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This note consists of three parts. First we give an example to show 
that the commutative algebra cohomology theory described by 
Gerstenhaber in [4], and in more generality in [3], does not in general 
vanish in dimension three even when the coefficient module is injec-
tive. This implies that the theory cannot be described as the derived 
functor of the second cohomology group as was done in [ l ] . In the 
second part we show that every element of the third cohomology 
group can be regarded as an obstruction in the sense of Harrison [5]. 
Finally in §3 we show that the theory may be restricted, without loss 
of generality, to algebras with unit (and unitary maps). 

1. An example. Let k be any field and R = k[x, y]/(x, y)2. Then R 
has a fe-basis consisting of {1, x, y} with x2 = y2 = xy = 0. The module 
M=Homk(R, k), regarded as an i?-module by letting (af) (/3) = ƒ (fia) 
for a, pÇzR, is well known to be -R-injective (see [2, p. 30]). If 
{e, £, rj} denotes the basis dual to the given one, then xÇ — yrj — e, 

X€ = xrj = y€::=y^ = 0. 
L e t / : R®R®R—>M be the 3-cochain defined on the basis by 

ƒ (x ® x ® y) = £ = — ƒ (y ® x ® x), 

f(y ® y ® x) = y\ = — ƒ (x ® y ® y), 

and ƒ on any other combination of basis elements should be 0. Then 
verifying that ƒ is a commutative cocycle is straightforward. More
over, for any g: R®R-*M, 

ôg(x ® x ® y) = xg(x ® y) — g(x2 ® y) + g(x ® xy) 

— yg(x ® x) G 00M + yM = Re, 

which implies that ƒ cannot cobound. 

2. Third cohomology and obstructions. Let N be a commutative 
algebra (without unit) and M be its annihilator. Explicitly, 

M = {mEN\mN = 0}. 

Let N* be N with a unit adjoined. That is, N* = NXk as a e-module 
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with multiplication given by (n, u)(n', u') = (nn'+un'+u'n, uu') for 
n, n'ÇzN, u> u'ÇzK- Let EN— HOUIN* (N, N) be the endomorphism 
ring of N. There is the natural multiplication map N-+EN whose 
kernel is easily seen to be M and whose image is a central ideal of 
EN. Let EN^+WN be the cokernel; then we have an exact sequence 

0 -* M -+ N -> EN -> WN -+ 0. 

If A is a commutative algebra, a map a: A —>WN is called strongly 
commutative if ^ " ^ I m a) is a commutative subalgebra of EN. With 
such an a we may associate the element co« in 83(-4, -M") by applying 
the map S3(OJ, i f ) to the element of S3(Im a, M) represented by the 
sequence 

0 —> M -» N —> TT"1^111 a) —» Im a —» 0. 

o)a is called the obstruction of a. 
If 0—>iV—>5~-»̂ 4~̂ 0 is an algebra extension, there is associated a 

strongly commutative a: A—*WN induced by the diagram 

0 - > # - > B -> 4 -> 0 

1 | | | a 

where B-+EN is the -S-module structure map. Using Theorems 4 and 
5 of [3] it is very easy to prove 

THEOREM 2.1. A strongly commutative a: A-+WN comes from an 
extension of A by N if and only ifo>a — Q\in that case the classes of exten
sions inducing a are in 1-1 correspondence with the elements of&2(A,M). 

(Also see [5, Theorems 7 and 8], where this is proved using a proof 
based on a direct cocycle argument.) 

THEOREM 2.2. LetœÇz&*(A,M). Then there is an N whose annihilator 
is isomorphic to M and a strongly commutative a: A-+WN with coa =co. 

PROOF. We let co be represented by a sequence 0-+M—>Ni£±>Bi 
—>A—»0. Let B denote the algebra of polynomials with no constant 
term in the elements of A, and B—>A denote the obvious map 
(a)—*a where (a) denotes the generator of B corresponding to a&A. 
B is free in the category of algebras without unit and thus we may 
find a map B—*B\ so that 

B-*BX 

\l 
A 
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commutes. Now if we pull back along B~-*B\ we get that the top row 
of the diagram 

0 - » M - > N -^ B -> A-+ 0 

i l i i |1 
0 -* J f - > Nx Q Bx -> A -> 0 

is exact and the diagram commutes. Thus the top row also represents 
co. Since (0)Gker(£—*A), we can find n&N with pn = (0). If n'(EN 
with # ' ^ = 0, then Q=pn'(0). But (0) cannot be a zero divisor (even 
if the coefficients were not in a field) and so we conclude that pw' = 0 
or n'ÇLM. Then M is exactly the annihilator of N. Since N is a J5-
algebra, there is a natural map /3: B—+EN which induces a: A-+WN 
so that the diagram 

0 -—> Jkf —> iV —> 5 ~» .4 -> 0 

i 1 | 1 IP la 

0 -+M-*N->EN^> WN-> 0 

commutes. Moreover since Im j8 is commutative and iV is central, 
Im j8+7T"1(Im ce) is commutative and a is strongly commutative. 
Then coa = co, which completes the proof. 

3. Algebras with unit. 

THEOREM 3.1. Let A be an algebra with unit and M be a unitary 
A-module. Then every class of extensions of &S(A, M) contains a repre
sentative 0-+M-+N-+B-+A-+0 in which B has a unit and B-+A pre
serves the unit. 

PROOF. Let 0—*M—*N\—*Bi—*A—>Q represent an arbitrary element 
of &(A, M). Let 6 £ J B I be any pre-image of 1 and let C denote the 
algebra B* localized at the multiplicative set {l, b, b2

t • • • }. Then 
C is J3i-flat and so the sequence 

0->M®C-*N1®C-*Bl®C-+A ® C -> 0 

(all tensors over B\) is still exact. From the fact that b is a pre-image 
of 1, and M is unitary, it follows that the natural maps A—>A ® C and 
M—*M®C are isomorphisms. Moreover the element b®l/bÇzBi®C 
is a unit mapping to 1 (EA. Then with N = Nx®C and B = Bi® C, the 
result follows from the commutativity in 
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0 > M • Ni > Bi > A > 0 

^ •X' 4» "•" 

0->M®C-*Ni®C-*Bi®C->A®C-+0. 

PROPOSITION 3.2. The categories of A-modules and unitary A*-
modules are naturally equivalent. 

PROOF, Trivial. 

THEOREM 3.3, There is a 1-1 correspondence between extensions 
Q—ÏM—ÏN-+B—ÏA—+0 and unitary extensions 0—>M—>N—>B*->^4*-*0. 

PROOF. Trivial. 
The meaning of these statements is that for computing cohomology 

it suffices to restrict attention to those sequences 

0 -> M -> N -> B -> A -> 0 

in which B—+A is a map of unitary ^-algebras and M and N are uni
tary 4̂ and B modules respectively. 
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