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Abstract. This paper reviews the basic properties of coherent spaces, characterizes
them, and proves a theorem about countable meets of open sets. A number of examples
of coherent spaces are given, including the set of all congruences (equipped with the
Scott topology) of a model of a theory based on a set of partial operations. We also
use an unpublished theorem of Makkai’s to give an alternate proof of our main theorem.
Finally, we apply these results to the Boolean cyclic spectrum and give some relevant
examples.

1. Introduction

A frame is a complete lattice in which finite infs distribute over arbitrary sups. We denote
the empty inf by ⊤ and the empty sup by ⊥, which are the top and bottom elements,
respectively, of the lattice. A map of frames preserves finite infs and arbitrary sups. The
motivating example of a frame is the open set lattice of a topological space. Moreover,
continuous maps induce frame homomorphisms. The result is a contravariant functor
from the category Top of topological spaces to the category Frm of frames. A closed
subset D of a topological space is called indecomposable if it is not possible to write it
as union of two proper closed subsets. A space is called sober if every indecomposable
closed set is the closure of a unique point. On sober spaces this functor is full and faithful.

If we let Loc denote the category of locales, which is simply Frmop, the opposite of
the category of frames, this results in a covariant functor Top // Loc.

In Section 2, we review basic properties of coherent spaces and prove a characterization
theorem which is similar to known results. Section 3 shows several ways in which coherent
spaces arise. A notable example concerns models of a first order theory described by
operations and partial operations. We show, for example, that the set of subobjects
as well as the set of congruences of a model, when equipped with a certain topology,
called the Scott topology, give coherent spaces. In Section 4 we state and prove our main
theorem that shows that if X is a coherent space and {Ui} a countable family of open
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subsets of X then the intersection
∩

Ui (in the lattice of subspaces of X) coincides with
their localic intersection

∧
Ui (in the lattice of sublocales of X). Section 5 discusses the

connection with an unpublished theorem of Makkai’s. In Section 6, we apply our results
to the Boolean cyclic spectrum and thus extend the work in [Kennison, 2002, Kennison,
2006, Kennison, 2009]. Section 7 gives examples.

1.1. Remark. In dealing with locales, it is standard to use “sublocale” to mean reg-
ular subobject. This means that sublocales correspond to regular quotients of frames.
Since Frm is equational, there is a one-one correspondence between regular quotients and
equivalence relations that are also models of the theory. Such equivalence relations are
called congruences. Thus if F is a frame there is a one-one correspondence between
congruences on F and sublocales of the locale L corresponding to F .

2. Basic definitions and preliminary results

The results in this section can all be found, with somewhat different proofs, in [Johnstone,
1982].

2.1. congruences and nuclei. A nucleus j on a frame F is a function j : F // F
such that

Nuc-1. j is expansive: u ≤ j(u) for all u ∈ F ;

Nuc-2. j preserves finite inf;

Nuc-3. j is idempotent.

2.2. Theorem. There is a one-one correspondence between nuclei and congruences on a
frame.

Proof. Let F be a frame and j be a nucleus on F . Define a relation E by uE v if
j(u) = j(v). Since this clearly defines an equivalence relation, it is sufficient to show
it is closed under the frame operations. If u1E v1 and u2E v2, it follows immediately
from Nuc-2, that (u1 ∧ u2)E (v1 ∧ v2). One might expect that showing that E is closed
under arbitrary sup would require that j preserve arbitrary sup, which it does not do in
general. From Nuc-2, it is clear that j is order preserving. Suppose we have two families
{uα} and {vα} such that uα E vα for all α. Then uα ≤ j(uα) = j(vα) ≤ j(

∨
vα). Thus∨

uα ≤ j(
∨

vα) so that j(
∨

uα) ≤ j2(
∨
uα) = j(

∨
vα) and the opposite inequality follows

by symmetry. Thus E is a congruence.
Now suppose that E is a congruence on F . Define j by j(u) = sup{v | uE v}. It is

clear that j is expansive. Since E is closed under arbitrary sup, it is clear that uE j(u)
from which it follows that j(u)E j2(u) so that j2(u) ≤ j(u). We next show that j preserves
the order. For if u ≤ v, then v = (u ∨ v)E (j(u) ∨ v) so that j(u) ≤ j(u) ∨ v ≤ j(v). It
follows that j(u1∧u2) ≤ j(u1)∧ j(u2). Now suppose u ≤ j(u1)∧ j(u2). Then (u∨u1)E u1

and (u∨u2)E u2 from which it follows that (u∨(u1∧u2))E (u1∧u2) from which it is clear
that u ≤ j(u1 ∧ u2). It is easy to verify that these processes are inverse to each other.
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2.3. Coherent spaces. A topological space is said to be coherent if it is compact,
sober, if the compact open sets are a base for the topology and the intersection of two
compact open sets is compact.

IfX is a topological space and M is a subbase for the topology onX, let N be the set of
complements of sets in M . We call the topology generated by M ∪N the s-topology (for
strong topology) and call a subset of X s-open, s-closed, or s-compact, respectively,
if it is open, closed or compact, respectively, in the s-topology. It is clear that open and
closed sets are s-open and s-closed, respectively, while an s-compact set is compact.

2.4. Theorem. A topological space X is coherent if and only if it has a subbase M
such that the topology generated by M and the complements of the sets in M is compact
Hausdorff.

Proof. We start by replacing M by its closure under finite joins and meets. This ex-
panded set satisfies the hypotheses if the original one does. If N is the set of complements
of sets in the expanded M , the set M ∪ N is still a subbase for the s-topology.

The forward implication is based on the proof of [Hochster, 1969, Theorem 1]. The
set M ∪ N is a subbase for the closed set lattice in the s-topology (which means the set
of its complements, also M ∪ N , is a subbase for the open set lattice in that topology).
By dualizing [Kelley, 1955, Theorem 4.6], it will suffice to show that for any M0 ⊆ M
and any N0 ⊆ N , if M0 ∪ N0 has the finite intersection property (FIP), then it has a
non-empty meet. We will do this using a series of claims.

We can assume that M0 is closed under finite meets and that N0 is maximal. The first is
trivial, while the second follows readily from the fact that the join of any chain of families
with the FIP has that property, since the FIP is determined by the finite subfamilies.

The meet D =
∩

N∈N0
N ̸= ∅ and meets every M ∈ M0 so that the family M0 ∪ {D} has

the FIP. Fix M ∈ M0. The family {M ∩ N | N ∈ N0} certainly has the FIP and is a
family of closed subsets of the compact space M .

D is indecomposable. Suppose D = D1 ∪ D2 with D1 and D2 closed subsets of D. At
least one of M0 ∪ {D1} and M0 ∪ {D2} has the FIP. Suppose that M0 ∪ {D1} has the
FIP. Since D1 is closed, it is an intersection of sets in N . These sets can be added to N0

without destroying the FIP in M0 ∪ N0 and, by maximality, must already belong to N0.
But this implies that D1 ⊇

∩
N∈N0

N and hence D = D1.

The generic point x of D is in every M ∈ M0. For if x /∈ M ∈ M0, then D −M would
be a proper closed subset of D that contained x.

This completes the proof of the forward implication. For the converse, we begin by noting
that the sets in M are s-closed and hence s-compact so they are also compact. By
assumption, M is a base for the topology and we easily see that every compact open set
belongs to M .

Since X is s-compact, it is also compact. In view of the above definition of coherent
spaces, it suffices to show that X is sober. It is clear that X is T0 for if x, y ∈ X are such
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that for every M ∈ M we have x ∈ M if and only if y ∈ M , then the same is true for the
family consisting of all sets in M ∪ N . Since this family forms a base for the s-topology,
which is Hausdorff, it follows that x = y. We denote by x̄, the closure of {x}. Let A be a
closed, indecomposable subset. We have to find a point p, necessarily in A, such that A
is p. Since X is T0, such a point is unique if it exists. Assume that no such point p exists.
Then for every a ∈ A, we can choose a point φ(a) ∈ A such that φ(a) /∈ a. Since φ(a) /∈ a,
there exists a basic neighbourhood, Ma ∈ M , of φ(a) which misses a. Then a is in ¬Ma,
the complement of Ma. Since ¬Ma is s-open and A is s-closed, hence s-compact, there is a
finite subset F ⊆ A such that A is covered by {¬Ma | a ∈ F}. Assume that F is chosen as
small as possible. The set F cannot consists of a single element since φ(a) /∈ ¬Ma. But if
F = F1∪F2 is the union of two non-empty subsets, then A ⊆ (

∪
a∈F1

¬Ma)∪(
∪

a∈F2
¬Ma).

But these are closed sets and A is indecomposable, so it must be contained in the one or
the other factor. This contradicts the assumption that F was chosen as small as possible.

The s-topology on a coherent space is usually referred to as the patch topology
and we will adopt this terminology. We will sometimes call the original topology the
w-topology.

2.5. Proposition. Suppose X is a coherent space with base M of compact open sets.
Suppose {Mα} is a family of sets from M and U is an open subset of X. If

∩
Mα ⊆ U ,

then for some finite set, say α1, . . . , αm of indices, we have that
∩m

i=1 Mαi
⊆ U .

Proof. The sets Mα are s-closed in a compact space. The set U is open, hence s-open
and therefore each Mα −U is closed. If

∩
Mα ⊆ U , then

∩
(Mα −U) = ∅, whence a finite

intersection of them is empty.

3. Examples of Coherent Spaces

This section shows that coherent spaces arise in many ways. Often the proof that a given
space is coherent is omitted because it easily follows from the definition or from Theorem
2.4.

3.1. Notation. Whenever X is a given coherent space, M will denote the base of all
compact open subsets and N will denote the family of all sets whose complements are in
M . When constructing a coherent space, M will denote a family satisfying the conditions
of Theorem 2.5 (and, after closing M up under finite joins and meets, N will denote the
family of all sets whose complements are in M .)

3.2. Example. Any s-closed subspace of a coherent space is coherent.

3.3. Example. Let X be coherent and let M and N be as above. Then X with the
topology generated by N is coherent. We call the topology generated by N the dual of
the original topology, generated by M .
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3.4. Definition. Let S be any set and let 2S be the family of all subsets of S. For each
a ∈ S let M(a) = {A ⊆ S | a ∈ A} and M = {M(a) | a ∈ S}. Then:

1. the w-topology on 2S is the one generated by the subbase M ;

2. the s-topology on 2S is generated by M together with N , the family of all comple-
ments of members of M ;

3. if F ⊆ 2S then the w-topology (respectively the s-topology) on F is the relative
topology on F obtained from the w-topology (resp. the s-topology) on 2S.

3.5. Example. The space 2S, with the w-topology, is coherent.

In general, if F ⊆ 2S is an s-closed subset, then F with the w-topology, is also coherent.

Proof. The w-topology on 2S is generated by M as defined above. In view of Theorem
2.5, it suffices to observe that the s-topology, generated by M ∪N is the product topology,
obtained by regarding 2S as a product of S copies of 2 (where 2 is the discrete space with
two points). The assertion about F follows from 3.2.

3.6. Notation. If U is an ultrafilter on 2S, then AU ⊆ S denotes the subspace for which
a ∈ AU if and only if M(a) ∈ U.

3.7. Example. Let F ⊆ 2S be given and suppose that AU ∈ F whenever U is an
ultrafilter on 2S with F ∈ U. Then F with the w-topology is coherent.

Proof. It suffices to observe that AU is the limit of U in the s-topology on 2S. So the
given condition implies that F is an s-closed subset of 2S.

3.8. Definition. Let T be a first order theory. We will say it is generated by finitary
partial operations if there is a family Ω = {Ω0,Ω1, . . . ,Ωn, . . .} of sets such that an algebra
S for T is given by a partial function ωS : Sn // S for each n ∈ N and each ω ∈ Ωn.
These partial operations may be subject to equations and Horn clauses, but they play no
role in the construction.

3.9. Example. Let S be a T-algebra. Let F be the family of all subsets of F ⊆ S which
satisfy (finitary) first order conditions built up from equality, the operations of T , the
conditions x ∈ F and closed under binary infs, sups and negation. Then F , with the
w-topology, is coherent.

Such families would include T-subalgebras and, T-congruences, in case S = R × R
where R is a model of a T-algebra.

Proof. Such a family F satisfies the condition that whenever U is an ultrafilter on 2S

and F ∈ U, then AU ∈ F .
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3.10. Example. If R is a ring, then the set P of all prime ideals of R, with the w-toplogy,
is coherent. The dual of this space is the set P with the Zariski topology.

3.11. Remark. It is shown in [Hochster] that every coherent space X is homeomor-
phic to a space of the form P (as in the above example, with the w-topology) and also
homeomorphic to a space P with the Zariski topology.

4. Countable meets

Recall from 1.1 that a sublocale is a regular subobject in the category of locales and that
there is a one-one correspondence between nuclei and congruences on a frame. If the
frame is O(X), the lattice of open sets of a space X, and if A ⊆ X is a subspace, then the
nucleus jA defined by jA(U) =

∪
{V ∈ O(X) | V ∩ A ⊆ U} corresponds to the subframe

O(A).

4.1. Theorem. Suppose that X is coherent and suppose {Ui} is a sequence of open sets.
Then their spatial intersection,

∩
Ui, coincides with their localic intersection,

∧
Ui.

Proof. Let M be the base of compact open sets. Suppose A =
∩
Un and that Un =∪

σ∈Σn
Mn,σ with each Mn,σ ∈ M . Let L =

∧
Un and denote by jn, JA, and jL, resp.

the nuclei corresponding to Un, A, and L. By definition, jL =
∨

jn, the sup taken in the
lattice of nuclei. Since A ⊆ Un for all n, we see that jn ≤ jA whence jL ≤ jA.

By a choice function, we mean a map ξ : N //
∪
Σn such that ξ(n) ∈ Σn for all

n > 0. If ξ is a choice function, then from Mn,ξ(n) ⊆ Un, it follows that
∩∞

n=1 Mn,ξ(n) ⊆ A.
If we suppose that L $ A, then jL � jA. Thus there is an open set V such that

jL(V ) $ jA(V ) and hence there is an M0 ∈ M with M0 ⊆ jA(V ) while M0 ̸⊆ jL(V ). This
last implies that for all n > 0, M0 ̸⊆ jn(V ) which, we will show, leads to a contradiction.

4.2. Lemma. Suppose that M ∈ M with M ̸⊆ jL(V ). Then for each n > 0, there is a
σ ∈ Σn such that M ∩Mn,σ ̸⊆ jL(V ).

Since M ̸⊆ jL(V ) = j2L(V ) and jL =
∨

jn, we see that M ̸⊆ jn(jL(V )) and hence
M ∩Un ̸⊆ jL(V ). But Un =

∪
σ∈Σn

Mn,σ so there must be some σ ∈ Σn with M ∩Mn,σ ̸⊆
jL(V ).

We will use this lemma to construct a choice function ξ such that M0 ∩ Aξ ̸⊆ jL(U).
Assuming this can be done, it follows that M0 ∩ A = M0 ∩

∪
ξ∈Ξ Aξ ̸⊆ U from which we

conclude that M0 ̸⊆ jA(U) in contradiction to our supposition.
In this proof we use the standard notation := to mean “defined as”.

By the lemma, there is a ξ(1) ∈ Σ1 such that M1 := M0 ∩M1,ξ(1) ̸⊆ jL(U). Since M
is closed under finite meets, it follows that M1 ∈ M . Another application of the lemma
allows us to find a ξ(2) ∈ Σ2 such that M2 := M1 ∩M2,ξ(2) ̸⊆ jL(U). Since no term in the
descending chain

M0 ⊇ M1 ⊇ · · · ⊇ Mn ⊇ · · ·
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is included in jL(U), it follows from Proposition 2.5 that
∩
Mn ̸⊆ jL(U). Since Mn ⊆

Mn,ξ(n) it also follows that M0∩Aξ = M0∩
∩

n∈N Mn,ξ(n) ̸⊆ U and hence that M0∩A ̸⊆ U
which means that M0 ̸⊆ jA(U), contrary to our assumption.

5. Connections with a Theorem of Makkai’s

Theorem 4.1 can be derived from an unpublished theorem of Michael Makkai’s that ex-
tends a famous result of [Rasiowa & Sikorski, 1950], which can also be found in [Rasiowa
& Sikorski, 1968, p. 88]. In order to discuss the connection, we need to recall a few basic
concepts. If L is a locale, then a point of L is defined to be a localic map p : 1 // L
where 1 stands for the one-point topological space (regarded as a locale). In other words,
a point of L is a frame homomorphism p : L // {⊥,⊤}. For example, if L = O(X) is a
spatial locale, then every element x ∈ X determines a point x̂ for which x̂(U) = ⊤ if and
only if x ∈ U .

5.1. Enough points We say that the locale L has enough points if whenever x ̸= y
there is a point p : L // {⊥,⊤} for which p(u) ̸= p(v). Recall that a locale is spatial if
and only if it is isomorphic to the locale of all open subsets of a topological space. The
following straightforward result is well-known:

5.2. Proposition. A locale is spatial if and only if it has enough points.

Proof. If L is isomorphic to O(X) where X is a topological space, then it clearly has
enough points of the form x̂ for x ∈ X.

Conversely, assume that L has enough points. Let pt(L) be the set of all points of L
and for each u ∈ L define an open subset û ⊆ pt(L) by û = {p ∈ X | p(u) = ⊤}. It
readily follows that L it is isomorphic to O(pt(L)).

In the next proposition, we use the obvious fact that a T0 space is sober if and only
every indecomposable closed set has at least one generic point.

5.3. Proposition. The set theoretic meet of any family of sober subspaces of a T0 topo-
logical space is sober.

Proof. Let X be a T0 space and let {Yα} be a family of sober subspaces of X. Let
p : 1 // Y be any point of Y =

∩
Yα. Then, for each α, there is a corresponding point

pα : 1 // Yα given by pα = iαp where iα is the inclusion Y ⊆ Yα. Since Yα is sober, the
point pα is represented by an element xα ∈ Yα. By factoring through the inclusion of
Yα

// X we get a point of X which is represented by xα. Since X is T0, the elements xα

must all coincide, and must therefore be in Y .

5.4. Proposition. Let {Yα} be a family of sober subspaces of a T0 topological space X.
Then, Y :=

∩
Yα, the intersection of the family in the lattice of all subspaces, coincides

with L :=
∧
Yα, the intersection in the lattice of all sublocales of X, if and only if the

sublocale
∧

Yα has enough points.
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Proof. If the two intersections coincide, then L is spatial so it must have enough points.
Conversely, assume that L has enough points. Since L is contained in each spatial sublo-
cale Yα, we see that every point of L is a point of each Yα which, by sobriety, corresponds
to an element of Yα and hence to an element of Y . Let EYα , EY and EL denote the con-
gruences on O(X) determined by Yα, Y , and L respectively. Since EL is the sup in the
lattice of congruences of the EYα and EYα ⊆ EY for all α, it is immediate that EL ⊆ EY .
Thus we have a surjection O(X)/EL

// // O(X)/EY . But since the set P of points of L
coincide with the set |Y | we have that the bottom row of

2P 2|Y |
∼=

//

O(X)/EL

2P

��

��

O(X)/EL O(X)/EY
// // O(X)/EY

2|Y |

��

��

is an isomorphism from which it is evident that the top map is also an isomorphism.

There are lots of sober subspaces in view of the above proposition and:

5.5. Proposition.

1. Every closed subset of a sober space is sober.

2. Every open subset of a sober space is sober.

Proof.

1. Straightforward, by looking at closed indecomposable subsets.

2. Let X be a sober space and let U ⊆ X be an open subset. Let A0 ≠ ∅ be a
(relatively) closed indecomposable subset of U . Let A be the closure of A0 in X.
We first claim that A is indecomposable in X. Suppose A = B∪C. Let B0 = B∩U
and C0 = C ∩U . Then A0 = B0 ∪C0. Since A0 is indecomposable in U we see that
either A0 = B0 or A0 = C0. Say A0 = B0. Then the closure of B0 is contained in B
but the closure of B0 is the closure of A0, which is A so A = B.

Now, since A is indecomposable in X there exists an element x ∈ X such that A is
the closure of {x}. It suffices to show that x ∈ U . Let u ∈ A0. Then u ∈ A and
therefore is in the closure of {x}. Thus x is in every neighbourhood of u. Since U
is a neighborhood of u we must have x ∈ U .

5.6. Proposition. Let X be a topological space and let {Aα} be a family of closed subsets
of X. Then

∩
Aα, the intersection in the lattice of all subspaces of X, coincides with

∧
Aα,

the intersection in the lattice of all sublocales of X.
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Proof. For each α, let Wα ⊆ X be the complement of Aα. Then each Wα is obviously
open. Let jα be the nucleus of Aα, viewed as a sublocale of O(X). It is readily shown
that jα is given by jα(U) = U ∨Wα for all U ∈ O(X). Now let j be the sup of {jα} in
the lattice of all nuclei on O(X). It is readily shown that j(U) = U ∨ (

∨
Wα) but this is

the nucleus for
∩
Aα, viewed as a sublocale of O(X).

5.7. Makkai’s Theorem. The theorem of Rasiowa and Sikorski mentioned at the be-
ginning of this section can be paraphrased as follows.

5.8. Theorem. Let A be a Boolean algebra and Q be a countable family of subsets of A.
Let B be the Boolean algebra freely generated by A together with one element forced to be
a sup for each set in Q. Then there are enough 2-valued Boolean representations of B
that preserve all the sups from Q to separate the points of A.

Had the conclusion been that there were enough such “points” to separate the points
of B, this would have given a different proof of our Theorem 4.1 in the special case of
a Stone space. However, in a so-far unpublished work, Makkai has strengthened the
Rasiowa-Sikorski theorem in two ways: the theorem is generalized to meet semi-lattices
and the conclusion has been strengthened in the way required to give an alternate proof
of our theorem in the general case.

5.9. Theorem. [Makkai, unpublished] Assume that P is a meet-semi-lattice with a cov-
erage system generated by Y1 ∪ Y2 where Y1 is a countable set of covers and Y2 is a set of
finite covers. Then the locale generated by these data (see [Johnstone, 1982, pp. 57–59])
has enough points.

We now sketch how this result can be used to give an alternate proof of 4.1.

Proof. We work in the meet-semilattice M of all compact open subsets of X. For each
i, we write Ui =

∪
Σi where Σi ⊆ M . We let Y1 be the countable set of covers given by

saying that Σi is a cover of the top element of O(X). We let Y2 be all covers of the form
(M,C) where M ∈ M and C ⊆ M is a finite subset for which

∪
C = M . It is readily

shown that the locale generated by the meet-semilattice M with the coverage system
generated by Y1 ∪ Y2 is the sublocale

∧
Ui. By Makkai’s result, it follows that

∧
Ui has

enough points, and the proof of this proposition then follows from 5.4.

6. Applications to the Boolean cyclic spectrum

In this section, we use the result about countable meets of open subsets of a coherent
space to obtain results about the cyclic spectrum of a Boolean flow. Here we assume that
(B, τ) is a Boolean flow, that W is the coherent space of all flow ideals of (B, τ), that Q
is the canonical sheaf over W and that Qcyc is the cyclic spectrum, obtained by forcing Q
to become a cyclic flow. The cyclic spectrum, Qcyc is a sheaf over O(W )cyc, a sublocale of
the locale O(W ) of all open subsets of W and we let jcyc denote the associated nucleus.
(For details, see the previous papers, see [Kennison, 2002, Kennison, 2006]. Here we have
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used Q for what was previously denoted B0, Qcyc is used for what was previously B∗, and
O(W )cyc for what was previously Lcyc.)

From here on, we will assume that (B, τ) is a given Boolean flow and we will use the
above notation of W , Q, O(W ), O(W )cyc, Qcyc, jcyc. We let Γ(Qcyc) denote the set of
global sections over the cyclic spectrum. Using Theorem 4.1, we will:

1. show that the cyclic spectrum of a countable flow is always spatial;

2. give an explicit description of the nucleus jcyc;

3. show that the cyclic spectrum always has the Lindelöf property;

4. describe Γ(Qcyc), the set of global sections over the cyclic spectrum.

The cyclic spectrum of a countable flow is spatial.

6.1. Proposition. If B is countable then the locale O(W )cyc is spatial.

Proof. The base of the cyclic spectrum, O(W )cyc, can be defined as the largest sublocale
of O(W ) for which b ∈ B becomes cyclic, meaning that, for each such b, the basic
open sets {N(b − τ kb)} cover O(W )cyc. See [Kennison, 2006]. It follows that, if we let
cyc(b) =

∪
{N(b− τ kb) | k > 0}, then O(W )cyc is the localic meet of {cyc(b) | b ∈ B}. If

B is countable, then this meet is spatial by Theorem 4.1.

For technical reasons, we want to generalize the above result. We need the following
definition.

6.2. Definition. Let C ⊆ B be a countable subset. Let WC be the largest sublocale of
O(W ) which makes every c ∈ C cyclic. That is, WC is the localic meet of {cyc(c) | c ∈ C}.
Furthermore, we say that a flow ideal I ∈ W is C-cyclic if for every c ∈ C, there exists
k > 0 such that I ∈ N(c− τ kc).

6.3. Proposition. The sublocale WC is spatial for every countable C ⊆ B. The sublocale
WC ⊆ W can be identified with the subspace of all C-cyclic flow ideals.

Proof. The proof of the previous proposition clearly applies here.

6.4. Remark.We will routinely identifyWC with the subspace of all C-cyclic flow ideals.

Description of the nucleus jcyc and the Lindelöf property. Our next result
gives a fairly technical, but quite useful, characterization of jcyc. We first need some
definitions and notation.

6.5. Definition. An open set U ∈ O(W ) is countably basic if we can write U as a
countable union of basic open subsets of the form N(b) for b ∈ B.

6.6. Theorem. Let (B, τ) be a Boolean flow and let b ∈ B and U ∈ O(W ) be given.
Then N(b) ⊆ jcyc(U) if and only if there exists a countable subset C ⊆ B and a countably
basic open set U0 ⊆ U such that N(b) ∩WC ⊆ U0.
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Proof. We define J(U) as the union of all N(b) for which there exists a countable subset
C ⊆ B and a countably basic open set U0 ⊆ U such that N(b) ∩ WC ⊆ U0. We claim
that that J is a nucleus. The only non-trivial step is proving that J is idempotent. By
examining the nucleus jC for the subspaceWC ⊆ W , it readily follows thatN(b)∩WC ⊆ U0

if and only if N(b) ⊆ jC(U0). Assume N(b) ⊆ J(J(U)). Then there exists a countable
subset C ⊆ B and a countably basic set V ⊆ J(U) such that N(b) ⊆ jC(V ). Write
V =

∪
N(dn) where N(dn) ⊆ J(U) for all n ∈ N. Then for each n, there exists a

countably basic Vn ⊆ U and a countable subset C(n) ⊆ B with N(dn) ⊆ jC(n)(Vn). Let
U0 =

∪
Vn and D = C ∪

∪
C(n). It suffices to show that N(b) ⊆ jD(U0). But jD ≥ jC

and jD ≥ jC(n) for all n. So V ⊆ jD(U0) and jC(V ) ⊆ jD(jD(U0)) = jD(U0) and the claim
follows.

The nucleus J makes every b ∈ B (by letting C = {b} and U0 =
∪
N(b− τnb) covers

WC and is countably basic. It follows that J ≥ jcyc and the opposite inclusion, J ≤ jcyc
is obvious.

6.7. Definition. A locale L has the Lindelöf property if whenever F ⊆ L covers L
(that is whenever

∨
F = ⊤) then F has a countable subset F0 ⊆ F which also covers L.

6.8. Proposition. The locale O(W )cyc has the Lindelöf property.

Proof. It suffices to show that any cover of O(W )cyc by basic opens N(b) has a countable
subcover. Suppose that U =

∪
N(bα) and that U covers O(W )cyc. Then jcyc(U) = ⊤ =

N(0) so, by the above theorem, there is a countably basic U0 ⊆ U with jcyc(U0) = ⊤. Let
U0 =

∪
N(cn). Then for each n we have N(cn) ⊆

∪
N(bα) which readily implies that

there exists α with N(cn) ⊆ N(bα) and so only a countable set of the N(bα) is needed to
cover U0 and hence to cover O(W )cyc.

Description of the global sections over the cyclic spectrum. It remains to
describe the Boolean flow Γ(Qcyc) of all global sections over the cyclic spectrum of B. We
first do this when B is countable then show how to extend that result to arbitrary B.

6.9. Notation. Let (B, τ) be a Boolean flow. By Stone duality, we can suppose that
B = clop(X), the algebra of clopen sets of the Stone space X. Another use of Stone
duality shows that there is a unique continuous map t : X // X such that τ(b) = t−1(b)
for all b ∈ B. See [Kennison, 2002] for more details.

6.10. Definition. Let X be as above, let b ∈ B be a clopen subset of X and let x ∈ X be
given. We say that x is k-cyclic with respect to b if, for all n ≥ 0, we have tn(x) ∈ b
if and only if tn+k(x) ∈ b.

We say that x is cyclic with respect to b if x is k-cyclic with respect to b for some
k > 0 (in this case, k is a period of x).

Further, x ∈ X is cyclic if, for all b ∈ B, x is cyclic with respect to b. We let Xcyc

denote the subspace of all cyclic elements of X.

6.11. Example. Suppose (B, τ) is a cyclic Boolean flow, meaning that for every b ∈ B
there exists k > 0 such that b = τ kb. Then X = Xcyc.
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6.12. Definition. Let I ⊆ B be a flow ideal. Then I corresponds to the flow quotient
B/I which, by Stone duality, corresponds to a closed subflow A(I) ⊆ X.

If b ∈ B, we let ⟨b⟩ denote the flow ideal generated by b. By abuse of language, we use
A(b) to denote A(⟨b⟩).

6.13. Lemma.

1. Let I ⊆ B be a flow ideal. Then A(I) =
∩
{¬b | b ∈ I}. Also, b ∈ I if and only if

b ∩ A(I) = ∅.

2. Let I, J ⊆ B be flow ideals. Then I ⊆ J if and only if A(J) ⊆ A(I).

3. Let b ∈ B be given and regard b as a clopen subset of X. Then x ∈ A(b) if and only
if tn(x) /∈ b for all n ≥ 0.

Proof.

1. First, we show that if A ⊆ X is a closed subflow, then the corresponding flow ideal is
{b | b∩A = ∅}. Let i : A //X be the inclusion map. Then i−1 : clop(X) //clop(A)
is the corresponding quotient of B = clop(X). Obviously i−1(b) = 0 if and only if
A ∩ b = ∅.

It follows that if A is the closed subflow that corresponds to the flow ideal I, then
A(I) ⊆

∩
{¬b | b ∈ I}. It is readily checked that

∩
{¬b | b ∈ I} is topologically

closed and closed under the action of t (as I is closed under the action of τ). Suppose
d∩

∩
{¬b | b ∈ I} = ∅. We must show that d ∈ I. It follows that d is covered by the

elements of I and, by compactness, by a finite subset of I. Since I is closed under
finite unions, there exists b ∈ I with d ≤ b and this implies that d ∈ I.

2. Straightforward, in view of the first paragraph, above.

3. Clearly A(b) is the largest closed subflow of X which is disjoint from b. A straight-
forward check shows that the given description of A(b) has this property.

6.14. Lemma. Let b ∈ B and x ∈ X be given. Then x is k-cyclic with respect to b, if
and only if x ∈ A(b− τ kb).

Proof. Straightforward.

6.15. Lemma. Let b ∈ B and k > 0 be given. Then for every non-zero multiple m of k,
we have ⟨b− τmb⟩ ⊆ ⟨b− τ kb⟩.

Proof. It clearly suffices to show that if I ⊆ B is a flow ideal and (b − τ kb) ∈ I then
(b− τmb) ∈ I. But suppose (b− τ kb) ∈ I. By applying τ k, we see that (τ kb− τ 2kb) ∈ I.
Adding (b− τ kb) to it gives us (b− τ 2kb) ∈ I and the result follows by an easy induction.
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6.16. Proposition. Let I ⊆ B be a flow ideal. Then I is a cyclic flow ideal if and only
if A(I) ⊆ Xcyc.

Proof. Assume I ∈ Wcyc and let x ∈ A(I) be given. To prove that x ∈ Xcyc, suppose
b ∈ B. Since I is a cyclic flow ideal, there exists k > 0 such that (b− τ kb) ∈ I. It readily
follows that A(I) ⊆ A(b− τ kb) and, in view of lemma 6.14, we see that x is k-cyclic with
respect to b. Since b is an arbitrary member of B, we see that x ∈ Xcyc.

Conversely, assume A(I) ⊆ Xcyc and that b ∈ B is given. We observe that {¬(b−τ kb) |
k > 0} coversXcyc, which easily follows using Lemma 6.14. Since A(I) ⊆ Xcyc it is covered
by a finite set {¬(b − τ k(i)b)}. Let m be a common multiple of the set {k(i)}, then it is
readily shown that A(I) ⊆ ¬(b− τmb) which shows that (b− τmb) ∈ I.

6.17. Proposition. Assume that B is countable. Let d ∈ B be given. Let d̂ denote
the corresponding constant section in Γ(Q) and let d̂cyc denote the restriction of d̂ to the

subspace Wcyc. Then d̂cyc = 0 if and only if d ∩Xcyc = ∅.

Proof. Recall that d is a clopen subset of X. Assume that d ∩Xcyc = ∅. Let I ∈ Wcyc

be a given cyclic flow ideal. As shown above, A(I) ⊆ Xcyc so d ∩ A(I) = ∅ and therefore

d ∈ I. Since d ∈ I for all I ∈ Wcyc, it follows that d̂cyc, the restriction of d̂ to Wcyc is 0.

Conversely, assume that d̂cyc = 0 and that x ∈ d ∩Xcyc. We need to derive a contra-
diction. Since x ∈ Xcyc, we can, for every b ∈ B, find a positive integer k(b) such that x is
k(b)-cyclic with respect to b. This implies that tn(x) /∈ (b− τ k(b)b) for all n ≥ 0. Let I be
the set of all c ∈ B such that tn(x) /∈ c for all n ≥ 0. Then I is readily seen to be a flow
ideal of B and a cyclic flow ideal as (b− τ k(b)b) ∈ I for all b ∈ B. Moreover, x ∈ A(I) so

d ∩ A(I) ̸= ∅ as x ∈ d ∩ A(I). So d /∈ I and this implies that d̂(I) ̸= 0 which contradicts

the assumption that d̂cyc = 0.

6.18. Proposition. Let c, d ∈ B be given (and regard each element of B as a clopen
subset of X). Then

N(c) ∩Wcyc ⊆ N(d) if and only if A(c) ∩Xcyc ⊆ A(d)

Proof. First, assume A(c) ∩ Xcyc ⊆ A(d). Let I ∈ N(c) ∩ Wcyc be given. We need to
show that d ∈ I. Since c ∈ I, we have ⟨c⟩ ⊆ I so A(I) ⊆ A(c). By Proposition 6.16, we
have A(I) ⊆ Xcyc, so, by our assumption, A(I) ⊆ A(d). But then, by (2) Lemma 6.13,
⟨d⟩ ⊆ I and d ∈ I.

Conversely, assume N(c)∩Wcyc ⊆ N(d). Let x ∈ A(c)∩Xcyc be given. Since x ∈ Xcyc,
we can choose, for each b ∈ B, an integer k(b) > 0 such that x is k(b)-cyclic with respect
to b. Let I be the flow ideal generated by c and {b−τ k(b)b | b ∈ B}. Then I is the smallest
flow ideal containing c and each b− τ k(b)b so A(I) is the largest closed subflow contained
in A(c) and each A(b− τ k(b)b) which means that A(I) = A(c) ∩

∩
b A(b− τ k(b)b). By the

choice of k(b), we have x ∈
∩

bA(b − τ k(b)b) and we assumed that x ∈ A(c) so x ∈ A(I).
Clearly tn(x) ∈ A(I) for all n ≥ 0. But by our assumption that N(c) ∩ Wcyc ⊆ N(d),
we see that d ∈ I so d ∩ A(I) = ∅ so tn(x) /∈ d (as tn(x) ∈ A(I)) which implies that
x ∈ A(d).
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6.19. Corollary. Let c1, c2, d ∈ B be given. Then:

N(c1) ∩N(c2) ∩Wcyc ⊆ N(d) if and only if A(c1) ∩ A(c2) ∩Xcyc ⊆ A(d)

Proof. This follows from the above proposition with c = c1 ∨ c2. Note that N(c1 ∨ c2) =
N(c1) ∩N(c2) and A(c1 ∨ c2) = A(c1) ∩ A(c2).

6.20. Definition. A subset S ⊆ Xcyc is rectified by b ∈ B if there exists d ∈ B such
that

S ∩ A(b) = d ∩ A(b) ∩Xcyc

We let Rect(S) denote the set of all b ∈ B which rectify S. We say that S ⊆ Xcyc is
regular if

Wcyc ⊆
∪

{N(b) | b ∈ Rect(S)}.

6.21. Proposition.

1. If d ∈ B, then d ∩Xcyc is a regular subset of Xcyc.

2. The regular subsets of Xcyc are closed under complementation (within Xcyc) and
under finite unions and intersections (which includes the empty subset and Xcyc

itself).

Proof.

1. First, it is clear that every b ∈ B rectifies d ∩ Xcyc and when b = ⊥, then N(b)
covers W .

2. Closure under complementation follows by verifying that b rectifies S if and only
if b rectifies Xcyc − S. To prove closure under pairwise intersections, it suffices to
verify that if b ∈ Rect(S) and c ∈ Rect(T ), then b∨ c ∈ Rect(S ∩T ). Note that if S
is empty, then every b ∈ B rectifies S. The rest of the proof follows by considering
complements within Xcyc.

6.22. Notation. Assume that B is countable. We let Reg(B) denote the Boolean algebra
of all regular subsets of Xcyc. In view of (1) of the above proposition, there is a canonical
Boolean homomorphism from B to Reg(B).

6.23. Lemma. If d, e ∈ B are given, then d ∩ A(d− e) ⊆ e.

Proof. Assume the contrary, that there exists x ∈ d ∩ A(d − e) but with x /∈ e. Then
x ∈ (d− e) ∩ A(d− e) which is a contradiction.
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6.24. Theorem.Assume that B is countable. The Boolean algebra Γ(Qcyc) is canonically
isomorphic to Reg(B). Moreover, the isomorphism commutes with the map B //Reg(B)

mentioned above and the map B // Γ(Qcyc) which sends d ∈ B to d̂.

Proof. Let σ ∈ Γ(Qcyc) be given. Locally, σ agrees with constant sections of the form d̂

so we can find a family {(dα, bα)} such that σ = d̂α on N(bα)∩Wcyc. It follows that these
sections are compatible, meaning that

N(bα) ∩N(bβ) ∩Wcyc ⊆ N(dα − dβ)

Now define S ⊆ Xcyc as
∪

α(dα ∩A(bα)∩Xcyc). We claim that each bβ rectifies S. We
must show that S ∩ A(bβ) = dβ ∩ A(bβ) ∩Xcyc. We have:

S ∩ A(bβ) =
∪
α

(A(bβ) ∩ dα ∩ A(bα) ∩Xcyc)

We note that if β = α then (A(bβ) ∩ dα ∩ A(bα) ∩Xcyc) reduces to dβ ∩ A(bβ) ∩Xcyc,
so it suffices to show in general that (A(bβ)∩ dα ∩A(bα)∩Xcyc) ⊆ dβ. By Corollary 6.19,
and the above condition that N(bα) ∩N(bβ) ∩Wcyc ⊆ N(dα − dbe), we see that

A(bα) ∩ A(bβ) ∩Xcyc ⊆ A(dα − dβ).

So (A(bβ) ∩ dα ∩ A(bα) ∩Xcyc) ⊆ dα ∩ A(dα − dβ). The claim now follows by the above
lemma. The claim implies that S is regular, so we have associated the regular set S to
the global section σ

Conversely, let S ∈ Reg(B) be given. Let {bα} be a family of elements of B which
rectify S and cover Wcyc. Then for each α there exists dα such that

S ∩ A(bα) = dα ∩ A(bα) ∩Xcyc.

Observe that for all α, β:

dα ∩ A(bα) ∩ A(bβ) ∩Xcyc = dβ ∩ A(bα) ∩ A(bβ) ∩Xcyc

as both are S ∩A(bα) ∩A(bβ). Since A(bα) ∩A(bβ) ∩Xcyc is a subflow (closed under the
action of t) the above result readily implies that

A(bα) ∩ A(bβ) ∩Xcyc ⊆ A(dα − dβ).

And by Corollary 6.19, this implies that

N(bα) ∩N(bβ) ∩Wcyc ⊆ N(dα − dβ).

But this is precisely what we need to show that the local sections d̂α on N(bα) piece
together to give us a global section σ.

So, to each global section σ we have associated a regular set S and to each regular
set S we have associated a global section σ. A routine check shows that this defines the
desired isomorphism.
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Global sections of Γ(Qcyc) when B need not be countable. We recall the
definition of WC for each countable subset C ⊆ B. As noted above, WC is a spatial
locale for each such countable subset C. Let QC be the restriction of Q, the canonical
sheaf over W , to the subspace WC . The global sections Γ(QC) can be determined by an
approach strictly similar to the approach in the above theorem. That is, we can define
XC ⊆ X, as the set of all x ∈ X which are cyclic with respect to every c ∈ C. We can
then define a subset of XC to be C-regular by an obvious modification of the definition
of regular (in fact, just replace Xcyc by XC). The argument used in the proof of 6.24 can
then be used to show that Γ(QC) is canonically isomorphic to the family of all C-regular
subsets of XC . Then the global sections over the cyclic spectrum, for arbitrary B, can be
described using the following theorem.

6.25. Theorem. Γ(Qcyc) is the colimit of Γ(Q|WC) where C varies over the filtered family
of all countable subsets of B.

Proof. We must prove that every global section in Γ(Qcyc) is the restriction of a global
section in Γ(Q|WC) for some countable subset C ⊆ B. We must also show that two such
global sections over WC and WD have the same restriction to O(W )cyc if and only if they
have the same restriction to some WE where E ⊆ B is a countable subset with C∪D ⊆ E.

Clearly, every global section σ ∈ Γ(Qcyc) is represented by a compatible family

{(dα, bα)} for which σ equals d̂α on N(bα). Since O(W )cyc is Lindelöf, we can assume
that the family is countable and write it as {(bn, dn) | n ∈ N}. The condition for
the family being compatible is equivalent to a countable set of conditions of the form
N(bα) ∩N(bβ) ⊆ jcyc(N(d̂α − d̂β). But by using Theorem 6.6, this condition holds if and
only if it holds when we restrict to some WC . It readily follows that {(dα, bα)} will be a
compatible family that defines a section in Γ(Qcyc) if and only if it is compatible enough
to define a section in Γ(Q|WC) for some countable C ⊆ B. The remaining details are now
straightforward.

7. Examples

7.1. Example of a non-spatial cyclic spectrum. In constructing this example, it
is notationally convenient to introduce, for each n ∈ N, a symbol an and for each f ∈ NN

a symbol hf . We let

G = {an | n ∈ N} ∪ {hf | f ∈ NN}

We let (B, τ) be the free Boolean flow generated by G.
For each n ∈ N and f ∈ NN we let

U(n, f) = N(τ f(n)an − an) ∩N(τnhf − hf )

We then claim that:

1. the family {U(n, f)} covers Wcyc;
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2. the above family has no countable subcover;

3. the cyclic spectrum of this flow is not spatial.

Proof.

1. Let U ∈ Wcyc be given. Since I is cyclic, we can clearly define f : N // N such
that τ f(n)an − an ∈ I for all n ∈ N. But, there also must be an n ∈ N for which
τnhf − hf ∈ I and it follows that I ∈ U(n, f).

2. Assume there is a countable subcover. Then we can clearly find a sequence (f1, f2, . . . fn, . . .)
of functions from N to N such that {U(n, fi) | n, i ∈ N} covers Wcyc.

Now define u : N // N such that u(n) > fi(n) whenever i ≤ n. Let v : NN // N
be any function for which v(fi) = i and v(f) > 0 for all f . Let I be the flow ideal
generated by:

{τu(n)an − an | n ∈ N} ∪ {τ v(f)hf − hf | f ∈ NN}

Then I is obviously cyclic, so there exist n, i ∈ N with I ∈ U(n, fi).

But this implies that τu(n)an−an ∈ I and so u(n) < fi(n) which implies that i > n.
On the other hand, τnhfi − hfi ∈ I which implies that n ≥ v(fi) so i ≤ n which is
a contradiction.

3. The cyclic spectrum cannot be spatial because, as shown in [Kennison, 2006, Propo-
sition 4.1] this implies that it is a sheaf over the space Wcyc and, by Proposition 6.8,
that Wcyc is Lindelöf, which contradicts the above.

7.2. Examples of regular sets.

7.3. Definition. Let (B, τ) be a Boolean flow. We say that G ⊆ B generates B as a
flow if no proper subflow of B contains G,

7.4. Definition. By a k-periodic subset of N we mean a subset P ⊆ N for which
n ∈ P if and only if n+k ∈ P . We further say that a subset is periodic if it is k-periodic
for some k > 0.

7.5. Definition.We say that x ∈ X is periodic if there exists n > 0, such that tnx = x.
We let Per(X) denote the set of all periodic elements of X. We note that Per(X) ⊆ Xcyc.

7.6. Example. Let X = {0, 1}N and define t : X // X as the shift map (so that
t(x0, x1, x2, . . .) = (x1, x2, . . .)). Let (B, τ) be the corresponding flow in Boolean algebras.
Then Xcyc = Per(X) is the set of all periodic sequences and every subset of Xcyc is regular.
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Proof. g = π−1
0 (1) generates B as a flow. Note that x ∈ X is a periodic sequence if and

only if x is cyclic with respect to g. It readily follows that Xcyc = Per(X).
Let bn = τng − g and let S ⊆ Xcyc be any subset. Then we claim that bn rectifies

S. It is readily shown that A(bn) is the set of all sequences in X which are n-periodic,
which is a finite set. So every subset of A(bn) is relatively clopen and is clearly of the
form d∩A(bn). It easily follows that bn rectifies any subset S. But the family of all N(bn)
clearly covers Wcyc so S is regular.

7.7. Remark. If (B, τ) is finitely generated (as a flow) then Xcyc always coincides with
Per(X) and every subset of Xcyc is regular, as the above argument generalizes.

The following proposition is useful in finding regular sets.

7.8. Proposition. As usual, let (X, t) be a flow in Stone spaces and let (B, τ) be the
corresponding flow in Boolean algebras. Let k-Cy(c) be the set of all x ∈ Xcyc which are
k-cyclic with respect to c. Let c ∈ B and the positive integer k be given. Then:

1. k-Cy(c) is regular;

2. S = Xcyc ∩
∩

n≥0 τ
nc is regular;

3. S = Xcyc ∩
∩

n≥0 τ
n(¬c) is regular.

Proof.

1. Let bn = τnc − c. It is readily shown that A(bn) = n-Cy(c). It follows that
S ∩ A(bn) = (k, n)-Cy(c), where (k, n) = gcd(k, n). A straightforward argument
proves that the set (k, n)-Cy(c) is relatively clopen in n-Cy(c) (as we only have to
restrict the values of tix for i = 0, 1, . . . , n − 1). A standard argument, using the
compactness of A(bn) = n-Cy(c), shows that there is a clopen set d of X such that
(k, n)-Cy(c) = d∩A(bn) and, from this, it follows that each bn rectifies S. As noted
in the previous proof, this shows that S is regular.

2. Here S = Xcyc ∩ k-Cy(X) ∩ c is regular in view of Proposition 6.21.

3. Note that (2) implies (3) in view of the substitution of ¬c for c.

7.9. Example. Let Σ0 = {σ0, σ1, . . . , σn, . . .} be a sequence of “symbols” and give Σ0

the discrete topology. Let Σ = Σ0 ∪ {∞} be its one-point compactification. Let X = ΣN

and define t : X // X so that t(x0, x1, x2, . . .) = (x1, x2, . . .). Let πn : X // Σ denote
the nth projection onto {0, 1}. For each i ∈ N, let gi ∈ B be defined as π−1

0 (σi). Let
G = {gi}. For this example, we claim that:

1. G generates B as a flow;

2. Per(X) is a proper subset of Xcyc;



19

3. there are regular subsets not of the form b ∩ Xcyc for b ∈ B (so not every global

section over the cyclic spectrum is of the form b̂ for b ∈ B);

4. not every subset of Xcyc is regular.

Before proving the above claims, we insert a useful definition and some lemmas.

7.10. Definition. Let (B, τ) be a Boolean flow and let G ⊆ B generate B as a flow. We
say that p ∈ B is G-prescriptive if there exists g = (g1, . . . , gm) ∈ Gm and an m-tuple
k = (k1, . . . , km) of positive integers such that

p = p(g, k) =
∨

1≤i≤m

(τ kigi − gi)

The following lemma shows that, in a sense, a G-prescriptive element of B has the
effect of prescribing a period to an m-tuple of elements of G.

7.11. Lemma. Let p = p(g, k) be a G-prescriptive element of B. Then A(p) is the set of
all x ∈ X which are ki-cyclic with respect to gi for 1 ≤ i ≤ m.

Proof. It is straightforward to show that x is k-cyclic with respect to g if and only if
tnx is never in τ kg − g (for any n ∈ N). The proof then follows.

Recall that ⟨c⟩ is the smallest flow ideal of B which contains c. Also b ∈ ⟨c⟩ if and
only if b misses A(c). Remember that for b, c ∈ B we have that c, A(c) and b are subsets
of X while N(c) and N(b) are subsets of W .

7.12. Lemma. Let b, c ∈ B be given. Then the following are equivalent:

1. N(c) ⊆ N(b);

2. b ∈ ⟨c⟩;

3. A(c) ⊆ A(b).

Proof. (1) ks +3 (2): If N(c) ⊆ N(b), then ⟨c⟩ ∈ N(c) ⊆ N(b) so b ∈ ⟨c⟩. Conversely,
assume b ∈ ⟨c⟩. If I ∈ N(c) then c ∈ I so ⟨c⟩ ⊆ I and b ∈ ⟨c⟩ ⊆ I so I ∈ N(b).

(2) ks +3 (3): Assume b ∈ ⟨c⟩. Then ⟨b⟩ ⊆ ⟨c⟩ which, by the duality between flow ideals of
B and closed subflows of X, implies that A(c) ⊆ A(b). Conversely, assume A(c) ⊆ A(b).
It follows that b misses A(c) so b ∈ ⟨c⟩.

7.13. Corollary. Let S ⊆ Xcyc be given and assume that b rectifies S. If b ∈ ⟨c⟩, then
c rectifies S.

Proof. By the above lemma, A(c) ⊆ A(b) and the result easily follows.



20

7.14. Proposition. Let (B, τ) be a countable Boolean flow and let G ⊆ B generate B as
a flow. Let S ⊆ Xcyc be given and let G-Rect(S) be the set of all G-prescriptive elements
that rectify S. Then S is regular if and only if

Wcyc ⊆
∪

{N(p) | p ∈ G-Rect(S)}

Proof. Assume that S is regular. Then

Wcyc ⊆
∪

{N(b) | b ∈ Rect(S)}.

Let I ∈ Wcyc be given. Since I is a cyclic flow ideal, for each g ∈ G, we can choose k(g) > 0
such that τ k(g)g− g ∈ I. Let I0 be the smallest flow ideal containing {τ k(g)g− g | g ∈ G}.
Since G generates B as a flow, it readily follows that I0 is cyclic so there exists b ∈ Rect(S)
such that b ∈ I0 . But for any element b ∈ I0, there is a finite set F ⊆ G such that b
is in the smallest flow ideal containing τ k(g)g − g for all g ∈ F . Write F = {g1, . . . , gm},
let g = (g1, . . . , gm) and k = (k1, . . . , km) where ki = k(gi). Let p = p(g, k). Then by
the choice of F , we see that b ∈ ⟨p⟩. By the above Lemma, we have p ∈ G-Rect(S) and
p ∈ I0 ⊆ I. Since I is an arbitrary member of Wcyc, it follows that

Wcyc ⊆
∪

{N(p) | p ∈ G-Rect(S)}

The converse is trivial.

Proof of Example 7.9

1. Note that the clopen set π−1
n (σi) = τn(gi). If U ⊆ Σ is a clopen neighbourhood

of ∞, then F = {i ∈ N | σi ∈ Σ − U} is finite and π−1
n (U) =

∧
i∈F τn(¬gi). The

remaining details are now straightforward.

2. It is readily shown that x ∈ Xcyc if and only if x is periodic in each σi ∈ Σ0

separately. That is, if, for each i, the set {n ∈ N | xn = σi} is a periodic subset of
N. The result easily follows.

3. Choose g ∈ G. The subset 2-Cy(g) is regular, in view of 7.8, but is clearly not of
the form b ∩Xcyc for any clopen subset b ⊆ X (as clopen sets can only restrict xn

for finitely many n). It follows that the global section corresponding to 2-Cy(g) is

not of the form b̂ for any b ∈ B.

4. Let S be the set of all x ∈ Xcyc such that xn ̸= σm for any even m ∈ N. If S
is regular then, by Proposition 7.8, there are enough G-prescriptive elements that
rectify S. But suppose p is G-prescriptive and that S ∩ A(p) = d ∩ A(p) ∩Xcyc for
some d ∈ B. Choose gk for an odd k such that gk is not involved in any part of p
or d. Let x ∈ X be the sequence which is constantly σk. Then x ∈ S ∩ A(p) so
x ∈ d ∩ A(p) ∩Xcyc. But we could just as well have chosen k to be even, in which
case x is still in d ∩A(p)∩Xcyc, but x is not in S, which leads to a contradiction.
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