -CPOs.

4.3 Theorem. Let D be an ω -CPO with a bottom element ⊥. Then there is an arrow
fix: [D −→ D]W −→ D such that f(fix(f)) = fix(f) and if f(d) = d, then fix(f) ≤ d.

Proof. Let f :A −→ [D −→ D]W be an element of [D −→ D]W defined on A . There is a
morphism g̃:A × N −→ D given recursively by the equations g̃(a, 0) = ⊥ and g̃(a, sn) =

f̃(a, g̃(a, n)). Formally, this is defined as the second coordinate of the map h in the diagram

h0
@
@@R

A

A× 0
�
���

?

h

A×D A×D�
t

A×N A×N� A× s

?

h

where t(a, d) = (a, f̃(a, d)) and h0a = (a,⊥). It is easy to see from the uniqueness of

recursive definitions that the first coordinate of h is the projection on A . The fact that f̃
preserves order implies that t does. The defining property of ⊥ implies that h0 ≤ t ◦ h0 and
hence it follows from Corollary 3.5 that g̃ is increasing and that the associated morphism
g:A −→ DN factors through Dω . Finally, we let fix(f) =

∨
◦ g . Except for the parameter

A , this is the construction of the supremum of the sequence ⊥, f(⊥), f 2(⊥), . . . , just as in
the standard proof.

Now we observe that the diagram

A×Dω A×Dω-
A×Ds

A A×Dω-〈id, g〉

?

〈id, g〉
?
(id, f̃ω)

A×D-
id×∨

A×D-id×∨

?
(id, f̃)
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commutes. The right hand square does because f̃ commutes with
∨

. As for the left hand
square, it transposes to

A×D A×D-
(id, f̃)

A×N A×N-A× s

?

〈π1, g̃〉
?

〈π1, g̃〉

whose commutation is part of the recursive definition of g̃ .
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