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1. Principal results 

Before giving the statements, we require a definition. An atomic sire is a category 

equipped with a topology in which every cover is non-empty and conversely, every 

non-empty sieve is a cover. In order that a category admit such a topology-evidently 

unique -it is necessary and sufficient that any pair of maps with a common codomain 

be completable to a commutative square (terminating in that codomain). This 

topology is subcanonical iff every morphism in the category is a regular epimorphism 

in the sense of being the common coequalizer of all pairs of maps that it coequalizes. 

The condition that the covers be non-empty is non-trivial for a strict initial object is 

covered, in any sub-canonical topology by the empty sieve. 

Theorem A. Let 8 be a Grothendieck topos, r: 8 + Yet be the global sections functor 
with left adjoint A. Then the following are equivalent: 

(i) 8 is the category of sheaves for an atomic site, 
(ii) A is logical, 

(iii) the subobject lattice of every object of S? is a complete atomic boolean algebra. 

The first condition above is of course appropriate only for a Grothendieck topos. 

The second can be asked of any geometric morphism of toposes as can a suitable 

modification of the third. When this is done, we will see that the last two conditions 

remain equivalent. 

* The first author would like to thank the National Research Council of Canada and the Ministere de 

I’Education du Quebec and the second the National Science Foundation of the United States for-their 

support of this research. 
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If E is an object of 8 (or of any category) the statement that the subobject lattice of 
E is a complete atomic boolean algebra is equivalent to the existence of a set AE - 
the atoms of E -and an order isomorphism between the subobject lattice of E and 
the boolean algebra 2”E. Since ‘8 is a topos, the subobject lattice of E is 
Hom(E, f2) = Hom(1, nE) = f(OE), where 0 is the subobject classifier of ‘8’. Thus 
the third condition of the theorem can be replaced by 

(iii)’ There is an object function A : 25’ + Yet such that for any E E %‘, 

f(RE)=2AE 

as partially ordered sets. 
We are now ready to state the generalization of Theorem A. Here and elsewhere, 

we let 0 denote the subobject classifier of any topos (except when it is known to be 
boolean, in which case we use 2). 

Theorem B. Let (A, I’) : 8 + W be a geometric morphism between toposes. Then A is 
logical iff there is an object function A: 55’ + W such that for any E E 8 the partially 
orderedsetobjectsT(f2E) and f2AE of B are isomorphic. In that case il can be extended 
to a functor left adjoint to A. 

In addition we study various properties and further characterizations of local 
homeomorphisms - those geometric morphisms (d, r) for which A is logical. We 
mention some examples which seem interesting and important. 

For generalities about toposes we refer to [6]. 

2. Proof of Theorem B 

Suppose that A is logical. A theorem of Mikkelsen’s (but the proof sketched below 
is due to Pare) asserts that a logical functor has a left adjoint iff it has a right adjoint. 
Since A has a right adjoint r, it also has a left adjoint A. Pare’s argument is based on 
the diagram 

R’ /;:~.t”;:, ) 

s* ‘3 
43 

in which the downward arrows are tripleable and the fact that J is logical means that 
the square going from lower right to upper left commutes. Since J is left exact, A”’ 
preserves (regular) epis. Then a theorem of Butler [2] implies that Aop has a right 
adjoint which we shall call A”“, and that 
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This course means that A is left adjoint to D and that for any E in 8, 

LP = T(P). 

Proposition 1. The isomorphism above is a semilattice isomorphism, i.e., an iso- 
morphism of inf semilattice objects (hence of partially ordered objects and hence of 

complete heyting algebra objects) of 973. 

Proof. To say that f2.1E and f(nE) are semilattice isomorphic is to assert that for any 
B E 9 the isomorphism 

Hom(B, On.‘E) = Horn@, r(OE)) 

given by the adjointness 

A Op.fl(),,O.A 

together with the isomorphism of Aa s 0, is a semilattice isomorphism. Since a 
semilattice is a model of an equational theory, we need only verify that the 
isomorphism is in one direction a map which preserves the semilattice structure. The 
isomorphism is the composite 

Horn@, PtE)AHom(B x AE, L?) f Hom(A (B X A,?$, Afl) 

AHom(AB x AAE, AR)fHom(AB XAAE, f2)aHom(AB x E, f2) 

AHom(AZ3, RE)LHom(TAB, r(fl”)>aHom(B, r(flE)). 

The maps labeled 1 and 6 are semilattice isomorphisms; the structures on a”“, resp. 
RE, are defined (from those of the 0’s) by requiring that those maps be semilattice 
isomorphisms. 

The maps labeled 2 and 7 are instances of a general principle. If F: 2’+ 9 is a 
finite-product-preserving functor and X E Z is a model of the finitary theory .Yh, 
then FX is canonically a model of the same theory in 5 in such a way that the 
function 

apply F: Hom(X’; X) + Hom(FX’, FX) 

is a .Yh homomorphism in Yet. In the present instance, the semilattice structures on 
AL! and r(nE) are induced from those on C? and RE, respectively, by this canonical 
process applied to A and K The maps labeled 3,5 and 8 are instances of the facts that 
a morphism X’+ X” in a category k%’ induces a .Yh homomorphism 

Hom(X”, X) + Hom(X’, X) 

in Yet under the conditions described above. As for 4, we leave it as an exercise to the 
reader to show that the map d:AO --, R which is the characteristic map of A(true) 
preserves finite intersections and hence is a morphism of semilattice objects. Thus 
the map 
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preserves the semilattice structure and in particular the partial order. Thus it is an 
equivalence of partial orders. 

This completes the proof of the “only if” part of Theorem B. To go the other way, 
recall that a regular category 8!’ is one in which pullbacks exist and the pullback of a 
regular epimorphism is regular. In such a category every map factors uniquely as a 
regular epimorphism followed by a monomorphism; a map which is both is an 
isomorphism (see [l, 1.21). We let 

sub : SF” + 9’emilattice 

denote the functor which assigns to each object of X the inf semilattice of its 
subobjects. If f:X + Y is a morphism and YO * Y is a subobject, sub(f)( YO) is 
the pullback Yc, xyX. We conform to accepted usage and write 

fF:sub Y+subX 

instead of sub(f). 

Theorem C. Let 2’ and ?V be regular categories and @.: 2’+ -71r be a finite product 
preserving functor. Let X E 2’ and WE -w” be objects such that the functors 

sub(X x -), sub( W x @ -) : @” --, yernilattice 

are naturally equivalent. Then the functors 

Hom(X, -), Hom( W, I#J -) : 2’+ .!Pet 

are also naturally equivalent (maps identified with their graphs). 

What has to be shown is that for YE 2, a subobject of X x Y is the graph of a map 
X + Y iff the corresponding subobject of W x @Y is the graph of a map W -, @Y. 
This will follow if we can characterize those subobjects which are graphs of maps in 
terms of the semilattice structure and functoriality of sub(X x -) and sub( W x @ -). 

We begin with 

Proposition 2. f: --, in let 

sub --, Z 

to Y image the 

YCJW 

Then is adjoint f”. 

Proof. Standard. 

Proposition 3. Let Y, Z be in the regular category 2’. Let R be a subobject of Y X Z. Let 

p: YxZ+Z,q,,q*: YXZXZ + YxZbeprojectionsandd:XxZHYxZxZbe 
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Y x diagonal. Then R is the graph of a map Y LZ iff 

(8 Se(R)= Y, 
(ii) q:(R)nqT(R)=3d(R). 

Proof. In the category of sets the first condition describes the fact that R is defined 
everywhere in Y; the second that it is single-valued. More generally a subobject 
R - Y x Z is the graph of a map Y + Z iff the composite 

R+YxZ+Y 

is an isomorphism. The data of the proposition are all preserved by exact functors. 
They are reflected by exact functors that reflect isomorphisms. Using the meta- 
theorem of [l, 111.61, we see that it is sullicient to prove it in Y’ers. 

This result can be summarized by saying that the set diagram: 

Wl’y; 
Hom( Y, Z) - sub(YxZ) 3p sub Y 

3d 

I I 

q:nqT 

sub(YxZxZ) 

is a limit. Here rY1 is the name of the largest subobject of Y. 

Proposition 4. Each of the following diagrams commutes. 

sub(Xx Y)B~v rX7 sub(X) 

1 I I 
sub(Wx@Y)+l = sub(W) 

sub(X x Y) 
3P 

P sub(X) 

1 
sub(Wx@Y) ” 

I 
____, sub( WI 

-I: 

sub(X x Y) 
B. 

-sub(X x Y x Y) 

I s:r I 
sub( W x @Y) -sub(Wx@Yx@Y) 

sub(X x Y) 
3d 

*sub&x Yx Y) 

I I 
sub( W x @Y) 3d - sub( W x GY x @Y). 
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Proof. The first commutes because a semilattice isomorphism preserves the largest 
element of the semilattice. For the second, observe that p is actually the value at Y of 
a natural transformation between the functorx x - and the constant functor X. Thus 
the diagram 

sub(X x Y) 
P’ 

- sub(X) 

I l 

sub( W x GY) A 
1 

sub( WI 

commutes. But the vertical arrows are isomorphisms and hence commute with the 
left adjoints 3p as well. The remaining two are similar. 

This result, combined with the previous proposition, implies Theorem C. 

Proposition 5. For E E 8 functors 

sub(AE x -), sub(E x A -) : Wop + 9’emilattice 

are naturally equivalent. 

Proof. We know that 

fIAE = f(OE) 

are isomorphic as semilattice objects of 3. This means that 

Hom(-, OAE), Hom(-, r(OE)) : i41°p+ Yemilattice 

are naturally equivalent. But 

Horn@, 0”“) = Hom(AE x B, f?) = sub(AE x B) 

while 

Horn@, r(nE)) zz Hom(AB, OE) = Hom(E x Al?, 0) s sub(E X AB). 

The value of Hom(AE x -, f2) and Hom(E x A -, 0) on maps are computed by 
pulling back so that these functors are isomorphic in the way required to apply 
Theorem C. Thus we see that 

Hom(AE, B) = Hom(E, AB) 

which implies that A can be extended in a unique way to a functor left adjoint to A. 
We are ready to show that A is logical. Since we now know A is a functor all the above 
isomorphisms are natural in E. Then for all E E %‘, 

Hom(E, ALI) = Hom(AE, f2) = sub(AE) 

= sub(E) 2 Hom(E, 0) 

naturally in E so that Af2 = 0. Next, for E E ‘8, B E 93, 
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Hom(E, A (f?‘)) z (AE, nB) = Hom(B, f?lE) 

= Horn@, r(O”)) = Hom(AB, nE) 3 Hom(E, AR“‘), 

so that A(OB) = AflAB. Then for E E 55’, B’, B E 3, we have 

Horn@‘, ,-pZ(ExAB) 
) = Hom(A(E x AB), I?“) = Hom(E x AB, ARAB’) 

= Hom(E, AR-‘lBxB”) = Hom(E, A (fYtBxB’)) 

z Hom(AE, nBxB’) z Horn@‘, fl.‘“““). 

Since A is determined uniquely by 0”’ ), it follows that 

A(ExAB)=AExB. 

Corollary. For any B E 9, AAB = A 1 x B. 

Thus the proof of Theorem B is completed by 

Proposition 6. The left adjoint A of a geometric morphism preserves exponentiation iff 

there is a natural equivalence 

A(ExAB)=AExB. 

Proof. For any object B’ of LZt we have the commutative diagram 

Hom(B XAE, B’)=Hom(AE, B’S)zH~m(E, A(B’*)) 

1 I 
Hom(A (AB X E), B’) = Hom(AB x E. AS’) = Hom(B, AB’AB). 

3. Further properties of A 

In this section we derive further properties of a left adjoint to a logical functor. 

Theorem D. Let A be a left adjoint to a logical functor between toposes. Then A has the 

following properties: 

(i) A preserves monomorphisms. 

(ii) A creates (i.e. preserves and reflects) pullback of an arbitrary map with a 

monomorphisms. 

(iii) A reflects epimorphisms. 

Proof. As remarked at the beginning of Section 2, a logical functor has a right 

adjoint iff it has a left adjoint. Thus we may suppose that A -IA -(r and, from 

Theorem B, that there is a natural equivalence 

r(nE) = CPE. 
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To prove (i) we begin with, 

Proposition 7. A map f: E + Fin a topos 27 is monomorphism (resp. epimorphism) iff 

3f: RE + RF 

is a split monomorphisms (resp. split epimorphism ). 

Proof. First off, note that 3f. R’e3f = 3f always. Hence 3f is mono (resp. epi) iff 

0’. 3f = Id (resp. 3f. d = Id). Now if f is mono, subobjects of E X - are mapped 

monomorphically by image to subobjects of F x -. If, conversely, f is not mono, the 

kernel pair off and the diagonal of E x E are mapped to the same subobject of E x F, 
namely the graph off. If f is epi, every subobject of F x - is the image of one from 

E x - so that 3f is epi and conversely. 

Now suppose that f: E’+ E is a monomorphism. We have a commutative square 

rcn’) 

I I 

R.‘C) 

f (P’) z JYE’ 

of lattice, i.e. category, objects of 3. Since left adjoints are unique, it follows that 

f(RE)rfy 

f73f) I I 3N 

f(OE’) s fp’ 

commutes as well. Next observe that when f is mono, then 3f and f (3f) = 3(Af) are 

split monos. By applying the converse of Proposition 7, we see that Af must be mono. 

Proposition 8. For any monomorphism f: E’ HE, the characteristic map off is the 
transpose of the map r-XI1 which is the composite 

in which the first map is name of the characteristic map of the identity of E’. 

Proof. Apply Hom(1, -) to get 

1 +sub(E’) Irnf -sub(E). 
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The first map chooses the identity subobject of E’ which is mapped to the inclusion by 

Im/. This defines the transpose of the characteristic map. 

In the proof of Proposition 7, we saw that under the isomorphism of R”- with 

r(L?-), 3(Af) corresponds to f(3f). Together with the preceding we conclude that if 

f: E’-E has characteristic map x,:E+f?, then the square 

AE’ -AE 

I I 
1-n 

is a pullback. The right hand map is the composite of AE + AR = AAR with the 

adjunction map AAL? + 0. Consider now a commutative diagram 

F’-E’ 

(*) I I h 8 
F/E 

of 8. We have a diagram 

in which the square commutes while by the preceding remark the triangle commutes 

iff (*) is a pullback. If it is a pullback, the same argument applied to the composite 

triangle implies that A (*) is a pullback. Conversely if A (*) is a pullback the triangle 

commutes and its transpose under adjointness 

'XI7 

/ 

RE 

1 

\I 
rx,- 

nF 

does as well. Thus (*) is a pullback. 

Finally, suppose f: E’+ E is such that Af is epi. Then by Proposition 7,3.4f is split 

epi. Thus so are Elf, Hom(1, Elf), Hom(A 1,3f) and Hom(1, 3f). This means that 
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there is a subobject of E’ taken by f epimorphically to the identity subobject of E. 
This is only possible if f is epi. 

Corollary 1. For every mono m : E’w E, the square 

E“ E 

is a pullback (the vertical maps are adjunctions). 

Proof. Apply A, use the corollary to Proposition 5 of Section 2 and the fact that n 
reflects such pullbacks. 

Corollary 2. If 

is a pullback, then so is 

where d’ and g’ correspond to g’ and g resp. under adjunction. 

Proof. The hypothesis is easily seen to be equivalent to supposing 

E’ 
d 

l AB 

(ge*J)I doxg I8 
AB’xE -ABxAB 
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to be a pullback where S is the diagonal map. It, and hence (g’, f), is a mono so we 
have that 

43.A/ 
AE’-B x.4 1 

is a pullback. Here ! is the terminal map on E. An easy diagram chase shows that 

AE’ ,B 

@‘.Af, 

I I 

6 

axjj 
B’xAE-BXB 

is a pullback from which the desired result follows. 

At this point we can give another characterization of logical morphisms. 

Theorem E. Let A : 93 + 8 be a functor between toposes with a left adjoint -4. Then A is 
logical iff 

(i) the natural map A (AB x E) + B x AE is an isomorphism, 
(ii) A preserves monomorphisms, 

(iii) A preserves and reflects pullbacks along monomorphisms. 

Proof. The “only if” part is from Theorem D. To go the other way, we have already 
observed - see Proposition 6 - that (i) implies the preservation of exponentiation. 
Thus we must show that the natural map 

is an isomorphism. We begin by defining a map s: L? + AR which will be the inverse. 
We actually define the transpose s’: A0 + 0 as the classifying map of the mono 
A (true) : A 1 + An. Consider the commutative diagram 
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The maps labeled q are the adjunction maps and s’= As’. 70 by definition. The right 
hand square is a pullback by definition of d. The middle one is as well from the 
definition of s’and the fact that A preserves pullbacks. The left hand one is seen to be 
by applying A to it to get 

and using the reflection property of (iii). Hence the whole rectangle is a pullback so 
that d - s: 0 + f2 classifies “true” and is therefore the identity. 

To go the other way, apply A to 

to get 

,4i 

AAR- A’ Af2 “* -AAAn -AAR. 

If we compose this with the adjunction .cR*AAR + f2, we get 

&.A;.A7$I?.Ad = s’.cAf2.Ar$2.Ad =:-Ad. 

In the diagram 

Al=AAl -Al-l 

The right hand square is a pullback by the definition of s’while the middle is seen to be 
a pullback by the definition of d and the preservation property of A. The composite is 
thus a pullback and so is 

f2xAl’“‘O 

Al-l 

By the uniqueness of the classifying map, we see that s’* Ad must be the projection, 
i.e. the adjunction map which is, of course, the transpose of the identity AfTI + AR. 

Hence s. d is the identity and the proof is complete. 
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4. Proof of Theorem A 

We suppose that 8 is an atomic topos. Then let d be the full subcategory whose 
objects are the atoms - those non-empty objects whose only proper subobject is 
empty. 

Proposition 9. The category d has a small skeleton. 

Proof. Let $3 be a generating family in 8. Then there is a GE 9 and a map - 
necessarily an epi - G + A. Since G is also a disjoint sum of atoms, there is an A’ * G 
for some A’ E 04. Then we have an epimorphism A’+ A with A’ one of the atoms in 
the subobject lattice of G. Thus every atom is a quotient of at least one of the atoms in 
a subobject lattice of a GE 3. Since 9 is small and a topos is co-well-powered it 
follows there is only a set of such quotients. The full subcategory d consisting of 
atoms has as covers all maps A’+ A. These are epis so that given 

we can complete it to a commutative square by any atom of the non-empty A’ XA B. 
Thus d is an atomic site. Since every morphism of d is an epimorphism in Es, the 
canonical topology in Sp is the same as that induced on d by the canonical topology 
of 8. Thus 8 is the category of sheaves and the assertion (iii)*(i) of Theorem A 
follows. We have seen how Theorem B implies that (ii)+(iii). To see that (i)+(ii), let 
d be an atomic site and ‘8’ = d We first observe that every constant functor is a sheaf. 
In fact, constant functors are always separated and since a cover is refined by any map 
in it, the sheaf condition is immediate. Thus if i is the inclusion of presheaves into 
sheaves, the diagram 

I 

8 - (do’, Yets) 

\/ 

A A 

.Yets 

commutes. It follows that A = lim. i is left adjoint to A. Moreover - 

A(ExAn)=AExn 

is automatic since A preserves sums and crossing with n of An is the n-fold copower. 
It follows from Proposition 6 that A preserves the exponential. To see that A 
preserves fi we must show that A 2 = A (1 + 1) = A I+ A 1 = 1 + 1 = 2 is the subobject 
classifier of 8. But for A ES& f2@) is the set of subsheaves of A. If 0 # E-A is such 
a subsheaf, there is an A’+ E + A which is a cover in d hence an epimorphism in 8. 
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Thus E-A is an isomorphism. Hence there are exactly two elements 0 and A in 

R(A) so that f2(A) = A 2(A). Thus R = A 2. This completes Theorem A. 

Notice that this last argument implies that the topology on d is that of double 

negation, since the negation of every non-empty subobject of an atom is empty. 

5. Pullback of a local homeomorphism 

In this section we will show: 

Theorem F. ff 

W.B*) 
SC’ -8 

(A’.l-‘) I I (A.l-) 

c/‘.f*) 
3 -93 

is a pullback with (f”, f*) b ounded and (A, IJ a local homeomorphism, then (A’, f’) is 

also a local homeomorphism. 

As with the existence of pullbacks (see [4]) the argument is given by considering 

two special cases: when (p, f*) is the morphism associated with an internal functor 

category and when it is the inclusion of sheaves for a topology. 

From [4] we know that if C is an internal category object of 93, then AC is again one 

in $ and that 

is a pullback. Note that Corollary 2 of Proposition 8 can be stated in the convenient 

form that the canonical map 

A(Ex,,AB’)+AEx,B’ 

is an isomorphism. 

Now let CO and Ci be the object of objects and the object of morphisms, 

respectively, of C. An internal functor F: A C “‘+ 8 is given by a pair (p, cp) where 

p: E + ACO, cp: E xJcOAC1 + E, satisfying appropriate identities. Then p’: AE + CO 

together with 
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gives an internal functor Cop + 33 that we call ~1 ‘O’F. If (B + Cc, B x Co Ci + B) is an 

object of 93cou, LI Cop applied to it is 

-LA/- 
0 

I 
AB 

which corresponds under transposition to 

;tE x co C, - B xc&, 

co 
so that 11’“” is left adjoint to Acop. It is easily checked that for FE @op, G E %‘c”“, 

AC”“(FxAC”“G) zACopF x G and hence by Proposition 6, Acoo preserves the 

exponential. To show that it is logical, we can apply theorem E by observing that 

monomorphisms and pullback diagrams are “pointwise” notions. Since in 8 they are 

preserved (resp. created) by .t, they are preserved (resp. created) by .t co’ in 8co”. 

This shows the first case of Theorem F, that of functor categories. 

Next we consider the case 

where j: R -+ R is a topology in 93, i the inclusion of j sheaves and a the associated 

sheaf functor. As usual, we let J-0 be the subject classified by j. Then J classifies 

j-dense monomorphisms. A topology is induced on the subobject classifier of 8 by 

the characteristic map of the image of 
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In general this is not a topology but generates one. In this case d is an isomorphism 
and the induced topology is simply Ai. As shown in [3] the pullback we seek is the 
category of sheaves for this induced topology. In the present case, this means that 

is a pullback. Since the subobject classifier f2i in Wi is the equalizer of Id, j: 0 + f2 and 
A preserves 0, it follows immediately that Ajf2j = flAj. Next we claim A * i = i * Ai. To 
show this it is sufficient to show that when B is a i sheaf, AB is a Aj sheaf. But i 
sheaves are characterized by the property that when 

B” -B’ 

is a pullback, 

Horn@‘, B) + Hom(B”, B) 

is an isomorphism. (See [6, 3.21 for details.) Now since 

J-R 

1 I i 
1-R 

is a pullback, so is 

AJ -R 

I I “, 
1-n 

Thus E’* E is Aj dense just in case there is a pullback 
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E’-E 

I I 
1 -Al 

It follows from Corollary 2 of Proposition 8 that 

AE’ - AE 

I I 
1-J 

is also a pullback whence, since B is a j sheaf, 

Hom(AE, B)- Hom(AE’, B) 

a I ia I 
Hom(E, AS) - Hom(E’, AS) 

are also isomorphisms. Thus AB is a At sheaf. From this we may show that Aj = aAi is 
left adjoint to Aj. In fact 

Hom(AjE, B) 2 Hom(aAiE, B) z Hom(AiE, iB) 

z Hom(iE, AiB) =Hom(iE, iAiB) s Hom(E, AjB). 

Finally, 

Aj (E X AjB) z aAi(E X AjB) 

z aA(iE X iAjB) z aA(iE X AiB) 

z u(AiE X iB) z uAiE X uiB 3 AjE X B 

and Proposition 6 implies that Aj preserves the exponential. Since we have already 
seen it preserves f2j, Theorem F follows. 

Corollary. Let d be an atomic site, 5% a Grothendieck topos and Sh(&, $33) the category 
of sheaves on d with values in 93. Then the global sections functor 

r: Sh(& 93) --, $3 

together with its left udjoint A constitutes a local homeomorphism. 
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Proof. As seen in [4], the square 

Sh(.$, M I- Sh(.% 9’) 

is a pullback. Thus the result follows from Theorems A and F. 

6. Connected local homeomorphisms 

Let (A, r): 8 + 623 be a local homeomorphism. It is called connected if A 1 = 1 

(where A + A). 

Proposition 10. The local homeomorphism (A, r) is connected if A is full andfaithful. 

Proof. It follows from Theorem E that 

AAB=BxAl=B 

for all B if A 1 = 1. 

One obvious example of a local homeomorphism is a localization (slice) 

%I/B+%. 

Here AB’= B’x B + B, A(B’+ B) = B’ and T(B’+ B) = Z’I,,,B’. (See [6, 

details.) 

1.41 for 

It follows from generalities on pullbacks (see [5, SGA 4, IV. 5.101 for the classical 

case) that to give a geometric morphism 8 + B/B is equivalent to giving one 

(A, r): $--, 93 together with a map in 8 of 1 +AB. In particular, if there is a left 

adjoint A, the adjunction l+ AA 1 provides a canonical factorization 

The second factor is logical; we claim that when the original morphism is a local 

homeomorphism, the first factor is a connected local homeomorphism. In fact, we 

have a pullback 

E/A.1 1 -23/ftl 
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and by Theorem F all maps are local homeomorphisms. The morphism 8 + 53/A 1 

above is actually the composite 

with the first the logical morphism between slices obtained from the adjunction 

1 -+ AA 1. Moreover, the left adjoint $ + LZI/it 1 takes E to A ! : AE + A 1. In parti- 

cular 1 goes to A l--, A 1, i.e. the terminal object of .93/A 1. Thus we have established, 

Theorem G. Every local homeomorphism factors as a connected local homeomor- 

phism followed by a localization. 

Proposition 11. The local homeomorphism (A, lJ is a localization ifffor every E in 8, 

E + AAE is a monomorphism. 

Proof. If this is a localization, $-+9/A 1 is an equivalence. Then AA(B + A 1) is 

B-BxAl 

\/ 
Al 

which is evidently mono. To go the other way, decompose (A, ZJ as 

(-I’. r’) 
~-----*/d1+93. 

We know that A’ is full and faithful so that 

A’A’(B+Al)+(B+Al) 

is an isomorphism. Now apply A’ to 

E -A’A’E 

to get an isomorphism 

A’E+A’A’A’E=A’E. 

By Theorem D, A’ reflects epis so that E a A ‘A ‘E. 

Corollary. Suppose (A, I’) : 8 + 93 is a local homeomorphism of toposes defined over 

.Yets and 8 is generated by subobjects of 1. Then 8 z 933/A 1. 

Proof. For if n: E + A.lE is not mono, let Lrw 1 and f, g: U+ E two (mono-) 

morphisms such that f # g but qf = vg. Since .1 n is an isomorphism (if = Ag. Now let 
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h 

v-u 

k 

I I 

8 

f u-x 

be a pullback. Apply A to get a pullback 

Ak I I 4 

A/ 
AU-AX 

by Theorem D. Since Ag = Af is a mono, Ah and Ak are isomorphisms. Hence h and 
k are epimorphisms. Generalities on factorization systems imply the existence of an 
isomorphism U + U making both diagrams commute. But U being a subobject of 1, 
this map is the identity whence f = g. 

7. Examples 

In this section we give some examples of local homeomorphisms and atomic sites. 

(1) Maps between spatial toposes. We show if f : X -, Y is a continuous map between 
sober spaces, then 

(f”, fd : SW0 + SW Y) 

is a local homeomorphism iff f is a local homeomorphism. In fact, if f is a local 
homeomorphism, then f: X + Y is an object of Sh( Y) and quite evidently Sh(X) = 
Sh( Y)/X. Moreover the inverse image part of the local homeomorphism 

Sh( Y)/X + Sh( Y) 

is gotten by pulling back along X + 1 (i.e. X + Y) which is precisely f”. Since f” 

determines its right and left adjoints, the result follows. Conversely, suppose f” is 
logical. Then by the corollary to Proposition 11, 

Sh(X) = Sh( Y)/ W 

for some W + Y in Sh( Y). In particular, the object X+X in Sh(X) is gotten by 
pulling back X + Y along f and the adjunction 

f”f*l+ 1 
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is exactly f:X+ Y which is thus a local homeomorphism. We have used that 
morphisms between Sh(X) and Sh( Y) are induced by continuous maps when X and 
Y are sober. 

In particular when Y = 1, we find that Sh(X) can be atomic only when X is 
discrete. In that case, of course Sh(X) =9&/X. Note that this implies that if B is a 
complete boolean algebra, then f: g * 5%~ has a logical left adjoint iff B is atomic. 

Let B be a not-necessarily-complete boolean algebra. Since the boolean subalge- 
bra generated by a finite number of elements is finite, B can be written as a filtered 
colimit l& Bi where Bi is finite. If Bi + Bj is a transition map, the induced map 
between Stone spaces St(Bj) + St(Bi) is a local homeomorphism, each space being 
both finite and Hausdorff. Thus the induced & + gj is a logical morphism. It follows 
that 

is a topos and it may easily be verified that $ is a BVM for set theory, for which the 
global sections of 2 is the arbitrary boolean algebra B. (Traditional constructions of 
BVM’s have required B to be complete.) 

(2) Next we consider the question of characterizing categories V for which the 
functor category 5fet’“’ is atomic. In fact we characterize categories V for which 
Yetwo’ * IS boolean. Let %’ be such a category and f: A + B be a morphism in ‘%‘. Let 
R -B be the subobject of the representable functor consisting of all maps which 
factor through f. Let R' be the complement of R and B. If the identity of B belongs to 
R', so does every map, which contradicts f~ R. Hence it belongs to R which is easily 
seen to imply that f is a split epi. Since f was arbitrary, every map in $9 - in particular 
the right inverse off - is a split epi so that every map is an isomorphism. Thus V is a 
groupoid. The converse - that when %’ is a groupoid, 9”OP is atomic - is left as an 
exercise. 

(3) Given an arbitrary category J$ there is evidently at most one topology on d that 
makes it into an atomic site. There is such a topology iff the pullback of a non-empty 
sieve is non-empty, i.e. iff every pair of maps with common codomain can be 
completed to a commutative square. Given that d has such a topology, a more 
interesting question is whether it is subcanonical, that is whether the canonical 
functor d-, A is full and faithful. Of course, the answer is well known. Every sieve 
must be a universal epimorphic family (see, e.g. [l, appendix]). In this case, it means 
that every map must be a regular epimorphism (in the general sense of being the 
coequalizer of all pairs of maps that it coequalizes) along with the condition that 
every pair of maps with the same codomain be part of a commutative square. Such a 
category, equipped with the topology of non-empty sieves, will be called a standard 
atomic site. All the atomic sites we consider are standard. 

(4) Here is an atomic site not associated with any groupoid action. Let X be an 
infinite set and it4 be the monoid of all surjective epimorphisms of X. Then M 
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considered as a category with the single object X is easily seen to be an atomic site. In 
fact as a category it even has pullbacks. In particular, every morphism is a regular 
epimorphism. [Added in proof. A. Joyal has observed that this is a category of 
G-sets.] 

(5) For this and the following examples we use the fact (see [3]) that if V2 is a site there 
is a l-l correspondence between geometric morphisms Yet+ 4 and left exact 
functors %‘+ Yet which take covers to epimorphic families. Such a functor deserves 
to be called a morphism of sires. When %’ has finite limits, left exact means finite limit 
preserving. More generally, we call a set-valued functor left exact if it is a filtered 
colimit of representables. And if % + 9 is any functor, we say it is left exact if its 
composite with every left exact 9 --* 9%~ is left exact. 

For the next example, we let A/u9 be the category whose objects are finite sets and 
maps are monomorphisms. ~119 has the amalgamation property. In fact, if 1 c( n *k 
are two maps with common domain in Jug, there is a commutative square 

n-1 

I I 
k- k+l 

n 

in A.57 (This is not the pushout in d9.) Thus &Yp is an atomic site. Let 8 be the 
category of sheaves. Then we claim that set-valued models on $ are exactly finite 
sets. In fact, a geometric map Yer + 8 is determined by a map of sites @:.cIFp+ Yer. 
Suppose then we let 0 = lim Hom(-, ni). Then - 

@( 1) = lim Hom( 1, ni) = lim ni = N. - - 

Moreover, for any k, 

Q(k) = @ Hom(k, ni) z Mono(k, lim ni) - 

since k is finite and the limit is filtered. Of course lim ni will not necessarily (actually 
not every, see below) be finite but the formal identity is still valid. Thus G(k) is the set 
of monomorphisms of k to N. Moreover, for any k ~1 in A9, the corresponding 

@(I) + Q’(k) 

must be a cover, i.e. an epimorphism in 9’er. Thus the map 

Mono(l, Nj + Mono(k, N) 

must be surjective which is always possible iff N is infinite. Thus 8 classifies infinite 
sets. 

(6) Let _ZIYCO,O be the category of finite total orders and strictly increasing maps. 
~ti.96’l~0 is the category with the same objects and strictly increasing maps that 
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preserve the first element. Similarly for i = 0, 1, &3%‘~,i is the subcategory of Ju919~.~ 

of maps that preserve last element. Thus we have four categories uMgQi,i for i = 0, 1, 

j =0, 1. In each case the dual category can be shown to be an atomic site. For 

example, the amalgamation property in ;U90 0.0 can be demonstrated as follows. 

Given 

define an order of Y +Z by letting Y and 2 have their given order while if y E Y, 

z E 2, we let y <z unless 3x E X with z <g(x) and f(x) c y, in which case z < y. Let 

%ii.i be the topos of sheaves on JM96’i,i. It is easily shown, using an argument similar to 

the above, that go70 classifies in 9’et dense total orders without first or last element. 

Similarly the other 8i.i classify dense total orders with first but not last element; with 

last but not first element; with both, respectively. 

(7) Let k be a field and 92%‘~ be the category of separable extensions of k and 

k-linear field homeomorphisms. If L I c K + L2 are two such extensions, L1 OKLz is a 

product of a finite number of separable extensions of k, any of which suffices for the 

amalgamation. Thus .%%Z’~ is the dual to an atomic site. If 8 is the category of 

sheaves, geometric morphisms 9’et to ‘8 are determined by morphisms of sites 

4: 9%pkp + SPet. As usual, such a functor is a filtered colimit of representables, 

0(K) = lim Hom(K, Ki) - 

If c= lim Ki, we have 

G(K) = Hom(K, l) 

since a k-linear map from K is determined by a finite number of elements. The fact 

that each K, is separably algebraic over k implies k is, while the condition that a 

cover be taken to a cover implies that &is separably closed. Thus in sets, Z classifies a 

separable closure of k. Notice that any two points of 8 are isomorphic. 
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