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Abstract. Our examination continues of spaces that have the property that any dense
embedding induces an epimorphism in the category of commutative rings of the rings of
real-valued functions.

1. Introduction

In several earlier papers, [Barr, et al. (2003), Barr, et al. (2005), Barr, et al. (2006)], we
have explored the concept of embeddings of (completely regular Hausdorff) spaces that
induce an epimorphism in the category of commutative rings on their rings of continuous
real-valued functions. Such embeddings are called CR -epic. A space is absolute CR -epic
if every embedding is CR -epic. We are particularly interested in absolute CR -epic spaces.

When X is Lindelöf, we know that X // Y is CR -epic if and only if every bounded
real-valued function on X extends to an open subset of Y that contains X ([Barr, et al.
(2005), Corollary 2.14]). When X is not Lindelöf it is still necessary, but not sufficient,
that every such function extend to an open set. Clearly, the embedding X // βX
is always CR -epic, but a space cannot be absolute CR -epic unless it is almost Lindelöf.
meaning that of any two disjoint closed subsets, at least one is Lindelöf. One of the things
we do in this paper is find more examples of almost Lindelöf spaces that are absolute CR -
epic but not Lindelöf.

It is easy to see that X is absolute CR -epic if and only if the embedding into every
compactification of X is absolute CR -epic. For Lindelöf spaces, this means that every
bounded function on X extends to an open set of every compactification. We have seen in
[Barr, et al. (2006), ] that every bounded function extends to a Gδ set containing X. Thus
one way to guarantee that X is absolute CR -epic is to show that in any compactification,
every Gδ containing X contains an open set containing X. In fact, it suffices that this
happen in βX. We call this the countable neighbourhood property (CNP). See
Section 3 of [Barr, et al. (2006)], especially Proposition 3.2, for fuller explanation. This
seemed so fundamental that we wondered if this sufficient condition (in the Lindelöf case)
was also necessary. In this paper we will show by example that it is not by exhibiting
a Lindelöf absolute CR -epic space that does not satisfy the CNP. Nonetheless, the CNP
condition is necessary in order to have a good product theorem (8.1, below and [Barr,
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et al. (2006), Theorem 4.7]). This is especially useful for a space that satisfies Alster’s
condition (see [Alster (1988)]).

Other topics in this paper include alternate characterizations of CNP and study of the
relation between X and βX −X (the “outgrowth” of X).

We recall some definitions from [Barr, et al. (2006)] that will be mentioned in this
paper. As usual, all spaces will be completely regular Hausdorff. We said that a space
was amply Lindelöf if every Gδ cover that covers each compact set finitely, contains a
countable subcover. We have subsequently discovered that an equivalent condition was
first discovered and exploited by K. Alster, [Alster (1988), Condition (∗)] in connection
with the question of which spaces have a Lindelöf product with every Lindelöf space.
Accordingly, we will rename this as Alster’s condition. (It must be admitted that we
were never happy with “amply Lindelöf” in the first place.) A space that satisfies Alster’s
condition will be called an Alster space. We will continue to call a cover of a space ample
if every compact set is finitely covered. Since Gδ sets are closed under finite unions, we
will often suppose, without explicit mentions that our Gδ covers are closed under finite
unions. For an ample Gδ cover, this means that every compact set is contained in some
element of the cover.

We will be studying Alster spaces in a subsequent paper that concentrates on Alster’s
original context, namely that the product of an Alster space and a Lindelöf space is
Lindelöf. See [Barr, et al., (to appear)].

2. Some (punctured) planks are absolute CR -epic

A topological space that is a product of two total orders is sometimes called a plank.
Sometimes the word is used for what we call a punctured plank, a plank with one point
removed. For example, the Dieudonné plank is the space (ω +1)× (ω1 +1)−{(ω, ω1)}.
In [Barr, et al. (2006), 7.14, 7.15] we showed that the Dieudonné plank and certain other
punctured planks are absolute CR -epic. Here we extend that result.

We will be dealing with complete lattices. Each such lattice X has a compact topology
in which the subbasic closed sets are the closed intervals [x, y] = {u | x ≤ u ≤ y}. The
topology is not necessarily Hausdorff, but it is when the lattice can be embedded into
a product of chains. These lattices, being complete, will have top and bottom elements
that we will denote by > and ⊥, respectively.

2.1. Theorem. Suppose X is a complete lattice. Then the closed interval topology de-
scribed above is compact.

Proof. We use [Kelley (1955), 5.6] which states that a space is compact if any collection
of subbasic closed sets with the finite intersection property has non-vacuous intersection.
But if for some index set I we have a collection of closed intervals [xi, yi] with the finite
intersection property, then we must have for all i, j ∈ I that xi ≤ yj. If not, we would
have [xi, yi] ∩ [xj, yj] = [xi ∨ xj, yi ∧ yj] = ∅. But then

⋂
[xi, yi] = [

∨
xi,

∧
yi] 6= ∅.
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For the purposes of the next theorem, let us say that a complete chain X has (resp.
lacks) a proper countable cofinal subset when X − {>} does.

2.2. Theorem. Let X be a finite product of complete chains, none of which has a proper
countable cofinal subset. Then X − {>} is almost compact and > is a P-point of X.

Proof. Suppose X is a chain that lacks a proper countable cofinal set. We need to
prove that β(X − {>}) = X, or that X − {>} is C-embedded in X. Suppose f : X −
{>} // [0, 1]. Let t0 = lim infx // > f(x) and t1 = lim supx // > f(x). We claim that
t0 = t1. Choose x1 ∈ X arbitrarily. Let x2 > x1 such that |f(x2)− t0| < 1/2. Continuing
in this way choose xn > xn−1 such that |f(xn) − tn mod2| < 1/n. Let x = sup xn and
it is immediate that t0 = f(x) = t1. This allows us to extend f to all of X and it will
obviously be continuous. The case of a finite product follows from

2.3. Proposition. Suppose X and Y are compact spaces and x0 ∈ X and y0 ∈ Y are
such that X − {x0} and Y − {y0} are almost compact. Then X × Y − {(x0, y0)} is
almost compact.

Proof. According to [Gillman & Jerison (1960), 9.14] the product of a compact space
and a pseudo-compact space is pseudo-compact. In particular, X× (Y − {y0}) is pseudo-
compact. According to [Glicksberg, 1959, Theorem 1], this implies that

β(X × (Y − {y0})) = X × Y

. Since the β-compactification of any space between X and βX is βX, we conclude in
this case that

β(X × Y − {(x0, y0))} = X × Y

Finally, we want to prove that > is a P-point of X. If X =
∏n

i=1 Xi of complete
chains, none having a proper countable cofinal set, then a countable sup of elements less
than > is less than >. A basic neighbourhood of > in Xi has the form (xi,>] and then
a basic neighbourhood of > in X is

∏n
i=1(xi,>]. A countable set of such neighbourhoods

has the form
∏n

i=1(xi,j,>] for j = 1, 2, 3, . . .. The intersection of these neighbourhoods
contains

∏n
i=1(supj xij,>], which is a neighbourhood of >.

2.4. Theorem. Suppose that X =
∏

Xi is a product of finitely many complete chains,
each of which has the property that Xi − {>} has a proper countable cofinal set. Then
X − {>} is locally compact and σ-compact.

Proof. Let Si = {xi1, xi2, . . .} be a countable cofinal set in Xi − {>}. Then it is evident
that S =

∏
(Si ∪ {>}) − {(>,>, . . . ,>)} is a countable cofinal set in X − {>}. For

every s ∈ S, it is evident that [⊥, s] is compact so that X − {>} is σ-compact. For any
element x = (x1, . . . , xn) ∈ X − {>}, there is a compact neighbourhood of xi in Xi. At
least one xi 6= > and for that one, the compact neighbourhood can be chosen to exclude
>. The product of these compact neighbourhoods is a compact neighbourhood of x in
X − {>}.
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Recall that a space is weakly Lindelöf if from every open cover a countable subset can
be found whose union is dense. Obviously a Lindelöf space is weakly Lindelöf and so is
any space with a dense Lindelöf subspace.

2.5. Theorem. Suppose that Y is a space and y0 is a non-isolated P-point. Suppose Z
is a space with a point z0 such that Z − {z0} is weakly Lindelöf. Then Y ×Z − {(y0, z0)}
is C-embedded in Y × Z.

Proof. Let f ∈ C(Y × Z − {(y0, z0)}). For each z ∈ Z − {z0} and each n ∈ N, there is
a neighbourhood V (z, n) of y0 in Y and a neighbourhood W (z, n) of z in Z − {z0} such
that the oscillation of f in V (z, n)×W (z, n) is less than 1/n. Suppose z(1, n), z(2, n), . . .
is a countable set of points of Z − {z0} such that W (n) =

⋃
m∈N W (z(m,n), n) is dense

in Z − {z0}. Let V (n) =
⋂

m∈N V (z(m, n), n). It follows that the oscillation of f in
V (n) ×W (n) is at most 1/n. Since y0 is a P-point, V (n) is a neighbourhood of y0. For
any y ∈ Y − {y0} both functions f(y,−) and f(y0,−) are continuous on Z − {z0} and
hence, for any z ∈ Z − {z0} and any m ∈ N, there is a neighbourhood T (m) of z such
that the oscillation in Tm of both f(y,−) and f(y0,−) is at most 1/m. There is some
p ∈ W (n) ∩ T (m) and we have

|f(y, z)− f(y0, z)| ≤ |f(y, z)− f(y, p)|+ |f(y, p)− f(y0, p)|+ |f(y0, p)− f(y0, z)|
< 1/m + 1/n + 1/m = 2/m + 1/n

Since the left hand side does not depend on m this implies that |f(y, z)− f(y0, z)| ≤ 1/n.
Finally, let V =

⋂
n∈N V (n). Then for y ∈ V , we have f(y, z) = f(y, z0) and we can

extend f by f(y0, z0) = f(y, z0) for any y ∈ V .

This works, in particular, if Z − {z0} is Lindelöf or if it contains a dense Lindelöf
subspace.

From this, we can show the following generalization of [Barr, et al. (2006), Theorem
7.14].

2.6. Theorem. Suppose the Lindelöf space Y is the union of a locally compact subspace
and a non-isolated P-point y0. Suppose Z is a compact space that has a proper dense
Lindelöf subspace and z0 is a point not in that subspace. Then Y × Z − {(y0, z0)} is
absolute CR -epic.

Proof. Since D = Y × Z − {(y0, z0)} is C-embedded in Y × Z, it follows that the
realcompactification υ(D) = Y × Z. Since Y × Z is the union of a locally compact space
and a compact space, the result follows from [Barr, et al. (2006), Theorem 7.11].

2.7. Theorem. Suppose that X =
∏n

i=1 Xi is a finite product of complete chains. Assume
that > is not an isolated point of any of the chains. Then X − {>} is absolute CR -epic.
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Proof. Divide the spaces into two classes, Y1, Y2, . . . , Yk that lack proper countable cofinal
sets and Z1, Z2, . . . , Zl that have them. Let Y =

∏
Yi and Z =

∏
Zj. We know that

Y − {>} is almost compact and > is an non-isolated P-point of Y . We know that
Z − {>} is locally compact and σ-compact and > is not isolated in Z. It follows that
Y × Z − {(>,>)} is absolute CR -epic.

3. Alster’s condition

Most of the following theorem was proved as [Barr, et al. (2006), Theorem 4.7] under the
additional hypothesis that the spaces satsfied the CNP. That condition was not used in
the proofs; it was simply that we never studied Alster’s condition separately.

3.1. Theorem.

1. The product of two Alster spaces is Alster space.

2. A closed subspace of an Alster space is Alster space.

3. A Lindelöf space is an Alster space if every point has a neighbourhood that satisfies
Alster’s condition.

4. A union of countably many Alster spaces is an Alster space.

5. A cozero-subspace of an Alster space is an Alster space.

6. If θ : Y // X is a perfect surjection, then X satisfies Alster’s condition if and
only if Y does.

Proof. We will mention briefly what, if any changes are needed from the proofs in [Barr,
et al. (2006), Theorem 4.7].

1. This is just [Barr, et al. (2006), Theorem 4.5].

2. See [Barr, et al. (2006), proof of 4.7.2]

3. See [Barr, et al. (2006), proof of 4.7.3]

4. This is a stronger claim (union, not sum) than the corresponding part of [Barr, et
al. (2006)] and requires its own proof. Suppose X =

⋃
Xn is such a union. If U is

an ample Gδ cover of X then Un = {U ∩Xn | U ∈ U} is a Gδ cover of Xn for all n.
If K is a compact subset of Xn, it is a compact subset of X and hence covered by a
finite subset of U and therefore by a finite subset of Un. Thus Un is an ample cover
of Xn and therefore has a countable refinement. Thus there is a countable subset of
U whose union contains Xn. Since there are countably many Xn we conclude that
U has a countable refinement.

5. See [Barr, et al. (2006), proof of 4.7.5]
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6. The proof of [Barr, et al. (2006), 4.7.5] does not use the CNP condition. However
the first part of the proof contains an unneeded gap, which we fill here. Suppose
that θ : Y // X is perfect and X satisfies Alster’s condition. Suppose that V is
an ample cover of Y . Since, for each point p ∈ Y the set θ−1(θ(y)) is compact, we
can assume that some member V ∈ V contains that set. But then θ(p) ∈ θ#(V ).
Since θ−1(θ#(V )) ⊆ V the set

W = {θ−1(θ#(V )) | V ∈ V }

is a cover of Y that refines V . Moreover since both θ# and θ−1 preserve both open
sets and arbitrary intersections, they preserve Gδ sets so that W is a Gδ cover. It
is also ample since for any compact set A the sets θ(A) and θ−1(θ(A)) are compact
and if V ∈ V contains θ−1(θ(A)), then

θ−1(θ#(V )) ⊇ θ−1(θ#(θ−1(θ(A)))) = (θ−1(θ(A)) ⊇ A

The rest of the proof goes through with W in place of V .

3.2. Theorem. Suppose that the Lindelöf space X has the property that when U is a Gδ

set of βX that contains a point p ∈ X, then U ∪X is a βX-neighbourhood of p. Then X
is a CNP space that satisfies Alster’s condition.

Proof. CNP is immediate. Let U be an ample cover of X by Gδ sets of βX. We can
suppose, without loss of generality, that U is closed under finite union. We will show
that there is an X-neighbourhood of p that is covered by a countable subset of U. Let
p ∈ U1 ∈ U. We claim there is a continuous f : βX // [0, 1] such that A ⊆ Z[f ] ⊆ U1.
In fact, this is immediate when U1 is open and it follows for Gδ sets since a countable
intersection of zero-sets is a zero-set. Then X ∪ Z[f ] is a βX-neighbourhood of p so
that there is a compact βX-neighbourhood W of p with W ⊆ X ∪ Z[f ]. It follows that
W ∩ coz(f) ⊆ X. But W ∩ coz(f) is σ-compact and hence there are U2, U3, . . . ∈ U such
that W ∩ coz(f) ⊆ ⋃

n≥2 Un and then W ⊆ ⋃
n∈N Un. Having done this for each point

p ∈ X, the Lindelöf property implies that there are countably many points for which the
corresponding W covers X and then so do the corresponding sequences of Un.

For example, this theorem implies that when p ∈ βN−N is a P-point, then N ∪ {p}
is good. See also [Barr, et al. (2006), Theorem 5.4].

4. Countable unions of absolute CR -epic spaces

If X ⊆ Y is dense, any function in f ∈ C(X) has a largest extension to a subset of X
which we will call the maximal extension of f . Although this can be worked out from
[Fine, Gillman, & Lambek (1965), Section 3.7], it is very easy to check that the following
formula works. Assuming X is a dense subspace of Y , f ∈ C(X) can be extended to a
y ∈ Y if and only if

⋂
cl(f(U ∩X)). taken over all neighbourhoods U of y, is a singleton.
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4.1. Theorem. The classes of Lindelöf absolute CR -epic spaces, Lindelöf CNP spaces,
and Alster spaces are all closed under countable open unions.

Proof. Let X =
⋃

Xn with each Xn open in X and suppose that K is a compactification
of X. Let Kn = clK(Xn). It is standard that Kn is a K-neighbourhood of Xn since Xn is
open in X. Let f̂ be the maximum extension of f into K and f̂n be maximum extension
of f |Kn into Kn. We claim that if p ∈ dom(f̂n), then p ∈ dom(f̂). In fact, in order that
p ∈ dom(f̂n) it is required that for any ε > 0 there exist an open neighbourhood U ⊆ Kn

of p such that the oscillation of f in U ∩Xn be less than ε. But U ∩Xn is open in Xn,
which is open in X so there is an open neighbourhood V ⊆ K such that V ∩X = U ∩Xn.
Thus for any ε > 0, there is an open neighbourhood V ⊆ K such that the oscillation of f
in V ∩X is less than ε and hence p ∈ dom(f̂). But dom(f̂n) is a neighbourhood of Xn in
Kn and hence dom(f̂) ⊇ ⋃

dom(f̂n) is a neighbourhood of X in K, using once more the
fact that each Xn is open in X. Since X is Lindelöf, it is absolute CR -epic, [Barr, et al.
(2005), Corollary 2.14].

Now let us consider the case that the Xn are all Lindelöf CNP. Let U ⊆ K be a Gδ set
containing X. Then U ∩Kn is a Gδ set in Kn and hence contains a Kn-neighbourhood
of Xn which contains a K-neighbourhood of Xn. Then

⋃
Vn is a K-neighbourhood of X

contained in U .
The case of Alster spaces is Theorem 3.1.4.

4.2. Theorem. A countable, locally finite union of closed Lindelöf (resp. Alster) CNP
spaces is Lindelöf CNP (resp. Alster).

Proof. By [Barr, et al. (2006), Theorem 3.6.3], a countable sum of Lindelöf CNP spaces
is Lindelöf CNP and we show in [Barr, et al., (to appear)] that CNP spaces are closed
under perfect image (and it is well-known that being a Lindelöf space is as well.) Thus
it is sufficient to show that the map from the sum to the union is perfect. The inverse
image of each point is finite, hence compact. Let A =

∑
An be a closed subset of the

sum with An closed in Xn. If p /∈ ⋃
An there is a neighbourhood U of p that meets only

finitely many of the Xn, say X1, X2, . . . , Xm. For each m ≤ n, the set An is closed in
Xn, which is closed in X and hence

⋃m
n=1 An is closed in X. Since p /∈ ⋃m

n=1 An, there
is a neighbourhood V of p which misses that union. Since U does not meet any Xn for
n > m, neither does V so there is a neighbourhood of p that does not meet A. Since p
was an arbitrary point not in A, we conclude that A is closed.

By contrast, we will see in Section 7 that even a finite union of Lindelöf absolute
CR -epic, but not CNP spaces, need not be absolute CR -epic.

5. Lindelöf Absolute CR -epic spaces that are not CNP

5.1. Theorem. Let {Xn} be any countable family of non-compact absolute CR -epic Lin-
delöf spaces. The space

X = β
(∑

Xn

)
−

∑
(βXn − Xn)
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is absolute CR -epic, but does not satisfy the CNP.

Proof. We see that βX = β (
∑

Xn) and βX − X =
∑

(βXn − Xn). An element of
p ∈ βX is said to be at level n if p ∈ βXn −Xn and we write n = `(p). We will also say
that `(p) = ∞ if p ∈ β(

∑
Xn)−∑

βXn. Let E be an admissible equivalence relation on
βX. This means that βX/E is Hausdorff and that X is embedded in it, see [Barr, et al.
(2006), Definition 2.4] for a fuller explanation. Let θ : βX // βX/E be the projection.
We will say that an element p is fused with an element q whenever (p, q) ∈ E, which is
the same as θ(p) = θ(q).

We interrupt this with:

5.2. Lemma. There is an N ∈ N such that whenever p is fused with q, then either
`(p) = `(q) or `(p), `(q) < N .

Proof. Suppose we can find elements of arbitrarily high levels that are fused with ele-
ments of levels other than their own. We will consider two cases. First suppose that for
some N ∈ N there are elements (p, q) ∈ E such that p has arbitrarily high order, while q
is limited to being below some level, say N .

In that case, we can choose elements pn, qn for all n ∈ N such that pn is fused with
qn, N < `(p1) < `(p2) < · · · while `(qn) ≤ N for all n. The set {(pn, qn)} ⊆ E thus
constructed is discrete since βX`(pn) × βX`(qn) are a family of disjoint open sets each
containing one element of the set. But then it has a limit point (p, q) and it is clear that
`(p) = ∞, which implies that p ∈ X, while `(q) ≤ N and the result is that an element of
X is fused, which contradicts the fact that E is admissible.

In the other case, there are pairs (p, q) ∈ E in which `(p) 6= `(q) and both levels
are arbitrarily high. In that case, proceed as above, but assume that `(pn), `(qn) >
`(pn−1), `(qn−1). Again this is a discrete set and hence has a limit point (p, q) but now
both elements belong to X and we must show that p 6= q. We do this as follows. Since
p1 6= q1, there is a function f1, defined on all the elements

∑
βXn of level `(p1)∨`(q1) such

that f1(p1) = 0 and f1(q1) = 1. Since the levels of both p2 and q2 are above the levels of
both p1 and q1, this function can be extended to a function f2 defined on those summands
of levels up to `(p2)∨ `(q2) and in such a way that f2(p2) = 0 and f2(q2) = 1. Continuing
in this way, we define a function f on the sum of the finite levels such that f(pn) = 0 and
f(qn) = 1. This function has a unique extension to the elements at infinite level and it is
clear that f(p) = 0, while f(q) = 1. Again, this contradicts the admissibility of E.

Proof of 5.1, concluded. Since fused elements are confined to
∑N

n=1 βXn and that
space is absolute CR -epic, there is an open set around

∑
Xn that excludes fused elements.

Since every function in C(X) will extend to that open set and since X is Lindelöf, follows
from [Barr, et al. (2005), Corollary 2.14] that X is absolute CR -epic. Finally, we observe
that the set Un =

∑n
i=1 βXn∪β

(∑
i>n Xn

)
is open, but

⋂∞
n=1 Un consists of the elements

at level infinity and contains no neighbourhood of X and thus X does not satisfy the
CNP.
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6. The Bohr topology of Z is not absolute CR -epic

In this section, we will establish the claim of its header. The Bohr compactification b(Z) is
the reflection of Z into the category of compact groups. The map of Z into b(Z) is monic
(as soon as there is a monomorphism of Z into any compact group, which there is). It
is not, however, a topological embedding since no compact group can contain an infinite
discrete subgroup. For if G is compact and D is an infinite discrete subgroup, there is a
neighbourhood U of 0 in G that contains no non-zero element of D. If we choose V so
that V V ⊆ U then for any x, y ∈ D, we see that xV ∩yV = ∅. Then the cover of G by all
its translates has no finite refinement since each translate contains at most one element
of D. It follows that the map θ : β(Z) // b(Z) cannot be injective since an injective
continuous map between compact sets is closed. But since Z is embedded in β(Z) and
not in b(Z), this is impossible. Since a group is homogeneous, θ−1 of every point is not a
singleton.

Now let ZB be the group of integers with the topology induced by b(Z). Let T = R/Z
and θ : Z // T be an injective homomorphism gotten by letting φ(1) be an irrational
angle. This extends to φ : b(Z) // T. Clearly φ̂ is surjective since Z is dense in each.
Suppose t1, t2, . . . is a sequence of of elements of T not in the range of θ that converges
to 0. Choose elements pn ∈ b(Z) so that φ̂(pn) = tn. Let p be a limit point of {pn}.
Then φ̂(p) = 0. By [Barr, et al. (2005), Theorem 4.1], it will be sufficient to show that
b(Z) − {pn} is not almost compact for any n. But this follows from the fact that each
φ−1(pn) has more than one element, [Gillman & Jerison (1960), Problem 6J].

7. A perfect quotient of a Lindelöf absolute CR -epic space that is not ab-
solute CR -epic

It is shown in [Barr, et al. (2006), Theorem 3.5.5] that a perfect quotient of a CNP space
is CNP. Thus it is of some interest to show that the corresponding result for absolute
CR -epic spaces is false. In fact, the space is one of the spaces of Section 5. If we take
every Xi = N, we just get

X = β(N×N)−
∑

n∈N

(β({n} ×N) − ({n} ×N))

It might help to visualize β(N×N) as being made of four rectangles

1. N×N

2. N× (βN−N) (the vertical outgrowth)

3. (βN−N)×N (the horizontal outgrowth)

4. β(N×N)− (N× (βN−N))− ((βN−N)×N)



10

Here is a sketch of β(N×N):

N×N

N× (βN−N)

(βN−N)×N

β(N×N)− (N× (βN−N))− ((βN−N)×N)

Our space X consists of all but the lower right rectangle. Since N is open in βN, it follows
readily that N×N is open in X so that the union of the second and fourth rectangles is a
compact subspace of L ⊆ X. Let Y be the quotient of X gotten by identifying the subset
L to a single point. The quotient map is perfect. But Y is not absolute CR -epic since we
can find a sequence of elements of βY − Y that converges to a point of Y (see [Barr, et al.
(2005), Theorem 2.22]). Let p ∈ βN − N and look at the sequence (p, 1), (p, 2), (p, 3), . . .
which converges to {L}.

Here is another example of the same thing, which also illustrates the fact that even
a space that is the union of two closed Lindelöf absolute CR -epic subspaces need not be
absolute CR -epic. Such a union is a perfect quotient of the sum and the latter is certainly
absolute CR -epic.

Let
X = Y = β(N×N)−

∑

n∈N

(β({n} ×N) − ({n} ×N))

the space that we began this section with. Since N ×N is locally compact, it is open in
β(N × N) and hence also open in X and Y . Thus the complements of N × N in X and
Y are closed. The space Z is gotten by amalgamating X with Y along that complement,
that is identifying each point of X−N×N with its mate in Y −N×N. This amalgamated
space is a pushout

Y Z//

βN× (βN−N)

Y
²²

βN× (βN−N) X// X

Z
²²

Since N×N is open in X and Y , βN× (βN−N) is closed and the pushout of two normal
spaces by amalgating a common closed subspace is normal. Moreover since β is a left
adjoint it preserves pushouts, so that βZ is the pushout

βY βZ//

βN× (βN−N)

βY
²²

βN× (βN−N) βX// βX

βZ
²²
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and βX = βY = β(N×N). Now let K be the pushout

βY K//

βN× (βN−N) ∪ (βN−N)× βN

βY
²²

βN× (βN−N) ∪ (βN−N)× βN βX// βX

K
²²

which is obviously a compactification of Z. Now let f ∈ C(Z) be defined by f(n,m) = 1/n
on (n,m) ∈ X while f(n, m) = 0 on (n,m) ∈ Y , while f = 0 on the single copy of
βN × (βN − N). Then it is obvious that f cannot be extended to any point of K − Z.
Since Z is not open in K, this shows that Z is not absolute CR -epic.

8. Charactizations of Lindelöf CNP spaces

In the following theorem, L denotes the convergent sequence 1, 1/2, 1/3, . . . , 0.

8.1. Theorem. A Lindelöf space satisfies the CNP if and only if its product with L is
absolute CR -epic.

Proof. The product of Lindelöf CNP spaces is Lindelöf CNP and therefore absolute
CR -epic, so that direction is trivial. Conversely, assume that X × L is absolute CR -epic.
Suppose {Un} is a countable family of βX-open neighbourhoods of X. We may assume,
without loss of generality, that the sequence is nested. We must show that U =

⋂
Un

is a βX-neighbourhood of X. Define an equivalence relation En on βX × L. Define
An = βX − Un and En is the equivalence generated by ((p, 1/n), (p, 0)) ∈ En whenever
p ∈ An. Let E =

⋃
En.

8.2. Lemma. The set E is closed in (βX × L)× (βX × L).

Proof. The map βX ×L // (βX ×L)× (βX ×L) that sends (p, s, t) to ((p, s), (p, t))
is clearly a closed embedding. Let D denote the subset consisting of the elements (p, t, t).
It is them readily verified that E is the direct image under this map of the set B that is
the union of the following four sets:

1. {(p, 1/n, 1/m) | p ∈ An∧m};
2. {(p, 1/n, 0) | p ∈ An};
3. {(p, 0, 1/n) | p ∈ An};
4. D

It suffices to show that B is a closed subset of X×L×L. Let (q, 1/n, 1/m) /∈ B be given.
Let Ln = {1, 1/2, . . . , 1/n}. Given (q, 1/n, 1/m) /∈ B, we must have q ∈ Un∧m. Clearly
(q, 1/n, 1/m) ∈ (Un∧m ×Ln ×Lm) − D and the latter is an open set since D is obviously
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closed. Suppose that (p, 1/k, 1/l) ∈ Un∧m×Ln×Lm − D. Then we must have k ≤ n and
l ≤ m, which implies that k ∧ l ≤ m ∧ n, so that Uk∧l ⊇ Un∧m and p ∈ Uk∧l. It follows
that p /∈ B. No element of the second or third type lies in (Un∧m × Ln × Lm) since it
has 0 in the second or third place and the elements with identical second and third place
are explicitly eliminated. The case of an element of the form (q, 1/n, 0) or (q, 0, 1/n) is
similar and we will not repeat it.

Proof of 8.1, concluded. Assume that X × L is absolute CR -epic, We see that
(βX × L)/E is a compactification of X × L. Let f : X × L // R be the second
projection (recall that L ⊆ [0, 1]). Since X ×L is absolute CR -epic, f extends to an open
set W ⊆ (βX × L)/E. Consider the map βX // βX × L which sends p to (p, 0). Let
V be the inverse image of W under this map. Clearly V is an open subset of βX which
contains X. It suffices to show that V is contained in

⋂
Un . But if (p, 0) ∈ V then p

must be in
∧

Un otherwise p ∈ An for some n and so ((p, 0), (p, 1/n)) ∈ E which shows
that f cannot extend to (p, 0) as f(p, 0) = 0 but f(p, 1/n) = 1/n.

8.3. Remark. Since a closed subspace of a Lindelöf absolute CR -epic space is absolute
CR -epic (use [Barr, et al. (2006), Theorem 6.1] in conjunction with the fact that a closed
subspace of a Lindelöf space is Lindelöf and therefore C∗-embedded), one readily sees
that if L is any space that contains a proper convergent sequence and X × L is Lindelöf
absolute CR -epic, then X is Lindelöf CNP.

A space X is said to have the sequential bounded property or SBP at the point
p if for any sequence {fn} of functions in C(X) there is a neighbourhood of p on which
each of the functions is bounded. A space has the SBP if it does so at every point. For
example, every locally compact space has this property.

So does every P-space. The easiest way to see this is to let p ∈ X and let Un = {x ∈
X | |fn(p) − fn(x)| < 1}. Then

⋂
Un is a Gδ containing p and in a P-space, every Gδ is

open.
Since both of these classes of spaces have the CNP, the following characterization

comes as no surprise.

8.4. Theorem. A Lindelöf space is CNP iff it has the SBP at every point.

Proof. Suppose X is Lindelöf with the CNP and K is a compactification of X. Let
f1, f2, . . . be a sequence of functions in C(X). We can replace each fn by 1 + |fn|
and assume that they are all positive and bounded away from 0. Let gn = 1/fn and
Un = coz(gn). The CNP implies that

⋂
Un is a neighbourhood of X. Now let p ∈ X.

There is a closed, hence compact, neighbourhood V of p inside
⋂

Un. Since every gn

is non-zero on V , it follows that every fn is bounded there. In particular, every fn is
bounded in V ∩X, which is an X-neighbourhood of p.

Conversely, suppose X satisfies the SBP. If {Un} is a sequence of K-neighbourhoods
of X, the Lindelöf property allows us to choose, for each n, a function fn such that
X ⊆ fin(fn) ⊆ Un. For each p ∈ X, there is an X-open set Vp on which each fn is
bounded, from which it is clear that each fn is bounded on Wp = clK(Vp), which is a
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K-neighbourhood of p. Since fn is bounded on Wp, it follows that Wp ⊆ fin(fn) ⊆ Un for
each p and each n, so that W =

⋃
p∈X Vp is a K-neighbourhood of X contained in

⋂
Un.

8.5. Definition. If f, g ∈ C(X) let us say that g surpasses f and write f ≺ g if there
is a real number b > 0 such that f < bg.

8.6. Theorem. A Lindelöf space has CNP if and only if whenever f1, f2, · · · is a sequence
of functions in C(X), there is a g ∈ C(X) that surpasses them all.

Proof. ⇐: Every fn will be bounded on any neighbourhood on which g is bounded.
⇒: Let f1, f2, . . . be a sequence. We may assume, without loss of generality, that each
fn > 1. Using the SBP and the Lindelöf property, there is a countable cover U1, U2, . . .
of X such that for all n, m ∈ N each fn is bounded on each Um. Since a Lindelöf space is
paracompact, there is a partition of unity {tn} subordinate to the cover. In fact, we may
refine the cover and suppose that Un = coz(tn) (see [Kelley (1955), 5W and 5Y]). Let bn

be the sup of fn on U1∪U2∪· · ·∪Un−1. Define hn = f1 +f2 + · · ·+fn and g =
∑

n∈N hntn.
The local finiteness guarantees that this sum is actually finite in a neighbourhood of each
point, so continuity is clear.

We next claim that x ∈ coz(tm) implies that fn(x) ≤ bn(x)hm(x) for all n and m. In
fact, if m < n, then f(x) ≤ bn ≤ bnhm on U1 ∪ U2 ∪ · · ·Un−1 ⊇ Um = coz(tm). If m ≥ n,
then fn is one of the summands of hm so that fn ≤ hm ≤ bmhm. Note that the fact that
each fn ≥ 1 everywhere implies the same for every hn and bn.

We can now finish the proof. Given a point x ∈ X, let N(x) denote the finite set of
indices n for which tn(x) 6= 0. Then for all m,

bng(x) =
∑

n∈N

bnhn(x)tn(x) =
∑

n∈N(x)

bnhn(x)tn(x)

≥
∑

n∈N(x)

fm(x)tn(x) =
∑

n∈N

fm(x)tn(x) = fm(x)

8.7. Example. Here is a nice application of Theorem 8.4. Say that a space satisfies
the open refinement condition or ORC if the finite union closure of every ample Gδ

cover has an open refinement. We explore this condition in some detail in [Barr, et al.,
(to appear)]. All P-spaces and all locally compact spaces satisfy it and it is closed under
finite products, closed subspaces and perfect images and preimages.

8.8. Theorem. For Lindelöf spaces, ORC implies CNP.

Proof. Let X be Lindelöf and satisfy the ORC and let f1, f2, . . . be a sequence of func-
tions in C(X). For each compact set A ∈ X and each n ∈ N, let bn(A) = supx∈A |fn(x)|.
Let Un(A) = {x ∈ X | |fn(x)| < bn(A) + 1} and U(A) =

⋂
n∈N Un(A). Then U(A) is a

Gδ containing A. The cover by the set of U(A), taken over all the compact subsets of X,
is an ample Gδ cover. Each fn is bounded on each U(A) and hence is bounded on the
union of any finite number of them. Therefore each fn is bounded on each set in an open
refinement of {U(A)}.
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9. Outgrowths

The outgrowth of a Tychonoff space X is the space βX −X. In this section, we explore
some of the ways a space and its outgrowth influence each other.

9.1. Lemma. Let K be a compactification of X. Then K − X is countably compact if
and only if βX − X is.

Proof. Let θ : βX // K be the canonical quotient map. If βX − X is countably
compact, then its image, K − X clearly is too. To go the other way, we have from
[Kelley (1955), 5E(a)] that if βX − X is not countably compact, there is a sequence
S = {p1, p2, p3, . . .} that has no cluster point in βX − X. But then every cluster point in
βX of the sequence lies in X. Either S has an infinite subsequence all of whose images in
K are the same or S has an infinite subsequence all of whose in K are distinct. We can
suppose without loss of generality that S has one of those properties. In the first case,
if x is any cluster point of S in X, it is immediate that θ(S) = x, a contradiction. In
the second case, clβX(S) ⊆ S ∪ X and hence clK(θ(S)) ⊆ θ(clβX(S)) ⊆ θ(S) ∪ S which
implies that S has no limit point in K − X.

The proofs in the following are exercises.

9.2. Theorem. Of the following conditions on a space X and a compactification K,

1. X is a P-set in K;

2. The closure in K − X of every σ-compact subset of K − X is compact;

3. The closure in K − X of every countable subset of K − X is compact;

4. K − X is countably compact;

5. K − X is pseudocompact.

we have 1 ⇔ 2 ⇒ 3 ⇒ 4 ⇒ 5.

Usually, the outgrowth of a space X is just βX − X. Here we will call any space of
the form K − X for any compactification of X an outgrowth of X. We will say that Y
is co-Lindelöf if it is an outgrowth of a Lindelöf space.

9.3. Theorem. If Y is an outgrowth of a Lindelöf (resp. Alster’s condition) space, then
any outgrowth of Y is Lindelöf (resp. Alster’s condition). Conversely, if some outgrowth
of Y is Lindelöf (resp. Alster’s condition), then Y is an outgrowth of a Lindelöf (resp.
Alster’s condition) space.
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Proof. Suppose X is a Lindelöf space and K is a compactification of X with Y = K − X.
Then L = clK(Y ) is a compactification of Y and L − Y = L∩X is closed in X and hence
Lindelöf. The Alster’s condition case goes the same way.

For the converse, suppose L is a compactification of Y with L − Y Lindelöf. Let
N∗ be the one point compactification of N and K = N∗ × L. Embed Y as {∞} × Y
and let X = K − Y . Clearly K is a compactification of X with outgrowth Y . Finally,
X = (N × L) ∪ {∞} × (L − Y ) is the union of countably many Lindelöf spaces and is
therefore Lindelöf. The argument with Alster’s condition is similar.

9.4. Theorem. A space with a locally compact outgrowth is the union of a compact subset
and a locally compact subset.

Proof. Let X ⊆ K be a compactification such that Y = K −X is locally compact. Let
L = clK(Y ). Since Y is locally compact it is open in L and hence L − Y is a compact
subset of X. If p /∈ L−Y , then p has a K-neighbourhood that does not meet Y and a K-
closed K-neighbourhood inside it. Such a neighbourhood is a compact K-neighbourhood
of p inside X.

9.5. Theorem. A locally Alster’s condition outgrowth of a Lindelöf CNP space is locally
compact.

Proof. Suppose that X is a Lindelöf CNP space, K is a compactification of X and
Y = K − X. Assume that each p ∈ Y has an Alster’s condition neighbourhood. Let
F denote the family of all f ∈ C(K) that vanish nowhere on X. Then {Z[f ] | f ∈ F}
is readily seen to be an ample Gδ cover of Y , since for each compact set A ⊆ Y there
is an f ∈ F that vanishes on A (Smirnov). If p ∈ Y , there is a neighbourhood U of
p that is covered by a countable family of Z[f ]. This means that U ⊆ ⋃

Z[fn]. But
then

⋂
coz(fn) is a Gδ that contains X and by CNP there is an open V ⊆ K such that

X ⊆ U ⊆ ⋂
coz(fn) and then K − V ⊇ U is a compact neighbourhood of p.

10. SCZ spaces

We will say that a space satisfies the SCZ condition if every σ-compact subset is contained
in a compact zeroset. This actually comprises two separate conditions:

SCZ-1. The closure of any σ-compact set is compact;

SCZ-2. Every compact set is contained in a compact zeroset.

10.1. Proposition. A space that satisfies SCZ-1 is pseudocompact.

Proof. Suppose Y is such a space and f ∈ C(Y ) is unbounded. Choose points p1, p2, . . . , pn, . . .
such that |f(pn)| > n. The set {p1, p2, . . .} is discrete and not compact, but its closure is
compact, and if p is any point in its frontier, it is clear that f(p) cannot be defined.
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10.2. Proposition. If a space satisfies the CNP, any outgrowth satisfies SCZ-1.

Proof. If X satisfies the CNP and K is a compactification, let Y = K − X. If A is a
σ-compact subset of Y , then K − A is a Gδ set containing X. If X satisfies the CNP,
then there is an open set U such that X ⊆ U ⊆ K and then K − U is a compact subset
of Y that contains A.

10.3. Proposition. If a space is Lindelöf, any outgrowth satisfies SCZ-2.

Proof. If X is Lindelöf and K is a compactification, let Y = K − X. If A is a compact
set in Y , then K − A is an open set that contains X. Since X is Lindelöf, there is a
cozero set U such that X ⊆ U ⊆ K − A. Then K − U is closed, hence compact, in K
and evidently A ⊆ K − U ⊆ Y .

10.4. Proposition. The outgrowth of any space that satisfies SCZ-1 satisfies the CNP.

Proof. If Y satisfies SCZ-1 and K is a compactification, let W = K − Y . If U =
⋂

n∈N Un

is a Gδ containing W , with each Un open, then K − U =
⋃

(K − Un) is a σ-compact set
in Y and hence contained in some compact set A. But then W ⊆ K − A ⊆ U .

10.5. Proposition. The outgrowth of any space that satisfies SCZ-2 is Lindelöf.

Proof. If Y satisfies SCZ-2 and K is a compactification, let W = K − Y . We will first
consider the case that K = βY . It will suffice to show that any open subset of K that
contains W contains a cozero-set containing W since that will certainly be true of clK(W ).
If U is open and W ⊆ U , K − U is closed in K and hence compact and K − U ⊆ Y .
Then there is a function f : Y // [0, 1] such that K − U ⊆ Z[f ]. Since K = βY , f
extends to all of K. We claim that Z[f ] does not meet W . For suppose that p ∈ W with
f(p) = 0. There is a function g : K // [0, 1] such that g(p) = 0 and g|(K − U) = 1.
Then f + g vanishes nowhere on Y since g = 1 wherever f = 0. But 1/(f + g) is bounded
on Y and hence bounded on K = clK(Y ) and therefore f + g cannot vanish anywhere on
W , in particular at p. Thus Z[f ] is a compact zero-set in K that does not meet W and
then W ⊆ K − Z[f ] ⊆ U . This takes care of the case that K = βY . For the general case,
we know that θ : βY // K is perfect and that θ−1(K − Y ) = βY − Y . If U is an open
cover of W = K − Y , then {θ−1(U) | U ∈ U} is an open cover of βY − Y from which
we can extract a countable cover θ−1(U1), θ

−1(U2), . . . and it follows that U1, U2, . . . is a
cover of K − Y that is a subcover of U.

For the rest of this section, Y will be a space that satisfies part or all of SCZ, K will
be a compactification of Y , W = K − Y , and L = N∗ ×K. We will embed K // L as
{∞}×K and similarly for Y and W . We let X = (N×K)∪ ({∞}×W ) = L − {∞}×Y .

10.6. Proposition. If W is Lindelöf, so is X.

Proof. Since N×K is σ-compact and W is Lindelöf, it is obvious.
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10.7. Proposition. If W satisfies the CNP, so does X.

Proof. Suppose X ⊆ U =
⋂

Un with each Un open in L. Then W ⊆ ⋂
(K ∩ Un) and

each K ∩Un is open in K. Since W satisfies the CNP, there is an open V ⊆ K such that
W ⊆ V ⊆ U ∩K. But then N∗ × V and N×K are open in L and

X ⊆ (N∗ × V ) ∪N×K ⊆ U

10.8. Theorem. The outgrowth of any Lindelöf CNP space satisfies SCZ; any space that
satisfies the SCZ is the outgrowth of a Lindelöf CNP space.

It does not follow that a space whose outgrowth satisfies SCZ is Lindelöf (although it
is CNP). An outgrowth of any locally compact space, in particular of any discrete space,
is compact and trivially satisfies SCZ, but the original space need not be Lindelöf. As for
the CNP claim, any space X = U ∪V where U consists of the locally compact points and
V ?????????????? is open. If an outgrowth satisfies SCZ, then its outgrowth is V , which
therefore satisfies the CNP and it is immediate that the union of a CNP space and an
open locally compact space is CNP.
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