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Category theory was invented to define "natural". Despite 

this, certain very natural object constructions are not functorial 

in any obvious way 1. Examples of these are completions of all 

kinds, injective envelope constructions and the construction of 

the center of a group. All except the last-named have categorical 

interpretations; we wish to provide one for the center. In doing 

so, we were motivated by considerations of obstruction theory in 

cohomology. The solution we derive seems right for that. 

In 1. we give the basic definitions. The rest of the paper 

is concerned with existence: finding conditions under which every 

object of some category X has a center. In 2. general conditions 

are given, and in 3. these are applied to equational categories. 

1. Basic Definition. 

Let X be a group. The center ZCX is easily seen to be 

the largest subgroup of X such that there exists a group homo- 

morphism 

Z~ X ~ X  

whose restriction to Z is the inclusion and whose restriction to 

iActually Robert PareS, a student at McGill, has shown how 

all these may be made "functorial" if the mapping functions are 

replaced by relations. 
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X is the identity. Clearly, this property characterizes Z. Of 

course, a similar definition in an abstract category cannot make 

sense unless the category is pointed. Otherwise, it does not make 

sense to speak of restricting a map on a product to its coordi- 

nates. Accordingly t we have: 

Definition 1.1: Let X be a pointed category with finite 

products, and let X~ X. A subobject Z CX is called central in X 

if there is a morphism Z~X ~ X  whose restriction to Z is the 

inclusion, and whose restriction to X is the identity. Z is 

called the center of X if it is central and includes every central 

subobject of X. 

Of course, this definition leaves the question of existence 

of a center wide open. 

2. The Main Theorem. 

Definition 2.1: A category ~ is called a Z-category if 

the following conditions are satisfied: 

Z.1. X is pointed. 

Z.2. ~ has finite projective limits. 

Z.3. The "coordinate axes" X 1 ~Xl~X2~--X2 are 

collectively epi for any X l, X 2~X. 

Z.4. Any morphism f: X ~ Y  of X factors as 

X ~Yo ~ Y  where X ~ Y  0 is a coequalizer 

(necessarily of its kernel pair) and YO ~ Y  is 

monic. 
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Z.5. If X~ X and (Xi) is a directed family of subobjects 

of X, then colim X i exists and is a subobject of X. 

Z.6. For any X'f X the functor X'~- commutes with those 

inductive limits assumed in Z.@. and Z.5. This 

means that if f: X ~ Y  is a morphism which factors as 

X ~Yo ~ Y  as above, then X'~X ~X'~Y O is 

still a coequalizer (and X'~Y O ~X'x Y remains a 

monic). Similarly, if (X i) is a collection of sub- 

objects of X, then colim (X'xX i) ~X'~colim X i 

by the natural map is an isomorphism. 

This appears to be quite a restrictive set of hypotheses. 

However, many algebraic categories of interest to us satisfy 

them. We shall discuss this in 3. 

If XI, ..., Xm, YI' "''' Yn ~ ~ and f: Xix...XXm-~PYl~...~Yn 

is a morphism, then f has a matrix 

II z II - 

where fij is the composition 

fll fln 

Zml 

Xi ~XI~'''~Xm ~YI ~'''~Yn ~YJ " 

The correspondence f ~ II f II is not an isomorphism as it is in 
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an additive category, but Z.3. together with the usual properties 

of products insures that this correspondence is injective. If 

X f ~XI~...~X n --~X' 

have matrices I. fl, ..., fn H and II ~lll ~, we will let 
11 ,, 

glfl + ... + gnfn denote gf. The "+" does not necessarily have 

any real significance except that it now permits composition of 

maps between products to be represented by ordinary matrix multi- 

plication. The details are familiar and will be omitted. We will 

frequently write down a matrix to denote a morphism, understanding, 

of course, that not every matrix stands for a morphism. However, 

a matrix with at most one non-zero map in each row always 

represents a morphism. For example, II O, ..., O, fi' O, . , O II : 

Xl~...XXn~X represents XlX.o. XXn r°-~Xi fi~xi 

We are now ready to give the main result of this paper. 

Theorem 2.2. Let ~ be a Z-category. Then every object of 

X has a center. 

Proof. Let X@~ and ~ = (Zi) be the class of central 

subobjects of X. We must show that Z contains a largest element. 

First, we show it is directed. If Zl, Z 2~ Z and @~i: Zi ~X, 

i = l, 2 is the inclusion, then there is map with matrix 

ll i, xll: zi x x. 

(Of course we can always write down that matrix; Z i is central if 
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and only if that matrix represents a map.) Now il@~l, @(21i: 

Zl,~Z 2 ~X is a morphism since it can be factored, e.g., 

ii 
o ls oo 

ll@~l, X il 0 @g2 '!" Let P ~Zl~Z 2 and Zl~Z 2 d ~ZlZ2 
d- 

be the kernel pair of ll@gl, ~2 It and the coequalizer of d O , d 1 

By Z.#. the induced map @(: ZIZ 2 ~ X  is a subobject, and, of 

course, ~i ~ ~i' i = l, 2. Also A1 ~lO ÷ A2 ~20 and 

~l ~ll + ~2 ~2i are defined and equal which implies that 

@~l~10 + @~2 ~20 and @~l~ll + @~2~21 are also defined and 

equal. Now by Z.6. 

Pxx ~ Zl~Z2~X ~ ZlZ2~X 
dlx X ~ 

is also a coequalizer. The map with matrix ll~l, X ll(Zl~ 11@(2, X N) 

= l l ~ l ,  X II 0 ~2 X : I I ~ i ,  4 2 ,  X II coequalizes dOm~,X and 

ell d l x x .  In fac t  l l ~ l ,  ~ 2 '  X il ~20 0 = l l ~ l '  ~ i 0  + ~ 2  ~20' X II 

0 X 

ii oli : l l ~ l ~ l l  ÷ ~ 2 ~ 2 l ' X l l  : I I ~  l ,  ~ 2 '  x l l  ~21 0 . 

0 X 

there is induced a map li~l , "~2 II: ZlZ2~X ~X with 

Thus 
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II~'l,  ~'2 I I - (dxX)  -- I I~ l ,  ~ 2 '  x II : I I ' ~ '  l ,  o ~  2, x II 

= = II ~l'~l, Vl ~2,  ~'2 II. Then 
0 X 

Y2 = x and II~l, ~#2 11 ~ 11 ~l ~l' Yl~2 II or ~d ~ ~l d 

Since d is a coequalizer, hence epi, it follows that ~ = ~i and 

ZIZ 2 is central. Of course ZiC ZIZ2, i = l, 2, since the inclusion 

map Zj ~ X  factors through it. 

Now since Z is a directed family of subobjects of X, it has 

a colimit Z which is also a subobject ~: Z ~ X  by Z.5. If 

~i: Zi ~ Z  is the map to the colimit, then also the ~i are mono 

and ~ i  = ~i" By Z.6., Z~X = oolim Zi~X and since for each i, 

fill, X II: ZixX ~ X  is a map, there is induced a map 

II~, ~' II: ZXX ~ X  such that for each i, II%*, ~' ll(#gi~X) 

= ll@~i, X II. This gives ll~i , ~'X II = II@( i, X II or ~' = X, 

~ i  = @(i for all i. Since also o~i = @~i' the uniqueness of 

map extensions guarantees that ~= @~, so II@~, X II is a map. 

Thus Z is central and clearly contains all central subobjects. 

3. Equational Categories. 

By an equational category, we mean a category X equipped 

with an algebraic functor U: ~ ~Sets (i.e., one which is 

tripleable as soon as it has an adjoint). This means that if F 

is a functor with codomain ~ and S = lim UF, then there is a 

unique (up to isomorphism) XEX with X = lim F and UX = lim UF. 

Also, if X~Y~Y is such that UX~UY~UY is an equivalence 
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relation, then X z~Y has a coequalizer Y ~ Z  and UX ~__~UY ~UZ 

is a coequalizer. If n is any set (possibly infinite), an n-ary 

operation is a natural transformation of un ~U. U has a left 

adjoint F if and only if, for each set n, the class of natural 

transformations of U n ~ U  is a proper set. (And then 

UFn ~ nat. trans. (U n, U).) A nullary operation, also called a 

constant, is a natural transformation of U 0 ~ 1 ~U. A natural 

transformation U n --~U m is called a projection if it is of the 

form U f where f: m ~ n  is a function. We say that "all opera- 

tions are finite" when we actually mean that any n-ary operation 

n O 
Ua ~ U  factors as un ~ U  ~ U  where the first map is a 

projection and n O is a finite set. For more details of the theory 

of equational categories see E2S. 

Theorem ~.i. Let ~ be an equational category. Then: 

1. X satisfies Z.1. if and only if there is exactly one 

nullary operation. 

2. X satisfies Z.2. 

3. X satisfies Z.3. (when X is pointed) if there is a 

binary operation "+" satisfying x + 0 ~ 0 + x for 

x E • ~ where 0 is the base point. A tripleable 

category X satisfies Z.3~ X s Y ~ X ~ Y  onto, if 

and only if there is such a "+". (Here • is the 

coproduct.) 

4. X satisfies Z.4. 

5. X satisfies Z.5. if all operations are finite. If 

is tripleable, the converse holds. 
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. 

Proof: 

i. 

. 

3. 

4. 

5. 

X satisfies Z.6. 

This is well-known. Permit me to observe, however, 

that it requires showing that if @~ is an n-ary 

operation, then ~(0, ..., O) = O. But if this were 

not an equation in the system, then o((O, ..., O) 

would define a new nullary operation. 

See, for example [2], p. 87. 

It is well-known that in an equational category, there 

are coproducts which we denote by *. Then Z.3. is just 

the statement that the natural map XI*X 2 ~XI~X 2 is 

an epimorphism. If there is a binary operation + with 

x + 0 = 0 + x = x, then (Xl, x 2) = (Xl, O) + (0, x2). 

Each of those is clearly in the image, so their sum is. 

Thus the natural map is onto, and Z.3' holds. Con- 

versely, if Z.3' holds and X is tripleable, the natural 

map FI*FI ~FI~FI is onto and we can find an element 

~UF2 = U(FI*FI) whose image in UFI~UFI is(f, ~) 

where ~ is the generator of FI. UF2 = nat. trans. 

(U 2, U) and the natrual transformation corresponding to 

~ is the desired one. The details are left to the 

reader (see [2]). 

See [2], p. 88 (called the First Isomorphism theorem). 

This seems to be known, but as I have been unable to 

find a reference in the literature, I will include 

a proof. If X is finitary and X, Ye X, a set 

function f: X ~ Y  need only commute with finite 
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. 

operations to be a morphism, since commuting with 

projections is automatic. Now if (Xi) is a directed 

family of subobjects of X and if (fl), fi: Xi ~ Y  

is a family of maps on the direct system, let 

X' =~i (set union). X' is a subobject, for if 

is an n-ary operatiom, n finite, and Xil , , x i t X' e e e  

n 

I can already find X i with each of Xil , ..., Xin and 

hence ~@(Xil , ..., Xin ) being elements of X i. Simi- 

larly, the (fi) extends to a set map f: X' ~ Y  and 

f~(xil, -.., Xin) = fo(w(Xil, ..., Xin) = 

• @(fi(xil ), .-., fi(Xin )) = w(f(xil), ..., f(Xin)), 

since f extends fi and fi is a morphism. Conversely, 

if Z.5 holds and X is tripleable, we have n = colim n o 

where n o ranges over the finite subsets of n. But 

a left adjoint F commutes with oolimits, so 

Fn = oolim FnO, certainly (Fno} is directed and 

their union is exactly the n-ary operations which 

are composites of projections and finitary operations. 

If Fn is just this union, then this union includes 

all the n-ary operations. 

In an equational category a map is a coequalizer if 

and only if it is surjective. Let f: X ~ Y  be a 

map. The point set image Y, of f is also its cate- 

gorical image and we have f factoring as 
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X onto~_y0 i-i~ Y. Also X'~ - preserves both 

properties of being i-i and onto and so X'~f 

factors X')~X ~X'~Y' ~X'~Y with the first 

being a coequalizer and the second being l-l, and 

hence the image of X'xf. As for the second half, 

if (Xi) is a directed family of subobjects, the 

colim X i is just the set theoretic union (of course 

all operations are finite). (X',(Xi) is still 

directed and X'~ - commutes with set union. 

Thus we have proved, 

Theorem ~.2. Let X be a pointed equational category with 

all operations finitary and in which there is a binary operation 

for which the base point is a 2-sided unit. Then every object 

of X has a center. 

Let us examine this situation more closely. If Z is the 

center of X and if there is a map ~: Z~X ~ X  with ~(z, O) = z 

and ~(0, x) = x for zE Z, x~ X, then ?" must commute with all 

the operations. If Z.3' holds, then it must in particular commute 

with the distinguished binary operation, denoted by +, appearing 

in the statement of theorem 3.2. Thus: 

?(z + z' ' x') • , x + x ) - " ? ' ( z ,  x )  + ~ ( z ' ,  

If z' = x = O, this says ~(z, x') = ~(z, O) + ~(0, x') = z + x' 

so ~ = +. Then (z + z') + (x + x') = (z + x) + (z' + x'). Then 

if z = x' = O, we get z' + x = x + z'. Finally, letting z' = O, 
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we have z + (x + x') I (z + x) + x'. Thus Z is a commutative 

associative monoid and the operation of Z on X is commutative 

and associative. A modification of this result to make Z into 

a group has long been known in universal algebra; see for 

example Ell pp. 799-800. 

Note: It has recently come to the author's attention that 

S. A. Huq Ecommutator, nilpotency and solvability in categories, 

Quart. J. Math. Oxford (2), 19 (1968), 363-389J has considered 

closely related concepts (with arbitrary maps rather than sub- 

objects) except that his axioms are strong enough to make central 

subobjects be abelian groups (not merely monoids) but lacking 

continuity axioms Z.5 and Z.6 he cannot prove that centers exist. 
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