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In 1975, I began a sabbatical leave at the ETH in Zürich, with the idea of studying
duality in categories in some depth. By this, I meant not such things as the duality
between Boolean algebras and Stone spaces, nor between compact and discrete abelian
groups, but rather self-dual categories such as complete semi-lattices, finite abelian groups,
and locally compact abelian groups. Moreover, I was interested in the possibilities of
having a category that was not only self dual but one that had an internal hom and for
which the duality was implemented as the internal hom into a “dualizing object”. This
was already true for the complete semi-lattices, but not for finite abelian groups or locally
compact abelian groups. The category of finite abelian groups has an internal hom, but
lacks a dualizing object, while locally compact groups have a dualizing object, but not an
internal hom that is defined everywhere. Although you could define an abelian group of
continuous homomorphisms between locally compact abelian groups, there was no way of
systematically putting a locally compact topology on the hom set that would lead to the
desired properties.

The desired properites were what I subsequently called ∗-autonomy. I do not want
to go into the technical details here (see [Barr, 1999], for example). Basically, a ∗-
autonomoous category has an internal hom, denoted −◦, a symmetric monoidal structure,
, along with the usual coherent isomorphisms Hom(AB,C) ' Hom(A,B−◦C). In addi-
tion, there should be a “dualizing object”, ⊥, such that if we define A∗ = A−◦⊥, the
subsequent canonical map (A−◦B) // (B∗−◦A∗) should be an isomorphism.

There is a certain redundancy in this definition. For instance, the most efficient (and
perhaps the most natural) way is to assume just −◦ and ⊥ and define A∗ = A−◦⊥ and
then AB = (A−◦B∗)∗, since the latter two are provably naturally isomorphic.

By the end of the year, I had in fact produced a moderate number of examples of ∗-
autonomous categories. One of them was a full subcategory of topological abelian groups
that included all the locally compact abelian (LCA) groups in such a way that the duality
restricted to them was the well-known duality of LCA groups. As one would expect, the
the circle group was the dualizing object. In addition, the category was complete and
cocomplete. In fact, it was built, essentially, by completing the LCA groups.

Another example was a full subcategory of the category of locally convex topological
vector spaces. In the process of studying that category, I read a number of books on that
subject, for example [Schaefer, 1970] and [Pietsch, 1972]. Each one contained a certain
construction of “pairs”. A pair is a pairing of topological vector spaces (E,E ′) along with
a bilinear map1 < −,− >: E × E ′ // C, the complex numbers. This device was used
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1It was usually supposed that the pairing was non-singular. As a first approximation, I had to omit

that hypothesis. Later, a way was found to reinstate if desired, at least in the familiar examples.
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because of the large number of possible topologies on the dual space. Basically, you were
to think of E and E ′ as being dual to each other with certain topologies.

As I was preparing an early draft of the subsequent monograph [Barr, 1979], I began to
be concerned about the fact that I had constructed this elaborate theory and had only a
bare handful of examples. Aside from the complete semi-lattices the other examples were
constructed with some difficulty using quite ad hoc methods. I had noticed the pairs and
wondered if there were a way of defining an internal hom among pairs. It turned out to
be surprisingly easy. I began with the obvious interpretation that in a pair E = (E,E ′),
E was the set of points and E ′ the set of functionals. (Of course, in the dual pair E ′ is
the set of points and E the set of functionals.) So if F = (F, F ′) is another such object,
the points of E−◦F should certainly be the set of maps between the pairs and a map was
a continuous linear map f : E // F such that for all φ ∈ F ′, φ.f ∈ E ′. Call this set
[E,F]. Then we wanted

E−◦F = ([E,F], ?) (∗)
with ? an unknown to be determined. A similar guess was that the tensor product of two
objects might be given by

(E,E ′)(F, F ′) = (EF, ??) (∗∗)
where ?? is another unknown to be determined. But if we put these together with the
fact that in any ∗-autonomous category,

EF = (E−◦F∗)∗

(or, equivalently, that E−◦F = (EF∗)∗), we can compute

EF = (E−◦F∗)∗

= ((E,E ′)−◦ (F ′, F ))∗

= ([(E,E ′), (F ′, F )], ?)∗

= (?, [(E,E ′), (F ′, F )])

Comparing this with (∗∗) we see that

EF = (EF, [(E,E ′), (F ′, F )])

Similarly, we find that

E−◦F = ([E,F], EF ′)

These formulas are suggestive, but they don’t prove anything. But, amazingly, it all
works!

Thus I ended up with a category whose objects were pairs E = (E,E ′) of vector spaces
equipped with a pairing EE ′ // C. A map from E to F = (F, F ′) is a pair of linear
maps (f, f ′) in which f : E // F and f ′ : F ′ // E ′ (note the direction reversal) such
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that < fv, w >=< v, f ′w > whenever v ∈ E and w ∈ F ′. There is no topology assumed
and no continuity on the linear maps.

At this point, it seemed clear that no special properties of vector spaces was being used
and this construction was an instance of a general one. Let V be an autonomous category,
meaning one which had a coherently associative, unitary, symmetric tensor product, −−,
an internal hom −−◦− with the usual adjunction

Hom(AB,C) ' Hom(A,B−◦C)

The only additional assumption we need to make on V is that it have pullbacks. Fix an
object of V , which we will call ⊥. Form the category of pairs E = (E,E ′) equipped with
a morphism EE ′ // ⊥. If F = (F, F ′) is another object, then a morphism E // F is
a pair (f, f ′) where f : E // F and f ′ : F ′ // E ′ such that the diagram

EE ′ ⊥
<−,−>

//

EF ′

EE ′

Ef ′

��

EF ′ FF ′
fF ′ // FF ′

⊥

<−,−>

��

commutes. This condition can be interpreted as saying that a map is a pair consisting E
// F and a map F ′ // E ′ that induce the same map EF ′ // ⊥ which can made

into a pullback diagram

Hom(F ′, E ′) Hom(EF ′,⊥)//

Hom(E,F)

Hom(F ′, E ′)
��

Hom(E,F) Hom(E,F )// Hom(E,F )

Hom(EF ′,⊥)
��

This definition gives a category that is called Chu(V ,⊥). Using the pullbacks, we can
internalize the above definition, by defining [E,F] so that

F ′−◦E ′ EF ′−◦⊥//

[E,F]

F ′−◦E ′
��

[E,F] E−◦F// E−◦F

EF ′−◦⊥
��

is a pullback. Then define
E−◦F = ([E,F], EF ′)

The pairing is either of the two equal maps

[E,F]EF ′ // (E−◦F )EF ′ // FF ′ // ⊥
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or

[E,F]EF ′ // (F ′−◦E ′)EF ′ // E ′E // ⊥
It seemed clear that this gave a ∗-autonomous category, but there were a number

of unpleasant details to be verified. Since my student, Po-Hsaing Chu needed a master’s
project, so I asked him to verify them, which he did [Chu, 1978, 1979]. I now had expanded
from six to infinity the repertory of known ∗-autonomous categories. At this point, the
construction, and in fact the whole idea of ∗-autonomous categories, was more-or-less
forgotten, not least by me.

One interesting thing is that I never looked to see if there was any connection between
the ∗-autonomous categories that I had carefully constructed and related ∗-autonomous
categories. For example, I had constructed a ∗-autonomous category that was a full sub-
category of topological abelian groups and made no attempt to relate it to Chu(Ab, K),
where K is the circle group. This was a mistake.

Eight years later, in 1987, I became aware of Jean-Yves Girard’s linear logic. I do
not recall how I became aware of it, but at the meeting at The University of Colorado
that summer, I knew enough to bring Girard a copy of [Barr, 1979]. Since ∗-autonomous
categories give models of linear logic and since the Chu construction gives easy examples
of ∗-autonomous categories, this was reasonable, but I must have known that before going
to Boulder. I think Robert Seely must have lectured on this in our seminar that spring.
At any rate, knowledge of ∗-autonomous categories in general and the Chu construction
in particular had penetrated the linear logic and theoretical computer science community.

1. Further work

Vaughan Pratt is convinced that Chu categories are an important adjunct to the study of
a number of questions in theoretical computer science. He has written a series of papers
expanding on this perception. A small selection of them is [Pratt, 1993a, 1993b, 1995].

In the meantime, I became interested in the connection between the categories con-
structed in my 1979 monograph and the Chu construction. In that paper, I had con-
structed a small number of ∗-autonomous categories. In all but one case I had begun
with an incomplete, but ∗-autonomous category that was embedded as a full subcategory
of a complete autonomous category that lacked a duality. I then showed how there was
a kind of completion of the ∗-autonomous subcategory inside the category of topological
(or uniform space) objects of the complete autonomous category that was ∗-autonomous.
The construction was fairly difficult and it was not easy to understand which objects are
in the subcategory. Eventually, it occurred to me that if V is the category of discrete ob-
jects and ⊥ is the dualizing object, then Chu(V ,⊥) is a candidate for the ∗-autonomous
category that I had constructed.

For example, in the category of abelian groups, there is a full ∗-autonomous subcat-
egory of the category of topological abelian groups that includes all the locally compact
groups. Let chu(Ab, K) denote the full subcategory of Chu(Ab, K) consisting of those
pairs (A,A′) for which the pairing is non-singular: for any a ∈ A, if a 6= 0, then there
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is an a′ ∈ A′ for which < a, a′ >6= 0 and vice versa. The definitions of the internal hom
and tensor have to be modified, but the modifications are essentially obvious. It is now
known that chu(Ab, K) is equivalent to a full subcategory of topological abelian groups
that includes all the locally compact group. Is this the same category as constructed “by
hand”? I don’t know and I have no idea how to even approach the question (and, to be
sure, there is not any reason to know the answer).

2. Mackey

I had imagined that the source of the idea of pairs of vector spaces was Grothendieck. It
looked like the kind of construction he would have done, although he might have made
a category of it. But in fact, it goes back further than that. The source seems to have
been George Mackey’s thesis, published as [Mackey, 1945]. In it he defines pairs as above,
except that his pairs are not assumed to be non-singular in the second variable. So the
dual of (E,F ) is (F,E/E0) where E0 consists of those vectors that are annihilated of
every functional in F .

One interesting point about Mackey’s paper is that it looks as if he was proposing
that the set of functionals be considered as a replacement for the topology, not just an
adjunct to it. After all, the topology on a set is a equivalent to a set of functions from the
set into the Sierpinski space 2. Not any set of functions will do; it must be a

⋃
-∩-closed

sublattice of the set of all functions. In the case of the vector spaces, the condition is
even simpler; it must be a linear subspace of the space of all functionals. Note that I am
not suggesting that this is the same thing as a topological vector space. It is not, but it
might be a subject of more interest, properly studied on its own, than topological vector
spaces. At all events, if this was Mackey’s intention, it has not been followed up. Instead,
the various authors have used these pairs as a tool for the study of duality, rather than
as the objects of study. And the dual is, in turn, used as a tool in the study of the deeper
properties of these spaces.

3. A rational—but incorrect—reconstruction

Here is how the Chu construction should have been discovered. That it wasn’t just shows
how sometimes mathematics is two steps forward, then one back.

Suppose you want to make a self-dual category that contains a given category C .
Assuming that C has a terminal object 1, the category C e = C × C op is obviously
self-dual and embeds C as the objects of the form (C, 1). If C should happen to be
(symmetric) closed monoidal, then you might not expect C e to be a closed monoidal
category, but it is, at least when C has finite products. The reason you might not expect
it is that C op is not generally closed monoidal when C is. For instance, the category of
finite dimensional coalgebras over a field is closed monoidal (in fact, cartesian closed), but
the opposite category of algebras certainly is not. What is true (and it is crucial) is that
when C is closed monoidal, C op is enriched over C .
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We begin with

Hom((C,D), (C ′, D′)) = Hom(C,C ′)× Hom(D′, D)

which is the definition of the homfunctor in C e. This leads one to try

(C,D)−◦ (C ′, D′) = ((C −◦C ′)× (D′−◦D), X) (∗)
where X = X(C,D,C ′, D′) is to be determined. Similarly, you might guess that

(C,D)(C ′, D′) = (CC ′, Y )

where Y = Y (C,D,C ′, D′) is to be determined. Naturally, you want more than just self
dual and closed monoidal, you want ∗-autonomous, which implies that

(C,D)−◦ (C ′, D′) ' ((C,D)(C ′, D′)∗)∗ = ((C,D)(D′, C ′))∗

= ((C,D)(D′, C ′), Y (C,D,D′, C ′))∗ = (Y (C,D,D′, C ′), CD′)

Comparing this to (∗), we see thatX(C,D,C ′, D′) = CD′ and Y (C,D,D′, C ′) = (C −◦C ′)×
(D′−◦D). This leads directly to the formulas

(C,D)−◦ (C ′, D′) = ((C −◦C ′)× (D′−◦D), CD′)

and
(C,D)(C ′, D′) = (CC ′, (C −◦D′)× (C ′−◦D))

Amazingly, this all works! In fact, the reader might have noticed that it is just Chu(C , 1)
since an object of the latter category is a pair (C,D), together with a morphism CD

// 1, of which there is exactly one. This category could thus have been discovered with
no motivation from Mackey’s pairs. Could have been but wasn’t.

Moreover, this leads directly to the Chu construction. If M is a commutative monoid
object in any ∗-autonomoous category, an M -action is an object A, together with an
morphism MA // A that satisfying the usual associative and unitary identities. It is
not hard to prove that the category of M -actions is again a ∗-autonomous category. Any
object ⊥ of C gives a monoid object M = (>,⊥) of C e. Since the unit for the tensor
product of C e is (>, 1) and the unit map for M is (id, !), where ! : ⊥ // 1 is the unique
arrow. The multiplication is

(>,⊥)(>,⊥) = (>>, (>−◦⊥)× (>−◦⊥)) = (>,⊥×⊥)
(id,∆) // (>,⊥)

It then turns out that the category of M -actions is precisely Chu(C ,⊥).
Moreover, this constructions works with certain changes even when is not symmetric.

In that case, two internal homs are needed in C , one to be right adjoint to C− and the
other to be right adjoint to −C. In that case, M need not be commutative (in fact,
the concept is undefinable) and instead of left actions of M , we must use the category
of two-sided actions. This is studied in detail in [Barr, 1995], where the ∗-autonomous
structure of C e was first described. The simplification that this construction offers is more
important in the asymmetric case than in the symmetric one.
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