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1. Introduction. In the first paper of this series [l], henceforth

referred to as I, we define a cohomology theory for a commutative

algebra P with coefficients in an P-module M for which H2(R, M) is

the group of singular extensions of P by M. In this paper we general-

ize to a cohomology 22(5, <b, M) where (S, <p) is a singular extension

of P and M is an P-module. The second group is again a group of ex-

tensions and when (S, <p) = (R, 1B), 22(5, <p, M) —H(R, M) as defined

in I. This generalization leads to a surprising result: a connected

sequence in the first variable.

2. Definitions. Let P be a commutative ring with identity. All

rings considered will be unitary P-algebras and all modules will also

be unitary P-modules. Let P be an algebra and M an P-module. In

I we defined a singular extension 0—»M—*S—**R—»0 of P by M and

morphism of two such extensions. This extension will also be denoted

by (5, <f>) or just 5. If f>: (5', cp')—>(S, <b) is a morphism we will also

use $>: S'-+S to denote the implied algebra morphism. It will be called

a surjection or an extension if the implied morphism is a surjection.

In any case, ker $, ker <p, and ker </>' are all P-modules. We let CB or

just e denote the category of extensions of P and morphisms of ex-

tensions. Then an extension of (5, <b) is an exact sequence 0—>M

—>(5', <p')—>*(5, <&)—►() where i> is a surjection and M is its kernel.

If M and (S-, <p) are held fixed, the notions of equivalence and Baer

composition make sense as in I. Then the equivalence classes can be

shown to form a group which is denoted by H2(S, <p, M). We denote

by PK5, <6, M) the group of derivations of 5 to M (made into an

5-module by <f>).
We define an «-long exact sequence over 6 to be an exact sequence

0-+M->MB_2-»M„_,-*-> Mi -+ (S', <p') -+ (5, <p) -» 0

where 0—»ker <£—>(5', <f>')-+(S, <p) —*0 is an extension and 0—>M—»M„_s

—► • • • —>Mi—>ker $—»0 is an ordinary exact sequence of P-modules.

An co-long sequence is one like that which has no left end. Again we

define equivalence, Baer composition and morphism of long exact
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sequences. An extension will also be called a short exact sequence.

The classes of «-long sequences beginning with-M, ending with (S, d>)

can also be shown to form a group, denoted by Hn(S, <b, M).

Just as in I, along (resp. short) exact sequence is called generic if

it admits a morphism to all others with the same right end (and with

the identity map on the right). This will also be called a generic

resolution (resp. generic extension).

3. Main results. In this section we indicate how to compute the

cohomology just defined as the cohomology of a complex, thus prov-

ing, among other things, that it is a group. Two computational theo-

rems are also proved here.

Lemma 1. Suppose (S, d>) is in 6 with ker <£ = M and (F, a) is a gen-

eric extension of R. Let Xo be an R-projective mapping onto M and G

be the inessential extension of F by X0. Then there is a r: G—+R and

6: (G, t)—»(5, 4>) which are in 6 and are a generic extension of (S, <f>).

Proof, t is just the composition G—+F-+R. 6 is the sum of X0—»M

—»5 and any map of G to 5 which commutes with <f>. These are easily

seen to be in <3. We now must show that 6: (G, t)-+(S, <p) is generic.

So suppose $»: (S', <¡>')-+(S, d>) is in 6. We have the following com-

mutative diagram:

0-» X0-» G-» F-» 0

0-»M—    —rS-        —*R-       —»0

$

0-»M'—     —»S'-        —»2c-       —»0

where p: G—»Xo is the projection. We begin by choosing a: F-+S'

with (p'a — a. Then d&onr=d>'ctir=rrir=<f>6 so that 0(i>ax—6) = 0. This

means that $air—0 maps G to M and its restriction to Xo is easily

seen to be an i?-morphism. Since Xo is projective we can find ß: X0

—»M' so that d>/3 = icwr—0 on X0. Then restricted to X0,6=d>(air—ßp).

Thus 6 and ^(air—ßp) agree on Xa and agree when followed by <p-

Thus their difference induces a map y: F—*M which is easily seen

to be a derivation. But since F is generic this means that we can find

a derivation 5: F—»M' with $8=y. Then d>Sir=i>(air—ßp)— 6 or

0=$(air—ßp — oír) and so 0'=cwr—ßp — Sir is the desired map. The

$
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reader should check that it is an algebra homomorphism. Recall in

doing so that M'2 = 0.

Lemma 2. Let 0-»M—»G—»5—>0 a generic extension of S and X-*M'

—»0 an R-projective resolution of M, then X—*G—>5—»0 is a generic

resolution of S.

Proof. This is proved exactly as in I.

Theorem 3. Generic resolutions exist.

Proof. This follows from the existence of generic resolutions of P,

shown in I, together with Lemmas 1 and 2.

Theorem 4. Let X —* G —* S —*0 a generic resolution of 5, then

H(S, <p, M) is just the homology of

0 -* Der(G, M) -* HomB(X, M).

Proof. The proof is left to the reader. It is a standard computation

in homological algebra.

Theorem 5. Let 0—>M—*S'—»5—+0 be a short exact sequence, then

we have connecting morphisms Extjf^M, N)—*Hi+1(S, <f>, N) such

that the following sequence is exact,

0 -> Der(5, N) -> Der(5', N) -► HomB(JI/, N) ->■ H2(S, <*., N)

-> H2(S', <p',N)-+-> H*(S, <t>, N) -> P*'(5', <p', N)

-» ExtB_1(M, N) -* Hi+1(S, <P, N) -* • • •.

Proof. Let X—>M—>0 be an P-projective resolution of M and

Y—>G—»5—>0 be a generic resolution of 5. Then we have

Xi Yx

Xo G

j. ¡,

0-rM->S'->s->0-

Now let G' be the inessential extension of G by X0. Then G' is a

generic resolution of 5', exactly as was proved in Lemma 1. Let P be
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the kernel of this extension. We have 0—»ker e—»L—»ker 6—»0 is exact as

is well known (or see Lemma 6 below). We can let Zi = Xf© Y i and

• • • —rZi—» • • • —»Z2—»Zi—»L—»0 will be a projective resolution of

L. The remainder is a standard computation.

Before proceeding further, we need three lemmas.

Lemma 6. Suppose we have a commutative diagram

0 0 0

1 i i
0 —» An —> ̂412 —» A is —* 0

•r ♦ ▼

0 —» .42i —» ¿422 —► A23 —» 0

"V Sr* "V

0 —» Azi —» A32 —» Azz —► 0

i 1 1
0 0 0

in which all three columns, the middle row and one other row are exact,

then the remaining row is exact.

Proof. This is easily proved by diagram chasing.

Lemma 7. Suppose we have a commutative diagram with exact rows

and columns,

0

I
An—* Au—* ¿n—»0

I     1     i
An —» An —» Ait —» 0

i 1 1
0-+ Azi —* Azi—» ¿4S3 —> 0

<r ▼ ▼

0 0 0

then there is naturally induced an exact sequence,

0 -* Au © -43i —» A22/Axi —» Azz —* 0.

Proof. This can be proved by diagram chasing together with some

computation. The key step is showing that
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Im(^2i —* AM) f~\ Im(.4i2 -^* An) «■ Im(^4n —* An).

Lemma 8. Suppose 0—>Ai-*Ai—>A3—*0 and 0—»Pi—>23j—*P3—>0 are

exact sequences of R-modules and Torf (4», P»)=0, then we have

an exact sequence 0—>Ai ®R B3 © .¿3 ffis Pi-^^2 ®r B2/Ai ®r Pi—»

At®B B8—»0.

Proof. This is an easy application of Lemma 7.

In what follows, ®, Tor, "flat," will mean ®K> Torx, and "P-flat"
respectively.

Theorem 9. Suppose that R' and R" are flat algebras and that

(S', <p') and (S", <f>") are extensions of R' and R" with kernels M' and

M" respectively. Suppose Tori(5', 5") =0. Then if we let

S = S' ® S"/M' ® M",   and   R = R' ® R"

then <p' ® <f>" induces a map <p: S—>R which is a singular extension and

for any R-module M we have 22(5,c6, M) ~H(S', <j>', M) ®H(S", <p", M).

Proof. The first assertion is clear and we have from Lemma 8 that

ker <p = M'®R"®R'®M". If 0->P'-h>F'-»P'->0 and 0-»P"-»F"
—* R" —» 0 are generic resolutions then it is shown in I that

0->P'®P"©P'®P"-->F'®F"/P'<g>P"-»P->() is also generic. Let

X'^>M'-*0 and X"-»M"-»0 be P'-projective and P"-projective

resolutions of M' and M" respectively. Then if G and G' are the in-

essential extensions of F' by XÓ and F" by X¿' respectively, they

are generic extensions of 5' and 5". Let A' = ker(G'-»5') and N"

= ker(G"->5"). Then

(*)   0 -> N' ® S" ® S' ® N" -► G' ® G"/N' ® N"^>S' ®S"-+0

is exact by Lemma 8. Also one can check that ker(G'—>P') is X¿ ®L'

and ker(G"^R") is X¿' ®L". Then we have

0

i

N'

i

»G'-»P'->0

i       Î
-»5'->P'-»0

0 -» X¿ ® L'

i

0->M' —

i i

0 0
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from which, by Lemma 6, A7'= ker(X0'©Z/—»M') and similarly

iV" = ker(Xo" @L"-+M"). Now Tor^S', S") =0, a fact we have al-

ready used. But together with the fact that R' and R" are flat and the

following two exact sequences

0 = Tor2(M', R") -+ Tori(M', M") -+ Toxi(M',S") -» Tori(M', R") =0,

0 = Tor2(iî', S") -» Ton(M', S") -» To^S', S") -» Torx(Ä', S") = 0

we conclude also that

Tor,(M', M") = 0.

But this permits another application of Lemma 8 to have an exact

sequence

0-»^' ®M"@M'® N"
(**)

-» (Xo' © L') ® (X0" © L")/N' ® N" -+M' ®M"-+0-

Now we may combine (*) and (**) to get a commutative diagram

0 0 0

1 I I
0 -> N' ® M" © M' ® N" -► (X0' e V) ® (Xo" © L")/N' ® iV" -> M' ® JIÍ" -► 0

1 1 1
0-»tf'®S"  ©S'®2V"->G' ®G"/N' ®N"-»5' ®5'-»0

1 I I
0-+N' ®R" © Ä' ® tf" -^ G' ® G"/(Xo' © LO ® (X0" © L") —*S' ® 5"/Jlf' ® M"

1 1 i -»0
0 0 0

The top two rows have been shown to be exact, the left column is

exact because R' and R" are flat and the other two columns are

obviously exact. Hence, by Lemma 6, the bottom row is also exact.

Now we know that F'®F"/L'®L" is a generic extension of R'®R"

and that the ker of d> is M'®R"®R'®M". An 2?'®i?"-projective

mapping onto this is X0' ®R" ®R' ® X0". (See proof of Theorem 7 of

1 for details.) Then a generic extension of 5 is the inessential exten-

sion of F* ® F"/L' ® L" by X¿ ® R" © R' ® X0". We can map

G'®G"/(X¿ @L')®(Xo" @L") to this by sending (x', f')®(x", f")

-+(x'®d"(f"), 6'(f')®x", f'®f") where B': F'-+R' and d": F"-+R"
are the generic extensions. This map can be checked to be an algebra

homomorphism and the following calculation shows it is an iso-

morphism,
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G' ® G"/(Xo' © L') ® (Xi' ® L")

« (Xi ® F') ® (Xi' ® F")/(Xi + L') ® (Xi' + L")

(Xi ® Xi' ® Xi ® F" ® F' ® Xi' ® F' ® F")

(Xi ® Xi' © Xi ® L" ®L'® Xi' ®L'® L")

~ Xi ® R" ®R'®Xi'® (F' ® F"/L' ® L").

Hence the bottom row of the above diagram is a generic extension of

5. The remainder follows exactly as in Theorem 7 of I.

Theorem 10. Let (5, <p) be an extension of R with kernel N. Suppose

that A is a multiplicatively closed subset of R not containing 0 and that

it does not have any zero divisors of P. Let B=<pr1(A). Then <j> induces

a map <6B: Sb—>Ra which is a singular extension and for any Ra module

M we have 22(5, <j>, M)~H(SB, <í>b, M).

Proof. From the proof of Theorem 8 of I we have an exact se-

quence 0—>N®rRa—»5b—>**P¿—»0 which is a singular extension and

defines <pB- Now let 0—»P—»G—»"5—»0 be a generic singular extension

of 5. In exactly the same way we have 0—»P <8>s5B—»Gc—»5b—»0 where

C = Q~1(B) is exact. (An examination of the proof of Theorem 8 of I

will show that it is not required that B contain no zero divisor of

5.) Now

L ®s N ®r Ra -» L ®s SB —» L ®s Ra -* 0

is exact. But the image in Sb of N®rRa is just N-Sb and L®sN'Sb

= L-N®sSB = 0 since P is an P-module. Thus P ® sSb « L ® sRa- But

since L and Ra are P-modules, L®sRak>L®rRa. Hence, 0—>L®rRa

—>Gc—»5B—»0 is a generic extension of Sb- The rest follows exactly

as in I, Theorem 8.

4. Remarks. There still remains to consider the relative theory.

The problem is this: Given a subring K'QK describe the cohomology

group Hg'(S, <f>, M) of all «-long sequences which are P'-split and

with two being equivalent if there is an equivalence which is P'-split.

(An arbitrary/: A—>P is called split if each of the sequences 0—»ker/

—>A—»coim /—»0 and 0—»im /—»P—»coker /—»0 is a split exact se-

quence.) At one extreme we could take K' =K and get the P-relative

theory. At the other extreme we could take K' as the subring gener-

ated by 1 to get the additively split theory.
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