
NON-SYMMETRIC ∗-AUTONOMOUS CATEGORIES

MICHAEL BARR

1. Introduction

In [Barr, 1979] (hereafter known as SCAT) the theory of ∗-autonomous categories is
outlined. Basically such a category is a symmetric monoidal category equipped with
a strong duality equivalence to its opposite. These categories provide rich models of
Girard’s linear logic ([Girard, 1986], see also [Seely, 1989]). Linear logic is used to model,
for example, the logic of resource use. However, it is still symmetric which means, for
example, that it cannot be used to model temporal dependencies. For this and other
reasons, it is interesting and useful to consider what remains of the theory when the
symmetry is dropped.

Non-symmetric linear logic was actually the earliest version since it goes back to the
syntactic calculus of [Lambek, 1958], although without the duality. The same author has
recently returned to the subject in [Lambek, 1993], although his models are almost all
lattice models.

An appendix to SCAT, written by P.-H. Chu outlined a formal construction by which
a ∗-autonomous category could be constructed from any symmetric monoidal closed
category that includes the original category fully. At the time, this construction was
considered purely formal, but it has turned out to be one of the most interesting parts of
the monograph. See [Barr, to appear]. We give here a non-symmetric version of this Chu
construction.

2. Definitions

A monoidal category A is a category equipped with a tensor product − ⊗ −: A × A
// A that is coherently associative in the usual sense and for which there is a unit

object we denote > and unit isomorphisms l:> ⊗ A // A and r:A ⊗ > // A that
are natural in A. We will not name, nor explicitly use, the associativity isomorphisms,
but will simply suppose that the tensor product is associative. It is known that every
coherently associative category is equivalent to one that is actually associative, so this
assumption is harmless and avoids a large amount of notational obscurity.

Since we are not supposing the tensor to be commutative, even up to isomorphism,
the supposition that −⊗A have an adjoint is independent of the supposition that A⊗−
have one. In fact, there is a tensor product on the category of uniform spaces that has

In the preparation of this paper, I have been assisted by a grant from the NSERC of Canada.
c© Theoretical Computer Science, 1995.

1

2

one of the two for all objects, but not the other ([Isbell, 1964], Chapter 3). Therefore
we distinguish, in this case, between a left closed, a right closed and a biclosed monoidal
category. In this paper, we are concerned only with the last notion.

A biclosed monoidal category consists of a monoidal category as above, equipped with
two functors −−◦−: A op × A // A and −◦−−: A × A op // A for which there
are natural isomorphisms Hom(A⊗ B,C) ∼= Hom(A,C ◦−B) ∼= Hom(B,A−◦C). These
isomorphisms are mediated by “evaluation maps” le(A,B):A ⊗ (A−◦B) // B and
re(A,B): (B ◦−A) ⊗ A // B, such that for any map A ⊗ B // C, there are unique
maps A // C ◦−B and B // A−◦C such that the composites

A⊗B // (C ◦−B)⊗B // C

A⊗B // A⊗ (A−◦C) // C

are the given map. The two maps A⊗B // C and A // C ◦−B are called transposes
of each other as are A⊗B // C and B // A−◦C. This term is thus ambiguous, but
context will always clarify the situation.

A useful mnemonic over which way these isomorphisms go (as well as being the moti-
vation for our choice, which is otherwise arbitrary) is to think of the simple example in
which the category has as objects the elements of a group, with no non-identity arrows,
x ⊗ y = xy, x−◦ y = x−1y and y ◦−x = yx−1. Motivated partly by examples like this,
Lambek has used the notation A/B for A ◦−B and B\A for B−◦A. We will stick to the
notation that has become common in linear logic.

The transpose of the composite arrow:

A⊗ (A−◦B)⊗ (B−◦C)
le(A,B)⊗id // B ⊗ (B−◦C)

le(B,C) // C

gives a map we denote

lc(A,B,C): (A−◦B)⊗ (B−◦C) // A−◦C

and we similarly have a map

rc(A,B,C): (C ◦−B)⊗ (B ◦−A) // C ◦−A

which are the left and right composition arrows.
One thing it is useful to observe in a biclosed monoidal category is that from

Hom(A⊗D ⊗B,C) ∼= Hom(D ⊗B,A−◦C) ∼= Hom(D, (A−◦C) ◦−B)

and
Hom(A⊗D ⊗B,C) ∼= Hom(A⊗D,C ◦−B) ∼= Hom(D,A−◦ (C ◦−B))

there is a “biclosed associativity” A−◦ (C ◦−B) ∼= (A−◦C) ◦−B) and we will usually
treat them as equal, writing A−◦C ◦−B.

3

Another useful property is that the hom/tensor adjunction is internal. In fact, from

Hom(D, (A⊗B)−◦C)) ∼= Hom(A⊗B ⊗D,C) ∼= Hom(B ⊗D,A−◦C)

∼= Hom(D,B−◦ (A−◦C))

we conclude that (A ⊗ B)−◦C ∼= B−◦ (A−◦C). Similarly, we have C ◦− (A ⊗ B) ∼=
(C ◦−B) ◦−A.

There are at least four definitions of ∗-autonomous category and it will be useful to
know that they are equivalent. We will give here all four and show later that they are
equivalent. The first one is easily seen to be the non-symmetric form of the original
definition given in SCAT, p. 13.

2.1. Definition A. A ∗-autonomous category is a biclosed monoidal category A
together with a closed functor (−)∗: A // A op, which is a strong equivalence of cate-
gories.

The meaning of closed in this context is that (−)∗ is a functor between categories
enriched over A . A is enriched over itself using the closed structure of course. In the
symmetric case, A op is enriched over A if you define (A,B) = B−◦A = A ◦−B. In
the non-symmetric case, these are distinct and only the second one works. Thus we
define (A,B) = A ◦−B. The composition map (A,B) ⊗ (B,C) // (A,C) is just the
composition map in A , (A ◦−B) ⊗ (B ◦−C) // A ◦−C. Then to say that (−)∗ is a
strong isomorphism is to say that there is an isomorphism t(A,B):A−◦B // (A∗, B∗) =
A∗ ◦−B∗ such that for all objects A, B and C, the diagram

(A∗ ◦−B∗)⊗ (B∗ ◦−C∗) A∗ ◦−C∗
rc(C∗,B∗,A∗)

//

(A−◦B)⊗ (B−◦C)

(A∗ ◦−B∗)⊗ (B∗ ◦−C∗)

t(A,C)⊗t(B,C)

��

(A−◦B)⊗ (B−◦C) A−◦Clc(A,B,C) // A−◦C

A∗ ◦−C∗

t(A,B)

��

(∗)

commutes.
We have supposed that (−)∗ is an isomorphism and so it has an inverse. We denote

it by ∗(−). All of its properties follow from properties of (−)∗. For instance, B ◦−A ∼=
∗B−◦ ∗A and a diagram analogous to (∗) commutes.

2.2. Definition B. Let A be a biclosed monoidal category. An object ⊥ is called
a dualizing object if for any object A the natural map A // ⊥◦− (A−◦⊥) gotten
by transposing twice id:A−◦⊥ // A−◦⊥ is an isomorphism. Then a ∗-autonomous
category is a biclosed monoidal category together with a dualizing object.

2.3. Definition C. A ∗-autonomous category is a monoidal category A equipped
with an equivalence (−)∗: A // A op such that there is a natural isomorphism

Hom(A,B∗) // Hom(>, (A⊗B)∗)

4

In this formulation, we do not even suppose that A is biclosed, rather deriving the internal
homs from the tensor and star.

2.4. Definition D. A ∗-autonomous category is a closed category A in the sense of
Eilenberg and Kelly [1966] together with an equivalence (−)∗: A op // A that satisfies
the condition

A−◦ (B ◦−C) ∼= (A−◦B) ◦−C
where ◦− is the derived operator defined by A ◦−B = A∗−◦B∗. This isomorphism should
be an equivalence of functors of categories enriched over A .

We note that the axioms for a closed category can be considerably simplified in the case
that > is a generator, for then the underlying functor it represents is faithful. All that is
needed are −◦, >, an isomorphism u = uA:>−◦A // A, natural in A and a composite
c = c(A,B,C):B−◦C // (A−◦B)−◦ (A−◦C) natural in all three arguments and
subject to

1.

Hom(A,B) ∼= Hom(>, A−◦B)

2.

Hom(B,C) Hom(A−◦B,A−◦C)//

Hom(>, B−◦C)

Hom(B,C)

∼=

��

Hom(>, B−◦C) Hom(>, (A−◦B)−◦ (A−◦C))
Hom(>,c) // Hom(>, (A−◦B)−◦ (A−◦C))

Hom(A−◦B,A−◦C)

∼=

��
Hom(B,C)

Hom(Hom(A,B),Hom(A,C))
%%KKKKKKKKKKKKKKKK

Hom(B,C) Hom(A−◦B,A−◦C)Hom(A−◦B,A−◦C)

Hom(Hom(A,B),Hom(A,C))
yyssssssssssssssss

The arrow in lower right is what results from applying the functor Hom(>,−) to a map
A−◦B // A−◦C.

3. The Chu construction

One of the most interesting constructions involving ∗-autonomous categories was that
given by Chu that showed, among other things, that every monoidal closed category could
be fully embedded into a ∗-autonomous category. Here we give an analagous construction
for biclosed monoidal categories.

The Chu construction invariably requires the existence of certain pullbacks in the
category we begin with and we assume the existence of these pullbacks without further
mention. Practically, this limits the construction to the case of a category that has
pullbacks.

5

One way of thinking about the original construction is that it simply adjoins to the
category all possible duals of an object. In the non-symmetric case, you need not only
the object A∗, but also A∗∗, A∗∗∗, . . . , not to mention ∗A, Thus the construction
is a good deal more complicated and involves not pairs of objects, but a doubly infinite
sequence.

Let V be a biclosed monoidal category and ⊥ an object of V . We define a category A
whose objects are doubly infinite indexed sequences V = (. . . , V−1, V0, V1, . . .) of objects
equipped with maps Vi ⊗ Vi+1

// ⊥ for all i ∈ Z. We will usually write V = (Vi) or
V = (V)i. If W = (Wi) is another object, a morphism f = (fi): V // W consists of
maps f2i:V2i

// W2i for all i ∈ Z and maps f2i+1:W2i+1
// V2i+1 for all i ∈ Z such

that for all i, the following diagrams commute.

W2i ⊗W2i+1 ⊥//

V2i ⊗W2i+1

W2i ⊗W2i+1

f2i⊗W2i+1

��

V2i ⊗W2i+1 V2i ⊗ V2i+1
V2i⊗f2i+1 // V2i ⊗ V2i+1

⊥
��

W2i−1 ⊗W2i ⊥//

W2i−1 ⊗ V2i

W2i−1 ⊗W2i

W2i−1⊗f2i

��

W2i−1 ⊗ V2i V2i−1 ⊗ V2i
f2i−1⊗V2i // V2i−1 ⊗ V2i

⊥
��

We define functors (−)∗: A // A and ∗(−): A // A by (V∗)i = (V)i−1 and
(∗V)i = (V)i+1. It is clear that both (−)∗ and ∗(−) are equivalences between A and A op

and are inverse to each other.

3.1. The tensor product. Let V = (Vi) and W = (Wi) be objects of A . We define
V ⊗W to be the object with (V ⊗W)2i = V2i ⊗W2i while (V ⊗W)2i+1 is defined as the
pullback

W2i+1 ◦−V2i+2 W2i−◦⊥◦−V2i+2
//

(V ⊗W)2i+1

W2i+1 ◦−V2i+2

��

(V ⊗W)2i+1 W2i−◦V2i+1
// W2i−◦V2i+1

W2i−◦⊥◦−V2i+2

��

the right hand map is gotten by applying W2i−◦− to the map V2i+1
// ⊥◦−V2i+2

gotten by transposing V2i+1 ⊗ V2i+2
// ⊥. The bottom map is similar. The structure

maps are given by

V2i ⊗W2i ⊗ (V ⊗W)2i+1
// V2i ⊗W2i ⊗ (W2i−◦V2i+1) // V2i ⊗ V2i+1

// ⊥

and

(V ⊗W)2i−1 ⊗ V2i ⊗W2i
// (W2i−1−◦V2i)⊗ V2i ⊗W2i

// W2i−1 ⊗W2i
// ⊥

using the two projections on the pullback.

3.2. Proposition. The tensor product is, up to natural isomophism, associative.

6

Proof. If U = (Ui) is another object of A , then there is no problem with (U⊗V⊗W)2i =
U2i⊗V2i⊗W2i. To compute (U⊗ (V⊗W))2i+1 we replace (V⊗W)2i+1 by definition and
use the fact that the functor −◦−U2i+2 preserves limits. Then the diagram

(W2i+1 ◦−V2i+2) ◦−U2i+2 (W2i−◦V2i+1) ◦−U2i+2(W2i−◦V2i+1) ◦−U2i+2 (V2i ⊗W2i)−◦U2i+1

(U⊗ (V ⊗W))2i+1

(W2i+1 ◦−V2i+2) ◦−U2i+2

uukkkkkkkkkkkkkkkkkkkkkkk
(U⊗ (V ⊗W))2i+1

(W2i−◦V2i+1) ◦−U2i+2

��

(U⊗ (V ⊗W))2i+1

(V2i ⊗W2i)−◦U2i+1

))SSSSSSSSSSSSSSSSSSSSSSS

(W2i+1 ◦−V2i+2) ◦−U2i+2

(W2i−◦⊥◦−V2i+2) ◦−U2i+2

##FFFFFFFFFFFFFF
(W2i+1 ◦−V2i+2) ◦−U2i+2 (W2i−◦V2i+1) ◦−U2i+2(W2i−◦V2i+1) ◦−U2i+2

(W2i−◦⊥◦−V2i+2) ◦−U2i+2

{{xxxxxxxxxxxxxx
(W2i−◦V2i+1) ◦−U2i+2

(V2i ⊗W2i)−◦⊥◦−U2i+2

##FFFFFFFFFFFFFF
(W2i−◦V2i+1) ◦−U2i+2 (V2i ⊗W2i)−◦U2i+1(V2i ⊗W2i)−◦U2i+1

(V2i ⊗W2i)−◦⊥◦−U2i+2

{{xxxxxxxxxxxxxx

is a limit. In a similar way we use the fact that −◦−W2i preserves limits to conclude that

W2i+1 ◦− (U2i+2 ⊗ V2i+2) W2i−◦ (V2i+1 ◦−U2i+2)W2i−◦ (V2i+1 ◦−U2i+2) W2i−◦ (V2i−◦U2i+1)

((U⊗ V)⊗W)2i+1

W2i+1 ◦− (U2i+2 ⊗ V2i+2)
uukkkkkkkkkkkkkkkkkkkkkkk

((U⊗ V)⊗W)2i+1

W2i−◦ (V2i+1 ◦−U2i+2)
��

((U⊗ V)⊗W)2i+1

W2i−◦ (V2i−◦U2i+1)
))SSSSSSSSSSSSSSSSSSSSSSS

W2i+1 ◦− (U2i+2 ⊗ V2i+2)

W2i−◦⊥◦− (V2i+2 ◦−U2i+2)
##FFFFFFFFFFFFFF

W2i+1 ◦− (U2i+2 ⊗ V2i+2) W2i−◦ (V2i+1 ◦−U2i+2)W2i−◦ (V2i+1 ◦−U2i+2)

W2i−◦⊥◦− (V2i+2 ◦−U2i+2)
{{xxxxxxxxxxxxxx
W2i−◦ (V2i+1 ◦−U2i+2)

W2i−◦ (V2i−◦⊥◦−U2i+2)
##FFFFFFFFFFFFFF

W2i−◦ (V2i+1 ◦−U2i+2) W2i−◦ (V2i−◦U2i+1)W2i−◦ (V2i−◦U2i+1)

W2i−◦ (V2i−◦⊥◦−U2i+2)
{{xxxxxxxxxxxxxx

That these two are naturally equivalent follows from canonical ismorphisms of biclosed
monoidal categories.

3.3. Proposition. The object T defined by (T)2i = > and (T)2i+1 = ⊥ for all i ∈ Z
is a left and right unit for the tensor product.

Proof. The even terms are clear. For the odd terms we see that

V2i+1 ◦−> V2i−◦⊥◦−>//

(T⊗ V)2i+1

V2i+1 ◦−>
��

(T⊗ V)2i+1 V2i−◦⊥// V2i−◦⊥

V2i−◦⊥◦−>
��

is a pullback and with the right hand vertical arrow an isomorphism, so is the left hand
one. A similar argument works on the other side.

7

3.4. Proposition. There is a natural one-one correspondence between maps T
// (V ⊗W)∗ and maps V // W∗.

Proof. We let U = (V ⊗W)∗. Then U = (Ui) where U2i+1 = V2i ⊗W2i and

V2i−1 ◦−W2i−2 V2i−◦⊥◦−W2i−2
//

U2i

V2i−1 ◦−W2i−2

��

U2i V2i−◦W2i−1
// V2i−◦W2i−1

V2i−◦⊥◦−W2i−2

��

is a pullback. A map T // U consists of arrows > // U2i and U2i+1
// ⊥ for

all i ∈ Z subject to two commutativity conditions to which we return later. A map >
// U2i is a commutative square

W2i−2 ◦−V2i−1 W2i−2−◦⊥◦−V2i
//

>

W2i−2 ◦−V2i−1

��

> W2i−1−◦V2i
// W2i−1−◦V2i

W2i−2−◦⊥◦−V2i

��

which, given the fact that Hom(>, U −◦V) ∼= Hom(U, V) ∼= Hom(>, V ◦−U) is equivalent
to a pair of arrows V2i

// W2i−1 and W2i−2
// V2i−1 such that

V2i−1 ⊗ V2i ⊥//

W2i−2 ⊗ V2i

V2i−1 ⊗ V2i

��

W2i−2 ⊗ V2i W2i−2 ⊗W2i−1
// W2i−2 ⊗W2i−1

⊥
��

commutes. These are the exact data and one of the two commutative diagrams required
for a morphism V // W∗. The only missing fact is the commutation of

W2i−1 ⊗W2i ⊥//

V2i ⊗W2i

W2i−1 ⊗W2i

��

V2i ⊗W2i V2i ⊗ V2i+1
// V2i ⊗ V2i+1

⊥
��

The diagrams left to later were the commutation of

(>)2i ⊗ (>)2i+1 ⊥//

(>)2i ⊗ U2i+1

(>)2i ⊗ (>)2i+1

��

(>)2i ⊗ U2i+1 U2i ⊗ U2i+1
// U2i ⊗ U2i+1

⊥
��

(>)2i−1 ⊗ (>)2i ⊥//

U2i−1 ⊗ (>)2i

(>)2i−1 ⊗ (>)2i

��

U2i−1 ⊗ (>)2i U2i−1 ⊗ U2i
// U2i−1 ⊗ U2i

⊥
��

8

The left diagram becomes

⊥ ⊥//

>⊗ V2i ⊗W2i

⊥
��

>⊗ V2i ⊗W2i U2i ⊗ V2i ⊗W2i
// U2i ⊗ V2i ⊗W2i

⊥

U2i ⊗ V2i ⊗W2i

(V2i ◦−W2i−1)⊗ V2i ⊗W2i

��
(V2i ◦−W2i−1)⊗ V2i ⊗W2i

W2i−1 ⊗W2i

��
W2i−1 ⊗W2i

⊥
��

which means that

V2i ⊗W2i W2i−1 ⊗W2i
//V2i ⊗W2i

⊥%%
KKKKKKKKKKKKKKKKKK W2i−1 ⊗W2i

⊥
��

commutes where the diagonal arrow comes from the given arrow T // U. Similarly, the
commutativity of the right hand diagram is equivalent to that of

V2i−2 ⊗W2i−2 V2i−2 ⊗ V2i−1
//V2i−2 ⊗W2i−2

⊥%%
KKKKKKKKKKKKKKKKKK

V2i−2 ⊗ V2i−1

⊥
��

By taking the case 2i of this second diagram we conclude that both triangles and hence
the outer square of

W2i−1 ⊗W2i ⊥//

V2i ⊗W2i

W2i−1 ⊗W2i

��

V2i ⊗W2i V2i ⊗ V2i+1
// V2i ⊗ V2i+1

⊥
��

V2i ⊗W2i

⊥$$
HHHHHHHHHHHHHHHH

commute. But this is exactly the data required to have a map V // W∗ and this
completes the proof.

We have now shown that Definition B is satisfied, so that A is a ∗-autonomous
category.

9

4. The Chu construction with an cyclic dualizing object

Let V be a biclosed monoidal category. Let us say that an object ⊥ of V is cyclic if the
functors −−◦⊥ and ⊥◦−− are naturally equivalent. Under this hypothesis, the original
construction described in [Chu, 1979] can be carried out with relatively little modification.

As in Chu’s paper, we define a category C whose objects are pairs (V, V ′), equipped
with an arrow V ⊗ V ′ // ⊥. A morphism (f, f ′): (V, V ′) // (W,W ′) consists of f :V

// W and f ′:W ′ // V ′ such that the square

W ⊗W ′ ⊥
;“‘

//

V ⊗W ′

W ⊗W ′

f⊗W ′

��

V ⊗W ′ V ⊗ V ′V⊗f ′ // V ⊗ V ′

⊥
��

commutes.

Note that Hom(V ⊗ V ′,⊥) ∼= Hom(V, V ′−◦⊥) ∼= Hom(V,⊥◦−V ′) ∼= Hom(V ′⊗ V,⊥)
so that if (V, V ′) is an object of A , so is (V, V ′)∗ = (V ′, V). The following proposition is
immediate.

4.1. Proposition. For any objects (V, V ′) and (W,W ′) of A , there is an isomor-
phism, natural in both Hom((V, V ′), (W,W ′)) ∼= Hom((W ′,W), (V ′, V)) so that ()∗ is an
isomorphism of A with A op.

There is a functor A // C that takes the object (V, V ′) to the object V = (Vi)
where V2i = V and V2i+1 = V ′. The arrow V2i ⊗ V2i+1

// ⊥ is the given one, while
V2i−1 ⊗ V2i

// ⊥ uses the alternate form V ′ ⊗ V // ⊥. The proof of the following are
straightforward.

4.2. Theorem. The inclusion A // C is full and faithful.

4.3. Proposition. The subcategory C ⊆ A is closed under tensor, internal homs
and star.

The tensor product of two objects of C can be described explicitly. If (U,U ′) =
(V, V ′)⊗ (W,W ′), then U = V ⊗W while

W −◦V ′ W −◦⊥◦−V//

U ′

W −◦V ′
��

U ′ W ′ ◦−V// W ′ ◦−V

W −◦⊥◦−V
��

is a pullback.

10

5. Examples

5.1. The symmetric case. We can form the category A even in the symmetric case.
We get a ∗-autonomous category in which ∗ is not involutive. The category A exists as
well and is simply the original Chu construction.

5.2. The braided case. A monoidal category is said to be braided if there is a
symmetry isomorphism c(A,B):A⊗B // B⊗A that satisfies all the usual rules except
that c(A,B)−1 6= c(B,A), or at least not necessarily. Any dualizing object is still cyclic,
so we can form the category C . Thus the original Chu construction works just as well in
that case.

5.3. Subsets of a group. A simple example is given by the set of subsets of a group.
This is a monoidal category with V ⊗W = VW = {vw‖v ∈ V,w ∈ W}. The adjoints
are given by V −◦W = {u‖uV ⊆ W} and W ◦−V = {u‖V u ⊆ W}. It is not hard to see
that a subset ⊥ is cyclic if and only if it is invariant under conjugation. For example, the
singleton subset consisting of the identity has this property. However, that is not very
interesting since there will be hardly any (V, V ′) with V V ′ ⊆ ⊥ in that case. If the group
has a normal subgroup N of index 2, then we get the category whose objects are pairs
(V, V ′) of subsets such that either both V ⊆ H and V ′ ⊆ H or V ∩H = V ′ ∩H = ∅.

Another possibility is to take the entire group as ⊥. In this case, the category con-
sists of all pairs of subsets (V, V ′). The tensor product is given by (V, V ′) ⊗ (W,W ′) =
(VW, (V −◦W ′) ∩ (V ′ ◦−W)). Although only a poset, this gives an interesting example
of a ∗-autonomous category.

5.4. Relations on a set. The poset of relations on a set with circle composition is a
biclosed monoidal category. If R and S are two relations, then R−◦S = {〈x, y〉‖〈y, z〉 ∈
R ⇒ 〈x, z〉 ∈ S} and S ◦−R = {〈x, y〉‖〈z, x〉 ∈ R ⇒ 〈z, y ∈ S}. There are exactly two
choices for a cyclic dualizing object. The first is the total relation, which is terminal in
the category. It is clear that the terminal object, if any, will always be cyclic. The other
candidate is the inequality relation, 6=. First we will see that 6= is cyclic. In fact, for
any relation R, R−◦ 6= = {〈x, y〉‖〈y, z〉 ∈ R ⇒ x 6= z} = {〈x, y〉 ∈ R‖〈y, x〉 /∈ R} while
6= ◦−R = {〈x, y〉 ∈ R‖〈z, x〉 ∈ R⇒ z 6= y} which is exactly the same thing.

Suppose that the relation T is cyclic. Then R ◦S ⊆ T if and only if S ◦R ⊆ T since
the two sides are equivalent, respectively, to R ⊆ S−◦T and R ⊆ T ◦−S. Applied to
singletons, we see that {〈x, y〉} ◦{〈y, z〉} ⊆ T if and only if {〈y, z〉} ◦{〈x, y〉} ⊆ T . When
x 6=y, the latter always holds and hence 〈x, z〉 ∈ T for all x 6=z. Thus 6= ⊆ T . This shows
that T lies between 6= and the total relation. Suppose now that for some x, 〈x, x〉 ∈ t.
For any y, {〈y, x〉} ◦{〈x, y〉} ⊆ T if and only if {〈x, y〉} ◦{〈y, x〉} ⊆ T . Since the latter
holds, so does the former and we conclude that 〈y, y〉 ∈ t for all y, so that T is the total
relation.

If we take T = 6=, then the category consists of pairs (R,R′) such that R ◦R′op = ∅.
The tensor product is given by (R,R′)⊗ (S, S ′) = (R ◦S, (R−◦S ′) ∩ (R′ ◦−S)).

11

5.5. Terminal objects. Let V be any biclosed monoidal category with a terminal
object 1. The terminal object is certainly cyclic. If we take that for ⊥, then the category
A is the category of pairs (V, V ′) subject to no condition. The tensor product is given
by (V, V ′)⊗ (W,W ′) = (V ⊗W, (V −◦W ′)× (V ′ ◦−W)).

5.6. Bimodules over a ring. This example is definitely not symmetric (except
in very special cases). Take a ring R, which may even be commutative. An R-bimodule
is an abelian group equipped with actions R ⊗Z M // M and M ⊗Z R // M such
that (rm)s = r(ms) for r, s ∈ R and m ∈M . A homomorphism of bimodules is required
to preserve both left and right actions. This category is monoidal with ⊗R as tensor
product. The convention that we have used here requires that M −◦N be the set of
left R-linear functions from M to N . The right R-module structure on M induces a
left R-module structure on the homset and the right R-module structure on N indues a
right R-module structure on the homset. The map M ⊗ (M −◦N) takes m ⊗ f 7→ mf ,
putting the map on the right. Thus the linearity comes out as (rm)f = r(mf), making
it look like an associative law. The other internal hom, N ◦−M is the set of left R-
linear homomorphisms and they come out to the left of their arguments and so satisfy
g(mr) = (gm)r. This convention of putting left linear maps on the right and right linear
maps on the left was adopted by Bass 30 years ago in his presentation of the Morita
theorems.

Note that even when R is commutative, this tensor product is not symmetric. An
example is given by the ring R = Z[x]. An R-bimodule is an abelian group together
with two commuting endomorphisms, one designated as the left and the other as the
right action. Let M be the group Z with x acting as the identity on the left and as
multiplication by 2 on the right. Let N have the reverse actions. Then as abelian groups,
both M ⊗R N and N ⊗R M are both isomorphic to Z. However the first has identity
action on both sides and the second has multiplication by 2 on both sides.

6. Equivalence of the four definitions

In this section we show that the four definitions are equivalent. Suppose now we have a
category A and functor (−)∗: A // A op that satisfies the conditions of Definition A.
We begin by noting that > is a two-sided unit and it therefore follows that both >−◦−
and −◦−> are equivalent to the identity. Thus, if ∗(−) denotes the functor inverse to
(−)∗,

∗> ∼= >−◦ ∗> ∼= >∗ ◦−> ∼= >∗

so that ∗> ∼= >∗ and we denote it by ⊥.

Define sA: (A−◦⊥) // A∗ as the composite

A−◦⊥ t(A,⊥) // A∗ ◦−⊥∗ id◦−e> // A∗ ◦−> vA∗ // A∗

12

We specialize (∗) to the case C = ⊥ to get the following commutative diagram in which
the horizontal arrows are always given by composition.

(A∗−◦B∗)⊗ (B∗−◦⊥∗) A∗−◦⊥∗//

(A−◦B)⊗ (B−◦⊥)

(A∗−◦B∗)⊗ (B∗−◦⊥∗)
t(A,B)⊗t(B,⊥)

��

(A−◦B)⊗ (B−◦⊥) A−◦⊥// A−◦⊥

A∗−◦⊥∗
t(A,⊥)

��

(A∗−◦B∗)⊗ (B∗−◦>) A∗−◦>//

(A∗−◦B∗)⊗ (B∗−◦⊥∗)

(A∗−◦B∗)⊗ (B∗−◦>)

id⊗(id−◦e(>))

��

(A∗−◦B∗)⊗ (B∗−◦⊥∗) A∗−◦⊥∗// A∗−◦⊥∗

A∗−◦>

id◦−e(>)

��

(A∗−◦B∗)⊗B∗ A∗//

(A∗−◦B∗)⊗ (B∗−◦>)

(A∗−◦B∗)⊗B∗
vB∗⊗id

��

(A∗−◦B∗)⊗ (B∗−◦>) A∗−◦>// A∗−◦>

A∗

vA∗

��

which is to say that

(A∗−◦B∗)⊗B∗ A∗//

(A−◦B)⊗ (B−◦⊥)

(A∗−◦B∗)⊗B∗

t(A,B)⊗sB

��

(A−◦B)⊗ (B−◦⊥) A−◦⊥// A−◦⊥

A∗

sA

��

commutes.

Next we claim that the transposed diagram

(A−◦B)

(A∗ ◦−B∗)
t(A,B)

$$HHHHHHHHHHHHHHH
(A−◦B) (A−◦⊥) ◦− (B−◦⊥)// (A−◦⊥) ◦− (B−◦⊥)

(A∗ ◦−B∗)
sA◦−sB−1

zzvvvvvvvvvvvvvvv

also commutes. This is not quite routine. We begin with the fact that in any left closed
monoidal category, for any arrows f :X // X ′ and g:Y // Y ′, the pentagon

X ′ (X ′ ⊗ Y ′) ◦−Y ′//

X

X ′

f

��

X (X ⊗ Y) ◦−Y// (X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′

(X ′ ⊗ Y ′) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′
77

id◦−goooooooo

(X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y

(f⊗g)◦−id

''OOOOOOOO
(X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′

13

commutes. In an interpretation, each takes an element x ∈ X to λy ◦ f(x)⊗ g(y). When
g happens to be an isomorphism, this yields the commutativity of

X ′ (X ′ ⊗ Y ′) ◦−Y ′//

X

X ′

f

��

X (X ⊗ Y) ◦−Y// (X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′

(f⊗g)◦−g−1

��

In particular, when

X ′ ⊗ Y ′ Z//

X ⊗ Y

X ′ ⊗ Y ′

f⊗g

��

X ⊗ Y Z// Z

Z

h

��

commutes and if g is an isomorphism, so does

X ′ (X ′ ⊗ Y ′) ◦−Y ′//

X

X ′

f

��

X (X ⊗ Y) ◦−Y// (X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′

(f⊗g)◦−g−1

��
(X ′ ⊗ Y ′) ◦−Y ′ Z ′−◦Y ′//

(X ⊗ Y) ◦−Y

(X ′ ⊗ Y ′) ◦−Y ′

(X ⊗ Y) ◦−Y Z ◦−Y// Z ◦−Y

Z ′−◦Y ′

h◦−g−1

��

Applied to our diagram above, this shows that

A∗ ◦−B∗ A∗ ◦−B∗//

A−◦B

A∗ ◦−B∗

t(A,B)

��

A−◦B (A−◦⊥) ◦− (B−◦⊥)// (A−◦⊥) ◦− (B−◦⊥)

A∗ ◦−B∗
sA◦−sB−1

��

commutes. The bottom map is the transpose of application (degenerate case of composi-
tion) and is the identity by definition. If we let A = >, we can conclude that

>−◦B

⊥◦−B∗
��?????????????>−◦B (>−◦⊥) ◦− (B−◦⊥)// (>−◦⊥) ◦− (B−◦⊥)

⊥◦−B∗
��������������

commutes. The square

⊥◦−B∗ (⊥◦−>) ◦− (B−◦⊥)//

B

⊥◦−B∗
��

B ⊥◦− (B−◦⊥)// ⊥◦− (B−◦⊥)

(⊥◦−>) ◦− (B−◦⊥)
��

14

commutes with the top arrow the canonical map, the bottom the transpose of composition
and the vertical arrows induced by l. The result is that

B

⊥◦−B∗
��?????????????B ⊥◦− (B−◦⊥)// ⊥◦− (B−◦⊥)

⊥◦−B∗
‘

��������������

commutes. But both diagonal maps are isomorphisms and hence so is the horizontal
arrow, which shows that Definition B is satisfied.

If A with dualizing object ⊥ satisfies Definition B, then we define A∗ = A−◦⊥ and
∗A = ⊥◦−A. Then clearly these are inverse equivalences. Moreover, we have

Hom(>, (B ⊗ A)∗) ∼= Hom(>, (B ⊗ A)−◦⊥) ∼= Hom(B ⊗ A⊗>,⊥)

∼= Hom(A,B−◦⊥) = Hom(A,B∗)

and so Definition C is satisfied.
Now suppose that A is a ∗-autonomous category in the sense of Definition C. Since

(−)∗ is an equivalence, we can suppose without loss of generality that it is actually an
isomorphism and so has an inverse we denote ∗(−). This means that ∗(A∗) ∼= (∗A)∗ = A.

It is known that any coherently monoidal category is equivalent to one that is actually
associative and unitary. That is, for all objects A, B and C, A⊗ (B⊗C) = (A⊗B)⊗C
and the associativity isomorphism is the identity. Similarly, >⊗A = A⊗> = A and the
unitary isomorphisms are the identity. These assumptions are not, of course, necessary,
but they will save us a lot of useless notation.

The first thing we note is that, for any object A,

Hom(A, ∗>) ∼= Hom(>, ∗(>⊗ A)) ∼= Hom(>, ∗A) ∼= Hom(A,>∗)

the last isomorphism being the application of ∗. Since this is clearly natural in A, we
conclude that >∗ ∼= ∗>. We may and will assume that this is isomorphism is the identity
and denote ∗> = ∗> by ⊥.

Since ∗ is an equivalence, an equivalent formulation of Definition C is that there is a
natural equivalence, for all objects A and B, Hom(A,B) ∼= Hom(>, (A⊗ ∗B)∗). We then
have,

Hom(A,B) ∼= Hom(B∗, A∗) ∼= Hom(B∗ ⊗ A,⊥) ∼= Hom(>, ∗(B∗ ⊗ A))

which shows that although Definition C was stated assymetrically, in terms of ()∗ rather
than ∗(), it is, in fact, symmetric.

Using distributivity of tensor, we have

Hom(A⊗B,C) ∼= Hom(>, (A⊗B ⊗ ∗C)∗ ∼= Hom(A, (B ⊗ ∗C)∗)

15

for all objects A, B and C of A , so that if we define C ◦−B = (B ⊗ ∗C)∗, we see that A
is left closed. We also have

Hom(A⊗B,C) ∼= Hom(C∗, (A⊗B)∗) ∼= Hom(C∗ ⊗ A,B∗) ∼= Hom(B, ∗(C∗ ⊗ A))

so that if we define A−◦C = ∗(C∗⊗A) we see that A is right closed as well. We see that

A−◦⊥ = ∗(⊥∗ ⊗ A) = ∗(>⊗ A) = ∗A

and similarly, A∗ = ⊥◦−A.
For any objects A, B and C of A , the evaluation map lc(A,B,C): (A−◦B)⊗(B−◦Z)

// A−◦Z transposes to a map we call

φ(A,B,Z):A−◦B // (A−◦Z) ◦− (B−◦Z)

6.1. Lemma. For any objects A, B and C of A , the diagram

((A−◦Z) ◦− (B−◦Z))⊗ ((B−◦Z) ◦− (C −◦Z)) (A−◦Z) ◦− (C −◦Z)
lc

//

(A−◦B)⊗ (B−◦C)

((A−◦Z) ◦− (B−◦Z))⊗ ((B−◦Z) ◦− (C −◦Z))

φ(A,B,Z)⊗φ(B,C,Z)

��

(A−◦B)⊗ (B−◦C) A−◦Crc(A,B,C) // A−◦C

(A−◦Z) ◦− (C −◦Z)

φ(A,B,Z)

��

(∗)

commutes.

Proof. We use the formal language for closed monoidal categories described by Jay
([1989]). In this language there are variables of each type and these are combined to make
well formed formulas, also typed. For example, if a and f are variables of type A and
A−◦B, respectively then af = le(a, f) is an expression of type B. In a similar way, we can
define right evaluation in these terms. If f and g are variables of type A−◦B and B−◦C,
respectively, then for a variable a of type A, we describe alc(f, g) = a(f ◦ g) = (af)g.
Similarly we can describe right composition. The map φ(A,B,Z) can be described by
the formula a((φ(A,B,Z)f)g) = (af)g. Here is how to interpret this formula. f is a
variable of type A−◦B, g is a variable of type (B−◦Z) and a is a variable of type A.
φ(A,B,Z)f is an expression of type (A−◦Z) ◦− (B−◦Z) which means it acts on the
left of its argument to produce an argument of type A−◦Z). Thus (φ(A,B,Z)f)g is an
expression of that type and acts on an expression of type A to produce one of type Z.
The expression on the right hand side of that equation is also an expression of type Z
and they are equal.

Let a, f , g and h be variables of type A, A−◦B, B−◦C and C −◦Z, respectively.
Then going around the upper right path of the diagram, we get

a((φ(A,C, Z)(f ◦ g))h) = (a(f ◦ g))h = ((af)g)h

The lower left path gives

a((φ(A,B,Z)f ◦φ(B,C, Z)g)h) = a((φ(A,B,Z)f)φ(B,C, Z)g)h)

= (af)((φ(B,C, Z)g)h) = ((af)g)h

so they are equal.

16

Let Z = ⊥ and t(A,B) = φ(A,B,⊥). We conclude,

6.2. Corollary. For any objects A, B and C of A , the diagram

(∗A ◦− ∗B)⊗ (∗B ◦− ∗C) ∗A ◦− ∗C
lc(∗C,∗B,∗A)

//

(A−◦B)⊗ (B−◦C)

(∗A ◦− ∗B)⊗ (∗B ◦− ∗C)

t(A,B)⊗t(B,C)

��

(A−◦B)⊗ (B−◦C) A−◦Crc(A,B,C) // A−◦C

∗A ◦− ∗C

t(A,B)

��

One last point has to be made. We know that on objects, A∗ = ⊥◦−A and ∗A =
A−◦⊥, but we also have to verify it on maps. In particular, we have to know that
Hom(A,B) // Hom(B−◦⊥, A−◦⊥) and Hom(A,B) // Hom(⊥◦−B,⊥◦−A) are
isomorphisms, given that the corresponding maps for ()∗ and ∗() are. The reason this is
necessary is that we have used the pointwise adjunctness theorem applied to the isomor-
phism Hom(A⊗B,C) ∼= Hom(B, ∗(C∗⊗A) to infer that on objects A−◦C = ∗(C∗⊗A).
But the pointwise adjointness theorem does not use the functoriality of the right hand,
rather providing its own definition on arrows. In fact, given f :A′ // A, f −◦C: ∗(C∗⊗A)

// ∗(C∗ ⊗ A′) is the unique arrow such that the diagram

Hom(B, ∗(C∗ ⊗ A)) Hom(B, ∗(C∗ ⊗ A′))
Hom(B,f−◦C)

//

Hom(A⊗B,C)

Hom(B, ∗(C∗ ⊗ A))

∼=

��

Hom(A⊗B,C) Hom(A′ ⊗B,C)
Hom(f⊗B,C) // Hom(A′ ⊗B,C)

Hom(B, ∗(C∗ ⊗ A′))

∼=

��

commutes. That this unique arrow is ∗(C∗ ⊗ f) follows from the naturality of ()∗ and ∗()
applied in the diagram

Hom(B, ∗(C∗ ⊗ A)) Hom(B, ∗(C∗ ⊗ A′))
Hom(B,f−◦C)

//

Hom(A⊗B,C)

Hom(B, ∗(C∗ ⊗ A))

∼=

��

Hom(A⊗B,C) Hom(A′ ⊗B,C)
Hom(f⊗B,C) // Hom(A′ ⊗B,C)

Hom(B, ∗(C∗ ⊗ A′))

∼=

��

Finally, we will show that Definitions C and D are equivalent. It is clear that C
implies D, so suppose that A is ∗-autonomous in the sense of D. We denote the inverse of
(−)∗ by ∗(−) and define A⊗ B = (B−◦ ∗A)∗. The definition A ◦−B = A∗−◦B∗ implies,
by replacing A and B by ∗A and ∗B, respectively, that A−◦B = ∗A ◦− ∗B. Then

(A⊗B)−◦C ∼= (B−◦ ∗A)∗−◦C ∼= (B−◦ ∗A) ◦− ∗C
∼= B−◦ (∗A ◦− ∗C) ∼= B−◦ (A−◦C)

17

This shows not only that tensor is adjoint to Hom, but strongly so, which is well known
to be equivalent to the associativity of ⊗. We have,

Hom(A, ∗B) ∼= Hom(>, A−◦ ∗B) = Hom(>, ∗(B ⊗ A))

So that Definition C is satisfied (with respect to ∗(−) instead of (−)∗).

References

M. Barr (1979), *-Autonomous categories. Lecture Notes in Mathematics 752, Sprin-
ger-Verlag, Berlin, Heidelberg, New York.

M. Barr (1991), ∗-Autonomous categories and linear logic. Math. Structures Comp. Sci.,
1, 159–178.

M. Barr (to appear), *-Autonomous categories, revisited.

P.-H. Chu (1979), Constructing *-autonomous categories. Appendix to [Barr, 1979].

S. Eilenberg and G. M. Kelly (1966), Closed categories. Proc. Conf. Categorical Algebra,
Springer-Verlag, Berlin, Heidelberg, New York, 421–562.

J.-Y. Girard (1986), Linear Logic. Theoretical Computer Science, 46, 1-102.

J. Isbell (1964), Uniform Spaces. Amer. Math. Soc. Surveys 12.

C. B. Jay (1989), Languages for monoidal categories. J. Pure Applied Algebra, 59,
61–85.

J. Lambek (1958), The mathematics of sentence structure. Amer. Math. Monthly, 65,
154–169.

J. Lambek (1993), Some lattice models of bilinear logic. Preprint. (To appear in Proc.
Alan Day Memorial Conference.)

R. A. G. Seely (1989), Linear logic, ∗-autonomous categories and cofree coalgebras. In
J. Gray and A. Scedrov eds., Categories in Computer Science and Logic,
Contemporary Mathematics, 92, Amer. Math. Soc., 371-382.

Department of Mathematics and Statistics, McGill University
Montreal, Quebec, Canada
Email: barr@barrs.org

