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Abstract

In a previous paper, we investigated the relation between the initial algebra
and terminal coalgebra for an endofunctor on the category of sets. In this one we
study conditions on a functor to be algebraically compact, which means that the
canonical comparison morphism between those objects is an isomorphism.

Introduction

Suppose C is a category and T : C −→ C is a functor. In both [Barr, 1991] and [Freyd,
1991] it is shown that there is a canonical arrow between the initial T -algebra and
terminal T -coalgebra and both papers study its properties in some special cases. Freyd
has introduced the term algebraically compact to describe a category for which
that arrow is always an isomorphism. He does not actually exhibit any non-trivial
examples of such categories, although he claims that the realizable topos has a “small
full reflective subcategory that is algebraically compact in the relevant sense, that is, the
condition holds for every endofunctor that is definable as a functor in the topos.” This
suggests that it might be worth restricting attention to functors that are “relevant”.
For example, when dealing with categories enriched over some base category, it may be
relevant to restrict to functors that preserve that enriched structure.

For these and other reasons, we define a functor to be algebraically compact
if the canonical map is an isomorphism. Freyd also defined a category to be alge-
braically complete if every functor has an initial algebra. Clearly an algebraically
compact category is also algebraically complete. However we wish to explore a con-
dition closely related to algebraic compactness that is meaningful even in the non-
algebraically-complete case.

∗ In the preparation of this paper, I have been assisted by grants from the NSERC of Canada and
the FCAR du Québec.



If T is an endofunctor, let us say that a fixed object for T is an object C with
an isomorphism TC −→ C . This is a special kind of T algebra and, using the inverse
isomorphism, it is also a special kind of T -coalgebra. An initial algebra, if one exists,
is a fixed object and the initial fixed object and a terminal coalgebra, if one exists, is a
fixed object and the terminal fixed object. One of the main interests is in the category
of fixed objects. A functor need not have any fixed object. For example the covariant
power set functor on the category of sets does not have any.

In general, not very many categories are algebraically compact. However, it may
happen that every functor in some usefully large class of functors is algebraically com-
pact. For example, the homsets might be ordered and we may restrict to functors that
preserve the order. In that case, we say that that class of functors is algebraically
compact. Finally, we define a class of functors to be conditionally algebraically
compact if every functor in the class that has a fixed object is algebraically compact.

For various reasons, it appears that the category of CPOs (defined below) would
prove to be a good source of examples. In fact, it is there that many of the models of
invariant objects are found. And indeed we find a class of functors both on the that
category and on the category of CPOs with bottom which are algebraically compact
(Theorems 4.6 and 4.8).

A CPO is a partially ordered set in which every directed set of elements has a
sup. It is equivalent (using the axiom of choice) to suppose that every ordinal indexed
increasing chain of elements has a sup.

Among the motivations for Freyd’s paper was the feeling (which I shared) that there
was something ad hoc about the embedding/projection pairs that have been used to find
invariant objects for functors that were contravariant or of mixed variance. (See [Smith
& Plotkin, 1983] or [Barr & Wells, 1990] for an explanation.) It was thus of considerable
surprise to me to find embedding/projection sequences arising naturally in this investi-
gation. In retrospect, it perhaps should not have been so surprising. Among the results
found in Freyd’s paper are that invariant objects for covariant, contravariant and mixed
variance functors are found under the same conditions. Originally, embedding/projec-
tion sequences were introduced to make variance irrelevant. In Freyd’s treatment, all
functors are converted to covariant endofunctors on an appropriate category. The price
to be paid is that now one needs not just an initial fixed point, but a simultaneously
initial and terminal fixed point. The search for this turns out to lead quite naturally to
embedding/projection sequences. It may well be that these sequences are inevitable in
this connection, rather than just being a feature of one way of looking at it.
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1 Initial algebras and terminal coalgebras

In this section we construct a sequence that will usually lead to an initial algebra for an
endofunctor, if it has one. It appears to be essentially the same as that given in Dubuc
[1972]. We include it because it requires less machinery.

Let C be a category and suppose that T is an endofunctor. Suppose that C has an
initial object and has colimits along ordinal indexed diagrams. Under those conditions
we can construct what we call the initial sequence of T .

We begin with A0 = 0, A1 = T0 and f 0
1 :A0 −→ A1 the unique arrow. Let α be an

ordinal and assume that we have defined objects Aβ for all ordinals β < α , and arrows
fγβ :Aγ −→ Aβ for all γ ≤ β < α such that the following hold for all δ ≤ γ ≤ β < α :

IS–1. Aβ+1 = TAβ .

IS–2. fγ+1
β+1 = Tfγβ .

IS–3. fββ = id.

IS–4. fγβ ◦ f
δ
γ = f δβ for δ ≤ γ ≤ β .

IS–5. If β is a limit ordinal, the cocone {fγβ :Aγ −→ Aβ} is a colimit.

We now have to construct the object Aα and the morphisms fβα :Aβ −→ Aα for
β ≤ α so that IS–1 to IS–5 hold for δ ≤ γ ≤ β ≤ α . We consider three cases.

α is a limit ordinal: In this case we let {fβα :Aβ −→ Aα} be a colimit and fαα = id. IS–
1 and IS–2 are inapplicable for β = α and so remain valid, IS–3 and IS–4 hold by
definition and IS–5 obviously continues to hold.

α = β + 1 and β is a limit ordinal: Let Aα = TAβ . Since Aβ is the colimit of the Aγ
for γ < β we define fβα by giving the composites fβα ◦ f

γ
β for γ < β and proving them

compatible. We define fβα ◦ f
γ
β = Tfγβ ◦ f

γ
γ+1 , which makes sense since Aγ+1 = TAγ .

The compatibility follows from

Tfγβ ◦ f
γ
γ+1

◦ f δγ = Tfγβ ◦ f
δ
γ+1 = Tfγβ ◦ f

δ+1
γ+1

◦ f δδ+1 = Tfγβ ◦ Tf
δ
γ
◦ f δδ+1 = Tf δβ ◦ f

δ
δ+1

Finally, we let fαα and fγα = fβα ◦ f
γ
β for γ < β . IS–1 is obvious. IS–2 follows from

fγ+1
β+1 = fγ+1

α = Tfγ+1
β

◦ fγ+1
γ+2 = Tfγ+1

β
◦ Tfγγ+1 = Tfγβ

IS–3 and IS–4 hold by definition and IS–5 continues to be valid since this construction
is not at a limit ordinal.

α = β + 2 for some β : In this case, we let fαα = id and fβ+1
α = Tfαβ+1 . For γ < β + 1,

we let fγα = fβ+1
α

◦ fγβ+1 . IS–1 through IS–4 are true by definition and no new case of
IS–4 is created.
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Thus we can continue to build this sequence through all ordinals. If it should ever
happen that fαα+1 is an isomorphism, it is clear that we will have fαβ is an isomorphism
for all β > α . In this case, we will say that the sequence terminates at α . In fact, it
is sufficient that any fβα with β < α be an isomorphism.

1.1 Proposition. Suppose β < α are such that fβα is an isomorphism. Then fββ+1

is an isomorphism.

Proof. If fβα is an isomorphism, so is

Tfβα = fβ+1
α+1 = fαα+1

◦ fβ+1
α

from which it follows that fβ+1
α is a split monomorphism. On the other hand, from

fβα = fβ+1
α

◦ fββ+1 being an isomorphism, it follows that fβ+1
α is a split epimorphism and

hence an isomorphism. But then fββ+1 is also an isomorphism.

1.2 Theorem. Suppose the initial sequence terminates at α . Then (Aα, (f
α
α+1)−1)

is an initial T -algebra.

Proof. Let (B, b) be a T -algebra. We begin with the unique arrow h0:A0 = 0 −→ B .
Suppose β ≤ α is an ordinal and we have, for all γ < β an arrow hγ:Aγ −→ B such
that hγ ◦ f δγ = hδ:Aδ −→ B for δ ≤ γ < β and b ◦ Thγ ◦ fγγ+1 = hγ for γ < β . We want
to construct hβ:Aβ −→ B to continue the induction. We consider three cases:

β is a limit ordinal: Then Aβ is a colimit of the fβγ for γ < β and we can let hβ be the
unique arrow such that hβ ◦ fγβ = hγ .

β = γ + 1 and γ is a limit ordinal: Let hβ = b ◦ Thγ . We claim that b ◦ Thγ ◦ fβγ = hγ .
We show this by composing with f δγ for δ < γ . We have

b ◦Thγ ◦ fγβ ◦ f
δ
γ = b ◦Thγ ◦ f δβ = b ◦Thγ ◦ f δ+1

γ+1
◦ f δδ+1 = b ◦Thγ ◦Tf δγ ◦ f

δ
δ+1

= b ◦Thδ ◦ f δδ+1 = b ◦hδ+1 ◦ f δδ+1 = hδ = hγ f δγ

This gives immediately that hβ ◦ fγβ = hγ from which we have for δ ≤ γ that

hβ ◦ f δβ = hβ ◦ fγβ ◦ f
δ
γ = hγ ◦ f δγ = hδ

β = γ + 2 for some γ : In this case, we let hβ = b ◦ Thγ+1 . Then

b ◦ Thγ+1 ◦ fγ+1
γ+2 = b ◦ Thγ+1 ◦ Tfγγ+1 = b ◦ Thγ = hγ+1

from which it is immediate that hβ ◦ fγ+1
β = hγ+1 and that, just is in the previous case,

for δ ≤ γ + 1,
hβ ◦ f δβ = hβ ◦ fγβ ◦ f

δ
γ = hγ ◦ f δγ = hδ
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It follows that if fαα+1 is an isomorphism, hα is a morphism of T -algebras. Thus
(Aα, (f

α
α+1)−1) is at least weakly initial. Suppose k:Aα −→ B is another morphism of

T -algebras. For β ≤ α , let kβ = k ◦ fβα . We will show by induction that hβ = kβ for all
β ≤ α . Certainly h0 = k0 since their domain is the initial object. Assuming hβ = kβ ,
we have

k ◦ fβ+1
α = k ◦(fαα+1)−1 ◦ fβ+1

α+1 = b ◦ Tk ◦ Tfβα = b ◦ T (k ◦ fβα ) = b ◦ T (kβ) = b ◦ T (kβ)

which reduces by the same argument to hα ◦ fβ+1
α . Suppose β is a limit ordinal and

if for every γ < β we have k ◦ fγα = hα ◦ fγα . The fact that Aβ = colimγ<β Aγ implies
that k ◦ fβα = hα ◦ fβα . This shows that k = hα and demonstrates uniqueness.

By dualizing the above argument, we get the following.

1.3 Theorem. If T is an endofunctor on a category C for which the requisite limits
exist, there is a terminal T -sequence

B0

g1
0←−− B1

g2
1←−− · · ·Bβ

gαβ←−− Bα · · ·

defined for all ordinals with B0 = 1, Bα+1 = TBα and Bα = limβ<αBβ for a limit
ordinal α. If gα+1

α is an isomorphism, (Bα, (g
α+1
α )−1) is a terminal T -coalgebra.

1.4 An example. Let C be the category whose objects are all ordinals, ordered by
inclusion, plus one more object ∞ greater than all the ordinals. Then C is complete
and cocomplete. Let T be the endofunctor defined by Tα = α+1 when α is an ordinal
and T∞ = ∞ . Then the initial sequence for T consists of all the ordinals and never
stabilizes. There is only one T -algebra and that is ∞ and it is initial. Thus the initial
T -algebra need not be reachable from the initial sequence.

1.5 If a:TA −→ A is an algebra and b:B −→ TB is a T -coalgebra, then a morphism
f :A −→ B is called a relational T -morphism if

TB B�
b

TA A-a

?

Tf

?

f

commutes.
The reason for the name is that it is a morphism in the category of relational T -

algebras whose objects are relations TA ←− R −→ A . A morphism from that one to
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TB ←− S −→ B is a morphism f :A −→ B for which there is a (necessarily unique) g:R
−→ S such that

TB S�

TA R�

?

Tf

B-

A-

?

g

?

f

commutes. This category includes both the algebras and coalgebras as full subcat-
egories. However, the inclusions do not preserve initial and terminal objects. More
precisely, the inclusion of the algebras preserves terminal algebras but not initial ones
and vice versa for the coalgebras. These are precisely the ones we are not interested in.

1.6 Theorem. Let T be an endofunctor on C and let {Aα, fβα} and {Bα, g
α
β}

be the initial and terminal T -sequences respectively. Then there is a unique family of
morphisms {hαα:Aα −→ Bα} such that for all β , hβ+1

β+1 = Thββ and such that for all

β ≤ α , gαβ ◦ h
α
α
◦ fβα = hββ . Suppose, moreover, that a:TA −→ A is a T -algebra, that

{kα:Aα −→ A} is the sequence constructed in 1.2, that b:B −→ TB is a T -coalgebra,
{lα:B −→ Bα} is the dual sequence and that m: (A, a) −→ (B, b) is a relational morphism.
Then hαα = lα ◦m ◦ kα .

Proof. The morphism h0
0:A0 −→ B0 is the unique arrow from 0 to 1. Assuming that

hαα:Aα −→ Bα is given, then define hα+1
α+1 = Thαα:Aα+1 −→ Bα+1 . If α is a limit ordinal,

then Aα = colimβ<αAβ and Bα = limβ<αBβ . Then hαα is an element of

Hom(colim
β<α

Aβ, lim
γ<α

Bγ) = lim
(β,γ)∈(α×α)

Hom(Aβ, Bγ)

But this limit is taken over α×α and it follows from [Lawvere, 1963], page 36 that for
a filtered diagram, the diagonal is cofinal in the square and so that limit is the same as
limβ<α Hom(Aβ, Bβ) and the family {hββ} is an element of the limit. Thus at the limit

ordinal α , there is a unique hαα:Aα −→ Bα such that gαβ ◦ h
α
α
◦ fβα = hββ . The uniqueness

of the sequence of hαα subject to those two conditions is clear.
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For the second part, we note that the sequences of kα and lα are defined so that
the upper and lower squares, respectively, of the diagrams

A TA�
a

Aα Aα+1
-fαα+1

?
kα

?
Tkα

A A�
=

Aβ Aα-fβα

?
kβ

?
kα

?
m

?
Tm

?
m

?
Tm

Bα Bα+1
�
gα+1
α

B TB-b

?
lα

?
lα+1

Bβ Bα
�
gαβ

B B-=

?
lβ

?
lα

commute, the first for all α and the second for all limit ordinals α . It follows by
induction that the family {lα ◦m ◦ kα} satisfy the same hypotheses as the {hαα} and
the uniqueness makes the two families equal.

If both the initial and terminal T -sequences stabilize, then so does the sequence of
hαα and is the canonical map from the initial algebra to the terminal coalgebra.

1.7 Theorem. Suppose the endofunctor T has the property that there is some
ordinal α0 for which hαα is an isomorphism for all α > α0 . Suppose there is a relational
morphism m from some T -algebra a:TA −→ A to some T -coalgebra b:B −→ TB . Then
T is algebraically compact.

We remark that it is sufficient that there be an invariant object, that is an A ∼= TA
since then A is both an algebra and coalgebra and the identity function is a relational
morphism.

Proof. It will simplify the argument to suppose, as we may without loss of generality,
that Aα = Bα and hαα = id for all α . Then we can construct the families kα:Aα
−→ A and lα:B −→ Aα as above and they will satisfy lα ◦m ◦ kα = id for all α . Then
kα ◦ la ◦m is an idempotent endomorphism of A for each α . Since an object has only
a set of endomorphisms, there are ordinals β < α such that kβ ◦ lβ ◦m = kα ◦ lα ◦m .
But then

fβα ◦ g
α
β = lα ◦m ◦ kα ◦ fβα ◦ g

α
β
◦ lα ◦m ◦ kα

= lα ◦m ◦ kβ ◦ lβ ◦m ◦ kα = lα ◦m ◦ kα ◦ lα ◦m ◦ kα = id

As we have seen in Proposition 1.1, as soon as fβα is an isomorphism, (Aβ, (f
β
β+1)−1)

is an initial T -algebra. Obviously (Aβ, (g
β+1
β )−1) is a terminal T -coalgebra and T is

therefore algebraically compact.
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2 Partial monomorphisms

We illustrate these points with the category PM whose objects are sets and arrows are
partial monomorphisms. If f :X −→ Y is a partial monomorphism, so is the converse
relation, which we will denote f ∗:Y −→ X . A moment’s thought will convince the
reader of the following fact.

2.1 Proposition. Let f :X −→ Y and g:Y −→ X be morphisms of PM such that
g ◦ f = idX . Then g = f ∗ .

Note that although we call the arrows partial monomorphisms, the only ones that
are monomorphisms in PM itself are the total ones and they are split.

If T : PM −→ PM is an endofunctor, the fact that PM is pointed—the empty
set is both initial and final—implies that the initial and terminal sequences begin the
same. We next show:

2.2 Proposition. Suppose {fγβ :Aγ −→ Aβ | γ < β} is a chain based on the ordinals

less than α and {gβγ :Aβ −→ Aγ | γ < β} is a cochain based on the same set. Suppose
also that gβγ ◦ f

γ
β = id for γ < β . Then colimAβ and limAβ both exist and the induced

map between them is an isomorphism.

Proof. An arrow in the category with a left inverse is a monic function. If Aα is the
colimit in the category of sets, with the cocone given by the functions fβα :Aβ −→ Aα , I
claim it is also the colimit in PM .

For the purpose of this argument, let us suppose that all the fβα are inclusions and,
therefore, so are the fγβ for γ ≤ β ≤ α . A compatible family of partial monomorphisms

Aβ −→ B is given by a family of subsets Uβ ⊆ Aβ and monomorphisms uβ:Uβ −→ B
such that Uγ = Aγ ∩ Uβ and uβ|Aγ = uγ for γ ≤ β . Let Uα =

⋃
β<α Uβ and let

uα:Uα −→ B be the unique function such that uα|Uβ = uβ for β < α . Then the partial
monomorphism represented by uα is the desired arrow.

The duality ensures that if Aα and {fβα} is the colimit of the {fγβ } , then Aα with

the {(fβα )∗} is also the limit of the {(fγβ )∗} . But (fγβ )∗ = gβγ and if we let gαβ = (fβα )∗

we have continued the isomorphism between the initial sequence to the limit ordinal α .
Thus hαα is an isomorphism (which can be taken to be the identity) for all α .

2.3 Corollary. In PM the class of all functors is conditionally algebraically
compact.

2.4 The category PM κ . For a cardinal κ , let PM κ denote the full subcategory
of PM consisting of the sets of cardinality at most κ . Suppose T is an endofunctor
on PM κ . The first thing we observe is that a colimit of an increasing chain of sets of
cardinality at most κ is still at most κ . In fact, under those circumstances, the entire
chain and hence its union can be embedded into a set of cardinality exactly κ . Thus
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PM κ admits all the colimits necessary to carry out the construction of the initial,
and hence the terminal, T -chains. In particular, in PM the class of all functors is
conditionally algebraically compact.

For a cardinal λ , let Xλ denote a set of cardinality λ (which might be λ itself,
depending on your model of cardinals). It may happen that T (Xκ) ∼= Xκ . If not, it
has smaller cardinality. Since T (X0) does not have cardinality less than 0 and since
the cardinals are well-ordered, there is a least cardinal λ such that #(T (Xλ)) = µ < λ .
Then there is a split monic Xµ −→ Xλ −→ Xµ . Applying T we get a split sequence
T (Xµ) −→ T (Xλ) −→ T (Xµ) so that #(T (Xµ)) ≤ #(T (Xλ)) = µ . On the other hand,
from the choice of λ it is not possible that #(T (Xµ)) < µ so that we conclude that
T (Xµ) ∼= Xµ . Thus there is a fixed point for every functor and so we conclude that
PM κ is algebraically compact for every κ .

3 Hilbert spaces

We consider the category H of hilbert spaces and linear maps of norm at most 1.
Nothing we say depends on whether the ground field is R or C .

Every map f :H −→ K in H has an adjoint f ∗:K −→ H . This defines a contravari-
ant endofunctor on H that is the identity on objects and whose square is the identity
functor. It is characterized by the property that fu · v = u · f ∗v for u ∈ H and v ∈ W .

The main property we need is,

3.1 Proposition. Let f :H −→ K and g:K −→ H be morphisms such that g ◦ f = id.
Then f is an isometric embedding and g = f ∗ .

Proof. Since g cannot increase norm, f cannot decrease it and so must be an isometry.
The arrow p = f ◦ g is an idempotent endomorphism of K .

We claim that im(p) = ker(p)⊥ . In fact, let p(v) ∈ im(p). Write p(v) = v1 + v2

with v1 ∈ ker(p)⊥ and v2 ∈ ker(p). Then

v1 + v2 = p(v) = p2(v) = p(v1) + p(v2) = p(v1)

so that
‖p(v1)‖ = ‖v1 + v2‖ =

√
‖v1‖2 + ‖v2‖2 ≥ ‖v1‖ ≥ ‖p(v1)‖

which means that the inequalities are equalities and, in particular, that ‖v2‖ = 0,
whence v2 = 0 and p(v) ∈ ker(p)⊥ . This gives that im(p) ⊆ ker(p)⊥ . Since p is
idempotent, H = im(p)⊕ker(p), while the idempotence and continuity of p imply that
H = im(p)⊕ im(p)⊥ , from which we have that im(p) = ker(p)⊥ .

We now see that for u ∈ H and v ∈ K ,

fu · v = fu · pv = fu · f ◦ gv = u · gv

9



since f is an isometry and hence g = f ∗ .

This shows that the category has many properties in common with the category
PM . For example, H has colimits along chains of isometric embedding. This is
done by taking the colimit as vector spaces and then completing. Dimension replaces
the cardinality used in the preceding example; the exact same considerations are valid.
Two hilbert spaces of the same dimension are isomorphic and one of smaller dimension
has an isometric embedding into one of larger dimension. Let Hλ denote the full
subcategory of hilbert spaces of dimension at most λ .

3.2 Theorem. The category H is conditionally algebraically compact and the
categories Hλ are algebraically compact.

Although the results are independent of it, it is interesting to note that there is
a canonical embedding of PM into H that restricts to an embedding of PM λ

into Hλ . If X is a set, l2(X) is the set of square summable families {ax | x ∈ X}
with

(∑
x∈X |ax|2

)1/2
as norm. This is not a functor on the category of sets, even to

the category of continuous linear maps. It is a functor on sets and monomorphisms
and, more to the point, it is also a functor on PM . If f :X −→ Y is a partial
monomorphism, define

l2(f)(x) =
{
f(x) if x ∈ dom(f)
0 otherwise

Then l2 preserves all the constructions used in showing that these categories are con-
ditionally algebraically compact.

4 CPOs and CPOs with bottom

One commonly supposes of CPOs that they contain a least or bottom element, denoted
⊥ . One does not suppose that morphisms are to preserve this bottom. This convention,
although well motivated by the results that follow therefrom, makes for an ill-behaved
category. There is no initial object; in fact no categorical sums at all.

On the one hand, if one does not suppose a bottom element, such things as Tarski’s
fixed point theorem fail. On the other hand, if you suppose there is a bottom and it is
preserved, then Tarski’s theorem is trivial and uninteresting, since the bottom element
is the least fixed point. The solution we will adopt is to work with the category of
CPOs that do not necessarily have a bottom element, but state the Tarski theorem
only for those objects of the category that do.

There is an obvious category of CPOs with bottom and morphisms that preserve
the directed sups and bottom. Since, as Freyd points out in his 1991 preprint, an
algebraically compact category is pointed, it seems likely that more complete results
are to be found in that category. We let CPO⊥ denote the category of CPOs with
bottom.
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4.1 CPO- and CPO⊥ -enriched categories. A category C is CPO-enriched,
resp. CPO⊥ -enriched, if its Homsets are CPOs, resp. with bottom, such that compo-
sition preserves the sups of ordinal indexed chains, resp. and bottom.

4.2 Proposition. Let C be a category enriched over CPO . Consider a diagram
defined for i ∈ N:

B0 B1
�

g1
0

A0 A1
-f 0

1

?

h0
0

?

h1
1

B2
�

g2
1

A2
-f 1

2

?

h2
2

· · ·�
g3

2

· · ·-f 3
2

?
Bi

�
gii−1

Ai-f i−1
i

hii

· · ·�
gi+1
i

· · ·-f ii+1

?

l01

�
�
�
���

l12

�
�
�
���

l23

�
�
�
���

li−1
i

�
�
�
���

lii+1

�
�
�
���

Suppose the following identities are satisfied for all i ∈ N

EP–1. gi+1
i

◦ hi+1
i+1

◦ f ii+1 = hii .

EP–2. lii+1
◦ hii = f ii+1 .

EP–3. hi+1
i+1

◦ lii+1
◦ gi+1

i ≤ id.

EP–4. gi+1
i

◦ hi+1
i+1

◦ lii+1 = id.

Suppose f iω:Ai −→ Aω is a colimit of the upper sequence. Then there are arrows
gωi :Aω −→ Bi that define a limit cone over the lower sequence and such that gωi ◦ f

i
ω = hii

for all i ∈ N.

Proof. Define f ij :Ai −→ Aj for i ≤ j as the composite f j−1
j

◦ f j−2
j−1

◦ · · · ◦ f ii+1 and simi-

larly gij:Bi −→ Bj for i ≥ j as the composite gj+1
j

◦ gj+2
j+1

◦ · · · ◦ gii−1 . Empty composites
are, as usual, defined to be identity maps. It is evident that for i < j , we have
f j ◦ f ij = f i , that for i < j < k , we have f jk ◦ f

i
j = f ik and that for i > j > k , we have

gjk ◦ g
i
j = gik .

We define hij:Ai −→ Aj for all i 6= j by the formulas

hij =

{
hjj ◦ f

i
j if i < j

gij ◦h
i
j if i > j

4.3 Lemma. The following identities hold

EP–5. hij ◦ f
k
i = hkj for all j and all k < i.

EP–6. gik ◦ h
i
j = hik for all i and all j > k .

11



Proof.

EP–5. We have to consider the cases i ≤ j and i > j separately. In the first case,

hij ◦ f
k
i = hjj ◦ f

i
j
◦ fki = hjj ◦ f

k
j = hkj

In the second case, we use induction on i− j . When i− j = 0, it is the first case.
For i− j > 0,

hij ◦ f
k
i = gij ◦ h

i
i
◦ fki = gi−1

j
◦ gii−1

◦ hii ◦ f
i−1
i

◦ fki−1 = gi−1
j

◦ hi−1
i−1

◦ fki−1 = hkj

We have used EP–1 and induction.

EP–6. Except for the l ’s, the diagram in the dual category would look the same,
interchanging the A ’s and B ’s and f ’s and g ’s and leaving the h ’s the same. It
would leave EP–1 fixed and would interchange EP–5 and EP–6, none of which
involve the l ’s.

We can now return to the proof of Proposition 4.2. The universal mapping prop-
erties of the colimit, together with EP–5 imply that for each j there is a map gωj :Aω
−→ Aj such that gωj ◦ f

i
ω = hij . EP–6 and uniqueness of maps from a colimit imply that

for j > k , we have gjk ◦ g
ω
j = gωk so that the gωj give a cone over the lower sequence.

Suppose we have another cone given by mi:C −→ Bi .
First we see that for all i ,

f i+1
ω

◦ lii+1
◦mi = f i+2

ω
◦ f i+1

i+2
◦ lii+1

◦ gi+1
i

◦mi+1

= f i+2
ω

◦ li+1
i+2

◦hi+1
i+1

◦ lii+1
◦ gi+1

i
◦mi+1

≤ f i+2
ω

◦ li+1
i+2

◦mi+1

Thus the family {f i+1
ω

◦ lii+1
◦mi} gives a increasing sequence of maps in Hom(C,A)

and we let m =
∨
i f

i+1
ω

◦ lii+1
◦mi:C −→ A . Now gωj ◦m =

∨
i g

ω
j
◦ f i+1

ω
◦ lii+1

◦mi is the
sup of an increasing sequence so we need consider only its tail. But as soon as i > j ,
we have

gωj ◦ f
i+1
ω

◦ lii+1
◦mi = hi+1

j
◦ lii+1

◦mi

= gi+1
j

◦hi+1
i+1

◦ lii+1
◦mi

= gij ◦ g
i+1
i

◦hi+1
i+1

◦ lii+1
◦mi

= gij ◦mi = mj

Thus we see that Aω with the gωi is at least a weak limit. In order to prove uniqueness,
we need some lemmas.

12



4.4 Lemma.

1. The sequence {f i+1
ω

◦ lii+1
◦ gωi } is an increasing sequence of endomorphisms of A.

2. f i+1
ω

◦ lii+1
◦ gωi ◦ f

j
ω = f jω for all j > i.

3.
∨
i f

i+1
ω

◦ lii+1
◦ gωi ◦ f

j
ω = f jω .

4.
∨
i f

i+1
ω

◦ lii+1
◦ gωi = id.

Proof.

1.
f i+1
ω

◦ lii+1
◦ gωi = f i+1

ω
◦ lii+1

◦ gωi

= f i+2
ω

◦ f i+1
i+2

◦ lii+1
◦ gωi

= f i+2
ω

◦ li+1
i+2

◦hi+1
i+1

◦ lii+1
◦ gi+1

i
◦ gi+1

≤ f i+2
ω

◦ li+1
i+2

◦ gi+1

2. For i > j ,
f i+1
ω

◦ lii+1
◦ gωi ◦ f

j
ω = f i+1

ω
◦ lii+1

◦hji

= f i+1
ω

◦ lii+1
◦hii ◦ f

j
i

= f i+1
ω

◦ f ii+1
◦ f ji = f jω

3. This is now immediate.

4. This follows since the {f jω} are a colimit cocone.

Now we are in a position to prove the uniqueness, which will complete the proof of
Proposition 4.2. Suppose n:C −→ A is a map with gωi ◦ n = mi for all i . Then

m =
∨

f i+1
ω

◦hi+1 ◦mi =
∨

f i+1
ω

◦hi+1 ◦ g
ω
i
◦n

=
(∨

f i+1
ω

◦hi+1 ◦ g
ω
i

)
◦n = n

13



4.5 Proposition. Let α be a limit ordinal and suppose we have an ordinal indexed
diagram

A0

f 0
1−−→←−−
g1

0

A1

f 1
2−−→←−−
g2

1

· · ·Aγ
fβγ−−−→←−−−
gγβ

Aβ −→←− · · ·

defined for all ordinals β < α suppose there is a cardinal α0 such that the following
identities are satisfied for all cardinals β and γ such that α0 ≤ γ ≤ β < α :

EP ′–1. gβγ ◦ f
γ
β = id.

EP ′–2. fγβ ◦ g
β
γ ≤ id.

Then if {fβα :Aβ −→ Aα} is a colimit of the increasing sequence, there are maps gαβ :Aα
−→ Aβ such that gαβ ◦ f

β
α = id, fβα ◦ g

α
β and the cone defined by the {gαβ} is a limit.

Moreover, the above (in)equalities are true at α as well.

Proof. Since neither the limit nor the colimit depend on the early part of the sequence,
we can assume, without loss of generality, that the conditions of the proposition are
satisfied for all γ ≤ β .

The maps gαβ are maps out of a colimit and so they are defined by giving their
composite with every fαγ and proving it compatible. We define it by

gαβ ◦ f
γ
α =

{
fγβ if γ ≤ β

gγβ if β ≤ γ

To show that this family is compatible, we have to choose a δ ≥ β and compose on the
right with fβδ . We then have three cases:

δ ≤ γ ≤ β : We have fγβ ◦ f
δ
γ = fγβ .

δ ≤ β ≤ γ : We have gγβ ◦ f
δ
γ = gγβ ◦ f

β
γ
◦ f δβ = f δβ .

β ≤ δ ≤ γ : We have gγβ ◦ f
δ
γ = gδβ ◦ g

γ
δ
◦ f δγ = gδβ .

This defines the arrows gαβ and shows, incidentally, that gαβ ◦ f
β
α = id. Next we wish

to show that this family of arrows is a cone, that is gβδ ◦ g
α
β = gαδ for δ ≤ β . Since these

arrows are determined uniquely by their composites with all fγα we must show that this
equation is true when composed with all fγα . Again, we consider three cases:

δ ≤ β ≤ γ : We have
gβδ ◦ g

α
β
◦ fγα = gβδ ◦ g

γ
β = gβδ = gαδ ◦ f

β
α

δ ≤ γ ≤ β :
gβδ ◦ g

α
β
◦ fγα = gβδ ◦ f

γ
β = gγδ ◦ g

β
γ
◦ fγβ = gγδ = gαδ ◦ f

β
α

14



γ ≤ δ ≤ β :
gβδ ◦ g

α
β
◦ fγα = gβδ ◦ f

γ
β = gβδ ◦ f

β
δ
◦ fγβ = fγβ = gαδ ◦ f

β
α

Now suppose an object B is given and arrows hβ:B −→ Aβ such that for γ < β ,
gβγ ◦ hβ = hγ . I claim that the sequence gβα ◦ hβ is an increasing sequence of arrows from
B to Aα . In fact, for γ ≤ β , we have

fγα ◦ hγ = fγα ◦ g
β
γ
◦ hβ = fβα ◦ f

γ
β
◦ gβγ ◦ hβ ≤ fβα ◦ hβ

since fγβ ◦ g
β
γ ≤ id. Thus we can let hα:B −→ Aα =

∨
fβα ◦ hβ . For fixed β the sequence

gαβ ◦ f
γ
α
◦ hγ is also an increasing sequence and so we have

gαβ ◦hα = gαβ ◦

(∨
g

fγα ◦hγ

)
=
∨
γ

gαβ ◦ f
γ
α
◦hγ

=
∨

γ>β

gαβ ◦ f
γ
α
◦hγ =

∨

γ>β

gγβ ◦hγ =
∨

γ>β

hβ = gβ

For uniqueness, we begin by showing that
∨
β<α f

β
α
◦ gαβ = id. In fact, fix a γ < α .

Then (∨

β<α

fβα ◦ g
α
β

)
◦ fγα =

∨

β<α

fβα ◦ g
α
β
◦ fγα =

∨

γ<β<α

fβα ◦ g
α
β
◦ fγα

=
∨

γ<β<α

fβα ◦ g
γ
β
◦ gαγ ◦ f

γ
α =

∨

γ<β<α

fβα ◦ g
γ
β

=
∨

γ<β<α

fγα = fγα

Then if ka:B −→ Aa is another arrow such that hβ = gαβ ◦ kα for all β < α , then

fβα ◦ hβ = fβα ◦ g
α
β
◦ kα so that

hα =
∨

fβα ◦ hβ =
∨

fβα ◦ g
α
β
◦ kα =

(∨
fβα ◦ g

α
β

)
◦ kα = kα

4.6 Theorem. Suppose C is a category enriched over CPO . Let T be an endo-
functor on C that preserves the order relation. Suppose there is a morphism l: 1 −→ T0

such that the composite T1 −→ 1
l−→ T0

Th−−−→ T1 ≤ idT1 , where h: 0 −→ 1 is the unique
arrow. Assume that C has colimits along ordinal indexed sequences. Then the canoni-
cal map from the initial T -sequence to the terminal T -sequence is an isomorphism for
indices ω and above and C is conditionally algebraically compact.
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Proof. We construct the initial and final sequences and the map between them as above.
In addition we have a sequence of maps lii+1 = T il:Bi = T i1 −→ Ai+1 = T i+10. From
the fact that h1

1
◦ l ◦ g1

0 ≤ id, it follows by applying T i that hi+1
i+1

◦ lii+1
◦ gi+1

i ≤ id. It
then follows that colimAi is also a limit of the Bi . Thus Bω exists and hωω is an
isomorphism. Beyond that point, hαα remains an isomorphism. At limit ordinals, it
is so by the preceding proposition and at non-limit ordinals, by applying T to the
preceding ones.

4.7 Proposition. A non-empty CPO⊥ -enriched category that has colimits along
countable chains is pointed.

Proof. Since each homset has a bottom and the bottom elements are preserved by
composition, the category has the requisite class of morphisms and we need only find
an initial (or a terminal) object. Let A be any object and consider the sequence

A
⊥−−→ A

⊥−−→ A
⊥−−→ · · ·

where ⊥ is the bottom map in Hom(A,A). If fi:A −→ A0 is the map from the nth
term of the sequence to the colimit, we have fi = fi+1 ◦ ⊥ = ⊥ . If B is any object
of the category and g:A0 −→ B any arrow, we have g ◦ fn = g ◦ ⊥ = ⊥ = ⊥ ◦ fn for
each n and, from the uniqueness of arrows from a colimit, that g = ⊥ . Thus ⊥ is the
unique arrow from A0 to B , so that A0 is initial.

4.8 Theorem. Let C be a CPO⊥ enriched category and let T be an endofunctor
on C that preserves the order structure (but not bottom and not the sups). Suppose C
has colimits along ordinal chains. Then T is conditionally algebraically compact.

Proof. This is an immediate consequence of the preceding results. In this case 0 = 1
so we have the initial map f : 1 −→ T0. The map Th is the identity and we have
Th ◦ f ◦ g ≤ id because the composite is the bottom element of Hom(T1, T1).

5 ω-CPO and ω-CPO⊥ enriched categories

Many of the results on CPOs are also valid if we suppose only that countable chains
have a sup, but only for functors that preserve colimits along countable chains. But
one can argue that only such functors have computational meaning. For that condition
is equivalent to the statement that every element of TX depends on a finite amount of
data from X .

An ω - CPO is a poset in which every countable chain has a sup. This gives a
category of ω - CPO s and another of ω - CPO s with bottom, which will be denoted
ω - CPO and ω - CPO⊥ , respectively. With appropriate assumptions of preservations
of colimits along countable chains, the preceding results are valid in for categories en-
riched over these categories too. Since the proofs are strictly easier than the proofs
above, we simply record the results.
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5.1 Theorem. Let C be an ω - CPO -enriched category with an initial and a terminal
object and colimits along ω -chains and let T be an endofunctor on C that preserves the
order relation on the homsets and ω -indexed colimits. Suppose there is a map l: 1 −→ T0
such that the composite

T1
g−−→ 1

l−→ T0
Th−−−→ T1 ≤ idT1

where g:T1 −→ 1 and h: 0 −→ 1 are the unique maps. Then T is algebraically compact.

5.2 Theorem. Let C be an ω -CPO⊥ enriched category and let T be an endofunctor
on C that preserves the order structure (but not bottom and not the ω sups). Suppose
C has and T preserves colimits along ω chains. Then T is algebraically compact.

5.3 Functors that preserve directed sups. If we suppose that a functor pre-
serves directed sups on homsets, even just of countable sets, then we can prove that
it is algebraically compact by showing that the initial/terminal fixed point is reached
already at the countable stage.

5.4 Theorem. Let C be a an ω - CPO category that has colimits along ordinal
indexed sequences. Then the class of endofunctors that preserves countable directed sups

and for which there is a morphism l: 1 −→ T0 such that the composite T1 −→ 1
l−→ T0

Th−−−→ T1 ≤ idT1 , where h: 0 −→ 1 is the unique arrow, is algebraically compact.

Proof. Let T be an endofunctor of that class. One easily sees that a functor that
preserves countable directed sups also preserves finite ones and hence preserves the
order. It follows from the results of Section 1 and of Proposition 4.2 that there is a
diagram

B0 B1
�

g1
0

A0 A1
-f 0

1

?

h0
0

?

h1
1

B2
�

g2
1

A2
-f 1

2

?

h2
2

· · ·�
g3

2

· · ·-f 3
2

?
Bω

�

Aω-

?

hωωl01

�
�
�
���

l12

�
�
�
���

l23

�
�
�
���

in which the top row is a colimit, the bottom a limit and hωω is an isomorphism. It is
sufficient to show that

TA0

Tf 0
1−−−−→ TA1

Tf 1
2−−−−→ TA2 −→ · · · −→ TAω

is a colimit, for the colimit is clearly Aω and fωω+1 is the induced map.
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It follows (with a slight change of notation) from Lemma 4.4 that

{f i+1
ω

◦ lii+1
◦ gωi ◦ h

ω
ω}

is an increasing sequence of endomorphisms of Aω whose sup is the identity. If we
suppose that T preserves sups of countable chains, then we also have that

{Tf i+1
ω

◦ T lii+1
◦ Tgωi ◦ Th

ω
ω}

is an increasing sequence of endomorphisms of TAω whose sup is the identity.
Now suppose that {mi:TAi −→ C} is a family of arrows such that mi ◦ Tf ji = mj

for j ≤ i . I claim that {mi+1 ◦ T lii+1
◦ Tgωi ◦ Th

ω
ω} is an increasing family of morphisms

TAω −→ C . We have

mi+1 ◦T lii+1
◦Tgωi ◦Th

ω
ω = mi+2 ◦Tf i+1

i+2
◦T lii+1

◦Tgωi ◦Th
ω
ω

= mi+2 ◦T li+1
i+2

◦Thi+1
i+1

◦T lii+1
◦Tgi+1

i
◦Tgωi+1

◦Thωω

≤ mi+2 ◦T li+1
i+2

◦Tgωi+1
◦Thωω

Let mω =
∨
mi+1 ◦ T lii+1

◦ Tgωi ◦ Th
ω
ω . Then

( ∞∨
i=0

mi+1 ◦T lii+1
◦Tgωi ◦Th

ω
ω

)
◦Tf jω =

∨
i>j

mi+1 ◦T lii+1
◦Tgωi ◦Th

ω
ω
◦Tf jω

=
∨
i>j

mi+1 ◦T lii+1
◦Thii ◦Tf

j
i

=
∨
i>j

mi+1 ◦Tf ii+1
◦Tf ji =

∨
i>j

mi+1 ◦Tf ji+1

=
∨
i>j

mj = mj

This shows that mω has the right composite with each Tf jω . Suppose m:TAω −→ C
has the property that m ◦ Tf iω = mi for all i . Then we have that

m = m ◦
(∨

Tf i+1
ω

◦T lii+1
◦Tgωi ◦Th

ω
ω

)

=
∨

m ◦Tf i+1
ω

◦T lii+1
◦Tgωi ◦Th

ω
ω

=
∨

mi ◦T lii+1
◦Tgωi ◦Th

ω
ω = mω

which shows uniqueness of mω .
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6 Some ω-continuous functors on ω-CPO and ω-CPO⊥
The categories ω - CPO and ω - CPO⊥ are not ℵ0 -accessible (they are ℵ1 -accessible),
so there is no ready supply of ω -continuous functors. Therefore it is of interest to know
that there is an interesting class of such functors.

Obviously, both constant functors and the identity functor are ω -continuous. It
is clear from the fact that colimits commute with colimits that the disjoint union of
ω -continuous functors is again ω -continuous. For similar reasons, on ω - CPO⊥ , the
smash product of ω -continuous functors is again ω -continuous.

If T1 and T2 are endofunctors on a category of posets, we let T1

.
+ T2 denote the

functor defined by (T1

.
+ T2)(A) = T1A

.
+ T2A where A

.
+ B is the sum of A and B

with every element of A below every element of B .

6.1 Theorem. Let C denote either ω - CPO or ω - CPO⊥ . Suppose T1 and T2 are
ω -cocontinuous endofunctors on C . Then both T1

.
+ T2 and T1×T2 are ω -cocontinuous.

Proof. We begin with T1

.
+ T2 . It is clearly sufficient to show that if

A0 −→ A1 −→ · · · −→ Ai −→ · · · −→ A

and
B0 −→ B1 −→ · · · −→ Bi −→ · · · −→ B

are colimits, then

A0

.
+ B0 −→ A1

.
+ B1 −→ · · · −→ Ai

.
+ Bi −→ · · · −→ A

.
+ B

is a colimit. Suppose f ij :Ai −→ Aj for i ≤ j and f i:Ai −→ A and gij:Bi −→ Bj for i ≤ j
and gi:Bi −→ B are the arrows in the diagrams and the maps to the colimits. Suppose

{hi = 〈ki, li〉:Ai
.
+ Bi −→ C} is a cocone. If Di and Ei are the images of ki and li ,

respectively, then we have Di ⊆ Di+1 and Ei ⊆ Ei+1 . Moreover, every element of Di

precedes every element of Ei . Let D′ =
⋃
Di and E ′ =

⋃
Ei . Then every element of

D′ precedes every element of E ′ . If we now let D and E be the ω -chain completion of
D′ and E ′ respectively, it is immediate that ever element of D precedes every element
of E . The universal mapping properties of A and B give unique maps k:A −→ D
and l:B −→ E such that k ◦ f i = ki and l ◦ gi = li . Then the map h defined as the

composite A
.
+ B

k
.
+ l−−−−−→ D

.
+ E −→ C is the unique map such that h ◦(f i

.
+ gi) = hi .

For products it is sufficient to show that if

A0 −→ A1 −→ · · · −→ Ai −→ · · · −→ A

and
B0 −→ B1 −→ · · · −→ Bi −→ · · · −→ B
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are colimits, then so is

A0 ×B0 −→ A1 ×B1 −→ · · · −→ Ai ×Bi −→ · · · −→ A×B

We first do this in ω - CPO , which is a cartesian closed category. It follows that the
rows and right hand column of

A1 ×B0 A1 ×B1
-

A0 ×B0 A0 ×B1
-

? ?
· · ·-

· · ·-

A1 ×Bj
-

A0 ×Bj
-

?
· · ·-

· · ·-

A1 ×B-

A0 ×B-

?

...
...

Ai ×B0 Ai ×B1
-

? ?

· · ·-

...

Ai ×Bj
-

?

· · ·-

...

Ai ×B-

?

...
? ...

? ...
? ...

?

? ? ? ?

A×B
?

are colimits. But then A×B is the colimit of the double sequence. Now it follows from
the dual of the lemma on page 36 of [Lawvere, 1963] that the diagonal sequence is a
colimit as well. This completes the proof for ω - CPO .

As for ω - CPO⊥ , we observe that the inclusion ω - CPO⊥ ⊆ ω - CPO has a left
adjoint and hence preserves products. It is easy to see directly that the inclusion pre-
serves connected colimits since the colimit in CPO of a connected diagram in CPO⊥
has a bottom element and so lies in CPO⊥ . It is immediate that it is the colimit
there.

From this we see that power functors and both finite discrete and finite ordinal sums
of such functors are examples.

7 Examples

Here are two contrasting examples that show that the existence of a morphism l as
described in Theorem 4.6 (or some other condition, at least) is necessary. Both are

on the category ω - CPO . In the first we let T⊥X = 1
.
+ X , the ordinal sum of a
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single point and the ω - CPO X , with the single point at the bottom. In this case
T⊥0 = 1 and so the map l: 1 −→ T⊥0 is the identity, the only thing it can be. The map
h:T⊥0 −→ T⊥1 takes the added point to added point, meaning the bottom. Thus the
composite T⊥h ◦ l ◦ g takes both elements of T⊥1 to the bottom so that the inequality
T⊥h ◦ l ◦ g < id is immediate. The conditions of the theorem are satisfied and it is
not hard to see that the initial algebra and terminal coalgebra are each the one point
compactification of N .

The second example is given by T>X = X
.
+ 1 which is like T⊥ except that the

added point is put on top. There is still only one morphism l: 1 −→ T>0, but T>h is the
top map and it is not true that T⊥h ◦ l ◦ g ≤ id. And, sure enough, the initial algebra
in this case is the negative integers, while the terminal coalgebra turns out to be its
one point compactification, that is the negative integers with a point −∞ added.
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