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Preface

During the late 1940s and the early 1950s cohomology theories had
been defined in three different areas of abstract algebra. These were
the theories of Hochschild [1945, 1946] for associative algebras, Eilen-
berg & Mac Lane [1947] for groups, and Eilenberg & Chevalley [1948]
for Lie algebras. In part, these theories grew out of the fact that Eilen-
berg and Mac Lane had noticed, as early as 1939 or 1940, that certain
computations involving extensions of groups greatly resembled certain
computations in the cohomology theory of topological spaces.

The three definitions were similar but not identical and had a
certain ad hoc aspect. Then Cartan and Eilenberg showed in their
influential book [1956] that there was a uniform definition of homol-
ogy and cohomology that united the three examples. Here is a brief
description of their approach. Let C stand for one of the three cat-
egories groups, associative algebras, or Lie algebras and let Assoc be
the fixed category of associative algebras. Then they defined a functor
env: C // Assoc (for enveloping algebra) with the property that for
any object C of C , a left module for the associative algebra env(C )
was the same thing as a coefficient module for the usual cohomology of
C . In the case of groups the functor assigned to each group its group
ring. For an associative algebra A, the enveloping algebra is A ⊗ Aop

and for a Lie algebras it was its usual enveloping algebra, which will be
described in 6.5. In each case, the crucial fact was that the cohomol-
ogy vanished when the coefficient module was injective. It became clear
somewhat later, however, that the Cartan-Eilenberg approach was lim-
ited to those cohomology theories that vanished on injective modules,
which was not generally the case.

Around 1960 my thesis supervisor, the late David K. Harrison,
produced a cohomology theory for commutative algebras [1962]. Some-
what surprisingly, I showed by simple example that the cohomology did
not necessarily vanish with injective coefficients, so that the Cartan–
Eilenberg approach could not work in that case. The counter-example
appeared as Barr [1968a]. (As an amusing sidelight, that note was
actually written, submitted, refereed, and accepted for publication by
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Murray Gerstenhaber, then editor of the Bulletin of the AMS who
thought, against my judgment, that it should be published.)

In 1962 I arrived at Columbia University as a newly minted Ph.D.
There I found that Eilenberg had gathered round himself a remarkable
collection of graduate students and young researchers interested in ho-
mological algebra, algebraic topology, and category theory. There may
have been others, but the ones I recall are Harry Appelgate, Jon Beck,
Peter Freyd Joe Johnson, Bill Lawvere, Fred Linton, Barry Mitchell,
George Rinehart, and Myles Tierney. Unfortunately, Peter Freyd and
Bill Lawvere were no longer in residence, but it was still a remarkable
collection.

The Cartan-Eilenberg to cohomology can be characterized as coho-
mology computed via an injective resolution of the coefficient variable.
Rinehart and I were interested in trying to define cohomology by re-
solving the algebra variable instead of the coefficient module. Our
attempts Barr [1965a,b] and Barr & Rinehart [1966] were not partic-
ularly successful, although they did point to the central role of the
derivations functor. In retrospect, one can say that the basic reason
is that these categories of algebras are not abelian and that simplicial
objects replace chain complexes in a non-abelian setting. I was not at
that time at all aware of simplicial objects. That I learned from Jon
Beck, who came to this subject from topology.

During the time I was at Columbia, Beck was writing his thesis (it
was not presented until 1967, but there was a complete draft by 1964)
defining and studying the essential properties of cotriple cohomology
using a simplicial resolution that came from a cotriple. There were four
(including the cohomology of commutative algebras) theories to com-
pare it to, as described above. In all cases it was clear that the cotriple
H1 was equivalent to the Cartan–Eilenberg, respectively Harrison, H2

since they both classified “singular” extensions. (There is always a
dimension shift by one, which I will cease mentioning.) Beck and I
spent much of the calendar year 1964—first at Columbia, then at the
University of Illinois in Urbana—attempting to show that the cotriple
cohomology was the same as the older ones in all degrees. This task
seemed, at the time, hopeless. The cochain complexes that resulted
from the theories were utterly different and we just had no handle on
the question.

Then over the Christmas vacation, 1964, Beck went to New York
and visited Appelgate, who was writing a thesis on acyclic models. He
suggested that we try to use this technique on our problem. His version
was based on using Kan extensions to induce a cotriple on a functor
category. When Beck returned to Urbana, he told me about this. We
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quickly determined that in our case, we already had a cotriple, the one
we were using to define the cohomology, and did not need to go into
a functor category. Within a matter of days, we had worked out the
simple version of acyclic models that we needed and verified the hy-
potheses for the cases of groups and associative algebras Barr & Beck
[1966]. The use of acyclic models had turned a seeming impossibil-
ity into a near triviality. Some years later, I was able to verify the
hypotheses for Harrison’s commutative cohomology, but only for alge-
bras over a field of characteristic 0. In the meantime, Quillen produced
an example showing that the Harrison cohomology over a field of finite
characteristic was not a cotriple cohomology. As for Lie algebras, this
was not actually dealt with until Barr [1996a] when I examined the
Cartan–Eilenberg theory from an abstract point of view.

Somewhat after the Barr-Beck developments, Michel André [1967,
1974] observed that there was a simple version of acyclic models based
on an easy spectral sequence argument. This was weaker than the
original version in several ways, including that its conclusion was a
homology isomorphism rather than a homotopy equivalence. An addi-
tional flaw was that it did not conclude that the homology isomorphism
was natural, but showed only that, for each object, the cohomology
groups of that object were isomorphic. Still, it was easy to apply and
André made great use of it in his study of cohomology of commutative
rings (the definition he used was equivalent to the cotriple cohomology,
not to the Harrison cohomology).

Partly to summarize in one place of all this development, partly
because a powerful technique seemed in some danger of disappearing
without a trace, I decided, sometime around 1990, to try to write a
book on acyclic models. I produced some notes and then offered a
course on the subject in the early 1990s. Among the registered stu-
dents there was one, named Rob Milson, who was writing a thesis on
differential geometry and applied mathematics. Not only did he regis-
ter for the course, he attended all the lectures and studied the material
carefully. Then he came up with a series of questions. My attempts
to answer these questions led to a wholly different way of looking at
acyclic models.

One question that Milson asked concerned the naturality of André’s
homology version of acyclic models. I thought that this could be set-
tled by showing that André’s isomorphism was induced by a natural
transformation between the chain complexes in the category of additive
relations that turned out to be a function and an isomorphism when
you pass to homology. I am reasonably confident that this would have
worked. However, in order to explore it, I began by looking at the



x PREFACE

following diagram (which I take from page 138)

‘ L−1G
•+1 L•G

•+1oo
βG•+1

K−1G
•+1

L−1G
•+1

f−1G
•+1

��

K−1G
•+1 K•G

•+1oo αG
•+1

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1L•G
•+1 L•

L•ε
//

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1

K•G
•+1 K•

K•ε // K•

L•

K•

L•

in which K and L are chain complex functors and G is the functor
part of a cotriple. The goal is to construct a natural transformation
from the homology of K to that of L. The meaning of the rest of
this diagram, in particular the meaning of G•+1 will be explained in
chapter 5. Three of the five arrows are in the appropriate direction. I
was struck immediately by the fact that the standard acyclic models
theorems have two principal hypotheses. In the homology version, one
of these principal hypotheses is that Kε induces an isomorphism in
homology and the other one is that βG•+1 does. In the homotopy
version, the two principal hypotheses imply immediately that Kε and
βG•+1 have homotopy inverses. Thus if you formally invert the maps
that are homology isomorphisms, respectively homotopy equivalences,
the required transformation K // L appears immediately. There is a
well-known theory, developed in [Gabriel & Zisman, 1967], of inversion
of a class of arrows in a category. Using this theory allows us to define
the transformation, show that it is natural, and derive some of its
properties, not only for homology and homotopy, but also for possible
classes of arrows intermediate to those. The most interesting one is that
of weak homotopy: the arrow K // L is natural and has, for each
object, a homotopy inverse, which is not necessarily natural. This weak
homotopy version, which answers another question raised by Milson,
applies in the following situation. Suppose M is a Cp manifold (of
some dimension n) and q is an integer with 0 ≤ q ≤ p. Let Cq

i (M)
denote the subgroup of Ci(M) = C0

iM that is generated by the singular
i-simplexes that are q times differentiable. Is the inclusion Cq

i (M)
// Ci(M) a homotopy equivalence? The answer, as best we know it,

is that it is for each M but we know of no homotopy inverse that is
natural as a functor of M . Before the discovery of Theorem 5.3.1, I had
attempted to prove this by a direct computation, but had got nowhere.
The acyclic models proof is sufficiently constructive as to give, at least
in principle, a direct computation, but I have not tried it. The main
results appeared in Barr [1996b].



PREFACE xi

This example illustrates another fact. As we will see in 5.3.1, not
only does f exist in the fraction category, but it is the unique extension
of f−1. Thus, if we already have f :K // L such that f−1 is an
isomorphism, then we know that in the fraction category f induces the
homology isomorphism or the (weak) homotopy equivalence.

The upshot of this was that I had to throw away the preliminary
notes and redo the book from the beginning; the book you see before
you is the result.

This book could be used as a text for a somewhat idiosyncratic
course that serves as an introduction to both homological algebra and
algebraic topology. The centerpiece of the book is the main theorem
on acyclic models that was discovered only in 1993, as just described.
Although various forms of acyclic models have long been known (going
back at least to the Eilenberg–Zilber [1953] theorem, they were mostly
in the form of a technique, rather than an explicit theorem.

Aside from the acyclic models theorem itself, this book includes the
mathematics necessary to understand and apply the basic theorem as
well as some of what is needed to understand the examples. The only
prerequisite is familiarity with basic algebra and topology. In a very
few places, specific results not found in basic courses are used. An ex-
ample is the Poincaré–Witt theorem on the structure of the enveloping
algebra associated to a Lie algebra in the discussion of the Lie algebra
cohomology. Aside from that and one or two other places the book is
almost entirely self contained.

Chapter 1 is a general introduction to category theory. Chapter 2
is an introduction to abelian categories and also to homological al-
gebra. Chain and cochain complexes are defined as well as Ext and
Tor. Chapter 3 introduces the homology of chain complexes and also
discusses simplicial objects and the associated chain complexes. Chap-
ter 4 is about that part of the theory of triples (= monads) that is
needed for acyclic models. Chapter 5 proves the main acyclic models
theorem and draws some conclusions, including the older versions of
the theorem. The remaining chapters give applications of the theory.
Chapter 6 discusses the homological algebra of Cartan & Eilenberg
[1956] and uses acyclic models to give general criteria for the cohomol-
ogy theories described there to be equivalent to cotriple cohomologies.
Then these criteria are used to show that the various theories there
are, in fact, cotriple cohomology theories. In Chapter 7 we show that
other cohomology theories in algebra, notably the characteristic 0 co-
homology theory for commutative algebras, which does not fit the
Cartan–Eilenberg pattern, is also a cotriple cohomology theory. Fi-
nally, in Chapter 8 we give applications to topology, including proofs
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of the equivalence of singular and simplicial homology on triangula-
ble spaces, a proof of the equivalence of oriented and ordered chain
complexes, a proof of the Mayer–Vietoris theorem, and a sketch of an
acyclic models proof of the de Rham theorem. Notably absent is any
use of simplicial approximation (although subdivision is used).

I would like to thank an anonymous referee for catching a number
of embarrassing errors. I did not follow his (or her; I will adhere to
the former practive of using these pronouns androgenously) advice in
all matters, however. He finds the last chapter on applications of alge-
braic topology without interest. I think that it is at least moderately
interesting that one can develop the theory without simplicial approx-
imation and that one can go quite far without spectral sequences.

Chapter 1 consists largely of Chapter 1 of Barr & Wells [1984] and
Chapter 4 is mainly part of Chapter 4 of the same book. I would like
to thank Charles Wells for permission to use this material.

Not every part of Chapter 1 is actually required for the rest of
the book. I have kept them so that the book would also give a self-
contained introduction to categories. The following are the sections
and parts of sections of Chapter 1 that are used in the rest of the book:
1, 2.1–2.5, 3, 4.1, 5.1–5.2, 6.1–6.3 7.1–7.3, 8, 9.1–9.3, 10, 11.

This and the next paragraph added in revision 2010-08-29: I would
like to thank Artour Tomberg for having read the entire book carefully
and found a large number of errors, corrected in this version. The
most embarrassing were in the last chapter on applications in algebraic
topology which he seems to have found especially interesting (see pre-
ceding paragraph). In particular, the material on the equivalence of
ordered and oriented homology has been rewritten.

This is not quite based on the published version. I never got the
original back from the AMS, so it is based on what I sent them. Section
1.12 on filtered colimits does not appear in the printed version for
reasons I no longer recall eight years later. It was in my last version and
was a complete surprise when Artour pointed out that it was missing
from the printed version.



CHAPTER 1

Categories

1. Introduction

The conceptual basis for the acyclic models theorem that is the main
topic of this book is the notion of category. The language of categories
is a convenience in many areas of mathematics, but in the understand-
ing of the role of acyclic models, it is a necessity. The results cannot be
stated, let alone proved, without reference to categories. In this chap-
ter, we give a brief, but fairly complete, introduction to the subject.

2. Definition of category

2.1. A category C consists of two collections, Ob(C ), whose ele-
ments are the objects of C , and Ar(C ), the arrows (or morphisms
or maps) of C . To each arrow is assigned a pair of objects, called
the source (or domain) and the target (or codomain) of the arrow.
The notation f :A // B means that f as an arrow with source A
and target B. If f :A // B and g:B // C are two arrows, there
is an arrow g ◦ f :A // C called the composite of g and f . The
composite is not defined otherwise. We often write gf instead of g ◦ f
when there is no danger of confusion. For each object A there is an
arrow idA (often written 1A or just 1, depending on the context), called
the identity of A, whose source and target are both A. These data
are subject to the following axioms:

(1) for f :A // B,

f ◦ idA = idB ◦ f = f

(2) for f :A // B, g:B // C, h:C // D,

h ◦ (g ◦ f) = (h ◦ g) ◦ f

A category consists of two “collections”, the one of sets and the one
of arrows. These collections are not assumed to be sets and in many
interesting cases they are not, as will be seen. When the set of arrows is
a set then the category is said to be small. It follows in that case that

1



2 1. CATEGORIES

the set of objects is also a set since there is one-one correspondence
between the objects and the identity arrows.

While we do not suppose in general that the arrows form a set, we
do usually suppose (and will, unless it is explicitly mentioned to the
contrary) that when we fix two objects A and B of C , that the set
of arrows with source A and target B is a set. This set is denoted
HomC (A,B). We will omit the subscript denoting the category when-
ever we can get away with it. A set of the form Hom(A,B) is called a
homset. Categories that satisfy this condition are said to be locally
small.

Many familiar examples of categories will occur immediately to the
reader, such as the category Set of sets and set functions, the category
Grp of groups and homomorphisms, and the category Top of topological
spaces and continuous maps. In each of these cases, the composition
operation on arrows is the usual composition of functions.

A more interesting example is the category whose objects are topo-
logical spaces and whose arrows are homotopy classes of continuous
maps. Because homotopy is compatible with composition, homotopy
classes of continuous functions behave like functions (they have sources
and targets, they compose, etc.) but are not functions. This category
is usually known as the category of homotopy types.

All but the last example are of categories whose objects are sets
with mathematical structure and the morphisms are functions which
preserve the structure. Many mathematical structures are themselves
categories. For example, one can consider any group G as a category
with exactly one object; its arrows are the elements of G regarded as
having the single object as both source and target. Composition is
the group multiplication, and the group identity is the identity arrow.
This construction works for monoids as well. In fact, a monoid can be
defined as a category with exactly one object.

A poset (partially ordered set) can also be regarded as a category:
its objects are its elements, and there is exactly one arrow from an
element x to an element y if and only if x ≤ y; otherwise there are no
arrows from x to y. Composition is forced by transitivity and iden-
tity arrows by reflexivity. Thus a category can be thought of as a
generalized poset. This perception is important, since many of the
fundamental concepts of category theory specialize to nontrivial and
often well-known concepts for posets (the reader is urged to fill in the
details in each case).

In the above examples, we have described categories by specifying
both their objects and their arrows. Informally, it is very common to
name the objects only; the reader is supposed to supply the arrows
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based on his general knowledge. If there is any doubt, it is, of course,
necessary to describe the arrows as well. Sometimes there are two
or more categories in general use with the same objects but different
arrows. For example, the following three categories all have the same
objects: complete sup-semilattices, complete inf-semilattices, complete
lattices. Further variations can be created according as the arrows are
required to preserve the top (empty inf) or bottom (empty sup) or
both.

2.2. Some constructions for categories. A subcategory D of a
category C is a pair of subsets DO and DA of the objects and arrows
of C respectively, with the following properties.

(1) If f ∈ DA then the source and target of f are in DO.
(2) If C ∈ DO, then idC ∈ DA.
(3) If f , g ∈ DA are a composable pair of arrows then g ◦ f ∈ DA.

The subcategory is full if for any C,D ∈ DO, if f :C // D in
C , then f ∈ DA. For example, the category of Abelian groups is
a full subcategory of the category of groups (every homomorphism of
groups between Abelian groups is a homomorphism of Abelian groups),
whereas the category of monoids (semigroups with identity element) is
a subcategory, but not a full subcategory, of the category of semigroups
(a semigroup homomorphism need not preserve 1).

One also constructs the product C × D of two categories C and
D in the obvious way: the objects of C × D are pairs (A,B) with A
an object of C and B an object of D . An arrow

(f, g): (A,B) // (A′, B′)

has f :A // A′ in C and g:B // B′ in D . Composition is coordi-
natewise.

To define the next concept, we need the idea of commutative di-
agram. A diagram is said to commute if any two paths between the
same nodes compose to give the same morphism. The formal definition
of diagram and commutative diagram is given in 8.1 below.

If A is any object of a category C , the slice category C /A of
objects of C over A has as objects all arrows of C with target A. An
arrow of C /A from f :B // A to g:C // A is an arrow h:B // C
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making the following diagram commute.

B

A

f
��?????????????B C
h // C

A

g
���������������

In this case, one sometimes writes h: f // g over A.
It is useful to think of an object of Set/A as an A-indexed family

of disjoint sets (the inverse images of the elements of A). The commu-
tativity of the above diagram means that the function h is consistent
with the decomposition of B and C into disjoint sets.

2.3. Definitions without using elements. The introduction of
categories as a part of the language of mathematics has made possi-
ble a fundamental, intrinsically categorical technique: the element-free
definition of mathematical properties by means of commutative dia-
grams, limits and adjoints. (Limits and adjoints are defined later in this
chapter.) By the use of this technique, category theory has made math-
ematically precise the unity of a variety of concepts in different branches
of mathematics, such as the many product constructions which occur
all over mathematics (described in Section 8) or the ubiquitous concept
of isomorphism, discussed below. Besides explicating the unity of con-
cepts, categorical techniques for defining concepts without mentioning
elements have enabled mathematicians to provide a useful axiomatic
basis for algebraic topology, homological algebra and other theories.

Despite the possibility of giving element-free definitions of these
constructions, it remains intuitively helpful to think of them as being
defined with elements. Fortunately, this can be done: In Section 5,
we introduce a more general notion of element of an object in a cat-
egory (more general even when the category is Set) which in many
circumstances makes categorical definitions resemble familiar defini-
tions involving elements of sets, and which also provides an explication
of the old notion of variable quantity.

2.4. Isomorphisms and terminal objects. The notion of isomor-
phism can be given an element-free definition for any category: An
arrow f :A // B in a category is an isomorphism if it has an
inverse, namely an arrow g:B // A for which f ◦ g = idB and
g ◦ f = idA. In other words, both triangles of the following diagram
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must commute:

A B
f

//

A

A

idA

��

A B
f

// B

B

idB

��

B

A

g

���������������

In a group regarded as a category, every arrow is invertible, whereas
in a poset regarded as a category, the only invertible arrows are the
identity arrows (which are invertible in any category).

It is easy to check that an isomorphism in Grp is what is usually
called an isomorphism (commonly defined as a bijective homomor-
phism, but some newer texts give the definition above). An isomor-
phism in Set is a bijective function, and an isomorphism in Top is a
homeomorphism.

Singleton sets in Set can be characterized without mentioning ele-
ments, too. A terminal object in a category C is an object T with
the property that for every object A of C there is exactly one arrow
from A to T . It is easy to see that terminal objects in Set, Top, and
Grp are all one element sets with the only possible structure in the case
of the last two categories.

2.5. Duality. If C is a category, then we define C op to be the cate-
gory with the same objects and arrows as C , but an arrow f :A // B
in C is regarded as an arrow from B to A in C op. In other words, for
all objects A and B of C ,

HomC (A,B) = HomC op(B,A)

If f :A // B and g:B // C in C , then the composite f ◦ g in C op

is by definition the composite g ◦ f in C . The category C op is called
the opposite category of C .

If P is a property that objects or arrows in a category may have,
then the dual of P is the property of having P in the opposite category.
As an example, consider the property of being a terminal object. If an
object A of a category C is a terminal object in C op, then HomC (B,A)
has exactly one arrow for every object B of C . Thus the dual property
of being a terminal object is the property: Hom(A,B) has exactly one
arrow for each object B. An object A with this property is called an
initial object. In Set and Top, the empty set is the initial object
(see “Fine points” below). In Grp, on the other hand, the one-element
group is both an initial and a terminal object.
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Clearly if property P is dual to property Q then property Q is dual
to property P. Thus being an initial object and being a terminal object
are dual properties. Observe that being an isomorphism is a self-dual
property.

Constructions may also have duals. For example, the dual to the
category of objects over A is the category of objects under A. An
object is an arrow from A and an arrow from the object f :A // B to
the object g:A // C is an arrow h from B to C for which h ◦ f = g.

Often a property and its dual each have their own names; when
they don’t (and sometimes when they do) the dual property is named
by prefixing “co-”. For example, one could, and some sources do, call
an initial object “coterminal”, or a terminal object “coinitial”.

2.6. Definition of category by commutative diagrams. The
notion of category itself can be defined in an element-free way. We
describe the idea behind this alternate definition here, but some of the
sets we construct are defined in terms of elements. In Section 7, we
show how to define these sets without mentioning elements (by pullback
diagrams).

Before giving the definition, we mention several notational conven-
tions that will recur throughout the book.

(1) If X and Y are sets, p1:X × Y // X and p2:X × Y // Y
are the coordinate projections.

(2) If X, Y and Z are sets and f :X // Y , g:X // Z are
functions,

(f, g):X // Y × Z
is the function whose value at a ∈ X is (f(a), g(a)).

(3) If X, Y , Z, and W are sets and f :X // Z, g:Y // W are
functions, then

f × g:X × Y // Z ×W
is the function whose value at (a, b) is (f(a), g(b)). This nota-
tion is also used for maps defined on subsets of product sets
(as in 4 below).

A category consists of two sets A and O and four functions d 0, d 1:A
// O, u:O // A and m:P // A, where P is the set

{(f, g) | d 0(f) = d 1(g)}
of composable pairs of arrows for which the following Diagrams 1–4
commute. For example, the left diagram of 2 below says that d 0 ◦ p1 =
d 0◦m. We will treat diagrams more formally in Section 8. The following
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diagrams are required to commute.

(1)

A O
u //A

O

d 0

��????????????? O A
u //O

O

idO

��

A

O

d 1

���������������

This says that the source and target of idX is X.

(2)

A O
d 0

//

P

A

m

��

P A
p2 // A

O

d 0

��
A O

d 1
//

P

A

m

��

P A
p1 // A

O

d 1

��

This says that the source of f ◦ g is that of g and its target is that of f .

(3)

A P
(u ◦ d 0, 1)

//A

A

idA
$$HHHHHHHHHHHHHHHHH P Aoo

(1, u ◦ d 1)
P

A

m

��

A

A

idA
zzvvvvvvvvvvvvvvvvv

This characterizes the left and right identity laws.
In the next diagram, Q is the set of composable triples of arrows:

Q = {(f, g, h) | d 1(h) = d 0(g) and d 1(g) = d 0(f)}

(4)

P Am
//

Q

P

m× 1

��

Q P
1×m // P

A

m

��

This is associativity of composition.
It is straightforward to check that this definition is equivalent to

the first one.
The diagrams just given actually describe geometric objects, namely

the classifying space of the category. Indeed, the functions between O,
A, P and Q generated by u, d 0, d 1, m and the coordinate maps form a
simplicial set truncated in dimension three. Simplicial sets are defined
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in 3.3. But the reader needs no knowledge of simplicial sets at this
point.

2.7. Fine points. Note that a category may be empty, that is have
no objects and (of course) no arrows. Observe that a subcategory of a
monoid regarded as a category may be empty; if it is not empty, then
it is a submonoid. This should cause no more difficulty than the fact
that a submonoid of a group may not be a subgroup. The basic reason
is that a monoid must have exactly one object, while a subcategory
need not have any.

It is important to observe that in categories such as Set, Grp and
Top in which the arrows are actually functions, the definition of cate-
gory requires that the function have a uniquely specified domain and
codomain, so that for example in Top the continuous function from the
set R of real numbers to the set R+ of nonnegative real numbers which
takes a number to its square is different from the function from R to
R which does the same thing, and both of these are different from the
squaring function from R+ to R+.

A definition of “function” in Set which fits this requirement is this:
A function is an ordered triple (A,G,B) where A and B are sets and
G is a subset of A× B with the property that for each x ∈ A there is
exactly one y ∈ B such that (x, y) ∈ G. This is equivalent to saying
that the composite

G ⊂→ A×B // A

is an isomorphism (the second function is projection on the first coordi-
nate). Then the domain of the function is the set A and the codomain
is B. As a consequence of this definition, A is empty if and only if G
is empty, but B may or may not be empty. Thus there is exactly one
function, namely (∅, ∅, B), from the empty set to each set B, so that
the empty set is the initial object in Set, as claimed previously. (Note
also that if (A,G,B) is a function then G uniquely determines A but
not B. This asymmetry is reversed in the next paragraph.)

An equivalent definition of function is a triple (A,G∗, B) where G∗

is the quotient of the disjoint union A + B by an equivalence relation
for which each element of B is contained in exactly one equivalence
class. In other words, the composite

B // A+B // // G∗

is an isomorphism, where the first arrow is the inclusion into the
sum and the second is the quotient mapping. This notion actually
corresponds to the intuitive picture of function frequently drawn for
elementary calculus students which illustrates the squaring function
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from {−2,−1, 0, 1, 2} to {0, 1, 2, 3, 4} this way:

−2
2 4

−1
1 1

0 0

2

3

The set G is called the graph and G∗ the cograph of the function.
We will see in Section 1.8 that the graph and cograph are dual to each
other.

2.8. Exercises

1. For this exercise, we define an identity element for a partial binary
operation ◦ to be an element e such that whenever f ◦e is defined it is f
and whenever e◦g is defined, it is g. Show that the following definition of
category which is sometimes used is equivalent to the definition given
in this section: A category is a set with a partially defined binary
operation denoted ◦ with the following properties:

(a) the following statements are equivalent:

(i) f ◦ g and g ◦ h are both defined;
(ii) f ◦ (g ◦ h) is defined;

(iii) (f ◦ g) ◦ h is defined;

(b) if (f ◦ g) ◦ h is defined, then (f ◦ g) ◦ h = f ◦ (g ◦ h);

(c) for any f , there are identity elements e and e′ for which e ◦ f is
defined and equal to f and f ◦ e′ is defined and equal to f .

2. Verify that the following constructions produce categories.

(a) For any category C , the arrow category Ar(C ) of arrows of
C has as objects the arrows of C , and an arrow from f :A // B to
g:A′ // B′ is a pair of arrows h:A // A′ and k:B // B′ making
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the following diagram commute:

B B′
k

//

A

B

f

��

A A′
h // A′

B′

g

��

(b) The twisted arrow category of C is defined the same way
as the arrow category except that the direction of k is reversed.

3. (a) Show that h: f // g is an isomorphism in the category of
objects of C over A if and only if h is an isomorphism of C .

(b) Give an example of objects A, B and C in a category C and
arrows f :B // A and g:C // A such that B and C are isomorphic
in C but f and g are not isomorphic in C /A.

4. Describe the isomorphisms, initial objects, and terminal objects (if
they exist) in each of the categories in Exercise 2.

5. Describe the initial and terminal objects, if they exist, in a poset
regarded as a category.

6. Show that any two terminal objects in a category are isomorphic
by a unique isomorphism.

7. (a) Prove that for any category C and any arrows f and g of C
such that the target of g is isomorphic to the source of f , there is an
arrow f ′ which (i) is isomorphic to f in Ar(C ) and (ii) has source the
same as the target of g. (Ar(C ) is defined in Exercise 2 above.)

(b) Use the fact given in (a) to describe a suitable definition of do-
main, codomain and composition for a category with one object chosen
for each isomorphism class of objects of C and one arrow from each
isomorphism class of objects of Ar(C ). Such a category is called a
skeleton of C .

8. A category is connected if it is possible to go from any object to
any other object of the category along a path of “composable” forward
or backward arrows. Make this definition precise and prove that every
category is a union of disjoint connected subcategories in a unique way.
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9. A preorder is a set with a reflexive, transitive relation defined on
it. Explain how to regard a preorder as a category with at most one
arrow from any object A to any object B.

10. (a) Describe the opposite of a group regarded as a category. Show
that it is isomorphic to, but not necessarily the same as, the original
group.

(b) Do the same for a monoid, but show that the opposite need
not be isomorphic to the original monoid.

(c) Do the same as (b) for posets.

11. An arrow congruence on a category C is an equivalence relation
E on the arrows for which

(i) fEf ′ implies that f and f ′ have the same domain and codo-
main.

(ii) If fEf ′ and gEg′ and f ◦ g is defined, then (f ◦ g)E(f ′ ◦ g′).

There are more general congruences in which objects are identified.
These are considerably more complicated since new composites are
formed when the target of one arrow gets identified with the source of
another.

(a) Show that any relation R on the arrows of C generates a unique
congruence on C .

(b) Given a congruence E on C , define the quotient category
C /E in the obvious way (same objects as C ) and show that it is a
category. This notation conflicts with the slice notation, but context
should make it clear. In any case, quotient categories are not formed
very often.

(Thus any set of diagrams in C generate a congruence E on C with
the property that C /E is the largest quotient in which the diagrams
commute.)

12. Show that in a category with an initial object 0 and a terminal
object 1, 0 ∼= 1 if and only if there is a map 1 // 0.

3. Functors

3.1. Like every other kind of mathematical structured object, cat-
egories come equipped with a notion of morphism. It is natural to
define a morphism of categories to be a map which takes objects to
objects, arrows to arrows, and preserves source, target, identities and
composition.
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If C and D are categories, a functor F : C // D is a map for
which

(1) if f :A // B is an arrow of C , then Ff :FA // FB is an
arrow of D ;

(2) F (idA) = idFA; and
(3) if g:B // C, then F (g ◦ f) = Fg ◦ Ff .

If F : C // D is a functor, then F op: C op // Dop is the functor
which does the same thing as F to objects and arrows.

A functor F : C op // D is called a contravariant functor from
C to D . In this case, F op goes from C to Dop. For emphasis, a functor
from C to D is occasionally called a covariant functor.

F : C // D is faithful if it is injective when restricted to each
homset, and it is full if it is surjective on each homset, i.e., if for every
pair of objects A and B, every arrow in Hom(FA, FB) is F of some
arrow in Hom(A,B). Some sources use the phrase “fully faithful” to
describe a functor which is full and faithful.

F preserves a property P that an arrow may have if F (f) has prop-
erty P whenever f has. It reflects property P if f has the property
whenever F (f) has. For example, any functor must preserve isomor-
phisms (Exercise 1), but a functor need not reflect them.

Here are some examples of functors:

(1) For any category C , there is an identity functor idC : C // C .
(2) The categories Grp and Top are typical of many categories

considered in mathematics in that their objects are sets with
some sort of structure on them and their arrows are functions
which preserve that structure. For any such category C , there
is an underlying set functor U : C // Set which assigns to
each object its set of elements and to each arrow the function
associated to it. Such a functor is also called a forgetful
functor, the idea being that it forgets the structure on the
set. Such functors are always faithful and rarely full.

(3) Many other mathematical constructions, such as the double
dual functor on vector spaces, the commutator subgroup of a
group or the fundamental group of a path connected space,
are the object maps of functors (in the latter case the domain
is the category of pointed topological spaces and base-point-
preserving maps). There are, on the other hand, some canon-
ical constructions which do not extend to maps. Examples
include the center of a group or ring, and groups of automor-
phisms quite generally. See Exercise 8 and Exercise 9.
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(4) For any set A, let FA denote the free group generated by A.
The defining property of free groups allows you to conclude
that if f :A // B is any function, there is a unique homomor-
phism Ff :FA // FB with the property that Ff ◦ i = j ◦ f ,
where i:A // FA and j:B // FB are the inclusions. It is
an easy exercise to see that this makes F a functor from Set
to Grp. Analogous functors can be defined for the category of
monoids, the category of Abelian groups, and the category of
R-modules for any ring R.

(5) For a category C , HomC = Hom is a functor in each variable
separately, as follows: For fixed objectA, Hom(A, f): Hom(A,B)

// Hom(A,C) is defined for each arrow f :B // C by
requiring that Hom(A, f)(g) = f ◦ g for g ∈ Hom(A,B);
this makes Hom(A,−): C // Set a functor. Similarly, for
a fixed object B, Hom(−, B) is a functor from C op to Set;
Hom(h,B) is composition with h on the right instead of on
the left. Hom(A,−) and Hom(−, B) are the covariant and
contravariant hom functors, respectively. Hom(−,−) is
also a Set-valued functor, with domain C op × C . A familiar
example of a contravariant hom functor is the functor which
takes a vector space to the underlying set of its dual.

(6) The powerset (set of subsets) of a set is the object map of an
important contravariant functor P from Set to Set which plays
a central role in this book. The map from PB to PA induced
by a function f :A // B is the inverse image map; precisely,
if B0 ∈ PB, i.e. B0 ⊆ B, then

Pf(B0) = {x ∈ A | f(x) ∈ B0}
The object function P can also be made into a covariant func-
tor, in at least two different ways (Exercise 6).

(7) If G and H are groups considered as categories with a single
object, then a functor from G to H is exactly a group homo-
morphism.

(8) If P and Q are posets, a functor from P to Q is exactly a
nondecreasing map. A contravariant functor is a nonincreasing
map.

3.2. Isomorphism and equivalence of categories. The compos-
ite of functors is a functor, so the collection of categories and functors
is itself a category, denoted Cat. If C and D are categories and F : C

// D is a functor which has an inverse G: D // C , so that it is an
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isomorphism in the category of categories, then naturally C and D are
said to be isomorphic.

However, the notion of isomorphism does not capture the most
useful sense in which two categories can be said to be essentially the
same; that is the notion of equivalence. A functor F : C // D is said
to be an equivalence if it is full and faithful and has the property
that for any object B of D there is an object A of C for which F (A)
is isomorphic to B. The definition appears asymmetrical but in fact
given the axiom of choice if there is an equivalence from C to D then
there is an equivalence from D to C (Exercise 11).

The notion of equivalence captures the perception that, for example,
for most purposes you are not changing group theory if you want to
work in a category of groups which contains only a countable number
(or finite, or whatever) of copies of each isomorphism type of groups
and all the homomorphisms between them.

Statements in Section 2 like, “A group may be regarded as a cat-
egory with one object in which all arrows are isomorphisms” can be
made precise using the notion of equivalence: The category of groups
and homomorphisms is equivalent to the category of categories with ex-
actly one object in which each arrow is an isomorphism, and all functors
between them. Any isomorphism between these categories would seem
to require an axiom of choice for proper classes.

3.3. Comma categories. Let A , C and D be categories and F : C
// A , G: D // A be functors. From these ingredients we con-

struct the comma category (F,G) which is a generalization of the
slice A /A of a category over an object discussed in Section 2. The ob-
jects of (F,G) are triples (C, f,D) with f :FC // GD an arrow of A
and C, D objects of C and D respectively. An arrow (h, k): (C, f,D)

// (C ′, f ′, D′) consists of h:C // C ′ and k:D // D′ making

GD GD′
Gk

//

FC

GD

f

��

FC FC ′
Fh // FC ′

GD′

f ′

��

commute. It is easy to verify that coordinatewise composition makes
(F,G) a category.

When A is an object of A , we can consider it as a functor A: 1
// A . Then the comma category (IdA , A) is just the slice A /A
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defined in Section 2. The category of arrows under an object is similarly
a comma category.

Each comma category (F,G) is equipped with two projections
p1: (F,G) // C projecting objects and arrows onto their first co-
ordinates, and p2: (F,G) // D projecting objects onto their third
coordinates and arrows onto their second.

3.4. Exercises

1. Show that functors preserve isomorphisms, but do not necessarily
reflect them.

2. Use the concept of arrow category to describe a functor which takes
a group homomorphism to its kernel.

3. Show that the following define functors:

(a) the projection map from a product C ×D of categories to one
of them;

(b) for C a category and an object A of C , the constant map from
a category B to C which takes every object to A and every arrow to
idA;

(c) the forgetful functor from the category C /A of objects over A
to C which takes an object B // A to B and an arrow h:B // C
over A to itself.

4. Show that the functor P of Example 6 is faithful but not full and
reflects isomorphisms.

5. Give examples showing that functors need not preserve or reflect
initial or terminal objects.

6. Show that the map which takes a set to its powerset is the object
map of at least two covariant functors from Set to Set: If f :A // B,
one functor takes a subset A0 of A to its image f!(A0) = f(A0), and
the other takes A0 to the set

f∗(A0) = {y ∈ B | if f(x) = y then x ∈ A0} = {y ∈ B | f−1(y) ⊆ A0}
Show that f−1(B) ⊆ A if and only if B ⊆ f∗(A) and that A ⊆ f−1(B)
if and only if f!(A) ⊆ B.

7. Show that the definition given in Example 4 makes the free group
construction F a functor.
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8. Show that there is no functor from Grp to Grp which takes each
group to its center. (Hint: Consider the group G consisting of all pairs
(a, b) where a is any integer and b is 0 or 1, with multiplication

(a, b)(c, d) = (a+ (−1)bc, b+ d)

the addition in the second coordinate being (mod 2).)

9. Show that there is no functor from Grp to Grp which takes each
group to its automorphism group.

10. Show that every category is equivalent to its skeleton (see Exer-
cise 7 of Section 2).

11. Show that equivalence is an equivalence relation on any set of
categories. (This exercise is easier to do after you do Exercise 7 of
Section 4).

12. (a) Make the statement “a preordered set can be regarded as a
category in which there is no more than one arrow between any two
objects” precise by defining a subcategory of the category of categories
and functors that the category of preordered sets and order-preserving
maps is equivalent to (see Exercise 9 of Section 2).

(b) Show that, when regarded as a category, every preordered set
is equivalent to a poset.

13. An atom in a Boolean algebra is an element greater than 0 but
with no elements between it and 0. A Boolean algebra is atomic if
every element x of the algebra is the join of all the atoms smaller than
x. A Boolean algebra is complete if every subset has an infimum
and a supremum. A CABA is a complete atomic Boolean algebra. A
CABA homomorphism is a Boolean algebra homomorphism between
CABA’s which preserves all infs and sups (not just finite ones, which
any Boolean algebra homomorphism would do). Show that the opposite
of the category of sets is equivalent to the category of CABA’s and
CABA homomorphisms.

14. An upper semilattice is a partially ordered set in which each
finite subset (including the empty set) of elements has a least upper
bound. Show that the category of upper semilattices and functions
which preserve the least upper bound of any finite subset (and hence
preserve the ordering) is equivalent to the category of commutative
monoids in which every element is idempotent and monoid homomor-
phisms.
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15. Show that the arrow and twisted arrow categories of Exercise 2 of
Section 2 are comma categories.

16. Show that the category Set of sets nor the category Ab of abelian
groups is equivalent to its opposite category. (Hint: Find a property
of the category for which the dual property is not satisfied.)

4. Natural transformations

4.1. In topology, a homotopy from f :A // B to g:A // B is
given by a path in B from fx to gx for each element x ∈ A such
that the paths fit together continuously. A natural transformation is
analogously a deformation of one functor to another.

If F : C // D and G: C // D are two functors, λ:F // G is
a natural transformation from F to G if λ is a collection of arrows
λC:FC // GC, one for each object C of C , such that for each arrow
g:C // C ′ of C the following diagram commutes:

FC ′ GC ′
λC ′

//

FC

FC ′

Fg

��

FC GC
λC // GC

GC ′

Gg

��

The arrows λC are the components of λ.
The natural transformation λ is a natural equivalence if each

component of λ is an isomorphism in D .
The natural map of a vector space to its double dual is a natu-

ral transformation from the identity functor on the category of vector
spaces and linear maps to the double dual functor. When restricted
to finite dimensional vector spaces, it is a natural equivalence. As an-
other example, let n > 1 be a positive integer and let GLn denote
the functor from the category of commutative rings with unity to the
category of groups which takes a ring to the group of invertible n× n
matrices with entries from the ring, and let Un denote the group of
units functor (which is actually GL1). Then the determinant map is a
natural transformation from GLn to Un. The Hurewicz transformation
from the fundamental group of a topological space to its first homology
group is also a natural transformation of functors.
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4.2. Functor categories. Let C and D be categories with C small.
The collection Func(C ,D) of functors from C to D is category with
natural transformations as arrows. If F and G are functors, a natu-
ral transformation λ requires, for each object C of C , an element of
HomD(FC,GC), subject to the naturality conditions. If C is small,
there is no more than a set of such natural transformations F // G
and so this collection is a set. If λ:F // G and µ:G // H are
natural transformations, their composite µ ◦ λ is defined by requiring
that its component at C to be µC ◦ λC. Of course, Func(C ,D) is just
HomCat(C ,D), and so is already a functor in each variable to Set. It is
easy to check that for any F : D // E ,

Func(C , F ): Func(C ,D) // Func(C ,E )

is actually a functor and not only a Set-function, and similarly for
Func(F,C ), so that in each variable Func is actually a Cat-valued func-
tor.

We denote the hom functor in Func(C ,D) by Nat(F,G) for func-
tors F,G: C // D . A category of the form Func(C ,D) is called a
functor category and is frequently denoted DC especially in the later
chapters on sheaves.

4.3. Notation for natural transformations. Suppose there are
categories and functors as shown in this diagram:

B C
H // C D

F
))

C D

G

66 D E
K //λ��

Note that in diagrams, we often denote a natural transformation by a
double arrow: λ:F ⇒ G.

Suppose λ:F // G is a natural transformation. Then λ induces
two natural transformations Kλ:KF // KG and λH:FH // GH.
The component of Kλ at an object C of C is

K(λC):KFC // KGC

Then Kλ is a natural transformation simply because K, like any
functor, takes commutative diagrams to commutative diagrams. The
component of λH at an object B of B is the component of λ at HB.
λH is a natural transformation because H is defined on morphisms.

We should point out that although the notations Kλ and λH look
formally dual, they are quite different in meaning. The first is the result
of applying a functor to a value of a natural transformation (which is
a morphism in the codomain category) while the second is the result
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of taking the component of a natural transformation at a value of a
functor. Nonetheless, the formal properties of the two quite different
operations are the same. This is why we use the parallel notation when
many other writers use distinct notation. (Compare the use of 〈f, v〉
for f(v) by many analysts.) Thus advances mathematics.

Exercise 6 below states a number of identities which hold for natural
transformations. Some of them are used later in the book, particularly
in triple theory.

4.4. Exercises

1. Show how to describe a natural transformation as a functor from
an arrow category to a functor category.

2. What is a natural transformation from one group homomorphism
to another?

3. Let R: C // D be a functor. Show that f 7→ Rf is a natural
transformation HomC (C,−) // HomD(RC,R(−)) for any object C
of C .

4. (a) Show that the inclusion of a set A into the free group FA
generated by A determines a natural transformation from the identity
functor on Set to the functor UF where U is the underlying set functor.

(b) Find a natural transformation from FU :Grp // Grp to the
identity functor on Grp which takes a one letter word of FUG to itself.
Show that there is only one such.

5. In Section 3, we mentioned three ways of defining the powerset as
a functor. (See Exercise 6.) For which of these definitions do the maps
which take each element x of a set A to the set {x} (the “singleton”
maps) form a natural transformation from the identity functor to the
powerset functor?

6. Let categories and functors be given as in the following diagram.

B C

F
''

B C

G

77 C D

H
((

C D

K

66



20 1. CATEGORIES

Suppose κ:F // G and µ:H // K are natural transformations.

(a) Show that this diagram commutes:

KF KG
Kκ

//

HF

KF

µF

��

HF HG
Hκ // HG

KG

µG

��

(b) Define µκ by requiring that its component at B be µGB ◦HκB,
which by (a) is KκB ◦µFB. Show that µκ is a natural transformation
from H ◦ F to K ◦ G. This defines a composition operation, called
application, on natural transformations. Although it has the syntax
of a composition law, as we will see below, semantically it is the result
of applying µ to κ. In many, especially older works, it is denoted µ∗κ,
and these books often use juxtaposition to denote composition.

(c) Show that Hκ and µG have the same interpretation whether
thought of as instances of application of a functor to a natural trans-
formation, resp. evaluation of a natural transformation at a functor, or
as examples of an application operation where the name of a functor
is used to stand for the identity natural transformation. (This exercise
may well take longer to understand than to do.)

(d) Show that application as defined above is associative in the
sense that if (µκ)β is defined, then so is µ(κβ) and they are equal.

(e) Show that the following rules hold, where ◦ denotes the compo-
sition of natural transformations defined earlier in this chapter. These
are called Godement’s rules. In each case, the meaning of the rule
is that if one side is defined, then so is the other and they are equal.
They all refer to this diagram, and the name of a functor is used to
denote the identity natural transformation from that functor to itself.
The other natural transformations are κ:F1

// F2, λ:F2
// F3,

µ:G1
// G2, and ν:G2

// G3.

A B
E // B C

F1

��
B CF2

//B C

F3

??C D

G1

��
C DG2

//C D

G3

??D E
H //

κ��

λ��

µ
��

ν��

(i) (The interchange law)

(ν ◦ µ)(λ ◦ κ) = (νλ) ◦ (µκ)
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(ii) (H ◦G1)κ = H(G1κ).
(iii) µ(F1 ◦ E) = (µF1)E.
(iv) G1(λ ◦ κ)E = (G1λE) ◦ (G1κE).
(v) (µF2) ◦ (G1κ) = (G2κ) ◦ (µF1).

7. Show that two categories C and D are equivalent if and only if
there are functors F : C // D and G: D // C such that G ◦ F is
naturally equivalent to idC and F ◦G is naturally equivalent to idD .

5. Elements and subobjects

5.1. Elements. One of the important perceptions of category theory
is that an arrow x:T // A in a category can be regarded as an
element of A defined over T . The idea is that x is a variable element
of A, meaning about the same thing as the word “quantity” in such
sentences as, “The quantity x2 is nonnegative”, found in older calculus
books.

One must not get carried away by this idea and introduce elements
everywhere. One of the main benefits of category theory is you don’t
have to do things in terms of elements unless it is advantageous to.
In 4.2 is a construction that is almost impossible to understand in terms
of elements, but is very easy with the correct conceptual framework.
On the other hand, we will see many examples later in which the use
of elements leads to a substantial simplification. The point is not to
allow a tool to become a straitjacket.

When x:T // A is thought of as an element of A defined on T ,
we say that T is the domain of variation of the element x. It is often
useful to think of x as an element of A defined in terms of a parameter
in T . A related point of view is that x is a set of elements of A indexed
by T . By the way, this is distinct from the idea that x is a family of
disjoint subsets of T indexed by A, as mentioned in 2.2.

The notation “x ∈T A” is a useful quick way of saying that x is an
element of A defined on T . This notation will be extended when we
consider subobjects later in this section.

If x ∈T A and f :A // B, then f ◦ x ∈T B; thus morphisms
can be regarded as functions taking elements to elements. The Yoneda
Lemma, Theorem 2 of the next section, says (among other things) that
any function which takes elements to elements in a coherent way in a
sense that will be defined precisely “is” a morphism of the category.
Because of this, we will write f(x) for f ◦ x when it is helpful to think
of x as a generalized element.
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Note that every object A has at least one element idA, its generic
element.

If A is an object of a category C and F : C // D is a functor,
then F takes any element of A to an element of FA in such a way that
(i) generic elements are taken to generic elements, and (ii) the action
of F on elements commutes with change of the domain of variation of
the element. (If you spell those two conditions out, they are essentially
the definition of functor.)

Isomorphisms can be described in terms of elements, too: An arrow
f :A // B is an isomorphism if and only if f (thought of as a function)
is a bijection between the elements of A defined on T and the elements
of B defined on T for all objects T of C . (To get the inverse, apply
this fact to the element idA:A // A.) And a terminal object is a
singleton in a very strong sense—for any domain of variation it has
exactly one element.

In the rest of this section we will develop the idea of element further
and use it to define subobjects, which correspond to subsets of a set.

5.2. Monomorphisms and epimorphisms. An arrow f :A //

B is a monomorphism (or just a “mono”, adjective “monic”), if f
(i.e., Hom(T, f)) is injective (one to one) on elements defined on each
object T —in other words, for every pair x, y of elements of A defined
on T , f(x) = f(y) implies x = y.

In terms of composition, this says that f is left cancelable, i.e, if
f ◦ x = f ◦ y, then x = y. This has a dual concept: The arrow f is
an epimorphism (“an epi”, “epic”) if it is right cancelable. This is
true if and only if the contravariant functor Hom(f, T ) is injective (not
surjective!) for every object T . Note that surjectivity is not readily
described in terms of generalized elements.

In Set, every monic is injective and every epic is surjective (onto).
The same is true of Grp, but the fact that epis are surjective in Grp is
moderately hard to prove (Exercise 2). On the other hand, any dense
map, surjective or not, is epi in the category of Hausdorff spaces and
continuous maps.

An arrow f :A // B which is “surjective on elements”, in other
words for which Hom(T, f) is surjective for every object T , is necessarily
an epimorphism and is called a split epimorphism. An equivalent
definition is that there is an arrow g:B // A which is a right in-
verse to f , so that f ◦ g = idB. The Axiom of Choice is equivalent
to the statement that every epi in Set is split. In general, in cate-
gories of sets with structure and structure preserving functions, split
epis are surjective and (as already pointed out) surjective maps are
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epic (see Exercise 6), but the converses often do not hold. We have
already mentioned Hausdorff spaces as a category in which there are
nonsurjective epimorphisms; another example is the embedding of the
ring of integers in the field of rational numbers in the category of rings
and ring homomorphisms. As for the other converse, in the category
of groups the (unique) surjective homomorphism from the cyclic group
of order 4 to the cyclic group of order 2 is an epimorphism which is not
split.

An arrow with a left inverse is necessarily a monomorphism and is
called a split monomorphism. Split monos in Top are called retrac-
tions; in fact the word “retraction” is sometimes used to denote a split
mono in any category.

The property of being a split mono or split epi is necessarily pre-
served by any functor. The property of being monic or epic is certainly
not in general preserved by any functor. Indeed, if Ff is epi for every
functor F , then f is necessarily a split epi. (Exercise 5.)

Notation: In diagrams, we usually draw an arrow with an arrow-
head at its tail:

// //

to indicate that it is a monomorphism. The usual dual notation for an
epimorphism is

// //

However in this book we reserve that latter notation for regular epi-
morphisms to be defined in 8.8.

5.3. Subobjects. We now define the notion of subobject of an ob-
ject in a category; this idea partly captures and partly generalizes the
concept of “subset”, “subspace”, and so on, familiar in many branches
of mathematics.

If i:A0
// A is a monomorphism and a:T // A, we say a

factors through i (or factors through A0 if it is clear which mono-
morphism i is meant) if there is an arrow j for which

(5)

A0 A
i

//

T

A0

j

��

T

A

a

��?????????????

commutes. In this situation we extend the element point of view and
say that the element a of A is an element of A0 (or of i if necessary).



24 1. CATEGORIES

This is written “a ∈TA A0”. The subscript A is often omitted if the
context makes it clear.

5.4. Lemma. Let i:A0
// A and i′:A′0 // A be monomorphisms

in a category C . Then A0 and A′0 have the same elements of A if and
only if they are isomorphic in the category C /A of objects over A, in
other words if and only if there is an isomorphism j:A // A′ for
which

(6)

A′0 A
i′

//

A0

A′0

j

��

A0

A

i

��????????????

commutes.

Proof. Suppose A0 and A′0 have the same elements of A. Since i ∈A0
A

A0, it factors through A′0, so there is an arrow j:A0
// A′0 such that

(2) commutes. Interchanging A0 and A′0 we get k:A′0 // A0 such
that i ◦ k = i′. Using the fact that i and i′ are monic, it is easy to see
that j and k must be inverses to each other, so they are isomorphisms.

Conversely, if j is an isomorphism making (2) commute and a ∈TA
A0, so that a = i ◦ u for some u:T // A0, then a = i′ ◦ j ◦ u so that
a ∈TA A′0. A similar argument interchanging A0 and A′0 shows that A0

and A′0 have the same elements of A.

Two monomorphisms are said to be equivalent if they have the
same elements. A subobject of A is an equivalence class of monomor-
phisms into A. We will frequently refer to a subobject by naming one
of its members, as in “Let A0

// // A be a subobject of A”.
In Set, each subobject of a set A contains exactly one inclusion of a

subset into A, and the subobject consists of those injective maps into A
which has that subset as image. Thus “subobject” captures the notion
of “subset” in Set exactly.

Any map from a terminal object in a category is a monomorphism
and so determines a subobject of its target. Because any two ter-
minal objects are isomorphic by a unique isomorphism (Exercise 6 of
Section 2), that subobject contains exactly one map based on each ter-
minal object. We will henceforth assume that in any category we deal
with, we have picked a particular terminal object (if it has one) as the
canonical one and call it “the terminal object”.
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5.5. Exercises

1. Describe initial objects using the terminology of elements, and using
the terminology of indexed families of subsets.

(a) Show that in Set, a function if injective if and only if it is a
monomorphism and surjective if and only if it is an epimorphism.

(b) Show that every epimorphism in Set is split. (This is the Axiom
of Choice).

(c) Show that in the category of Abelian groups and group ho-
momorphisms, a homomorphism is injective if and only if it is a
monomorphism and surjective if and only if it is an epimorphism.

(d) Show that neither monos nor epis are necessarily split in the
category of Abelian groups.

2. Show that in Grp, every homomorphism is injective if and only if it is
a monomorphism and surjective if and only if it is an epimorphism. (If
you get stuck trying to show that an epimorphism in Grp is surjective,
see the hint on page 21 of Mac Lane [1971].)

3. Show that all epimorphisms are surjective in Top, but not in the
category of all Hausdorff spaces and continuous maps.

4. Show that the embedding of an integral domain (assumed commu-
tative with unity) into its field of quotients is an epimorphism in the
category of commutative rings and ring homomorphisms. When is it a
split epimorphism?

(a) Show that the following two statements about an arrow f :A
// B in a category C are equivalent:

(b) Hom(T, f) is surjective for every object T of C .

(c) There is an arrow g:B // A such that f ◦ g = idB.

(d) Show that any arrow satisfying the conditions of (a) is an epi-
morphism.

5. Show that if Ff is epi for every functor F , then f is a split epi.

6. Let U : C // Set be a faithful functor and f an arrow of C . (Note
that the functors we have called “forgetful”—we have not defined that
word formally—are obviously faithful.) Prove:

(a) If Uf is surjective then f is an epimorphism.

(b) If f is a split epimorphism then Uf is surjective.

(c) If Uf is injective then f is a monomorphism.
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(d) If f is a split monomorphism, then Uf is injective.

7. A subfunctor of a functor F : C // Set is a functor G with the
properties

(a) GA ⊆ FA for every object A of C .

(b) If f :A // B, then Gf(GA) ⊆ GB.
Show that the subfunctors of a functor are the “same” as subobjects

of the functor in the category Func(C , Set).

6. The Yoneda Lemma

6.1. Elements of a functor. A functor F : C // Set is an object
in the functor category Func(C , Set): an “element” of F is therefore a
natural transformation into F . The Yoneda Lemma, Lemma 1 below,
says in effect that the elements of a Set-valued functor F defined (in
the sense of Section 5) on the hom functor Hom(A,−) for some object
A of C are essentially the same as the (ordinary) elements of the set
FA. To state this properly requires a bit of machinery.

If f :A // B in C , then f induces a natural transformation from
Hom(B,−) to Hom(A,−) by composition: the component of this nat-
ural transformation at an object C of C takes an arrow h:B // C
to h ◦ f :A // C. This construction defines a contravariant functor
from C to Func(C , Set) called the Yoneda map. It is straightforward
and very much worthwhile to check that this construction really does
give a natural transformation for each arrow f and that the resulting
Yoneda map really is a functor.

Because Nat(−,−) is contravariant in the first variable (it is a
special case of Hom), the map which takes an object B of C and a
functor F : C // Set to Nat(Hom(B,−), F ) is a functor from C ×
Func(C , Set) to Set. Another such functor is the evaluation functor
which takes (B,F ) to FB, and (g, λ), where g:B // A ∈ C and λ:F

// G is a natural transformation, to Gg ◦λB. Remarkably, these two
functors are naturally isomorphic; it is in this sense that the elements
of F defined on Hom(B,−) are the ordinary elements of FB.

6.2. Lemma. [Yoneda ] The map φ: Nat(Hom(B,−), F ) // FB
defined by φ(λ) = λB(idB) is a natural isomorphism of the functors
defined in the preceding paragraph.

Proof. The inverse of φ takes an element u of FB to the natu-
ral transformation λ defined by requiring that λA(g) = Fg(u) for
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g ∈ Hom(B,A). The rest of proof is a routine verification of the
commutativity of various diagrams required by the definitions.

The first of several important consequences of this lemma is the
following embedding theorem. This theorem is obtained by taking F
in the Lemma to be Hom(A,−), where A is an object of C ; this results
in the statement that there is a natural bijection between arrows g:A

// B and natural transformations from Hom(B,−) to Hom(A,−).

6.3. Theorem. [Yoneda Embeddings]

(1) The map which takes f :A // B to the induced natural trans-
formation

Hom(B,−) // Hom(A,−)

is a full and faithful contravariant functor from C to Func(C , Set).
(2) The map taking f to the natural transformation

Hom(−, A) // Hom(−, B)

is a full and faithful functor from C to Func(C op, Set).

Proof. It is easy to verify that the maps defined in the Theorem are
functors. The fact that the first one is full and faithful follows from
the Yoneda Lemma with Hom(A,−) in place of F . The other proof is
dual.

The induced maps in the Theorem deserve to be spelled out. If
f :S // T , the natural transformation corresponding to f given by
(i) has component Hom(f, A): Hom(T,A) // Hom(S,A) at an ob-
ject A of C —this is composing by f on the right. If x ∈T A, the
action of Hom(f, A) “changes the parameter” in A along f . The other
natural transformation corresponding to f is Hom(T, f): Hom(T,A)

// Hom(T,B); since the Yoneda embedding is faithful, we can say
that f is essentially the same as Hom(−, f). If x is an element of A
based on T , then Hom(T, f)(x) = f ◦x. Since “f is essentially the same
as Hom(−, f)”, this justifies the notation f(x) for f ◦ x introduced in
Section 5. The fact that the Yoneda embedding is full means that any
natural transformation Hom(−, A) // Hom(−, B) determines a mor-
phism f :A // B, namely the image of idA under the component of
the transformation at A. Spelled out, this says that if f is any function
which assigns to every element x:T // A an element f(x):T // B
with the property that for all T :S // T , f(x ◦ t) = f(x) ◦ t (this
is the “Section 5) then f “morphism, also called f to conform to our
conventions, from A to B. One says such an arrow exists “by Yoneda”.
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In the same vein, if g: 1 // A is a morphism of C , then for
any object T , g determines an element g( ) of A defined on T by
composition with the unique element from T to 1, which we denote ( ).
This notation captures the perception that a global element depends
on no arguments. We will extend the functional notation to more than
one variable in Section 8.

6.4. Universal elements. Another special case of the Yoneda Lemma
occurs when one of the elements of F defined on Hom(A,−) is a natural
isomorphism. If β: Hom(A,−) // F is such a natural isomorphism,
the (ordinary) element u ∈ FA corresponding to it is called a uni-
versal element for F , and F is called a representable functor,
represented by A. It is not hard to see that if F is also represented by
A′, then A and A′ are isomorphic objects of C . (See Exercise 3, which
actually says more than that.)

The following lemma gives a characterization of universal elements
which in many books is given as the definition.

6.5. Lemma. Let F : C // Set be a functor. Then u ∈ FA is a
universal element for F if and only if for every object B of C and
every element t ∈ FB there is exactly one arrow g:A // B such that
Fg(u) = t.

Proof. If u is such a universal element corresponding to a natural iso-
morphism β: Hom(A,−) // F , and t ∈ FB, then the required arrow
g is the element (β−1B)(t) in Hom(A,B). Conversely, if u ∈ FA
satisfies the conclusion of the Lemma, then it corresponds to some
natural transformation β: Hom(A,−) // F by the Yoneda Lemma.
It is routine to verify that the map which takes t ∈ FB to the ar-
row g ∈ Hom(A,B) given by the assumption constitutes an inverse in
Func(C , Set) to βB.

In this book, the phrase “u ∈ FA is a universal element for F”
carries with it the implication that u and A have the property of the
lemma. (It is possible that u is also an element of FB for some object
B but not a universal element in FB.)

As an example, let G be a free group on one generator g. Then g is
the “universal group element” in the sense that it is a universal element
for the underlying set functor U :Grp // Set (more precisely, it is a
universal element in UG). This translates into the statement that for
any element x in any group H there is a unique group homomorphism
F :G // H taking g to x, which is exactly the definition of “free
group on one generator g”.
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Another example which will play an important role in this book
concerns the contravariant powerset functor P: Set // Set defined
in Section 3. It is straightforward to verify that a universal element
for P is the subset {1} of the set {0, 1}; the function required by the
Lemma for a subset B0 of a set B is the characteristic function of B0.
(A universal element for a contravariant functor, as here—meaning a
universal element for P: Setop // Set—is often called a “couniversal
element”.)

6.6. Exercises

1.

(a) Find a universal element for the functor

Hom(−, A)× Hom(−, B): Setop // Set

for any two sets A and B. (If h:U // V , this functor takes a pair
(f, g) to (h ◦ f, h ◦ g).)

(b) Show that an action of a group G on a set A is essentially the
same thing as a functor from G regarded as a category to Set.

(c) Show that such an action has a universal element if and only if
for any pair x and y of elements of A there is exactly one element g of
G for which gx = y.

2. Are either of the covariant powerset functors defined in Exercise 6
of Section 3 representable?

3. Let F : C // Set be a functor and u ∈ FA, u′ ∈ FA′ be universal
elements for F . Show that there is a unique isomorphism φ:A // A′

such that Fφ(u) = u′.

4. Let U :Grp // Set be the underlying set functor, and F : Set
// Grp the functor which takes a set A to the free group on A.

Show that for any set A, the covariant functor HomSet(A,U(−)) is
represented by FA, and for any group G, the contravariant functor
HomGrp(F (−), G) is represented by UG.

7. Pullbacks

7.1. The set P of composable pairs of arrows used in Section 1.1 in
the alternate definition of category is an example of a “fibered product”
or “pullback”. A pullback is a special case of “limit”, which we treat
in Section 8. In this section, we discuss pullbacks in detail.
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Let us consider the following diagram D in a category C .

(7)

A C
f

//

B

A

B

A

B

C

g

��

We would like to objectify the set {(x, y) | f(x) = g(y)} in C ;
that is, find an object of C whose elements are those pairs (x, y) with
f(x) = g(y). Observe that for a pair (x, y) to be in this set, x and y
must be elements of A and B respectively defined over the same object
T .

The set of composable pairs of arrows in a category (see Section 2)
are a special case in Set of this, with A = B being the set of arrows
and f = d 0, g = d 1.

Thus we must consider commutative diagrams like

(8)

A C
f

//

T

A

x

��

T B
y

// B

C

g

��

In this situation, (T, x, y) is called a commutative cone over D
based on T . We denote by Cone(T,D) the set of commutative cones
over D based on T . A commutative cone based on T over D may
usefully be regarded as an element of D defined on T . In Section ,
we will see that a commutative cone is actually an arrow in a certain
category, so that this idea fits with our usage of the word “element”.

Our strategy will be to turn Cone(−, D) into a functor; then we will
say that an object represents (in an informal sense) elements of D, in
other words pairs (x, y) for which f(x) = g(y), if that object represents
(in the precise technical sense) the functor Cone(−, D).

We make will make Cone(−, D) into a contravariant functor to Set:
If h:W // T is an arrow of C and (T, x, y) is a commutative cone
over (1), then

Cone(h,D)(T, x, y) = (W,x ◦ h, y ◦ h)

which it is easy to see is a commutative cone over D based on W .
An element (P, p1, p2) ofD which is a universal element for Cone(−, D)

(so that Cone(−, D) is representable) is called the pullback or the
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fiber product of the diagram D. The object P is often called the
pullback, with p1 and p2 understood. As the reader can verify, this
says that (P, p1, p2) is a pullback if

(9)

A C
f

//

P

A

p1

��

P B
p2 // B

C

g

��

commutes and for any element of D based on T , there is a unique
element of z ∈ P based on T which makes

(10)

A C
f

//

P

A

p1

��

P Bp2

// B

C

g

��

T

B

y

''OOOOOOOOOOOOOOOOOOOOOOOT

A

x

��/
//////////////////////T

P

z
??????

��??????

commute. Thus there is a bijection between the elements of the dia-
gram D defined on T and the elements of the fiber product P defined
on T . When a diagram like 10 has this property it is called a pullback
diagram.

The Cone functor exists for any category, but a particular diagram
of the form 7 need not have a pullback.

7.2. Proposition. If Diagram 9 is a pullback diagram, then the cone
in Diagram 8 is also a pullback of Diagram 7 if and only if the unique
arrow from T to P making everything in Diagram 10 commute is an
isomorphism.

Proof. (This theorem actually follows from Exercise 3 of Section 6,
but I believe a direct proof is instructive.) Assume that (2) and (3) are
both pullback diagrams. Let u:T // P be the unique arrow given
because 9 is a pullback diagram, and let v:P // T be the unique
arrow given because 8 is a pullback diagram. Then both for g = u◦v:P

// P and g = idP it is true that p1 ◦g = p1 and p2 ◦g = p2. Therefore
by the uniqueness part of the definition of universal element, u◦v = idP .
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Similarly, v ◦ u = idT , so that u is an isomorphism between T and P
making everything commute. The converse is easy.

The preceding argument is typical of many arguments making use
of the uniqueness part of the definition of universal element. We will
usually leave arguments like this to the reader.

A consequence of Proposition 1 is that a pullback of a diagram
in a category is not determined uniquely but only up to a “unique
isomorphism which makes everything commute”. This is an instance of
a general fact about constructions defined as universal elements which
is made precise in Proposition 1 of Section 8.

7.3. Notation for pullbacks. We have defined the pullback P of
Diagram 7 so that it objectifies the set {(x, y) | f(x) = g(y)}. This
fits nicely with the situation in Set, where one pullback of (1) is the
set {(x, y) | f(x) = g(y)} together with the projection maps to A
and B, and any other pullback is in one to one correspondence with
this one by a bijection which commutes with the projections. This
suggest the introduction of a setlike notation for pullbacks: We let
[(x, y) | f(x) = g(y)] denote a pullback of (1). In this notation, f(x)
denotes f ◦ x and g(y) denotes g ◦ y as in Section 5, and (x, y) denotes
the unique element of P defined on T which exists by definition of
pullback. It follows that p1(x, y) = x and p2(x, y) = y, where we write
p1(x, y) (not p1((x, y))) for p1 ◦ (x, y).

The idea is that square brackets around a set definition denotes an
object of the category which represents the set of arrows listed in curly
brackets—“represents” in the technical sense, so that the set in curly
brackets has to be turned into the object map of a set-valued functor.
The square bracket notation is ambiguous. Proposition 1 spells out the
ambiguity precisely.

We could have defined a commutative cone over (1) in terms of
three arrows, namely a cone (T, x, y, z) based on T would have x:T

// A, y:T // B and z:T // C such that f ◦ x = g ◦ y = z. Of
course, z is redundant and in consequence the Cone functor defined this
way would be naturally isomorphic to the Cone functor defined above,
and so would have the same universal elements. (The component of
the natural isomorphism at T takes (T, x, y) to (T, x, y, f ◦ x)). Thus
the pullback of (1) also represents the set {(x, y, z) | f(x) = g(y) =
z}, and so could be denoted [(x, y, z) | f(x) = g(y) = z]. Although
this observation is inconsequential here, it will become more significant
when we discuss more general constructions (limits) defined by cones.
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There is another way to construct a pullback in Set when the map
g is monic. In general, when g is monic, {(x, y) | f(x) = g(y)} ∼=
{x | f(x) ∈ g(B)}, which in Set is often denoted f−1(B). In general,
a pullback along a subobject can be interpreted as an inverse image
which as we will see is again a subobject.

The pullback Diagram 9 is often regarded as a sort of generalized
inverse image construction even when g is not monic. In this case, it
is called the “pullback of g along f”. Thus when P is regarded as
the fiber product, the notion of pullback is symmetrical in A and B,
but when it is regarded as the generalized inverse image of B then the
diagram is thought of as asymmetrical.

A common notation for the pullback of (1) reflecting the perception
of a pullback as fiber product is “A×C B”.

7.4. The subobject functor. In this section, we will turn the sub-
object construction into a contravariant functor, by using the inverse
image construction described above. To do this, we need to know first
that the inverse image of a monomorphism is a monomorphism:

7.5. Lemma. In any category C , in a pullback diagram (3), if f is
monic then so is p2.

Proof. Consider the diagram below, in which the square is a pullback.

(11)

A C
f

//

P

A

p1

��

P B
p2 // B

C

g

��

T P
x //

T P
y

//

Then P = [(a, b) | fa = gb]. Showing that p2 is monic is the same as
showing that if (x, y) ∈T P and (x′, y) ∈T P then x = x′. But if (x, y)
and (x′, y) are in P , then f(x) = g(y) = f(x′). Since f is monic it
follows that x = x′.

To turn the subobject construction into a functor, we need more
than that the pullback of monics is monic. We must know that the
pullback of a subobject is a well-defined subobject. In more detail, for
A in C , SubA will be the set of subobjects of A. If f :B // A, then
for a subobject represented by a monic g:U // A, Sub(f)(g) will be
the pullback of g along f . To check that Sub(f) is well-defined, we
need:
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7.6. Theorem. If g:U // // A and h:V // // A determine the same
subobject, then the pullbacks of g and h along f :B // A represent
the same subobjects of B.

Proof. This follows because the pullback of g is [y | f(y) ∈PA U ] and
the pullback of h is [y | f(y) ∈PA V ], which has to be the same since by
definition a subobject is entirely determined by its elements.

The verification that Sub(f) is a functor is straightforward and is
omitted.

7.7. Exercises

1. Show how to describe the kernel of a group homomorphism f :G
// H as the pullback of f along the map which takes the trivial

group to the identity of H.

2. Give an example of a pullback of an epimorphism which is not an
epimorphism.

3. Prove that an arrow f :A // B is monic if and only if the diagram

A B
f

//

A

A

idA

��

A A
idA // A

B

f

��

is a pullback.

4. (a) Suppose that

A C
f

//AA

BBB

C

g

��

is a diagram in Set with g an inclusion. Construct a pullback of the
diagram as a fiber product and as an inverse image of A along f , and
describe the canonical isomorphism between them.

(b) Suppose that g is injective, but not necessarily an inclusion.
Find two ways of constructing the pullback in this case, and find the
isomorphism between them.
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(c) Suppose f and g are both injective. Construct the pullback of
Diagram 8 in four different ways: (i) fiber product, (ii) inverse image of
the image of g along f , (iii) inverse image of the image of f along g, (iv)
and the intersection of the images of f and g. Find all the canonical
isomorphisms.

(d) Investigate which of the constructions in (c) coincide when one
or both of f and g are inclusions.

5. When g is monic in diagram (1), redefine “Cone” so that

(a) Cone(T,D) = {(x, z) | z ∈ B and f(x) = z}, or equivalently

(b) Cone(T,D) = {x | f(x) ∈ B}.
Show that each definition gives a functor naturally isomorphic to

the Cone functor originally defined.

6. Identify pullbacks in a poset regarded as a category. Apply this to
the powerset of a set, ordered by inclusion.

7. For two subobjects g:U // A and h:V // A, say that U ≤ V
(or g ≤ h) if g factors through h. Show that this makes the set of
subobjects of A a partially ordered set with a maximum element.

8. In a diagram

D E//

A

D
��

A B// B

E
��
E F//

B

E
��

B C// C

F
��

(a) Show that if both small squares are pullbacks, so is the outer
square.

(b) Show that if the outer square and right hand square are pull-
backs, so is the left hand square.

8. Limits and colimits

8.1. Graphs. A limit is the categorical way of defining an object by
means of equations between elements of given objects. The concept
of pullback as described in Section 7 is a special case of limit, but
sufficiently complicated to be characteristic of the general idea. To
give the general definition, we need a special notion of “graph”. What
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we call a graph here is what a graph theorist would probably call a
“directed multigraph with loops”.

Formally, a graph G consists of two sets, a set O of objects and
a set A of arrows, and two functions d 0, d 1:A // O. Thus a graph
is a “category without composition” and we will use some of the same
terminology as for categories: O is the set of objects (or sometimes
nodes) and A is the set of arrows of the graph; if f is an arrow, d 0(f)
is the source of f and d 1(f) is the target of f .

A homomorphism F :G // H from a graph G to a graph H
is a function taking objects to objects and arrows to arrows and pre-
serving source and target; in other words, if f :A // B in G, then
F (f):F (A) // F (B) in H .

It is clear that every category C has an underlying graph which
we denote |C |; the objects, arrows, source and target maps of |C | are
just those of C . Moreover, any functor F : C // D induces a graph
homomorphism |F |: |C | // |D |. It is easy to see that this gives
an underlying graph functor from the category of categories and
functors to the category of graphs and homomorphisms. A diagram
in a category C (or in a graph G—the definition is the same) is a
graph homomorphism D: I // |C | for some graph I . I is the
index graph of the diagram. Such a diagram is called a diagram of
type I . For example, a diagram of the form of 7 of Section 7 (which
we used to define pullbacks) is a diagram of type I where I is the
graph

1 // 2 oo 3

D is called a finite diagram if the index category has only a finite
number of nodes and arrows.

We will write D: I // C instead of D: I // |C |; this conforms
to standard notation.

Observe that any object A of C is the image of a constant graph
homomorphism K: I // C and so can be regarded as a degenerate
diagram of type I .

If D and E are two diagrams of type I in a category C , a natural
transformation λ:D // E is defined in exactly the same way as a
natural transformation of functors (which does not involve the compo-
sition of arrows in the domain category anyway); namely, λ is a family
of arrows

λi:D(i) // E(i)
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of C , one for each object i of I , for which

(12)

D(j) E(j)
λj
//

D(i)

D(j)

D(e)

��

D(i) E(i)
λi // E(i)

E(j)

E(e)

��

commutes for each arrow e: i // j of I .
A commutative cone with vertex W over a diagram D: I // C

is a natural transformation α from the constant functor with value W
on I to D. We will refer to it as the “cone α:W // D”. This
amounts to giving a compatible family {αi} of elements of the vertices
D(i) based on W . This commutative cone α is an element (in the cat-
egory of diagrams of type I ) of the diagram D based on the constant
diagram W . The individual elements αi (elements in C ) are called the
components of the element α.

Thus to specify a commutative cone with vertex W , one must give
for each object i of I an element αi of D(i) based on W (that is what
makes it a cone) in such a way that if e: i // j is an arrow of I ,
then D(e)(αi) = αj (that makes it commutative). This says that the
following diagram must commute for all e: i // j.

(13)

D(i) D(j)
D(e)

//

W

D(i)

αi

���������������
W

D(j)

αj

��?????????????

The definition of commutative cone for pullbacks in Section 7 does
not fit our present definition, since we give no arrow to C in Diagram 13.
Of course, this is only a technicality, since there is an implied arrow
to C which makes it a commutative cone. This is why we gave an
alternative, but equivalent construction in terms of three arrows in
Section 7.

Just as in the case of pullbacks, an arrow W ′ // W defines a
commutative cone over D with vertex W ′ by composition, thus making
Cone(−, D): C // Set a contravariant functor. (Cone(W,D) is the
set of commutative cones with vertex W .) Then a limit of D, denoted
limD, is a universal element for Cone(−, D).
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Any two limits for D are isomorphic via a unique isomorphism
which makes everything commute. This is stated precisely by the fol-
lowing proposition, whose proof is left as an exercise.

8.2. Proposition. Suppose D: I // C is a diagram in a category
C and α:W // D and β:V // D are both limits of D. Then there
is a unique isomorphism u:V // W such that for every object i of
I , αi ◦ u = βi.

The limit of a diagram D objectifies the set

{x | x(i) ∈ D(i) and for all e: i // j,D(e)(x(i)) = x(j)}
and so will be denoted

[x | x(i) ∈ D(i) and for all e: i // j,D(e)(x(i)) = x(j)]

As in the case of pullbacks, implied arrows will often be omitted
from the description. In particular, when y ∈T B and g:A // B is a
monomorphism we will often write “y ∈ A” or if necessary ∃x(g(x) = y)
when it is necessary to specify g.

By taking limits of different types of diagrams one obtains many
well known constructions in various categories. We can recover subob-
jects, for example, by noting that the limit of the diagram g:A // B
is the commutative cone with vertex A and edges idA and g. Thus the
description of this limit when g is monic is [(x, y) | gx = y] = [y | y ∈
A], which is essentially the same as the subobject determined by g since
a subobject is determined entirely by its elements. In other words, the
monomorphisms which could be this limit are precisely those equivalent
to (in the same subobject as) g in the sense of Section 7.

A category C is complete if every diagram in the category has a
limit. It is finitely complete if every finite diagram has a limit. Set,
Grp and Top are all complete.

8.3. Products. A discrete graph is a graph with no arrows. If
the set {1, 2} is regarded as a discrete graph I , then a diagram of
type I in a category C is simply an ordered pair of objects of C . A
commutative cone over the diagram (A,B) based on T is simply a pair
(x, y) of elements of A and B. Commutativity in this case is a vacuous
condition.

Thus a limit of this diagram represents the set {(x, y) | x ∈ A, y ∈
B} and is called the product of A and B. It is denoted A × B =
[(x, y) | x ∈ A, y ∈ B]. The object B × A = [(y, x) | y ∈ B, x ∈ A] is
differently defined, but it is straightforward to prove that it must be
isomorphic to A×B.



8. LIMITS AND COLIMITS 39

It follows from the definition that A × B is an object P together
with two arrows p1:P // A and p2:P // B with the property that
for any elements x of A and y of B based on T there is a unique element
(x, y) of A × B based on T such that p1(x, y) = x and p2(x, y) = y.
These arrows are conventionally called the projections, even though
they need not be epimorphisms. Conversely, any element h of A × B
based on T must be of the form (x, y) for some elements of A and
B respectively based on T : namely, x = p1(h) and y = p2(h). In
other words, there is a canonical bijection between Hom(T,A×B) and
Hom(T,A) × Hom(T,B) (this is merely a rewording of the statement
that A×B represents {(x, y):x ∈ A, y ∈ B}).

Note that (x, x′) and (x′, x) are distinct elements of A×A if x and
x′ are distinct, because p1(x, x′) = x, whereas p1(x′, x) = x′. In fact,
(x, x′) = (p2, p1) ◦ (x, x′).

If f :A // C and g:B // D, then we define

f × g = (f ◦ p1, g ◦ p2):A×B // C ×D
Thus for elements x of A and y of B defined on the same object,

(f × g)(x, y) = (f(x), g(y)).
It should be noted that the notation A × B carries with it the

information about the arrows p1 and p2. Nevertheless, one often uses
the notation A × B to denote the object P ; the assumption then is
that there is a well-understood pair of arrows which make it the genuine
product. We point out that in general there may be no canonical choice
of which object to take be X×Y , or which arrows as projections. There
is apparently such a canonical choice in Set but that requires one to
choose a canonical way of defining ordered pairs.

In a poset regarded as a category, the product of two elements is
their infimum, if it exists. In a group regarded as a category, products
don’t exist unless the group has only one element. The direct product
of two groups is the product in Grp and the product of two topological
spaces with the product topology is the product in Top. There are
similar constructions in a great many categories of sets with structure.

The product of any indexed collection of objects in a category is
defined analogously as the limit of the diagram D: I // C where I
is the index set considered as the objects of a graph with no arrows and
D is the indexing function. This product is denoted

∏
i∈I Di, although

explicit mention of the index set is often omitted. Also, the index is
often subscripted as Di if that is more convenient. There is a general
associative law for products which holds up to isomorphism.

There is certainly no reason to expect two objects in an arbitrary
category to have a product. A category has products if any indexed



40 1. CATEGORIES

set of objects in the category has a product. It has finite products if
any finite indexed set of objects has a product. By an obvious induc-
tion, it is sufficient for finite products to assume an empty product and
that any pair of objects has a product. Similar terminology is used for
other types of limits; in particular, a category C has finite limits if
every diagram D: I // C in which I is a finite graph, has a limit.

8.4. Equalizers. The equalizer of two arrows f, g:A // B (such
arrows are said to be parallel) is the object [x ∈ A | f(x) = g(x)].
As such this does not describe a commutative cone, but the equivalent
expression [(x, y) | x ∈ A, y ∈ B, f(x) = g(x) = y] does describe
a commutative cone, so the equalizer of f and g is the limit of the
diagram

A
f
//

g
// B

We will also call it Eq(f, g). In Set, the equalizer of f and g is of
course the set {x ∈ A | f(x) = g(x)}. In Grp, the kernel of a homomor-
phism f :G // H is the equalizer of f and the constant map at the
group identity.

8.5. Theorem. A category has finite limits if and only if it has equal-
izers, binary products and a terminal object.

Proof. (Sketch) With a terminal object and binary products, we get, by
induction, all finite products. Given a diagram D: I // C , with I a
non-empty finite graph, we let A =

∏
i∈ObI Di and B =

∏
α∈ArI codα.

We define two arrows f, g:A // B by pα ◦ f = α ◦ pdomα and pα ◦ g =
pcodα. This means that the following diagrams commute.

D domα D codαα
//

∏
i∈ObI Di

D domα

pdomα

��

∏
i∈ObI Di

∏
α∈ArI codα

f
// ∏

α∈ArI codα

D codα

pα

��

∏
i∈ObI Di

D codα

pcodα
��????????????

∏
i∈ObI Di

∏
α∈ArI codα

g
// ∏

α∈ArI codα

D codα

pα
��������������

If E
h //
∏
Di is an equalizer of f and g, then f ◦h = g◦h expresses the

fact that h:E // D is a cone, while the universal mapping property
into the equalizer expresses the universality of that cone. As for the
empty cone, its limit is the terminal object.
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With exactly the same argument one shows that the existence of
arbitrary limits is equivalent to the existence of equalizers and arbi-
trary products. The theorems of this book (as opposed to some of the
constructions used) depend only on finite limits and finite colimits (see
below for the latter).

By suitable modifications of this argument, we can show that a
functor preserves finite limits if and only if it preserves binary products,
the terminal object and equalizers.

Another version of this theorem asserts that a category has finite
limits if and only if it has a terminal object and pullbacks.

8.6. Preservation of limits. Let D: I // C be a diagram and
F : C // B be a functor. Let d: limD // D be a universal element
of D. We say that F preserves limD if Fd:F (limD) // FD is a
universal element of FD.

8.7. Colimits. A colimit of a diagram is a limit of the diagram
in the opposite category. Spelled out, a commutative cocone from a
diagram D: I // C with vertex W is a natural transformation from
D to the constant diagram with value W . The set of commutative
cocones from D to an object A is Hom(D,A) and becomes a covariant
functor by composition. A colimit of D is a universal element for
Hom(D,−).

For example, let us consider the dual notion to “product”. If A and
B are objects in a category, their sum (also called coproduct) is an
object Q together with two arrows i1:A // Q and i2:B // Q for
which if f :A // C and g:B // C are any arrows of the category,
there is a unique arrow 〈f, g〉:Q // C for which 〈f, g〉 ◦ i1 = f and
〈f, g〉 ◦ i = 2 = g. The arrows i1 and i2 are called the coproduct
injections although they need not be monic. Since Hom(A + B,C) ∼=
Hom(A,C)×Hom(B,C), 〈f, g〉 represents an ordered pair of maps, just
as the symbol (f, g) we defined when we treated products in Section 8.

The sum of two sets in Set is their disjoint union, as it is in Top.
In Grp the categorical sum of two groups is their free product; on the
other hand the sum of two abelian groups in the category of abelian
groups is their direct sum with the standard inclusion maps of the two
groups into the direct sum. The categorical sum in a poset regarded
as a category is the supremum. The categorical sum of two posets in
the category of posets and non-decreasing maps is their disjoint with
no element of the one summand related to any element of the second.

The coequalizer of two arrows f, g:A // B is an arrow h:B
// C such that



42 1. CATEGORIES

(i) h ◦ f = h ◦ g, and
(ii) if k:B // W and k ◦ f = k ◦ g, then there is a unique arrow

u:C // W for which u ◦ h = k.

The coequalizer of any two functions in Set exists but is rather
complicated to construct. If K is a normal subgroup of a group G,
then the coequalizer of the inclusion of K into G and the constant map
at the identity is the canonical map G // G/K.

The dual concept to “pullback” is “pushout”, which we leave to the
reader to formulate.

The notion of a functor creating or preserving a colimit, or a class
of colimits, is defined analogously to the corresponding notion for lim-
its. A functor that preserves finite colimits is called right exact. In
general, a categorical concept that is defined in terms of limits and/or
colimits is said to be defined by “exactness conditions”.

8.8. Regular monomorphisms and epimorphisms. A map that
is the equalizer of two arrows is automatically a monomorphism and is
called a regular monomorphism. For let h:E // A be an equalizer
of f, g:A // B and suppose that k, l:C // E are two arrows with
h ◦ k = h ◦ l. Call this common composite m. Then f ◦m = f ◦ h ◦ k =
g ◦h◦k = g ◦m so that, by the universal mapping property of equalizers,
there is a unique map n:C // E such that h ◦ n = m. But k and l
already have this property, so that k = n = l.

The dual property of being the coequalizer of two arrows is called
regular monomorphism. In many familiar categories (monoids,
groups, abelian groups, rings, . . . ) the regular epimorphisms are the
surjectives mappings, but it is less often the case that the injective
functions are regular monomorphisms. Of the four categories men-
tioned above, two (groups and abelian groups) have that property, but
it is far from obvious for groups.

8.9. Regular categories. A category A will be called regular if
every finite diagram has a limit, if every parallel pair of arrows has a
coequalizer and if whenever

C D
k

//

A

C

g

��

A B
f

// B

D

h

��
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is a pullback square, then h a regular epimorphism implies that g is
a regular epimorphism. In Set and in many other familiar category
groups, abelian groups, rings, categories of modules, etc., the regular
epics are characterized as the surjective homomorphisms and these are
closed in this way under pulling back. However, many familiar cate-
gories are not regular. For example neither the category of topological
spaces and continuous maps, nor the category of posets and order pre-
serving maps, is regular. If you know what an equational theory is, it
is useful to know that the category of models of any equational theory
is always regular (and exact, see below for the definition).

8.10. Proposition. In a regular category, every arrow f can be writ-
ten as f = m ◦ e where m is a monomorphism and e is a regular
epimorphism.

Proof. The obvious way to proceed is to begin with an arrow f :A
// A′ and form the kernel pair of f , which can be described symboli-

cally as {(a, b) | fa = fb}. If this kernel pair is K(f)
d0
//

d1
// A, then let

g:A // B be the coequalizer of d0 and d1. Since f ◦ d0 = f ◦ d1, the
universal mapping property of coequalizers implies there is a unique
h:B // A′ such that h ◦ g = f . Now g is a regular epimorphism by
definition. If you try this construction in the category of sets or groups
or, . . . , you will discover that h is always monic and then f = h ◦ g
is the required factorization. There are, however, categories in which
such an h is not always monic. We will now show that in a regular cat-
egory, it is. Actually, a bit less than regularity suffices. It is sufficient
that a pullback of a regular epimorphism be an epimorphism. Call
an arrow a weakly regular epimorphism if it is gotten as a composite
of arrows, each of which is gotten by pulling back a regular epimor-
phism. Since a pullback stacked on top of a pullback is a pullback, it
follows that weakly regular epimorphisms are both closed under pull-
back (Exercise 8) and under composition and since a pullback of a
regular epimorphism is an epimorphism, every weakly regular epimor-
phism is an epimorphism. Next note that since A // // B is a regular
epimorphism, f×1:A×A // B×A is a weakly regular epimorphism
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since

B × A Bp1

//

A× A

B × A

f × 1

��

A× A A
p1 // A

B

f

��

is a pullback. Similarly, 1×f :B×A // B×B and hence f×f :A×A

// B×B is a weakly regular epimorphism. Let K(h)
e0
//

e1
// A be the

kernel pair of g. The fact that h◦g◦d0 = f ◦d0 = f ◦d1 = h◦g◦d1, together
with the universal mapping property of K(h) implies the existence of
an arrow k:K(f) // K(h) such that the left hand square in the
diagram

A× A B ×B//
g × g

//

K(f)

A× A

(d0, d1)

��

K(f) K(h)
k // K(h)

B ×B

(e0, e1)

��
B ×B A′ × A′

h× h
//

K(h)

B ×B

K(h)

B ×B

K(h) A′// A′

A′ × A′

(1, 1)

��

commutes. The right hand square and the outer squares are pullbacks
by definition—they have the universal mapping properties of the kernel
pairs. By a standard property of pullbacks, the left hand square is also
a pullback. But g× g is a weakly regular epimorphism and hence so is
k. Now in the square

A Bg
//

K(f)

A

d 0

��

K(f) K(h)
k // K(h)

B

e0

��
A Bg

//

K(f)

A

d 1

��

K(f) K(h)
k // K(h)

B

e1

��

we have e0 ◦k = g ◦d0 = g ◦d1 = e1 ◦k and k is epic and therefore e0 = e1.
But that means that h is monic, which finishes the argument.

8.11. Equivalence relations and exact categories. Let A be a
category with finite limits. If A is an object, a subobject (d0, d1):E

// A× A is called an equivalence relation if it is

ER–1. reflexive: there is an arrow r: a // E such that d0 ◦ r =
d1 ◦ r = id;
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ER–2. symmetric: there is an arrow s:E // E such that s ◦d0 = d1

and s ◦ d1 = d0;
ER–3. transitive: if

E Ap1

//

T

E

q2

��

T E
q1 // E

A

p2

��

is a pullback, there is an arrow t:T // E such that p1 ◦ t =
p1 ◦ q1 and p2 ◦ t = p2 ◦ q2.

The interpretation of the last point is that E ⊆ A × A, so is a
set of ordered pairs (a1, a2); T ⊆ E × E, so T is a set of ordered 4-
tuples (a1, a2, a3, a4) such that (a1, a2) ∈ E and (a3, a4) ∈ E and the
condition p1 ◦ q2 = p2 ◦ q1 simply expresses a3 = a4. Then the condition
p1 ◦ t = p1 ◦ q1 means that t(a1, a2, a3, a4) has first coordinate a1 and
p2 ◦ t = p2 ◦ q2 means that the second coordinate is a4. So taken all
together, this says that when (a1, a2) ∈ E, (a3, a4) ∈ E and a2 = a3,
then (a1, a4) ∈ E, which is just transitivity in the usual sense.

If f :A // A′ is an arrow, then the kernel pair of f is an equiva-
lence relation. It is internally the relation a1 ∼ a2 if and only if
fa1 = fa2. We say that an equivalence relation is effective if it is
the kernel pair of some arrow. Another term for effective equivalence
relation is congruence.

A category is called exact if it is regular and if every equivalence
relation is effective.

The following will be needed for 2.2.4

8.12. Proposition. Suppose A is a regular, respectively exact, cat-
egory. Then for any object A the slice A /A is regular, respectively
exact.

Proof. Let us write [b:B // A] for an object of A /A. Suppose
f : [b:B // A] // [b′:B′ // A] is an arrow such that f :B // B′

is a regular epimorphism in A . Then there is a pair of arrows B′′

d0
//

d1
// B whose coequalizer is f . Then we have the diagram

[b ◦ d0 = b ◦ d1:B′′ // A]
d0
//

d1
// [b:B // A]

f
// [b′:B′ // A]
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which is a coequalizer in A /A so that f is a regular epimorphism there.
Conversely, suppose that f : [b:B // A] // [b′:B′ // A] is a regular
epimorphism in A /A. Then we have a coequalizer

[b′′:B′′ // A]
d0
//

d1
// [b:B // A]

f
// [b′:B′ // A]

Given g:B // C such that g ◦ d0 = g ◦ d1, it is easy to see that we
have a morphism (g, b): [b:B // A] // [p2, C × A]. Moreover,

(g, b) ◦ d0 = (g ◦ d0, b ◦ d0) = (g ◦ d1, b′′) = (g ◦ d1, b ◦ d1) = (g, b) ◦ d1

so that there is a unique (h, k): [b′:B′ // A] // [p2:C × A // A]
with (h, k) ◦ f = (g, b). This implies that h ◦ f = g and k ◦ f = b.
Thus h:B′ // C satisfies h ◦ f = g. If h′ were a different map
for which h′ ◦ f = g, then (h′, k) would be a second map for which
(h′, k) ◦ f = (g, b), contradicting uniqueness. Thus far we have shown
that f is a regular epic in A if and only if it is so in A /A. If we have

[b:B // A]
f
// [b′:B′ // A] oo

g
[c′, C ′] and if

C ′ B′g
//

C

C ′

f ′

��

C B
g′

// B

B′

f

��

is a pullback, then it is immediate that for c = c′ ◦ f ′ = b′ ◦ g ◦ f ′ =
b′ ◦ f ◦ g′ = b ◦ g′ the square

[c′:C ′ // A] [b′:B′ // A]g
//

[c:C // A]

[c′:C ′ // A]

f ′

��

[c:C // A] [b:B // A]
g′

// [b:B // A]

[b′:B′ // A]

f

��

is a pullback in A . If f is regular epic in A /A it is so in A ; hence
f ′ is regular epic in A and therefore is so in A /A. This proves it for
regular categories.

For exact categories, the argument is similar. The previous discus-
sion amounts to showing that pullbacks and coequalizers are the same
in A and A /A. As a matter of fact, the full story is that all colimits
are the same. Not all limits are; however all pullbacks are and that is
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all that is used in the definition of exact category. For example, the
terminal object in A /A is [id:A // A] and that is not the terminal
object of A (unless A = 1, in which case A /A is equivalent to A ).
See Exercise 2 below.

8.13. Exercises

1. Suppose that the category A has finite limits. Show that the kernel
pair of any arrow is an equivalence relation. Hint: you will have to use
the universal mapping properties of limits.

2. Call a graph connected if it is not the disjoint union of two
non-empty subgraphs. Show that the forgetful functor A /A // A
preserves the limits of diagrams over connected graphs (which are called
connected diagrams).

3. Suppose

C Dm
//

A

C

f

��

A B
e // B

D

g

��

is a commutative square in a regular category and that e is a regular
epimorphism and m is a monomorphism. Show there is a unique h:B

// C making both (actually either) triangles commute. This is called
the diagonal fill-in.

9. Adjoint functors

9.1. Adjunction of group underlying function. Let A be a set
and G be a group. We have noted that for any function from A to
G, in other words for any element of HomSet(A,UG), there is a unique
group homomorphism from the free group FA with basis A to G which
extends the given function. This is thus a bijection

HomGrp(FA,G) // HomSet(A,UG)

The inverse simply restricts a group homomorphism from FA to G to
the basis A. Essentially the same statement is true for monoids instead
of groups (replace FA by the free monoid A∗) and also for the category
of abelian groups, with FA the free abelian group with basis A.
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The bijection just mentioned is a natural isomorphism β of functors
of two variables, in other words a natural isomorphism from the functor
HomGrp(F (−),−) to HomSet(−, U(−)). This means precisely that for
all functions f :B // A and all group homomorphisms g:G // H,

(14) HomGrp(FB,H) HomSet(B,UH)
β(B,H)

//

HomGrp(FA,G)

HomGrp(FB,H)

HomGrp(Ff, g)

��

HomGrp(FA,G) HomSet(A,UG)
β(A,G)

// HomSet(A,UG)

HomSet(B,UH)

HomSet(f, Ug)

��

commutes.

9.2. Unit and counit. The free group functor and the underlying
set functor are a typical pair of “adjoint functors”. Formally, if A and
D are categories and L: A // D and R: D // A are functors, then
L is left adjoint to R and R is right adjoint to L if for every objects
A of A and B of D there is an isomorphism

HomA (A,RB) ∼= HomD(LA,B)

which is natural in the sense of diagram 14. Informally, elements of
RB defined on A are essentially the same as element of B defined on
LA.

In particular, if L is left adjoint to R and A is an object of A ,
then corresponding to idLA in HomA (LA,LA) there is an arrow ηA:A

// RLA; the arrows ηA form a natural transformation from the
identity functor on A to R ◦ L. This natural transformation η is the
unit of the adjunction of L to R. A similar trick also produces a natural
transformation ε:L ◦ R // idD called the counit of the adjunction.
The unit and counit essentially determine the adjunction completely.

9.3. Examples. We give a number of examples that will be needed
later in this book.

1. The underlying functor Ab // Set. The adjoint takes a set
S to the set of all finite sums∑

s∈S

nss

where for each s ∈ S, ns is an integer, but in any given sum,
only finitely many of them are non-zero. The abelian group
structure is just term-wise addition (and subtraction).
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2. The underlying functor CommMon // Set. This takes a
set S to the set of all terms∏

s∈S

sns

where for each s ∈ S, ns is a non-negative integer, but in any
given product, only finitely many of them are non-zero. Of
course, this could be written additively, but for the purpose of
the next example, we prefer to do it multiplicatively.

3. The underlying set functor CommRing // Set. Here the
left adjoint can be described as the composite of the two pre-
vious examples. If S is a set, then the free commutative ring,
which we will call Z[S] since it is, in fact the ring of poly-
nomials in S is gotten by first forming the free commutative
monoid generated by S and then the free abelian group gen-
erated by that. It is still a monoid, since the distributive law
of multiplication tells us how to multiply sums of monomi-
als. The general process by which two such free functors can
be composed was first studied by Jon Beck under the name
“distributive laws” [Beck, 1969].

4. The underlying set functors on the categories of monoids (not
necessarily commutative), rings (ditto) and Lie algebras all
have adjoints. Lest the reader get the idea that all underlying
set functors have adjoints, we mention the category of fields,
whose underlying set functor does not have an adjoint. An
interesting case is that of torsion abelian groups. If we fix an
exponent d and look at all groups satisfying xd = 1, there is an
adjoint that takes a set S to the direct sum of S many copies
of Z/dZ, but on the full category, there is no adjoint.

9.4. Representability and adjointness. The statement that L is
left adjoint to R immediately implies that for each object A of A , the
object LA of B represents the functor HomA (A,R(−)): B // Set.
The universal element for this representation, which must be an element
of HomA (A,RLA), is the unit ηA. Dually, the object RB with uni-
versal element εA represents the contravariant functor Hom(L(−), B).
The following theorem is a strong converse to these facts.

9.5. Theorem. (“Pointwise construction of adjoints”). Let A and
B be categories.

(a) If R: B // A is a functor such that the functor HomA (A,R(−))
is representable for every object A of A , then R has a left ad-
joint.



50 1. CATEGORIES

(b) If L: A // B is a functor such that HomB(L(−), B) is rep-
resentable for every object B of B, then L has a left adjoint.

With little more work, one can prove parametrized versions of these
results.

9.6. Theorem. Let A , B, and X be categories.

(a) Suppose R: X × B // A is a functor such that for ev-
ery pair of objects A ∈ Ob(A ) and X ∈ Ob(X ) the functor
HomB(A,R(X,−)): B // Set is representable. Then there
is a unique functor L: A ×X op // B such that

HomA (−, R(−,−)) ∼= HomB(L(−,−),−)

as functors A op ×X ×B // Set.
(b) Suppose L: A × X op // B is a functor such that for ev-

ery pair of objects B ∈ Ob(B) and X ∈ Ob(X ) the functor
HomB(L(−, X), B): A // Set is representable. Then there
is a unique functor R: X ×B // A such that

HomA (−, R(−,−)) ∼= HomB(L(−,−),−)

as functors A op ×X ×B // Set.

Proof. The two statements are dual, so we will prove the first. Be-
gin by choosing, for each A ∈ Ob(A ), X ∈ Ob(X ), and B ∈
Ob(B) an object function L: Ob(A )×Ob(X ) // Ob(B) such that
HomA (A,R(X,B)) ∼= HomB(L(A,X), B). Now we want to make L
into a functor. Choose arrows f :A // A′ and g:X ′ // X. Now for
any B ∈ Ob(B) we have a diagram

(15) HomA (A,R(X,B)) HomB(L(A,X), B)∼=
//

HomA (A′, R(X ′, B))

HomA (A,R(X,B))

HomA (f,R(g,B))

��

HomA (A′, R(X ′, B)) HomB(L(A′, X ′), B)
∼= // HomB(L(A′, X ′), B)

HomB(L(A,X), B)

HomB(L(A′, X ′), B)

HomB(L(A,X), B)

There is thus a unique arrow

φ(f, g, B): HomB(L(A′, X ′), B) // HomB(L(A,X), B)

that makes the square commute. Moreover, since both the isomor-
phisms and HomA (f,R(g,B)) are natural with respect to B, we
conclude that φ(f, g, B) is as well. By the Yoneda lemma, there
is a unique arrow we call L(f, g):L(A,X) // L(A′, X ′) such that
φ(f, g, B) = HomB(L(f, g), B). If now we have f ′:A′ // A′′ and
g′:X ′′ // X ′ we can stack another diagram of shape 15 on top of
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that one to show that L(f, g) ◦L(f ′, g′) = L(f ◦ f ′, g′ ◦ g). The fact that
L preserves identities is even easier.

One of the most important properties of adjoints is their limit
preservation properties.

9.7. Proposition. Let L: A // B be left adjoint to R: B // A .
Then R preserves the limit of an any diagram in B that has a limit
and L preserves the colimit of any diagram in A that has a colimit.

Proof. Suppose that D: I // B is a diagram and that B // D is
a limit cone. Given a cone A // RD, the adjunction gives a cone LA

// D by applying the adjunction to each element of the cone. The
universality gives an arrow LA // C and then the adjunction gives
A // UC. We can summarize this argument as follows:

Cone(A,RD) ∼= Cone(LA,D) ∼= Hom(LA,B) ∼= Hom(A,RB)

10. Categories of fractions

The definitions and results of this section are essentially those of
[Gabriel & Zisman, 1967].

The main acyclic models theorem is stated in terms of a funda-
mental construction in category theory, called categories of fractions.
This is a relatively straightforward generalization of the construction
in monoids, to which we turn by way of introduction.

10.1. Monoids. Let M be a monoid and Σ ⊆ M be a multiplica-
tively closed (which is understood to include the identity element—the
empty product) subset. There is a monoid denoted Σ−1M and a
monoid homomorphism φ:M // Σ−1M with the following two prop-
erties:

1. If σ ∈ Σ, then φ(σ) is invertible;
2. if f :M // N is a monoid homomorphism such that f(σ)

is invertible for all σ ∈ Σ, then there is a unique monoid
homomorphism g: Σ−1M // N such that g ◦ φ = f .

This can readily be set up as an adjoint and the general adjoint
functor applied. However, it is instructive to give a direct construction.
Consider the free monoid F generated by the elements of M and formal
inverses of elements of Σ. Write 〈x〉 and 〈σ−1〉 for the two kinds of
generators. Factor out the congruence relation generated by all pairs of
the forms (〈x〉〈y〉, 〈xy〉), (〈σ〉〈σ−1〉, 1), (〈σ−1〉〈σ〉, 1) and (〈1〉, 1〉. This
means that we first form the submonoid of M ×M generated by all
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such pairs and then the equivalence relation generated by that. The
result is an equivalence relation that is also a submonoid. The set of
equivalence classes has a unique monoid structure for which the class
map is a homomorphism and it is clear that in the quotient monoid,
the classes of the elements of Σ are invertible.

One point should be noted. This process can, depending on the
nature of Σ, distort M profoundly. For example, if we carry out this
procedure on the multiplicative monoid of integers and 0 ∈ Σ, then the
fact that 0n = 0m implies, when you invert 0, that n = m. Thus that
procedure causes the monoid to collapse to a single element.

In general, every element of Σ−1M can be written in the form

x1σ
−1
1 x2σ

−1
2 · · ·xnσ−1

n

Of course, it is possible that x1 or σn or both is 1, so it can start
with an inverse or end with an ordinary element of M . One way of
seeing this is to observe that Σ−1M must contain all the elements of
M as well as inverses to all elements of Σ and hence all such products.
Next observe that the set of all such products forms a submonoid that
contains all the elements of M and the inverses of all the elements of
Σ and this submonoid clearly satisfies the universal mapping property.
Since the solution of a universal mapping problem is unique, there can
be no additional elements.

10.2. Calculuses of fractions: monoids. A multiplicatively closed
subset Σ ⊆M is said to have a calculus of right fractions if for any
σ ∈ Σ and x ∈ M , there are y ∈ M and τ ∈ Σ such that σy = xτ and
if for any x, y ∈ M and σ ∈ Σ, σx = σy implies there is a τ ∈ Σ for
which xτ = yτ . Dually, we say that Σ has a calculus of left fractions
if for any σ ∈ Σ and x ∈ M , there are y ∈ M and τ ∈ Σ such that
yσ = τx.

10.3. Proposition. If the multiplicatively closed subset Σ ⊆M has a
calculus of right fractions, then every element of Σ−1M can be written
as xσ−1 with σ ∈ Σ. Moreover, xσ−1 = yτ−1 if and only if there are
elements a, b ∈ M such that σa = τb ∈ Σ and xa = yb. Dually, if
Σ has a calculus of left fractions, then every element of Σ−1M can be
written as σ−1x with σ ∈ Σ. Moreover, σ−1x = τ−1y if and only if
there are elements a, b ∈M such that aσ = bτ ∈ Σ and ax = by.

We will leave the proof till the corresponding theorem for categories,
of which this is a special case. There is no real difference between the
proofs. In a sense, the one for categories is easier because there are
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fewer possibilities since elements cannot be composed unless the do-
main of one is the codomain of the other and then only in one direction.

10.4. Categories. In dealing with categories, we have a problem
of size. Usually, one assumes that in a category the class of arrows
between any two objects is a set. In the case of categories of fractions,
this will not necessarily be true even if it is in the original category.
One way of dealing with this is to suppose the original category is itself
small (that is, there in all only a set of arrows in the category), in which
case any fraction category is too. Another approach is to carry out the
construction in general and allow the possibility of large hom classes.
It may still happen in individual cases that these classes will be small.
We adopt the latter approach.

Let M be a category and Σ denote a class of arrows closed under
composition and including all the identity arrows. The category Σ−1M
comes with a functor Φ: M // Σ−1M such that:

1. if σ ∈ Σ, then Φ(σ) is an isomorphism;
2. if F : M // N is an functor with the property that for all

σ ∈ Σ, the arrow F (σ) is an isomorphism, then there is a
unique functor G: Σ−1M // N such that G ◦ Φ = F .

Here is how to construct Σ−1M . The category has the same objects
as those of M . If M and M ′ are objects, an arrow from M to M ′ is
an equivalence class of formal composites

fn ◦ σ
−1
n ◦ fn−1 ◦ σ

−1
n−1 ◦ · · · ◦ f1 ◦ σ

−1
1

for which

1. cod(σ1) = M ;
2. cod(fn) = M ′;
3. dom(fi) = dom(σi) for i = 1, · · · , n;
4. cod(fi) = cod(σi+1) for i = 1, · · · , n− 1.

We picture an arrow as follows:

M ·M ·

·

M

σ1

���������� ·

·

f1

��????????? ·

·
σ2�����������

· · ·

·

·
fn−1 ��?????????

· M ′· M ′

·

·

σn

����������� ·

M ′

fn

��????????

Composition is juxtaposition so that the empty string is the identity
and we will unambiguously denote it by id. The equivalence relation ∼
is the smallest one closed under juxtaposition such that f ◦σ−1 ∼ τ−1 ◦g
whenever τ ◦ f = g ◦σ and such that for any object C of C , idC ◦ id

−1
C is

the empty string, that is, the identity of C in Σ−1C . Note that τ−1 ◦g is
short for id◦τ−1◦g◦id−1. This equivalence relation implies, for example,
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that σ ◦ σ−1 = id−1 ◦ id = id•id
−1 = id and σ−1 ◦ σ = id ◦ id−1 = id,

so that σ is invertible in Σ−1C . Conversely, it is clear that if each of
element of Σ is invertible, then τ ◦f = g ◦σ implies that f ◦σ−1 = τ−1 ◦g
so that this is the least equivalence that suffices.

We will denote the equivalence classes by any element and ∼ by =
from now on.

The functor Φ is the identity on objects and Φ(f) = f ◦ id−1 which
we will also denote f . It is clear that Φ(σ) = σ is invertible and if
F : M // N inverts every element of Σ, then we let

G(fn ◦ σ
−1
n ◦ fn−1 ◦ σ

−1
n−1 ◦ · · · ◦ f1 ◦ σ

−1
1 )

= F (fn) ◦ F (σn)−1 ◦ F (fn−1) ◦ F (σn−1)−1 ◦ · · · ◦ F (f1) ◦ F (σ1)−1

This is clearly the unique functor that extends F .

10.5. Calculuses of fractions: categories. We say that Σ has a
calculus of left fractions if, for any σ ∈ Σ and f ∈M with the same
domain, there is a commutative square

· ·τ
//

·

·

f

��

· ·σ // ·

·

g

��

and if, for any parallel pair f, g:M // N and σ:N // N ′ in Σ
such that σ ◦ f = σ ◦ g, there is a τ :M ′ // M belonging to Σ such
that f ◦ τ = g ◦ τ . Dually, we say that Σ has a calculus of right
fractions if for any σ ∈ Σ and f ∈M , with the same codomain, there
is a commutative square

· ·
f

//

·

·

τ

��

· ·
g

// ·

·

σ

��

and if, for any parallel pair f, g:M // N and σ:M ′ // M in Σ
such that f ◦ σ = g ◦ σ, there is a τ :N // N ′ belonging to Σ such
that τ ◦ f = τ ◦ g.
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10.6. Proposition. If the multiplicatively closed subset Σ ⊆ C has
a calculus of right fractions, then every arrow of Σ−1C can be written
as f ◦ σ−1 with σ ∈ Σ. Moreover, if dom(f) = dom(σ) = C ′ and
dom(g) = dom(τ) = C ′′, then f ◦ σ−1 = g ◦ τ−1:C // D if and
only if there is an object B and arrows a:B // C ′ and b:B // C ′′

such that such that σ ◦ a = τ ◦ b ∈ Σ and f ◦ a = g ◦ b. Dually, if
Σ has a calculus of left fractions, then every arrow of Σ−1C can be
written as f ◦ σ−1 with σ ∈ Σ. Moreover, if cod(f) = cod(σ) = D′ and
cod(g) = cod(τ) = D′′, then σ−1 ◦ f = τ−1 ◦ g:C // D if and only if
there is an object B and arrows a:D′ // E and b:D′′ // E such
that such that a ◦ σ = b ◦ τ ∈ Σ and a ◦ f = b ◦ g.

Proof. Suppose C has a calculus of right fractions. Any map of the
form f ◦σ−1 can be written as τ−1◦g by completing the square. Compos-
ites of these maps can obviously be rewritten in this form as well. Next
we consider the equivalence relation. Let R be the relation described
in the theorem. The picture is

C BC BC

C ′′

__

τ
????????????? B DB DB

C ′′

b

��

D

C ′′

??

g
�������������

C BC BB DB D

C ′

C

σ

���������������
C ′

B

OO

a

C ′

D

f

��?????????????

If σ ◦ a = τ ◦ b ∈ Σ and f ◦ a = g ◦ b then

f ◦ σ−1 = f ◦ σ−1 ◦ σ ◦ a ◦ (σ ◦ a)−1 = f ◦ a ◦ (σ ◦ a)−1

= g ◦ b ◦ (τ ◦ b)−1 = g ◦ τ−1 ◦ τ ◦ b ◦ (τ ◦ b)−1 = g ◦ τ−1

Now suppose that f ◦ σ−1 = g ◦ τ−1 in Σ−1C . The equality in that
category is the transitive closure of the relation S in which (f ◦σ−1)S(g◦

τ−1) if there is an object B and arrows h:B // C and ρ:B // D



56 1. CATEGORIES

with ρ ∈ Σ such that the diagram

C B
h // B Doo

ρ

C ′

C

σ

���������������
C ′

B

C ′

B

C ′

D

f

��?????????????

C

C ′′

__

τ
?????????????C DC DD

C ′′

??

g
�������������

commutes. There is an object A and arrows u:A // C ′ and v:A
// C ′′ such that σ ◦ u = τ ◦ v and we may suppose that either u or v

belongs to Σ, but in either case σ ◦ u = τ ◦ v does. Then

ρ ◦ f ◦ u = h ◦ σ ◦ u = h ◦ τ ◦ v = ρ ◦ g ◦ v

so that there is an object A′ and an arrow θ:A′ // A in Σ such that
f ◦ u ◦ θ = g ◦ v ◦ θ. Also, σ ◦ u ◦ θ = τ ◦ v ◦ θ ∈ Σ since σ ◦ u and θ do.

Next we show that R is transitive, since it is evidently reflexive
and symmetric. Suppose f ◦ σ−1 = g ◦ τ−1 and g ◦ τ−1 = h ◦ ρ−1 with
C ′′′ = dom(h). Then there are objects B and B′ and arrows a:B

// C ′, b:B // C ′′, c:B′ // C ′′ and d:B′ // C ′′′ such that
σ ◦ a = τ ◦ b ∈ Σ, τ ◦ c = ρ ◦ d ∈ Σ, f ◦ a = g ◦ b and g ◦ c = h ◦ d. Now
τ ◦b:B // C and τ ◦c:B′ // C belong to Σ and so there is an object
A and arrows u:A // B and v:A // B′ such that τ ◦ b ◦u = τ ◦ c ◦ v
and we can suppose that either u or v belongs to Σ. It does not matter
which one we suppose, so suppose it is u. Then since τ ◦ b ∈ Σ, it
follows that τ ◦ b ◦ u = τ ◦ c ◦ v ∈ Σ. Since τ coequalizes b ◦ u and c ◦ v,
there is an object A′ and θ ∈ Σ such that b ◦ u ◦ θ = c ◦ v ◦ θ. Now we
have a ◦ u ◦ θ:A′ // C ′ and d ◦ v ◦ θ:A′ // C ′′′. We see that

σ ◦ a ◦ u ◦ θ = τ ◦ b ◦ u ◦ θ = τ ◦ c ◦ v ◦ θ = ρ ◦ d ◦ v ◦ θ

Moreover, this arrow belongs to Σ because σ ◦ a, u and θ do. Finally,

f ◦ a ◦ u ◦ θ = g ◦ b ◦ u ◦ θ = g ◦ c ◦ v ◦ θ = h ◦ d ◦ v ◦ θ

which shows that f ◦ σ−1 is related to g ◦ ρ−1 under R.

11. The category of modules

In Chapter 7 we will need the category of all left modules. An object
of the category is a pair (R,M) where R is a ring and M is a left
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R-module. If (R,M) and (R′,M ′) are two such objects, a morphism
(R,M) // (R′,M ′) is a pair (φ, f) where φ:R // R′ is a ring
homomorphism and f :M // M ′ is an additive homomorphism such
that f(rm) = φ(r)f(m) for r ∈ R and m ∈M . The category structure
is the obvious one. We will call this category Lmod.

Here is an interesting example. It is entirely possible that (R,M) ∼=
(R,M ′) without M ∼= M ′ as R-modules. Let R = Z[x, y] be a poly-
nomial ring in two variables. Let M = Z ⊕ Z ⊕ · · · , the direct sum
of countable many copies of Z. Both x and y act by translation of
coordinates:

x(n1, n2, . . .) = y(n1, n2, . . .) = (0, n1, n2, . . .)

We let M ′ be the same abelian group and the action of x is the same,
while y acts as the 0 homomorphism. There can be no non-zero ho-
momorphism between M and M ′ since it cannot preserve the action of
y. On the other hand R = Z[x, x − y] as well and the action of x − y
on M is just like that of y on M ′. Precisely, let φ:R // R′ be the
unique homomorphism for which φ(x) = x and φ(y) = x − y. It is an
isomorphism, with φ−1(x) = x and φ−1(y) = x + y. Then (φ, id) is an
isomorphism.

When we use this construction in Chapter 7, we will use this ex-
ample, except with 2n variables instead of just 2.

A trivial observation is that if φ:R // R′ is a ring homomorphism,
then (φ, φ): (R,R) // (R,R) is a homomorphism in the category of
all modules, since in that case the required identity is φ(rs) = φ(r)φ(s).

We will have need of the following proposition.

11.1. Proposition. Suppose that f :M // M ′ is a homomor-
phism of R modules, (φ, g): (R,M) // (S,N) is an isomorphism
and (φ, h): (R,M ′) // (S,N ′) is a homomorphism in Lmod. Then
h ◦ f ◦ g−1:N // N ′ is a homomorphism of S-modules.

Proof. This can readily be done directly. Another way is to observe
that the composite (φ, h) ◦ (id, f) ◦ (φ−1, g−1) is (φ ◦ id ◦φ−1, h ◦f ◦g−1) =
(id, h ◦ f ◦ g−1) in Lmod.

11.2. Corollary. Suppose that (φ, g): (R,M) // (S,N) and (φ, h): (R,M ′)
// (S,N ′) are homomorphisms in the category of all modules. Then

f 7→ h◦f ◦g−1 defines an isomorphism HomR(M,M ′) // HomS(N,N ′).

We note that these homsets are just abelian groups. Even when
R = S is commutative (which is the case we will actually be applying
this) and the homsets are R-modules, respectively, the isomorphisms
will not be of R-modules.
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All results of this section apply, mutatis mutandi to the category
Rmod of all right modules, whose definition is obvious.

12. Filtered colimits

The results of this section are needed only at one place, namely in
the surprisingly complicated proof in 6.5.6 that for a commutative ring
K, the free K-Lie algebra generated by a free K-module is a free K-
module. Thus this section can be skipped until that point, or entirely
if you are interested only in the case that K is a field.

12.1. The path category of a graph. In a graph G , a path from
a node i to a node j of length n is a sequence (α1, α2, . . . , αn) of (not
necessarily distinct) arrows for which

(i) source(α1) = i,
(ii) target(αi−1) = source(αi) for i = 2, . . . , n, and

(iii) target(αn) = j.

By convention, for each node i there is a unique path of length 0
from i to i that is denoted (). It is called the empty path at i. We
will write α = αn ◦ · · · ◦ α1. If also β = βm ◦ · · · ◦ β1 is a path from j

// k, then we let β ◦ α = βm ◦ · · · ◦ β1 ◦ αn ◦ · · · ◦ α1. The empty path
is an identity for this operation and it is clear that the paths form a
category, called the path category of G . We will make no use of this
category, however, but we do need the notion of path in the discussion
of filtered colimits below.

12.2. Filtered colimits. Suppose D: I // C is a diagram. For
a path α: i // j of the form

i = i0
α1 // i1

α2 // · · ·
αn // in = j

and a diagram D: I // C , define Dα = Dαn ◦ · · · ◦Dα2 ◦Dα1. We
also define D on the empty path at i to be idDi. It is clear that if α: i

// j and β: j // k are paths, then D(β ◦ α) = Dβ ◦Dα.
A diagram D: I // C is called filtered if

(i) Given two objects i and j of I , there is an object k and paths
α: i // k and β: j // k;

(ii) Given two paths i
α //

β
// j there is an object k and a path γ: j

// k such that Dγ ◦Dα = Dγ ◦Dβ.



12. FILTERED COLIMITS 59

The slight awkwardness of this definition is the price we must pay
for using index graphs instead of index categories.

A colimit taken over a filtered diagram is called a filtered colimit.
The main significance is that filtered colimits commute with finite limits
in Set and many other interesting categories.

The following theorem is stated as it is in case you know what a
finitary equational theory is. However, the only use we make of it is in
the proof of 6.5.6 and only for the categories of Lie algebras, associative
algebras and modules.

12.3. Theorem. For any equational theory Th, the underlying set
functor on the category of models preserves filtered colimits.

Proof. We will prove this for the special case of abelian groups. The
only property of abelian groups used is that every operation is finitary,
that is a function of only finitely many arguments. Suppose D: I

// Ab is a filtered diagram. Let U :Ab // Set be the underlying set
functor. Form the disjoint union

⋃
I∈Ob(I ) UDi. If x is an element of

UDi we will denote it by 〈x, i〉 to keep track of the disjoint union. Now
make the identification 〈x, i〉 = 〈x′, i′〉 if there is an object j ∈ I and
there are paths α: i // j and α′: i′ // j such that UDαx = UDα′x′.
This is an equivalence relation. It is obviously symmetric and reflexive.
If also 〈x′, i′〉 = 〈x′′, i′′〉, then there is a j′ ∈ I and β: i′ // j′ and
β′: i′′ // j′ such that Dβx′ = Dβ′x′′. There is a k ∈ I and paths
γ: j // k and γ′: j′ // k′. Finally there is an l ∈ I and a path
δ: k // l such that Dδ ◦D(γ ◦ α′) = Dδ ◦D(γ′ ◦ β). The diagram in
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question looks like:

Dj

Di′

??

Dα′

������������

Di

Dj

Dα
��?????????????Di

Di′

Di

Di′

Dj′

Di′′

??

Dβ′
������������

Di′

Dj′

Dβ
��?????????????Di′

Di′′

Di′

Di′′

Dk

Dj′

??

Dγ′
�������������

Dj

Dk

Dγ

��????????????
Dj

Dj′

Dj

Dj′

Dl
Dδ //

Then

UD(δ ◦ γ ◦ α)x = (UDδ ◦ UDγ ◦ UDα)x = (UDδ ◦ UDγ ◦ UDα′)x′

= (UDδ ◦ UDγ′ ◦ UDβ)x′ = (UDδ ◦ UDγ′ ◦ UDβ′)x′′

= UD(δ ◦ γ′ ◦ β′)x′′

Now, given two elements 〈x, i〉 and 〈x′, i′〉, we add them by finding
a j ∈ I and paths α: i // j and α′: i′ // j. Then we define
〈x, i〉 + 〈x′i′〉 = 〈UDαx + UDαx′, j〉. The proofs that this does not
depend on the choice of paths and gives an associative addition are left
to the reader. The 0 element is 〈0, i〉 for any i. Since all the Dα are
group homomorphisms, all the 0 elements are identified, so this makes
sense. Similarly, we can take −〈x, i〉 = 〈−x, i〉. The associativity, the
fact that 〈0, i〉 is a 0 element and that −〈x, i〉 is the negative of 〈x, i〉
all have to be verified. We leave these details to the reader as well.
What we want to do is show that the set C of these pairs with this
notion of equality is the colimit of UD and, when it is given the group
structure described above, it is also the colimit of D. We actually show
the latter, since the argument for the former is a proper subset.

First observe that there is a cocone u:D // A defined by ux =
〈x, i〉 when x ∈ Di. This is a group homomorphism since to form the
sum 〈x, i〉+ 〈x′, i〉 we can take the empty path from i // i and then
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the sum is 〈x + x′, i〉. It is a cone since for any α: i // j in I ,
ux = 〈x, i〉 = 〈Dαx, j〉 = u〈Dαx〉. If f :D // A is any other cone,
define v:C // A by v〈x, i〉 = (fi)x. Suppose 〈x, i〉 = 〈x′, i′〉. There a
j and paths α: i // j and α′: i′ // j such that Dαx = Dα′x′. Then

v〈x, i〉 = 〈fi〉x = 〈fj ◦Dα〉x = 〈fj ◦ dα′〉x′ = v〈x′, j′〉
and so v is well defined. Evidently, v ◦ u = f and v is the unique arrow
with that property. Till now, we have not used the group structure on
A and this argument shows that this is the colimit in Set. But A is an
abelian group and the elements of the cone are group homomorphisms.
For 〈x, i〉, 〈x′, i′〉 ∈ C, choose j and α: i // j and α: i′ // j. Then

v(〈x, i〉+ 〈x′, i′〉) = v(Dαx+Dα′x′) = (fj)(Dαx+Dα′x′)

= (fj)(Dαx) + (fj)(Dα′x′) = (fi)x+ (fi′)x′

This shows that v is a group homomorphism and shows that u:D //

C is the colimit in Ab. But, as remarked, a subset of this argument
shows that Uu:UD // UC is the colimit in Set and so U preserves
this colimit.

The following result is actually a special case of the fact that filtered
colimits commute with all finite limits.

12.4. Proposition. Suppose f :D // E is a natural transformation
between two filtered diagrams from I to the category of models such
that fi:Di // Ei is monomorphism for each i ∈ Ob(I ). Then the
induced map colimD // colimE is also monic.

Proof. Suppose 〈x, i〉 and 〈x′, i′〉 are two elements of colimD such that
〈(fi)x, i〉 = 〈(fi′)x′, i′〉 in colimE. Then there is a j and paths α: i

// j and α′: i′ // j such that 〈Eα ◦ (fi)x, j〉 = 〈Eα′ ◦ (fi′)x′, j〉.
But naturality implies that Eα ◦ fi = fj ◦Dα and Eα′ ◦ fi′ = fj ◦Dα′,
so this equation becomes fj ◦ Dαx = fj ◦ Dα′x′. Since fj is monic,
this means that Dαx = Dα′x′ so that 〈x, i〉 = 〈x′, i′〉.
12.5. Theorem. In the category of models of a finitary equational
theory, every object is a filtered colimit of finitely presented objects.

Proof. We will do this for the category of groups. We could do abelian
groups, except it is too easy because a finitely generated abelian groups
is finitely presented. So let G be a group. For each finite set of elements
of i ∈ G, let Fi be the free group generated by i. For each finite set
of relations j that are satisfied by the elements of i, let D(ij) be Fi
modulo those relations. Make the set of pairs ij into a graph in which
there is a single arrow ij // i′j′ if i ⊆ i′ and j ⊆ j′. This is obviously
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a poset, so write ij ≤ i′j′ when there is such a map. If there is, then
the inclusion induces an inclusion Fi // Fj and since j ⊆ j′, there is
an induced map (not injective) D(ij) // D(i′j′). Since the union of
two finite sets is finite and there is at most one path between any two
nodes of the graph, D is a filtered diagram in the category of groups.
It is left to the reader to verify that G is its colimit.



CHAPTER 2

Abelian categories and homological algebra

In order to make this book self-contained, we include a fairly brief
description of additive and abelian categories and of homological alge-
bra. There are a number of books that are devoted mostly or entirely
to one or the other of these topics, so we can only hit the high spots.
See, for example, Cartan & Eilenberg [1956], Freyd [1964], Mitchell
[1963, 1964], and Mac Lane [1965, 1972].

1. Additive categories

1.1. Definition. A category is called preadditive if there is an
abelian group structure on the homsets in such a way that compo-
sition on each side is a homomorphism. More precisely, all the homsets
are equipped with an abelian group structure such that for f1, f2:A

// B, g:A′ // A and h:B // B′, we have

h ◦ (f1 + f2) ◦ g = h ◦ f1 ◦ g + h ◦ f2 ◦ g

Of course, the addition on the left side takes place in Hom(A,B) while
that on the right is in Hom(A′, B′).

A preadditive category is called additive if it has finite sums and
finite products. It actually suffices that there be either finite sums or
finite products. As pointed out next, the additive structure forces the
finite sums and products to be isomorphic.

1.2. Theorem. Let A be a preadditive category with finite products.
Then for any objects A1 and A2, there are arrows u1:A1

// A1 ×A2

and u2:A2
// A1 × A2 that make the cocone

A1

A1 × A2

u1

��????????????
A1 A2A1 A2A2

A1 × A2

u2

��������������

into a sum cocone.

63
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Proof. Since Hom(A1, A2) and Hom(A2, A1) are abelian groups, there
is a 0 element for the abelian group structure. Call these elements
0A1
A2

:A1
// A2 and 0A2

A1
:A2

// A1. We just call them 0 since there is
no ambiguity. In particular, the map 0: 1 // 1 has to be the identity,
since that is the only map 1 // 1. There is, for each object A the
map 0: 1 // A and if f : 1 // A is any map, then f = f ◦ 01

1 = 0
since composition is a group homomorphism. Thus, there is a unique
map 1 // A for each object A, which means that 1 is also initial and
A is pointed. Let u1 = (1, 0):A1

// A1 × A2 and u2 = (0, 1):A2
// A1 × A2. Suppose f1:A1

// A and f2:A2
// A are given.

Let p1:A1 × A2
// A1 and p2:A1 × A2

// A2 denote the product
projections. Define f = f1 ◦ p1 + f2 ◦ p2:A1 × A2

// A. Then

f ◦ u1 = (f1 ◦ p1 + f2 ◦ p2) ◦ (1, 0) = f1 ◦ p1 ◦ (1, 0) + f2 ◦ p2 ◦ (1, 0)

= f1 ◦ 1 + f2 ◦ 0 = f1

and similarly, f ◦ u2 = f2. Suppose g:A1 × A2
// A is another

arrow such that g ◦ u1 = f1 and g ◦ u2 = f2. Observe that the map
u1 ◦ p1 + u2 ◦ p2:A1 × A2

// A1 + A2 has the properties that

p1 ◦ (u1 ◦ p1 + u2 ◦ p2) = p1 ◦ u1 ◦ p1 + p1 ◦ u1 ◦ p2

= p1 ◦ (1, 0) ◦ p1 + p1 ◦ (0, 1) ◦ p2

= 1 ◦ p1 + 0 ◦ p2 = p1

and similarly p2 ◦(u1 ◦p1 +u2 ◦p2) = p2 and so, by the universal mapping
properties of maps into a product, it follows that u1 ◦ p1 + u2 ◦ p2 = id.
Then

f = f1 ◦ p1 + f2 ◦ u2 = g ◦ u1 ◦ p1 + g ◦ u2 ◦ p2 = g ◦ (u1 ◦ p1 + u2 ◦ p2) = g

which shows the uniqueness of f and so that u1, u2 give a sum cocone.

It is possible, given that finite sums and products exist and are iso-
morphic, to introduce the additive structure making the homsets into
commutative monoids, but something more is needed to give group
structure. Since the empty sum (the initial object) is the empty prod-
uct (the terminal object), it follows that the category is pointed.

If A is a pointed category and also has finite products and fi-
nite sums, then for any objects A1 and A2 there is a canonical arrow

j:A1 + A2
// A1 × A2 as follows. Let A1

u // A1 + A2
oo v A2 be

the canonical inclusions and A1
oo
p

A1 × A2

q
// A2 the canonical

projections. Then using the universal mapping properties out of sums
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and into products, there is then a unique map j:A1 +A2
// A1×A2

for which
p1 ◦ j ◦ u1 = id

p2 ◦ j ◦ u1 = 0

p1 ◦ j ◦ u2 = 0

p2 ◦ j ◦ u2 = id

Assuming j is the isomorphism, then the sum of two arrows f, g:A
// B is the composite

A
∆ // A× A

f × g
// B ×B ∼= B +B

∇ // B

or, equivalently,

A
∆ // A× A ∼= A+ A

f + g
// B +B

∇ // B

In both of these formulas, ∆:A // A×A is the diagonal map, defined
by the equations p ◦ ∆ = q ◦ ∆ = id. Dually, ∇:B × B // B is
determined by ∇ ◦ u = ∇ ◦ v = id.

We don’t require this and do not prove it. It does imply that, under
reasonable assumptions on the existence of products, the abelian group
structure is unique.

It is common to introduce a new operation symbol ⊕, called the di-
rect sum, to denote the simultaneous binary sum/product. Another
extremely useful notation is the matrix notation for maps between
sums. Since both sum and product are naturally associative, so is di-
rect sum and thus we can write, for example, A = A1⊕A2⊕ · · · ⊕An,
simultaneously the sum and the product. Suppose we let ui:Ai // A
denote the injection into the sum and pj:B = B1⊕B2⊕· · ·⊕Bn

// Bj

denote the projection from the product. Then a map f :A // B is
uniquely determined by the composites fji = pj ◦ f ◦ ui, which we will
think of as a matrix and write f = (fji). Actually, in any category, a
map from a sum to a product could be denoted by a matrix. What is
different in an additive category is that we can also compose them. If
we also have g = (gkj):B // C = C1 ⊕ C2 ⊕ · · · ⊕ Cp, then it is easy
to show (by composing with the projections and injections) that g ◦ f
is the matrix product (gkj)(fji).

Since the addition, but not the subtraction is equivalent to the
isomorphism between sums and products, it is reasonable to ask when
you get an abelian group structure. A sufficient (but definitely not
necessary) condition is that every arrow that is both monic and epic

is an isomorphism. For one can show that the arrow

(
1 1
0 1

)
:A⊕ A
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// A ⊕ A is both monic and epic and if it is an isomorphism, its

inverse is

(
1 −1
0 1

)
and −1 is an additive inverse of the identity and,

once all the identity arrows have additive inverses, all arrows do by
composing (on either side!) with −1.

1.3. Additive functors. If A and B are preadditive categories, a
functor F : A // B is called an additive functor if for any f, g:A

// A′ in A , we have F (f + g) = Ff +Fg. If A has finite products,
that is direct sums, then a necessary and sufficient condition that F be
additive is that it preserve those products.

1.4. Abelian group objects. Let A be a category with finite lim-
its. An abelian group object of A is an object A together with
an arrow m:A × A // A, an arrow i:A // A and an arrow z: 1

// A that satisfy the equations of abelian groups. These are that the
following diagrams commute:

A× A Am
//

A× A× A

A× A

A×m
��

A× A× A A× A
m× A // A× A

A

m

��

(associativity of multiplication);

A× 1 A× A
1× z //A× 1

A

∼=
$$HHHHHHHHHHHHHHHH A× A 1× Aoo z × 1

A× A

A

m

��

1× A

A

∼=
zzvvvvvvvvvvvvvvvv

(right and left units);

1 Az
// A 1z

//

A A× A
(1, i)

//A

1
��

A× A 1× A
(i, 1)

//A× A

A

m

��

1× A

1
��
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(right and left inverses);

A× A

A

m
""DDDDDDDDDDDDDDA× A A× A

(p2, p1)
// A× A

A

m
||zzzzzzzzzzzzzz

(commutativity).
If A,m, i, z and A′,m′, i′, z′ are abelian group objects of A , then an

arrow f :A // A′ is called a morphism of abelian group objects
if f commutes with the structure maps in the obvious way. Just as for
ordinary groups, it is sufficient that the diagram

A′ × A′ A′
m′

//

A× A

A′ × A′

f × f
��

A× A A
m // A

A′

f

��

commute.
If A has the structure of an abelian group object, then for any

object B of A we can give the set Hom(B,A) the structure of an
abelian group by defining f + g as the composite

B
∇ // B ×B

f × g
// A× A m // A

with zero map being B // 1
z // A and the inverse to f :B // A

being B
f
// A

i // A. Moreover, if f, g:A′ // A is a morphism
of abelian group objects, so is f + g. One way of dealing with the
last claim is to show that an abelian group morphism A′ // A can
be characterized by the fact that it induces a group homomorphism
Hom(B,A′) // Hom(B,A) for every B and then use the fact that
the sum of two homomorphisms between any two abelian groups is a
homomorphism, as are the negative and the 0. The product of two
abelian group objects can be given the structure of an abelian group in
such a way that the projections are group homomorphisms. The details
can be found in virtually any book on category theory, for example
Mac Lane [1971], Freyd [1964], Mitchell [1965].

The category of abelian group objects and abelian group morphisms
in A will be denoted Ab(A ).

We summarize the above statements by,
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1.5. Theorem. For any category A with finite products, the category
Ab(A ) is an additive category.

1.6. Exercises

1. Assume that the category A has a terminal object 1 and either has
equalizers or has an initial object. Show that 1 is also initial if and
only if it has at least one morphism to any other object. A category
with a simultaneous initial and terminal object is called pointed.

2. Show that in a pointed category, there is a unique arrow 0AB:A
// B for each pair of objects A and B that factors through the

initial/terminal object and that these arrows form a 2-sided ideal in
the sense that whenever f :A′ // A and g:B // B′, then g ◦0AB ◦f =
0A
′

B′ . The super and subscripts are generally omitted and we write 0:A
// B.

3. Show that in a category that has a terminal object and an ideal
0AB:A // B as above, then that terminal object is also initial and
the arrows are just the arrows that factor through the initial/terminal
object. Of course, this shows that there is at most one such ideal if
there is a terminal (or, dually, initial) object.

4. Show that in a pointed category with products and sums, given
a finite number A1, A2, . . . , An of objects, there is a unique arrow
s:A1 +A+ 2 · · ·+An // A1 ×A2 × · · ·An such that pi ◦ s ◦ uj = δij,
where pi is the projection on the ith factor, uj is the injection of the jth
summand, and δij is the Kronecker delta, equal to the identity when
i = j and the 0 map otherwise.

5. Show that if s is an isomorphism, then there is a canonical structure
of commutative monoids on each homset in A such that arrow compo-
sition distributes over the monoid structure, which is usually written
as addition.

6. Conversely, show that if a category has products and a distributive
commutative monoidal structure on its homsets, then those products
as sums. As a consequence, there is at most one such distributive
monoidal structure on the homsets.

7. Show that the category of torsion-free abelian groups is additive,
but that there is a map that is both monic and epic, but not an iso-
morphism.
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2. Abelian categories

An additive category is said to be abelian if it is additive and if every
arrow factors as a regular epimorphism, followed by a regular mono-
morphism. It is convenient to use a slightly different characterization
of regular monics and epics in additive (or even pointed) categories.

In any pointed category, we can define special limits that are called
kernels and, dually, special colimits that are called cokernels. The
arrow f :A // B is a kernel of g:B // C if f is an equalizer of g
and 0:B // C. Dually, g is a cokernel of f if it is the coequalizer of
f and 0.

2.1. Proposition. In any additive category, the diagram

E
h // A

f
//

g
// B

is an equalizer if and only if

E
h // A

f − g
// B

is a kernel. Dually, A
f
//

g
// B

h // C is a coequalizer if and only if

A
f − g

// B
h // C

is a cokernel.

Proof. We will prove only the first. The point is that for an arrow k:C
// A the condition f ◦k = g ◦k is equivalent, in an additive category,

to (f − g) ◦ k = 0 ◦ k. Thus the universal mapping properties for the
equalizer and the kernel are the same.

2.2. Proposition. In any abelian category,

1. Every monic is regular;
2. every epic is regular;
3. every monic is a kernel of its own cokernel;
4. every epic is a cokernel of its own kernel;
5. if f :A // B is arbitrary with k:K // A the kernel of

f and q:B // Q the cokernel of f , then there is a natural
arrow from the cokernel of k to the kernel of q and that is an
isomorphism.
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Proof. Let f be monic and suppose we write f = m ◦ e where m is
regular monic and e is regular epic. Then there are two maps g, h
whose codomain is the domain of e of which e is the coequalizer. Then
from e ◦ g = e ◦ h we have that f ◦ g = m ◦ e ◦ g = m ◦ e ◦ h = f ◦ h.
Since f is monic, we conclude that g = h. But the coequalizer of a map
with itself is necessarily an isomorphism and so f is an equalizer of the
same pair of arrows as m. This takes care of the first assertion. The
second is dual. For the third, suppose f :A // B is the kernel of g:B

// C. Let h:B // D be a cokernel of f . From g ◦ f = 0 and the
universal mapping property of a cokernel, there is a unique arrow k:D

// C such that k ◦ h = g. Now suppose l:E // B is an arrow with
h ◦ l = 0. Then g ◦ l = k ◦h ◦ l = k ◦ 0 = 0 and so there is a unique arrow
m:E // A such that f ◦m = l. Thus f has the universal mapping
property of a kernel of h. The fourth assertion is dual. Finally, let f :A

// B be arbitrary. Factor it as A
e // D

m // B with e regular
epic and m regular monic. Let k:K // A be the kernel of f and c:B

// C be the cokernel. I claim that k is also the kernel of e. In fact,
with m monic, the condition f ◦ g = 0 is equivalent to the condition
e ◦ g = 0 so that f and e must have the same kernel. But then by the
previous part, e:A // D is the cokernel of k. Dually, m:D // B is
the kernel of c.

2.3. Theorem. Suppose that A is an exact category. Then Ab(A )
is an abelian category.

One of the consequences of this is that a category that is both
additive and exact is abelian.

Proof. This argument makes heavy use of the idea of elements discussed
in 1.5. Since A is regular, it follows from 1.8.10 that every arrow factors
as a regular epimorphism followed by a monomorphism. Therefore we
must show that in an additive exact category, every regular epic is
a cokernel and every monic is a kernel. Actually, we will first show
that in every additive category, every regular epic is a cokernel. In
fact, if f :A′ // A is the coequalizer of g, h:A′′ // A′, then for
an arrow k:A′ // B, the condition k ◦ g = k ◦ h is equivalent to
k ◦ (g−h) = 0. Thus f is also the cokernel of g−h. Now suppose u:A′

// A is monic. Here we will use elements. Map f :A×A′ // A×A
by f(a, a′) = (a, a + ua′). First I claim that f is injective. For if
f(a, a′) = f(b, b′), then (a, a+ua′) = (b, b+ub′) so that a = b and then
ua′ = ub′, which implies that a′ = b′. Thus f defines a subobject of
A × A and I claim it is an equivalence relation. In fact the subobject
is simply {(a, b) | a − b ∈ imu}. Clearly a − a ∈ imu, a − b ∈ imu
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implies b − a ∈ imu and if a − b and b − c ∈ imu, then a − c ∈ imu.
But then there is an arrow g:A // A′′ of which f is the kernel pair.
This means that ga = gb if and only if a− b ∈ imu, which implies that
ga = 0 if and only if a ∈ imu so that u is the kernel of g.

Taken together with 1.8.12 this implies:

2.4. Theorem. Let A be an exact category. Then for any object A
of A , the category Ab(A /A) is abelian.

2.5. Exercise

1. Show that any product of abelian categories is abelian.

3. Exactness

3.1. Exact sequences. If f :A // B is an arrow of an abelian cat-
egory A , the isomorphic ker coker f ∼= coker ker f is called the image
of f , denoted im f . It is a subobject of B and a quotient object of A.
Suppose

A
f
// B

g
// C (∗)

is a composable pair of arrows. Then the image of f is a subobject
of B as is the kernel of g. When these two subobjects are the same,
the sequence (∗) is said to be exact. This can be separated into the
two inclusions. The meaning of im f ⊆ ker g is easy to understand:
simply that g ◦f = 0. There is no such easy description of the opposite
inclusion.

A finite or infinite sequence

· · · // An+1

dn+1 // An
dn // An−1

// · · ·

is said to be exact if every three term subsequence An+1

dn+1 // An
dn // An−1 is exact. An important special case is a sequence of the

form

0 // A′
f
// A

g
// A′′ // 0

(the two unlabeled arrows are, of course, 0), which is exact if and
only if, up to isomorphism, f is the inclusion of a subobject and g
is the projection on A/A′. Such a sequence is called a short exact
sequence.
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3.2. The full exact embedding theorem. Suppose that A and
B are abelian categories. A functor T : A // B is called exact if for
any exact sequence A′ // A // A′′ in A , the image TA′ // TA

// TA′′ in B is also exact. It follows that an exact functor preserves
the exactness of all exact sequences. The following theorem allows us to
reduce all kinds of arguments involving exactness in abelian categories
to categories of modules.

3.3. Theorem. Let A be a small abelian category. Then there is a
ring R and a full exact embedding T : A // R−Mod.

This is proved in various places. See, for example, Freyd [1964],
Mitchell [1964, 1965], or Popescu [1973].

The restriction to small abelian categories is not important since
any small diagram we might want to know commutes or is exact or
show the existence of some arrow in is in a small abelian subcategory
gotten by closing the set of objects in the diagram under finite sums
and then kernels and cokernels of arrows between them. If you do this
countably many times you will have a small full abelian subcategory of
the original category which can be embedded into a module category.
Thus an exactness property of module categories is valid in any abelian
category.

One of the most useful applications of this principle arises from
the fact that the dual of an abelian category is an abelian category.
It follows that the dual of any exactness property that is true in any
abelian category is also true. This will cut in half the work needed to
prove the snake lemma below.

3.4. Right and left exact functors. There are two useful variants
on exact functors. A functor F : A // B between abelian categories
is called left exact if given any exact sequence 0 // A′ // A //

A′′ // 0 in A , the sequence 0 // F (A′) // F (A) // F (A′′) is
exact. Similarly, it is right exact if for any such short exact sequence
in A the sequence F (A′) // F (A) // F (A′′) // 0 is exact.

It is evident that a left exact functor is exact if and only if it pre-
serves epimorphisms and a right exact functor is exact if and only if it
preserves monomorphisms.

3.5. Proposition. A functor between abelian categories is left exact
if and only if it preserves the limits of finite diagrams; dually it is right
exact if and only if it preserves the colimits of finite diagrams.

Proof. Suppose that F is left exact. We first show that it is additive.
Given that A = A1 ⊕ A2, there is an exact sequence 0 // A1

//
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A // A2
// 0. Since F is left exact, the sequence 0 // TA1

// TA // TA2 is exact. On the other hand, A // A2 is a
split epimorphism (that is, it has a left inverse) and hence so is TA

// TA2. Hence 0 // TA2
// TA // TA2

// 0 is exact
and split. But this characterizes TA as the sum of the two end terms.
Hence T preserves finite products and is thus additive. Next we show
it preserves equalizers. From 2.1 we know that the equalizer of two

arrows A
f
//

g
// A′′ is the kernel of f−g. Now factor f−g as A

h // // A1

// k // A′′ with h epic and k monic. Finally, let l:A′′ // A′1 be the
cokernel of k. Then both sequences

0 // A′
e // A

h // A1
// 0

0 // A1
k // A′′

l // A′1 // 0

are exact, whence so are

0 // FA′
Fe // FA

Fh // FA1

0 // FA1
Fk // FA′′

Fl // FA′1
Putting these together, we conclude that

0 // FA′
Fe // FA

F (f − g)
// FA′′

is also exact. Since F is additive, F (f − g) = Ff − Fg and then
it follows that Fe is the equalizer of Ff and Fg. Conversely, if F
preserves finite limits, then it preserves finite products and is therefore
additive. Since kernels are limits, it preserves kernels, which means
that it takes any exact sequence of the form 0 // A′ // A // A′′

to an exact sequence and is evidently left exact.
The proof for right exact functors and finite colimits is strictly

dual.
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3.6. Theorem. [The snake lemma] Suppose that in the following
diagram in an abelian category the rows are exact and the squares com-
mute:

0 B′//

A′′ 0//

B′ Bg
//

A′

B′

h′

��

A′ A
f

// A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′

// A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

kerh′ // kerh // kerh′′
γ
// cokerh′ // cokerh // cokerh′′

is exact.

Proof. The remaining arrows in the snake are induced by f , f ′, g,
and g′. The arrow γ can be described as being induced by the relation
g−1 ◦h◦(f ′)−1. As mentioned, we can suppose without loss of generality
that we are in a category of modules. Given an element a′′ ∈ kerh′′,
since f ′ is surjective, there is an a ∈ A with f ′a = a′′. Since g′ha =
h′′f ′a = h′′a′′ = 0, there is an element b′ ∈ B′ with gb′ = ha and we
define γa′′ as the class of b′ modulo imh′. We wish to show that this is
independent, modulo imh′, of the choice of a. If a1 is another choice
for a, then a − a1 ∈ ker f ′ = im f so that there is an a′ ∈ A′ with
a − a1 = fa′. If b′1 ∈ B′ is such that gb′1 = ha1, then gh′a′ = hfa′ =
h(a − a1) = ha − ha1 = gb′ − gb′1 = g(b′ − b′1). But g is injective, so
we can infer that h′a′ = b′ − b′1 which means that b′ and b′1 are in the
same class modulo imh′. Thus γ is well defined. If a′′1 and a′′2 ∈ A′′ and
we choose preimages a1 and a2 ∈ A, then we can choose a1 + a2 as a
preimage of a′′1 + a′′2. This shows that γ(a′′1 + a′′2) = γa′′1 + γa′′2 and a
similar argument shows that γ is a module homomorphism.

To show exactness it is sufficient to show it at the first two places;
duality gives the remaining two. So suppose that a ∈ kerh is such that
f ′a = 0. Then exactness of the original sequence implies the existence
of a′ ∈ A′ such that fa′ = a. Moreover gh′a′ = hfa′ = 0. Since g is
injective, this shows that a′ ∈ kerh′ and shows exactness at the first
step. If a ∈ kerh, then we can take a as the preimage of f ′a and then
ha = 0, whence γf ′a = 0 so that the image of the map induced by f ′

is in the kernel of γ. If a′′ ∈ kerh′′ is such that γa′′ = 0, let a ∈ A
be a preimage of a′′. Then let b′ ∈ B′ be such that ha = gb′. Since
γa′′ = 0, we must have b′ ∈ imh′ so that there is an a′ ∈ A′ with
h′a′ = b′ or hfa′ = gh′a′ = gb′ = ha. But then h(a − fa′) = 0. Since
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f ′(a − fa′) = f ′a = a′′, we see that a′′ is in the image under f ′ of an
element of kerh.

Since it is evident that if f is monic so is the induced map kerh′

// kerh and that if g′ is epic, so is the induced map cokerh //

cokerh′′ we have three more forms of the snake lemma that we state
for completeness

3.7. Corollary. Suppose that in the following diagram in an abelian
category the rows are exact and the squares commute:

0 A′//

0 B′//

A′′ 0//

B′ Bg
//

A′

B′

h′

��

A′ A
f

// A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′

// A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

0 // kerh′ // kerh // kerh′′
γ
// cokerh′ // cokerh // cokerh′′

is exact.

3.8. Corollary. Suppose that in the following diagram in an abelian
category the rows are exact and the squares commute:

0 B′//

A′′ 0//

B′′ 0//B′ Bg
//

A′

B′

h′

��

A′ A
f

// A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′

// A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

kerh′ // kerh // kerh′′
γ
// cokerh′ // cokerh // cokerh′′ // 0

is exact.
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3.9. Corollary. Suppose that in the following diagram in an abelian
category the rows are exact and the squares commute:

0 A′//

0 B′//

A′′ 0//

B′′ 0//B′ Bg
//

A′

B′

h′

��

A′ A
f

// A

B

h

��
B B′′

g′
//

A

B

A

B

A A′′
f ′

// A′′

B′′

h′′

��

Then there is an arrow γ: kerh′′ // cokerh′ such that the sequence

0 // kerh′ // kerh // kerh′′
γ
// cokerh′ // cokerh // cokerh′′ // 0

is exact.

3.10. Proposition. Suppose

B1 B2g1

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

��
B2 B3g2

//

A2

B2

h2

��

A2 A3

f2 // A3

B3

h3

��
B3 B4g3

//

A3

B3

��

A3 A4

f3 // A4

B4

h4

��

is a commutative diagram with exact rows in an abelian category. If
h1 is an epimorphism and h2 and h4 are monomorphisms, then h3

is a monomorphism. If h4 is a monomorphism and h1 and h3 are
epimorphisms, then h2 is an epimorphism.

Proof. The two statements are dual to each other, so we need prove
only the first. We can replace B1 by B1/ ker g1 and suppose that g1 is
monic. Similarly we can replace A4 by the image of f3 and suppose
that f3 is epic. Let A = im f2 = ker f3 and B = im g2 = ker g3. Then
we have two commutative diagrams with exact rows:

0 B1
// B1 B2g1

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

h2

��
B2 B//

A2

B2

A2

B2

A2 A// A

B

h

��
B 0//

A

B

A

B

A 0// 0

0

0

0
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0 A//

0 B//

A4 0//

B B3
//

A

B

h

��

A A3
// A3

B3

h3

��
B3 B4g3

//

A3

B3

A3

B3

A3 A4

f3 // A4

B4

h4

��

Applying the snake lemma to the first gives, in part, the exact sequence

kerh2
// kerh // cokerh1

which, together with h2 monic and h1 epic, implies that h is monic.
Applying the snake lemma to the second gives, in part, the exact se-
quence

kerh // kerh3
// kerh4

which, together with h and h4 monic, implies that h3 is monic.

3.11. Corollary. [“5 lemma”] Suppose that

B1 B2
f2

//

A1

B1

h1

��

A1 A2

f1 // A2

B2

��
B2 B3

f3

//

A2

B2

h2

��

A2 A3

f2 // A3

B3

h3

��
B3 B4

f4

//

A3

B3

A3

B3

A3 A4

f3 // A4

B4

h4

��
B4 B5

f5

//

A4

B4

��

A4 A5

f4 // A5

B5

h5

��

is a commutative diagram with exact rows. If h1 is epic, h5 monic, and
h2 and h4 isomorphisms, then h3 is an isomorphism.

Here is another immediate application of the snake lemma.
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3.12. Corollary. [“3× 3 lemma”] Suppose the columns, the middle
row and either the top or bottom row of the diagram

A′′ B′′//A′′0 // A′′

0
��

B′′ C ′′//B′′

0
��

C ′′

0
��

C ′′ 0//

C 0//B C//A B//A0 //

A′ B′//A′0 // A′

0

��
B′ C ′//B′

0

��
C ′

0

��
C ′ 0//C ′

C
��

B′

B
��

A′

A
��
A

A′′
��

B

B′′
��

C

C ′′
��

are exact. Then the remaining row is also exact.

3.13. Exercise

1. Show that if f :A // B and g:B // C are arrows in an abelian
category, then there is an exact sequence

0 // ker f // ker(g ◦ f) // ker g

// coker f // coker(g ◦ f) // coker g // 0

Hint: Show that there is a commutative square with exact rows

0 B//

0

0

0

0

0 A// A

B
��
B B ⊕ C//

A

B

f

��

A A⊕B// A⊕B

B ⊕ C

(
f 1
0 g

)
��

B ⊕ C C//

A⊕B

B ⊕ C

A⊕B

B ⊕ C

A⊕B B// B

C

g

��
C 0//

B

C
��

B 0// 0

0

0

0

4. Homology

4.1. Differential objects. Let A be an object of the abelian cate-
gory A . A differential on A is an endomorphism d:A // A such
that d◦d = 0. This is equivalent to im d ⊆ ker d. If, in fact, im d = ker d,
we say that d is an exact differential.
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A morphism f : (A′, d ′) // (A, d) of differential objects is a
morphism f :A′ // A in A such that f ◦ d ′ = d ◦ f .

4.2. Homology. Given a differential object (A, d), we say that
B(A, d) = im d, called the object of boundaries and Z(A, d) = ker d is
called the object of cycles. Since B(A, d) ⊆ Z(A, d), we can form the
quotient H(A, d) = Z(A, d)/B(A, d), which is called the homology
object of (A, d).

When there is no danger of confusion, we write B(A), Z(A), and
H(A) for these objects.

4.3. Proposition. Suppose f : (A′, d ′) // (A, d) is a morphism of
differential objects over the abelian category A . Then f induces an
arrow

H(f):H(A′, d ′) // H(A, d)

Proof. The equation f ◦d ′ = d ◦f evidently implies that f(Z(A′, d ′)) ⊆
Z(A, d) and that f(B(A′, d ′)) ⊆ B(A, d), from which the conclusion
readily follows.

4.4. Another view on homology. The homology of a differential
object is defined to be a quotient of a subobject. But it is always
possible to take a subobject of a quotient instead. If A is a group
with subgroups A′ ⊇ A′′ then A′/A′′ is isomorphic to a subgroup of
A/A′′, namely to the subgroup consisting of those cosets a + A′′ for
which a ∈ A′. Thus if (A, d) is a differential object, the homology can
be described as the subgroup of A/(B(A, d)) consisting of those cosets
a+B(A, d) for which da = 0.

Now write B = B(A, d) and Z = Z(A, d). Define d̂:A/B // Z

by d̂a = da. This makes sense since dB = 0. The kernel of d̂ is
exactly those cosets modulo B that are in the kernel of d and thus

H(A, d) ∼= ker d̂. But also the image of d̂ is the same as the image of

d so that H(A, d) = coker d̂. Using the exact embedding, we draw the
same conclusions for any abelian category.

4.5. Theorem. If (A, d) is a differential object in an abelian category
and

d̂:A/B(A, d) // Z(A, d)

is as described above, then H(A, d) is both the kernel and the cokernel

of d̂.
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4.6. The homology sequence. A sequence of differential objects
is called exact if the underlying sequence of objects is exact. Thus a
short exact sequence

0 // (A′, d ′) // (A, d) // (A′′, d ′′) // 0

is a map of differential objects for which 0 // A′ // A // A′′

// 0 is a short exact sequence.

4.7. Theorem. Let

0 // (A′, d ′) // (A, d) // (A′′, d ′′) // 0

be exact. Then there is an arrow we denote d:H(A′′, d ′′) // H(A,′ , d ′)
such that the sequence

· · · H(A′, d ′)
d // H(A′, d ′) H(A, d)

H(f)
// H(A, d) H(A′′, d ′′)

H(g)
// H(A′′, d ′′)

H(A′, d ′)

d

ttiiiiiiiiiiiiiiiiiiiiiiiiiiii

H(A′, d ′) H(A, d)
H(f)

// H(A, d) H(A′′, d ′′)
H(g)

// H(A′′, d ′′) · · ·
d
//

is exact.

Notational note: The use of “d” for the so-called connecting homo-
morphism is hallowed by long usage. It is based on the fact that the
connecting homomorphism is induced by the differential in the middle
term. In the original examples, A′ was simply a subgroup of A, with
dA ⊆ A and A′′ the quotient. Both d′ and d′′ were determined uniquely
by d and the inclusion and projection were ignored.

Proof. From the exactness of

0 A′//

0

0

0

0

0 A′// A′

A′
��
A′ A

f
//

A′

A′

d ′

��

A′ A
f

// A

A

d

��
A A′′

f ′′
//

A

A

A

A

A A′′
f ′

// A′′

A′′

d ′′

��
A′′ 0//

A′′

A′′

A′′

A′′

A′′ 0// 0

0

0

0

we conclude from 3.9 that both sequences

0 // ker d ′ // ker d // ker d ′′

and
coker d ′ // coker d // coker d ′′ // 0
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are exact and we can put them together to get the commutative dia-
gram with exact rows.

0 ker d′//00

coker d′coker d′coker d′

ker d′
��

ker d′ ker d//

coker d′

ker d′

d̂ ′

��

coker d′ coker d// coker d

ker d

d̂

��
ker d ker d′′//

coker d

ker d

coker d

ker d

coker d coker d′′// coker d′′

ker d′′

d̂ ′′

��
ker d′′ker d′′

coker d′′

ker d′′

coker d′′

ker d′′

coker d′′ 0// 00

to conclude that the sequence

ker d̂ ′ // ker d̂ // ker d̂ ′′ // coker d̂ ′ // coker d̂ // coker d̂ ′′

is exact. But in light of 4.5, this is equivalent to the exactness of

H(A′, d ′) // H(A, d) // H(A′′, d ′′) // H(A′, d ′) // H(A, d) // H(A′′, d ′′)

which is the homology exact sequence.

This exact homology sequence is often called the homology tri-
angle and drawn as

HA′

HA′′

__

d
?????????????HA′ HA
Hf

// HA

HA′′

Hg
���������������

4.8. Graded objects. A graded object A• of A is a Z-indexed
sequence

· · · , An+1, An, An−1, ···

of objects of A .
There are two kinds of morphisms of graded objects. If A′• and A•

are graded objects, a morphism f•:A
′
•

// A• is a Z-indexed sequence
of arrows of A , fn:A′n // An. This is the category we call Gr(A ).
For k ∈ Z, a morphism of degree k is a Z-indexed sequence fn:A′n

// An+k. We will not give this category a name and, in fact, will be
interested only in the cases k = −1, 0, 1.

Incidentally, what we have called a graded object is sometimes
called a Z-graded object, since other groups, monoids, or posets are
also used.
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4.9. Chain and cochain complexes. A chain complex over A is
a differential graded object (A•, d) in which the differential has degree
−1 and for which there is an m ∈ Z such that An = 0 for n < m.
We generally ignore the terms below the bottom degree and write the
chain complex as

· · ·
dn+1 // An

dn // An−1

dn−1 // · · ·
dm+1 // Am

Most of the time, the lower bound on a chain complex will be 0 or
−1, but for technical reasons (largely so that the suspension operator
described below can be an isomorphism), we allow any lower bound.

A cochain complex is a over A is a differential graded object
(A•, d) in which the differential has degree −1 and for which there is
an m ∈ Z such that Ak = 0 for k > m. So a cochain complex looks like

Am
dm // Am−1

dm−1 // · · ·
dn+1 // An

dn // · · ·
However, the more usual notation negates the indices and puts them as
superscripts, so the cochain complex above is called (A•, d) and looks
like

A−m
d−m // A−(m−1) d−(m−1)

// · · · d−(n+1)
// A−n

d−n // · · ·
with the differential having degree +1. Also in this case, the bound m
is likely to be 0 or −1.

The differential of a chain complex is usually called a boundary
operator and is often denoted d. The differential of a cochain complex
is usually called a coboundary operator and is often denoted δ.

4.10. Homology and cohomology. The homology and cohomol-
ogy are as defined for differential objects. But there are some additional
notational conventions that are standard. We deal first with chain com-
plexes. If (A•, d) is a chain complex, then d:An // An−1 for each n.
Then we denote by Zn the kernel of d:An // An−1 and by Bn the
image of d:An+1

// An. They are called the objects of n-cycles and
n-boundaries, respectively. Then Bn ⊆ Zn ⊆ An and we denote the
quotient Zn/Bn by Hn(A, d) or simply Hn(A) if d is understood. This
is called the nth homology object. The sequence Hn is simply a graded
object of A and the sequence will usually be denoted H•. Analogous
definitions of objects of n-cocycles, n-coboundaries and nth cohomol-
ogy are made for the cohomology of a cochain complex.

An arrow f : (A′, d ′) // (A, d) is a map of degree 0 between the
graded objects that also commutes with the differentials. We will de-
note the category of chain complexes over the additive category A by
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CC(A ). It is immediate that a morphism of chain complexes induces
a morphism of degree 0 on the graded homology objects.

4.11. Proposition. A morphism f :A′ // A of chain complexes
induces a morphism H•(f):H•(A

′) // H•(A).

A chain complex is evidently exact if and only if its homology groups
are 0. In that case, we often say that the complex is acyclic.

4.12. Exact sequences of chain complexes. A sequence (A′, d ′)

f
// (A, d)

g
// (A′′, d ′′) is exact if it is exact as a sequence of graded

objects, which is equivalent to its being exact in each degree. A finite
or infinite sequence

· · · // (An+1, dn+1) // (An, dn) // (An−1, dn−1) // · · ·
is exact if it is exact at each place. In particular, a short exact
sequence is an exact sequence of chain complexes that looks like

0 // (A′, d ′)
f
// (A, d)

g
// (A′′, d ′′) // 0

where 0 here stands for the chain complex that is 0 in every degree.

4.13. Theorem. Suppose 0 // A′ // A // A′′ // 0 is a short
exact sequence of chain complexes. The there are arrows dn:Hn(A′′)

// Hn−1(A′) such that the sequence

· · · Hn(A′)// Hn(A′) Hn(A)
Hn(f)

// Hn(A) Hn(A′′)
Hn(g)

// Hn(A′′)

Hn−1(A′)

dn

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(A′) Hn−1(A)
Hn−1(f)

// Hn−1(A) Hn−1(A′′)
Hn−1(g)

// Hn−1(A′′) · · ·//

is exact.

Proof. This is, in effect, an instance of 4.7. The only thing to note is
that since the connecting morphism is induced by a composite of three
relations, one of which has degree −1 and the other two have degree
0, the connecting morphism also has degree −1. Thus the homology
triangle turns into the long exact sequence shown here.

4.14. Exercises

1. Show that if 0 // A′ // A // A′′ // 0 is an exact sequence
of differential objects, then A′ is exact if and only if the induced H(A)
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// H(A′′) is an isomorphism; that A is exact if and only if the con-
necting homomorphism d:H(A′′) // H(A′) is an isomorphism; and
that A′′ is exact if and only the induced H(A′) // H(A) is an iso-
morphism.

2. Show that if

0 B′//

0

0

0

0

0 A′// A′

B′
��
B′ B//

A′

B′
��

A′ A// A

B
��
B B′′//

A

B
��

A A′′// A′′

B′′
��
B′′ 0//

A′′

B′′
��

A′′ 0// 0

0

0

0

is a commutative diagram of differential objects with exact rows, then
the diagram

HB′′ HB′//

HA′′

HB′′
��

HA′′ HA′// HA′

HB′
��

HB′ HB//

HA′

HB′
��

HA′ HA// HA

HB
��

HB HB′′//

HA

HB
��

HA HA′′// HA′′

HB′′
��

HB′′ HB′//

HA′′

HB′′
��

HA′′ HA′// HA′

HB′
��

commutes.

3. Show that if

0 // A′ // A // A′′ // 0

is an exact sequence of differential objects and any two are acyclic, so
is the third.

5. Module categories

This section is a very short primer on Ext and Tor, two very impor-
tant homology functors in module categories. There are many better
sources, going back to [Cartan & Eilenberg, 1956], or [Mac Lane, 1963],
any of which will give a more leisurely exposition.

5.1. Projectives. Let R be a ring. An R-module P is said to be
projective if the homfunctor HomR(P,−) is an exact functor. This
definition makes sense in any abelian category, although there is no
guarantee that an arbitrary abelian category has any non-zero projec-
tive objects.

Any free module is projective, since if F is free on basis X, then
for any R-module M , Hom(F,M) ∼= MX . Thus if 0 // M ′ // M
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// M ′′ // 0 is an exact sequence of R-modules, the hom sequence
is 0 // M ′X // MX // M ′′X // 0, which is readily seen to be
exact.

If M is an arbitrary module, there is certainly a free module map-
ping surjectively on M . For example, the free module generated by
M itself will do. The identify map on M extends to a unique ho-
momorphism on the free module and that is clearly surjective, since
the original arrow is. If P is projective, then for any surjection
f :M // // P , the sequence M // P // 0 is exact, so that
Hom(P,M) // Hom(P, P ) // 0 is exact, meaning that Hom(P,M)
// // Hom(P, P ) is surjective. In particular, this implies there is a

g ∈ Hom(P,M) such that f ◦ g = id. In other words, every surjective
homomorphism splits. The converse is also true. If every surjective
homomorphism to P splits, then P is projective. In particular, pro-
jectives can be characterized as those modules that are retracts of free
modules.

5.2. Projective resolutions. Suppose M is an R-module. By a
projective resolution of M is meant a complex P• = {Pn, d | n ≥ 0}
consisting of projective R-modules, together with an arrow P0

//M
such that the augmented complex P• //M // 0 is exact.

5.3. Proposition. Every module has a projective resolution.

Proof. Let M be a module. As observed above, there is a free module,
say F0 with a surjective homomorphism p0:F0

// // M . Let q1:M1
// F0 be the kernel of p0. Suppose p1:F1

// M1 is a surjective
homomorphism with F1 free. Continue to build the sequence qi:Mi

// Fi−1 as the kernel of pi−1 and pi:Fi // // Mi with Fi free. Then
if we let di = qi ◦ p1, the sequence {Fi, di} is a projective resolution of
M .

5.4. Ext. Let M and N be left R-modules. Suppose P• // M
is a projective resolution of M . Then from the exactness of P1

// P0
// M // 0, we conclude that 0 // HomR(M,N)

// HomR(P0, N) // HomR(P1, N) is exact (see the proof of Propo-
sition 3.5). Since each composite Pi+1

// Pi // Pi−1 is 0, the
same is true for each composite HomR(Pi−1, N) // HomR(Pi, N)

// HomR(Pi+1, N). The result is that

HomR(P0, N) // HomR(P1, N) // · · · // HomR(Pn, N) // · · ·
is a cochain complex whose zeroth cohomology group is HomR(M,N).
The nth cohomology group of this complex is denoted ExtnR(M,N).
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5.5. Theorem. ExtnR(−,−) does not depend on the choice of the
projective resolution. It is a contravariant functor in the first argument
and a covariant functor in the second. Moreover, Ext0

R = HomR.

The last sentence has already been done and the second one is
trivial. We defer the proof of the first to the next chapter, 3.6.5.

5.6. Injectives and injective resolutions. A left R-module is said
to be injective if it is projective in the dual of the module category.
Thus Q is injective if and only if for whenever M ′ //M is monomor-
phism of left R-modules, the induced HomR(M,Q) // HomR(M ′, Q)
is surjective. It follows that the functor HomR(−, Q) is an exact functor
and thus ExtnR(M,Q) = 0 for all n > 0.

The proof of the following theorem will be given after the discussion
of tensor products, see 5.18. It can be proved without tensors, but the
proofs are more complicated.

5.7. Theorem. Every left R-module can be embedded into an injective
left R-module.

By an injective resolution of the module M we mean an exact
cochain complex

Q0
δ // Q1

δ // Q2
δ // · · ·

for which the kernel of δ:Q0
// Q1 is M . The preceding theorem,

together with the dual of Theorem 5.3 allows us to see that,

5.8. Corollary. Every module has an injective resolution.

5.9. Theorem. Suppose

Q0
δ // Q1

δ // Q2
δ // · · ·

is an injective resolution of the left R-module M . Then for any left
R-module N , the cohomology of the cochain complex

0 // Hom(N,Q0) // Hom(N,Q1) // Hom(N,Q2) // · · ·
is Ext•R(N,M).

The proof will be carried out in the next chapter, 3.6.5.

5.10. Bilinear maps and tensor products. Let R be a ring, M a
left R-module and N a right R-module. For any abelian group A, an
R-bilinear map N ×M // A is a function (not a homomorphism)
f :N ×M // A that satisfies, for all n, n1, n2 ∈ N , m,m1,m2 ∈ M
and r ∈ R,
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Bilin–1. f(n1 + n2,m) = f(n1,m) + f(n2,m);
Bilin–2. f(n,m1 +m2) = f(n,m1) + f(n,m2);
Bilin–3. f(nr,m) = f(n, rm).

5.11. Theorem. Let R be a ring, M a left R-module and N a right
R-module. Then there is an abelian group N ⊗R M and a bilinear
map f :N ×M // N ⊗R M such that for any abelian group A and
bilinear map g:N ×M // A there is a unique group homomorphism
h:N ⊗RM // A such that h ◦ f = g.

Proof. Let F be the free abelian group generated by the underlying set
of N ×M . Let E be the subgroup generated by all elements of F of
the form

1. (n1 + n2,m)− (n1,m)− (n2,m);
2. (n,m1 +m2)− (n,m1)− (n,m2);
3. (nr,m)− (n, rm).

for all n, n1, n2 ∈ N , m,m1,m2 ∈M and r ∈ R. Denote by N⊗RM the
quotient F/E and n⊗m the coset containing (n,m). Define f :N ×M

// N ⊗RM by f(m,n) = m⊗ n. It is a triviality to see that f is a
bilinear map. A bilinear map g:N×M // A extends, since F is freely
generated by N×M , to a unique homomorphism F // A. Bilinearity
obviously implies that the extension vanishes on E and hence induces
a unique h:F/E // A with h(n⊗m) = f(n,m), as required.

The abelian group N⊗RM is called the tensor product of N with
M over R.

If N is a right R-module and A an abelian group, the group
Hom(N,A) of additive homomorphisms N // A has the structure
of a left R-module via the formula (rf)n = f(nr). Basically, it is the
contravariance of the Hom functor that turns the right module struc-
ture into a left module structure. Similarly, when M is a left R-module,
Hom(M,A) becomes a right R-module by (fr)m = f(rm). Then we
have the following result. Note that HomRop(−,−) denotes the right
R homomorphisms between two right modules.

5.12. Proposition. For any right R-module N , left R-module M and
abelian group A, there are natural isomorphisms

Hom(N⊗RM,A) ∼= HomR(M,Hom(N,A)) ∼= HomRop(N,Hom(M,A))

Proof. We define φ: Hom(N ⊗R M,A) // HomR(M,Hom(N,A)) by
(φf)(m)(n) = f(n ⊗ m). It is evident how Bilin–1 and 2 make φf
additive in N and, for each n ∈ N , make (φf)n additive in M . The
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only thing missing is showing that φf is left R-linear. We have

((φf)(rm))n = f(n, rm) = f(nr,m) = ((φf)m)(nr) = (r(φf)m)n

so that (φf)(rm) = r((φf)m), as required. In the other direction, we
will define ψ: HomR(M,Hom(N,A)) // Hom(N ⊗M,A). Given an
R-linear g:M // Hom(N,A), let (ψg)(n⊗m) = (gm)n. Bilin–1 and
2 follow from the fact that g is additive in M and, for each m ∈ M ,
gm is additive in N . As for Bilin–3, we have that

(ψg)(n⊗ rm) = (g(rm))n = (r(gm))n = (gm)(nr) = (ψg)(nr ⊗m)

It is evident that φ and ψ are inverse to each other, so the first isomor-
phism follows. The second isomorphism is similar.

5.13. Corollary. For a fixed right R-module N , the functor N ⊗R−
preserves colimits. In particular, it is right exact.

Proof. The functorN⊗−:R-Mod // Ab is left adjoint to Hom(N,−).

5.14. Existence of injectives. We begin the proof of the existence
of an injective container of each module with the case of abelian groups.
An abelian group A is said to be divisible if for all a ∈ A and n ∈ N
there is an a′ ∈ A with na′ = a.

5.15. Proposition. An abelian group is injective as a Z-module if
and only if it is divisible.

Proof. The easy way is gotten by looking at the injective homomor-
phism of multiplication by n. Assuming that Q is an injective Z-
module, the induced Hom(Z, Q) // Hom(Z, Q) is just multiplication
by n, while Hom(Z, Q) ∼= Q and so multiplication by n is a surjective
endomorphism of Q and so Q is divisible.

For the converse, suppose that Q is divisible. Suppose that A0

is a subgroup of A. We will show that any homomorphism f0:A0
// Q has an extension to a homomorphism f :A // Q. Since any

monomorphism is, up to isomorphism, the inclusion of a subgroup, the
conclusion will follow. Consider the poset of pairs (Ai, fi) where Ai is a
subgroup of A that contains A0 and fi:Ai // Q is a homomorphism
that extends f0. This poset is closed under increasing sup and so
there is a maximal element. Suppose (A1, f1) is a maximal element. If
A1 6= A, suppose a ∈ A− A1. If na /∈ A1 for all n > 0, we can extend
f1 to the subgroup A′ generated by A1 and a by letting f ′a = 0.
Otherwise, let n be the least positive integer for which na ∈ A1 and
choose q ∈ Q such that nq = f1(na) and then we can extend f1 by
letting f ′a = q. In either case, this contradicts the maximality of A1,
so that we must have A1 = A and then f1 is the required extension.
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5.16. Proposition. Every abelian group can be embedded into a di-
visible abelian group.

Proof. Let A be an abelian group and let A ∼= F/K where F is free.
Then Q ⊗ F is divisible and K is isomorphic to a subgroup of it via
the composite K // F // Q ⊗ F and then A is isomorphic to a
subgroup of (Q⊗ F )/K. Since a quotient of a divisible abelian group
is easily seen to be divisible, we conclude that (Q⊗F )/K is divisible.

5.17. Proposition. Suppose that P is a flat right R-module and Q
is an injective abelian group. Then Hom(P,Q) with the induced left
R-module structure is an injective left R-module.

Proof. Suppose f :M ′ // M is a monomorphism of left R-modules.
Since P is flat, the induced f⊗P :M ′⊗RP //M ′⊗RP is still monic.
The diagram

HomR(M ′,Hom(P,Q)) Hom(M ⊗R P,Q)∼=
//

HomR(M,Hom(P,Q))

HomR(M ′,Hom(P,Q))

Hom(f,Hom(P,Q))

��

HomR(M,Hom(P,Q)) Hom(M ⊗R P,Q)
∼= // Hom(M ⊗R P,Q)

Hom(M ⊗R P,Q)

��

Hom(f ⊗ P,Q)

��

commutes and the right hand arrow is surjective since Q is injective
and hence so is the left hand arrow.

5.18. Corollary. Every left R-module can be embedded into an in-
jective.

Proof. If M is an R-module, then treat is as an abelian group. Embed
it into an injective abelian group Q. Then

R ∼= HomR(R,M) ⊆ Hom(R,M) ⊆ Hom(R,Q)

embeds M into the injective module Hom(R,Q).

5.19. Tor. We begin the discussion of Tor with a definition. A left
R-module F is called flat if − ⊗ F is an exact functor. As already
observed, this will be so if and only if − ⊗ F preserves monics. That
is, if and only if for N ′ // N a monomorphism of right R-modules,
the induced N ′ ⊗RM // N ⊗RM is also monic.
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5.20. Proposition. Projective modules are flat.

Proof. We begin with the obvious fact that HomR(R,M) ∼= M for any
left R-module M , since a homomorphism is determined uniquely by its
value at 1. For any abelian group A,

HomR(R,Hom(N,A)) ∼= Hom(N ⊗R R,A)

and the Yoneda Lemma (see 1.6.2), we conclude that −⊗RR is equiva-
lent to the identity functor, which certainly preserves monics. The ring
R is the free module on one generator. The free module F generated
by the set X is the direct sum of X many copies of R. Since direct sum
is a colimit and tensor commutes with colimit, it follows that N ⊗R F
is the direct sum of X many copies of N . Since in module categories
a direct sum of an arbitrary set of monics is monic (this is not true,
in general, even in abelian categories), it follows that free modules are
flat. Finally, let P be projective. Then there is a free module F and

maps P
f
// F

g
// P with g ◦ f = id. Then for m:N ′ // // N , we

have

N ⊗ P N ⊗ F
N ⊗ f

//

N ′ ⊗ P

N ⊗ P

m⊗ P
��

N ′ ⊗ P N ′ ⊗ F//
N ′ ⊗ f

// N ′ ⊗ F

N ⊗ F

��

m⊗ F
��

N ⊗ P
N ⊗ g

//

N ′ ⊗ P
N ′ ⊗ g

// N ′ ⊗ P

N ⊗ P

m⊗ P
��

The arrow N ′ ⊗ f is monic, being split by N ′ ⊗ g and m⊗ F is monic
because F is flat. Hence the composite N ⊗ f ◦ m ⊗ P is monic and
therefore the first factor m⊗ P is monic and so P is flat.

Suppose M is an R-module. By a flat resolution of M is meant a
complex P• = {(Pn, d) | n ≥ 0} consisting of flat R-modules, together
with an arrow P0

//M such that the augmented complex P• //M
// 0 is exact. Since every module has a projective resolution and

projectives are flat, every module has a flat resolution.
Now suppose that F• // M is a flat resolution of M . Then for a

right R-module N , we can form the chain complex N ⊗RF•. Using the
right exactness of tensor, it is easy to show that the zeroth homology
of this complex is just N ⊗R M . We denote by TorRn (N,M) the nth
homology group of this complex. It is sometimes called the nth torsion
product of N with M over R.
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5.21. Theorem. TorRn (−,−) does not depend on the choice of the
flat resolution. It is a covariant functor in each argument Moreover,
TorR0 (N,M) = N ⊗RM .

The proof will be given in the next chapter, 3.6.5

5.22. Exercises
Note: For solutions of the first three, see Barr [forthcoming].

1. Show that if is a commutative diagram with exact rows in a module
category, then f ′ is monic, respectively epic, if and only if the induced
map A // A′′ ×B′′ B is monic, resp. epic.

2. Suppose that 0 // A′ // A // A′′ // 0 is an exact sequence
of modules. Show that there is an exact sequence of projective resolu-
tions 0 // P ′• // P• // P ′′• // 0 of A′, A, and A′′, respectively
so that

A′ A// A A′′//

P ′• P•//P ′•

A′
��

P• P ′′•
//P•

A
��

P ′′•

A′′
��

commutes with exact rows. (Hint: The kernel of a surjection between
two projectives is projective.)

3. Suppose that

B′ B// B B′′//

A′ A//A′

B′
��

A A′′//A

B
��

A′′

B′′
��

is commutative with exact rows Show that there are exact sequences
of projective resolutions

0 // P ′• // P• // P ′′• // 0

of A′, A, and A′′, respectively and

0 // Q′• // Q• // Q′′• // 0
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of B′, B, and B′′, respectively, together with arrows P ′• // Q′•, P•
// Q•, and P ′′• // Q′′• such that

0 B′//

0

0

0

0

0 A′// A′

B′
��
B′ B//

A′

B′
��

A′ A// A

B
��
B B′′//

A

B
��

A A′′// A′′

B′′
��
B′′ 0//

A′′

B′′
��

A′′ 0// 0

0

0

0

0 Q′•
//

0

0

0

0

0 P ′•
// P ′•

Q′•

P ′•

Q′•Q
′
• Q•//

P ′•

Q′•

��

P ′• P•// P•

Q•
��
Q• Q′′•

//

P•

Q•
��

P• P ′′•
// P ′′•

Q′′•

��
Q′′• 0//

P ′′•

Q′′•

P ′′•

Q′′•

P ′′• 0// 0

0

0

0Q′•

B′
��?????

Q•

B
��??????

Q′′•

B′′
��?????

P ′•

A′
��?????

P•

A
��??????

P ′′•

A′′
��?????

commutes with exact rows.

4. Show that any quotient of an injective abelian group is injective.
Use this to show that any subgroup of a projective abelian group is
projective. (Neither of these facts is true for more modules in general.
Also, I should point out that every projective abelian group is actually
free, again a special property of Z-modules.)

5. Show that if 0 // F ′ // F // F ′′ // 0 is exact and both F
and F ′′ are flat, then so is F ′.

6. The Z construction

Reading of this section can be deferred till needed for Chapter 8. We
put it here because it is just a construction in elementary theory of
additive categories.

This construction gives the free pre-additive category associated to
any category. It is not really necessary, but it really simplifies life in
a few crucial places and is not at all difficult. Recall from 1.1 that a
category is pre-additive if the hom sets are abelian groups in such a
way that composition is distributive on the left and right.

Given a category C , we denote by ZC the category with the
same objects as C and whose hom sets are the free abelian group
generated by those of C . Composition is uniquely determined by
the distributive law. This means that for any finite set of arrows
{fi:A // B | i = 1, . . . n}, any finite set of arrows {gj:B // C | j = 1, . . . ,m},
and any finite sets of integers {ri | i = 1, . . . n} and {sj | j = 1, . . . ,m},
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we have (
m∑
j=1

sjgj

)
◦

(
n∑
i=1

rifi

)
=

n,m∑
i,j=1,1

risj(gj ◦ fi)

That’s all there is to it. The identities are obvious and so is associativ-
ity, so that we have a category. For any (pre-)additive category A , any
functor T : C // A , has a unique extension to an additive functor we
will still call T :ZC // A .

6.1. Exercise

1. Show that for any category C , the category ZC is preadditive.



CHAPTER 3

Chain complexes and simplicial objects

In this chapter, we will develop properties of the category of differ-
ential objects and of the category of chain complexes over an abelian
category A . Since the opposite of an abelian category is also abelian,
this also includes the theory of cochain complexes. For the most part,
the theory is the same in the graded and ungraded case and the latter
is easier to discuss. When there is a difference, we will make it clear.
We let C denote either the category of differential objects of A or of
chain complexes.

1. Mapping cones

1.1. Suspension. The suspension is one construction in which the
grading matters. We take the ungraded case first. For a differential
object (A, d), the suspension is simply S(A, d) = (A,−d). For a chain
complex (A•, d) the suspension is S(A•, d) = (A•−1,−d), meaning that
an element that has degree n− 1 in A has degree n in SA.

It is clear that in the ungraded case, H(A) = H(SA). This is also
true in the graded case, with a shift in dimension, so that Hn−1(A) =
Hn(SA).

Another construction that is fundamental to the theory is that of
the mapping cone of a morphism. Suppose that f :K // L is a
map in C . We define a chain complex C = Cf by letting C = L⊕ SK

with boundary operator given by the matrix

(
d f
0 −d

)
.

1.2. Proposition. For any f :K // L of C , the mapping cone Cf
is an object of C ; moreover there is an exact sequence

0 // L // Cf // SK // 0

Proof. The requisite commutation of the boundary operators is easy.
Matrix multiplication shows that(

d f
0 −d

)(
d f
0 −d

)
=

(
0 0
0 0

)
94
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The homology exact triangle of this sequence is

H(L)

H(SK)

bb

d DDDDDDDDDDDDD
H(L) H(Cf )// H(Cf )

H(SK)
||zzzzzzzzzzzzz

Taking account that H(SK) = H(K), this triangle is

H(L)

H(K)

bb

d DDDDDDDDDDDDD
H(L) H(Cf )// H(Cf )

H(K)
||zzzzzzzzzzzzz

1.3. Proposition. The connecting homomorphism d:H(K) //

H(L) is just H(f).

Proof. We do this in the case that A is a category of modules over
some ring, using 2.3.3 to infer it for an arbitrary abelian category. The
recipe for d in the proof of 2.4.7 is to represent an element of H(K) by
a cycle k ∈ K. Choose a preimage in Cf , which we can clearly choose

as

(
0
k

)
. Apply the boundary to give

(
fk
0

)
and choose a cycle in L

mapping to that, for which choice fk clearly suffices.

Of course, in the case of a chain complex, the homology triangle
unwinds to a long exact sequence

· · · Hn(L)// Hn(L) Hn(Cf )// Hn(Cf ) Hn−1(K)// Hn−1(K)

Hn−1(L)

dn

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Hn−1(L) Hn−1(Cf )// Hn−1(Cf ) Hn−2(K)// Hn−2(K) · · ·//

We will show later that when f is monic (in each degree), then Cf
has homology isomorphic to that of L/K. Similarly, when f is epic,
then the kernel of f has homology isomorphic to that of SCf .

Let U : C // Gr(A ) denote the functor that forgets the boundary
operator. The sequence 0 // L // Cf // SK // 0 is said to
be U -split which means that 0 // UL // UCf // USK // 0
is split exact. This property turns out to characterize mapping cone
sequences.
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1.4. Proposition. A U-split exact sequence

0 // L // C // K // 0

is isomorphic to the mapping cone of a unique map S−1K // L.

Proof. Since the sequence is split, we can suppose that as graded ob-
jects, C = L⊕K and that in degree n, the sequence is

0 // Ln

(
1
0

)
// Ln ⊕Kn

( 0 1 )
// Kn

// 0

Now let dK and dL denote the differentials in K and L, respectively and
suppose, using the decomposition of C = L ⊕K, that the differential

on C has matrix

(
d 11 d 12

d 21 d 22

)
. The commutativity of the diagram

0 L// L L⊕K(
1
0

) // L⊕K K
( 0 1 )

// K 0//

0 L// L L⊕K

(
1
0

)
//L

L

dL

��

L⊕K K
( 0 1 )

//L⊕K

L⊕K

(
d 11 d 12

d 21 d 22

)
��

K

K

dK

��

K 0//

gives the equations d 11 = dL, d 22 = dK and d 21 = 0. If we write
f = d 12, then the fact that(

dL f
0 dK

)(
dL f
0 dK

)
= 0

gives the equation f ◦ dK + dL ◦ f = 0 or equivalently, f ◦ (−dK) =
dL ◦ f , which implies that f : (S−1K) = K // L is an arrow of chain
complexes f :S−1K // L.

1.5. Corollary. Suppose f :K // L is a morphism of differen-
tial objects and Cf its mapping cone. Then for any object Z of
A , the differential abelian group Hom(Z,Cf ) is the mapping cone of
Hom(Z, f): Hom(Z,K) // Hom(Z,L) and Hom(Cf , Z) is the map-
ping cone of Hom(f, Z): Hom(L,Z) // Hom(K,Z).
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Proof. If 0 // UL // UCf // USK // 0 is split as a sequence
in A , so is

0 // Hom(Z,UL) // Hom(Z,UCf ) // Hom(Z,USK) // 0

which is equivalent to

0 // U Hom(Z,L) // U Hom(Z,Cf ) // U Hom(Z, SK) // 0

where we use U to denote the functor that forgets the differential for
chain complexes in A and in Ab. Also, Hom(Z, SK) has the negative
of the boundary of Hom(Z,K) and in the graded case, has the shift
in degrees and is therefore the suspension of Hom(Z,K). From the
proposition, we see therefore that Hom(Z,Cf ) is the mapping cone of
Hom(Z, f).

1.6. Exercise

1. Suppose that

· · · // An // An−1
// · · · // A1

// A0
// 0

is a chain complex and B is an object considered as a chain complex
whose only non-zero term is in degree 0. Show that if f•:A• // B is
a map of chain complexes, then the mapping cone is the suspension of

· · · // An // An−1
// · · · // A1

// A0

−f
// B // 0

2. Show that if

0 B′// B′ B// B B′′// B′′ 0//

0 A′// A′ A//A′

B′

f ′

��

A A′′//A

B

f

��

A′′

B′′

f ′′

��

A′′ 0//

is a commutative diagram of differential objects with exact rows and if
any two of f ′, f, f ′′ are homology isomorphisms, then so is the third.

2. Contractible complexes

Definition. We say that a differential object C is contractible if
there is an arrow s:C // C with the property that d ◦ s + s ◦ d = 1.
A contractible differential object is also acyclic since dc = 0 implies
c = d(s(c)) + s(d(c)) = d(s(c)) so that every cycle in a contractible
differential object is a boundary.
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2.1. Cycle operators. Consider now a differentiable abelian group
(A, d) with Z = ker d. Write |A| and |Z| for the underlying sets ofA and
Z, respectively. A necessary and sufficient condition that A be acyclic
is that there be a function, not necessarily a group homomorphism,
z: |Z| // |A| such that d ◦ z is the inclusion |Z| // |A|. That is,
for each cycle, there must be an element of which it is the boundary.
Not surprisingly, something special happens when z can be chosen as
an additive function. More generally, if C is a differential object in any
abelian category, we say that z:Z(C) // C is a cycle operator if
d ◦ z is the inclusion Z(C) // C.

One way a cycle operator might arise is if there is a contraction s.
For if s:C // C is a contraction and we let z = s|Z(C), then on
Z(C), d ◦ z = d ◦ s = d ◦ s + s ◦ d = id since s ◦ d = 0 on Z(C). Thus
the restriction of s to Z(C) is a cycle operator. It turns out that every
cycle operator arises in this way.

2.2. Proposition. Let C be a differential object in any abelian cate-
gory. Then C is contractible if and only if there is a cycle operator on
C.

Proof. One direction has just been shown. For the other, suppose
z:Z(C) // C is a cycle operator. Since the image of d is included in
the domain Z(C) of z, it makes sense to form the composite z ◦ d and
we have that d ◦ z ◦ d = d. Thus d ◦ (1 − z ◦ d) = 0 so that the image
of 1 − z ◦ d is also included in the domain of z and we can form the
composite s = z ◦ (1− z ◦ d). Note that we cannot write s = z− z ◦ z ◦ d
since the individual terms on the right are not defined. Then we have
that

s ◦ d+ d ◦ s = z ◦ (1− z ◦ d) ◦ d+ d ◦ z ◦ (1− z ◦ d)

= z ◦ (d− z ◦ d ◦ d) + 1− z ◦ d = z ◦ d+ 1− z ◦ d = 1

In a chain complex, both cycle operators and contractions have
degree +1 and in a cochain complex they have degree −1. But the
same results are true.

2.3. Remark. One important observation is that being contractible
is an additively absolute property: if C is contractible and F is any
additive functor defined on complexes, then F (C) is also contractible,
since the condition is defined entirely in terms of addition, composites
of arrows, and identities arrows.

Using this, we can show the following.
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2.4. Theorem. Suppose C is a differential object in the abelian cat-
egory A . Then the following are equivalent:

1. C is contractible;
2. for each object Z of A , the differential abelian group Hom(Z,C)

is contractible;
3. for each object Z of A , the differential abelian group Hom(Z,C)

is acyclic;
4. for each object Z of A , the differential abelian group Hom(C,Z)

is contractible;
5. for each object Z of A , the differential abelian group Hom(C,Z)

is acyclic.

Proof. We will begin by proving the equivalence of the first three. If C
is contractible, then there is an arrow s:C // C such that s◦d+d◦s =
1 in which case Hom(Z, s) is a contracting homotopy for Hom(Z,C).
Contractible differentiable groups are acyclic so the second condition
implies the third. Assuming the third, let Z = Z(C), the kernel of d:C

// C, the object of cycles, and let i:Z // C be the inclusion map.
Since d ◦ i = 0, i is a cycle in the differential group Hom(Z,C). Since
that differential group is exact, i is also a boundary, so that there is
an element z ∈ Hom(Z,C) such that d ◦ z = i. But z:Z // C is just
a cycle operator and its existence implies that there is a contracting
homotopy. This proves the equivalence of the first three parts.

As for the last two, the same argument in the dual category shows
that 1, 4 and 5 are equivalent.

2.5. Homotopy and homology equivalence. Suppose f, g:C ′ //

C are morphisms of differential objects. A homotopy h: f // g is a
map h:C ′ // C such that f − g = d ◦ h + h ◦ d. We will say that f
is homotopic to g and write f ∼ g if there is a homotopy h: f // g.
It is easily shown that ∼ is an equivalence relation on morphisms. A
morphism f :C ′ // C is called a homotopy equivalence if there is
a morphism g:C // C ′ such that both g ◦ f ∼ idC′ and f ◦ g ∼ idC .
It is an easy exercise to show that C is contractible if and only if either
of the arrows 0 // C or C // 0 is a homotopy equivalence.

2.6. Proposition. Let f, g:C ′ // C be homotopic morphisms. Then
H(f) = H(g).

Proof. Assume that h: f ∼ g. Then restricted to Z(C ′), Z(f)−Z(g) =
d ◦ h, which means that modulo im d, H(f) = H(g).
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A morphism of differential objects that induces an isomorphism
in homology is called a homology equivalence. As an immediate
corollary of the preceding, we have:

2.7. Corollary. A homotopy equivalence is a homology equivalence.

2.8. Proposition. Suppose that f :K // L is a morphism of dif-
ferential objects in the abelian category A . Then the following are
equivalent:

1. f is a homotopy equivalence;
2. for any object Z of A , the induced Hom(Z, f) is a homotopy

equivalence in the category of abelian groups;
3. for any object Z of A , the induced Hom(Z, f) is a homology

equivalence in the category of abelian groups;
4. the mapping cone of f is contractible;
5. for any object Z of A , the induced Hom(f, Z) is a homotopy

equivalence in the category of abelian groups;
6. for any object Z of A , the induced Hom(f, Z) is a homology

equivalence in the category of abelian groups.

Proof. If g:L // K is a morphism of differential objects, s:K // K
is a homotopy g ◦f // idK , and t:L // L is a homotopy t: f ◦g //

idL, then for any object Z, Hom(Z, g): Hom(Z,L) // Hom(Z,K)
is a morphism of differential abelian groups, Hom(Z, s): Hom(Z,K)

// Hom(Z,K) is a homotopy Hom(Z, g) ◦ Hom(Z, f) // id, and
Hom(Z, t) is a homotopy Hom(Z, f) ◦ Hom(Z, g) // id. Thus 1 im-
plies 2. That 2 implies 3 is the previous corollary. To see that 3
implies 4, suppose that for any object Z of A , the induced Hom(Z, f)
is a homology equivalence. It follows from the exactness of the ho-
mology triangle and the fact that Hom(Z, f) is an isomorphism that
Hom(Z,Cf ) is acyclic. Then from Corollary 2.4, we see that Cf is con-
tractible. Next we show that 4 implies 1. Let the contracting homotopy

u have matrix

(
t r
g −s

)
. Then the matrix of du+ ud is calculated to

be (
dt+ fg + td dr − fs+ tf − rd
−dg + gd ds+ gf + sd

)
If we set this equal to the identity, we conclude that dt+ fg + td = 1,
−dg+ gd = 0 and ds+ gf + sd = 1 from which we see that g is a chain
map and homotopy inverse to f .

A dual argument shows the equivalence of 1, 4, 5, and 6.

This proof actually gives a method for constructing a contraction
in the mapping cone out of a homotopy inverse, but the formula looks
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complicated and verifying directly that it is a contraction would be
rather unpleasant.

2.9. Corollary. Suppose f :K // L is a mapping of acyclic (resp.
contractible) differential objects. Then the mapping cone of f is acyclic
(resp. contractible) and f is a homology (resp. homotopy) equivalence.

Proof. If K and L are both acyclic then the acyclicity of the map-
ping cone follows from the exactness of the homology triangle. Ev-
idently, the only map between the null homology groups is an iso-
morphism. If K and L are both contractible, then for any object Z,
Hom(Z, f): Hom(Z,K) // Hom(Z,L) is a map between objects with
null homology and hence is a homology isomorphism. It follows that
the mapping cone of Hom(Z, f) is contractible and that f is a homo-
topy equivalence.

Probably the single most important property of the mapping cone
is expressed in the following theorem.

2.10. Theorem. A map of differential objects is a homology equiva-
lence if and only if its mapping cone is acyclic and it is a homotopy
equivalence if and only if its mapping cone is contractible.

Proof. For homology, both directions are immediate consequences of
the exactness of the homology triangle and the fact that an object in
a homology sequence is 0 if and only if the preceding arrow is epic
and the succeeding one is monic. The homotopy was dealt with in the
previous theorem.

2.11. Proposition. If 0 // L
f
// C

g
// K // 0 is a U-

split exact sequence of differential objects, then K is homotopic to the
mapping cone Cf and L is homotopic to SCg.

Proof. Except for an unavoidable arbitrariness whether to suspend one
or desuspend the other term in a mapping cone, the two parts are dual;
we need prove only one. Let u:UC // UL and v:UK // UC be
such that uf = 1, gv = 1, fu+ vg = 1 and uv = 0. The last equation

actually follows from the first three. I claim that

(
v
−udv

)
:K // Cf
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is a chain map. In fact,(
d f
0 −d

)(
v
−udv

)
=

(
dv − fudv
dudv

)
=

(
dv − (1− vg)dv

ufdudv

)
=

(
vgdv
udfudv

)
=

(
vdgv

ud(1− vg)dv

)
=

(
vd

−udvgdv

)
=

(
vd

−udvdgv

)
=

(
vd
−udvd

)
=

(
v
−udv

)
d

It is clear that ( g 0 )

(
v
−udv

)
= 1. The other composite is(

v
−udv

)
( g 0 ) =

(
vg 0
−udvg 0

)
Thus if we let G = ( g 0 ), F =

(
v
−udv

)
, U =

(
0 0
u 0

)
, and D =(

d f
0 −d

)
, we have GF = 1 and

DU + UD =

(
d f
0 −d

)(
0 0
u 0

)
+

(
0 0
u 0

)(
d f
0 −d

)
=

(
fu 0
−du 0

)
+

(
0 0
ud uf

)
=

(
fu 0

−du+ ud uf

)
=

(
1− vg 0

ud− ufdu 1

)
=

(
1− vg 0

ud− udfu 1

)
=

(
1− vg 0
udvg 1

)
=

(
1 0
0 1

)
−
(

vg 0
−udvg 0

)
= 1− FG

2.12. Theorem. Suppose f :K // L is a morphism of differential
objects with mapping cone C = Cf . If f is monic, there is a map C

// L/K that induces an isomorphism on homology. Dually, if f is
epic, there is a map ker(f) // C that induces an isomorphism on
homology.

Proof. By duality, we need prove only one of these, say the first. Let
p:L // L/K be the projection. Then ( p 0 ) :L ⊕ K // L/K is
a chain map by a simple computation and thus induces a map H(C)

// H(L/K). It would be sufficient to show that we have commutative



3. SIMPLICIAL OBJECTS 103

squares in the homology sequence

H(K) H(L)// H(L) H(L/K)//

H(K) H(L)//H(K)

H(K)
��

H(L) H(C)//H(L)

H(L)
��

H(C)

H(L/K)
��

H(L/K) H(K)// H(K) H(L)//

H(C) H(K)//H(C)

H(L/K)
��

H(K) H(L)//H(K)

H(K)
��

H(L)

H(L)
��

· · · H(K)//

· · · H(K)//

H(L) · · ·//

H(L) · · ·//

The first and last squares obviously commute and one easily checks
that the second one does since in each direction the homology class of
an element of L goes to the class of pl. The third square does not com-
mute, however; it anticommutes instead. This does not really matter
since it will commute if we negate the arrow H(C) // H(K) in the
upper sequence, which does not affect exactness. There is perhaps some
explanation as to why this step is necessary in terms of suspension, but

it is not evident. To show it anticommutes, take a cycle

(
l
k

)
∈ C.

To be a cycle means that dl + fk = 0 and dk = 0. Going clockwise
around the square gives us the homology class of k. In going the other
way, we first take the class of l mod K and then apply the connecting
homomorphism. The recipe for doing this is to apply the boundary to
get dl and then choose an element of k mapping to it. We can choose
−k since dl + fk = 0. Thus we get the homology class of −k, which
shows that the square anticommutes. The upshot is that the arrows
H(C) // H(L/K) are trapped between isomorphisms and must be
isomorphisms by the five lemma, see 2.3.11.

3. Simplicial objects

There are two equivalent definitions of a simplicial object in a cate-
gory. One, as a functor category, is useful for deriving certain formal
properties. The other definition, the one we will use, is much easier for
seeing what a simplicial object in a category actually is.
Definition. A simplicial object in a category X is given by a
sequence of objects X0, X1, . . ., Xn, . . . together with two doubly
indexed family of arrows of X . The first, called the face operators,
are arrows d in:Xn

// Xn−1, 0 ≤ i ≤ n, 1 ≤ n < ∞; the second
kind, called degeneracy operators, are arrows sin:Xn

// Xn+1,
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0 ≤ i ≤ n, 0 ≤ n <∞. These are subject to the following rules.

d in ◦ d
j
n+1 = d j−1

n ◦ d in+1 if 0 ≤ i < j ≤ n+ 1

sjn ◦ s
i
n−1 = sin ◦ s

j−1
n−1 if 0 ≤ i < j ≤ n

sj−1
n−1 ◦ d

i
n if 0 ≤ i < j ≤ n

d in+1 ◦ s
j
n =

1 if 0 ≤ i = j ≤ n or 0 ≤ i− 1 = j < n

sjn−1 ◦ d
i−1
n if 0 < j < i− 1 ≤ n

From now on, we will usually omit the lower indices. Thus the first
rule above is written d i ◦d j = d j−1 ◦d i for all values of the indices i < j
that make sense. Incidentally, these rules imply that d i ◦ d j = d j ◦ d i+1

and sj ◦ si = si+1 ◦ sj when i ≥ j.
We often denote by X• the simplicial object consisting of objects

Xn, n ≥ 0 and the attendant faces and degeneracies. If X• and Y• are
simplicial objects, a morphism f•:X• // Y• consists of a family fn:Xn

// Yn for all n ≥ 0 such that d i ◦ fn = fn−1 ◦ d
i and fn ◦ s

i = si ◦ fn−1

whenever the indices make sense.
We will sometimes use the following symbolic notation for a sim-

plicial set, suppressing the degeneracies:

· · ·
//... //
Xn

//... //
Xn−1

//... //
· · · ////// X1

// // X0

Definition. The alternate definition is as follows. Let ∆ denote the
category whose objects are non-zero ordinals and arrows are the order
preserving functions. A simplicial object in X can be described as a
contravariant functor ∆op //X .

Here is how to connect the two definitions. We will use the usual
write [n] = {0, 1, . . . , n} (which is actually the orginal n + 1). Let
∂ni : [n− 1] // [n] be defined for 0 ≤ i ≤ n by

∂ni (j) =

{
j for j < i
j + 1 for j ≥ i

Thus ∂nn is the inclusion of [n − 1] into [n] while ∂n0 adds 1 to each
ordinal. Similarly, for 0 ≤ i < n, we define σni : [n + 1] // [n] for
0 ≤ i ≤ n by

σni (j) =

{
j for j ≤ i
j − 1 for j > i

Then the arrows ∂ni and σni generate the category ∆. In fact, arrows
in ∆ factor as surjections followed by injections and every injection
is a composite of ∂’s and every surjection is a composite of σ’s. If
X: ∆op // X is a functor, the simplicial set that corresponds has
Xn = X[n], d in = X(∂ni ) and sin = X(σni ). It is left as an exercise
to show that this correspondence determines an equivalence between
the category of simplicial objects and that of contravariant functors on
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∆op. The latter is often taken as the definition of simplicial object, but
it is the former definition that is used in practice.

We denote the category of simplicial objects over X by Simp(X ).

3.1. Littler fleas. Not only do we have simplicial sets as functors,
with natural transformations as morphisms, but we also have arrows,
called homotopies, between morphisms. These homotopies are rather
complicated and used mostly in just one special case. If X• and Y•
are simplicial objects and f•, g•:X• // Y• are simplicial arrows, a
homotopy h•: f• // g• is given by families of arrows hi = hin:Xn

// Yn+1 for all n ≥ 0 and all 0 ≤ i ≤ n that satisfy

d i ◦ hj =


fn if i = j = 0
hj−1 ◦ d i if i < j
d i ◦ hj+1 if 0 ≤ i− 1 = j < n
hj ◦ d i−1 if 0 ≤ j < i− 1 ≤ n
gn if i− 1 = j = n

sj ◦ hi =

{
hi ◦ sj−1 if 0 ≤ i < j ≤ n+ 1
hi+1sj if 0 ≤ j ≤ i ≤ n

We will write h•: f•
∼ // g• to show that h• is a homotopy from f•

to g• and f•
∼ // g• to indicate there is a homotopy. We choose this

notation because homotopy is not symmetric. Even this notation is

misleading for
∼ // is not transitive either. It is, however, always re-

flexive. In fact, if f•:X• // Y• is a simplicial map, it is not hard to
show that h given by hi = si ◦ fn = fn+1 ◦ s

i:Xn
// Yn+1 defines a

homotopy f•
∼ // f•.

3.2. Augmented simplicial objects. An augmented simplicial
object in the category X is a simplicial object X• together with an
object X−1 together with an arrow d:X0

// X−1 such that d ◦ d 0 =
d ◦ d 1.

An augmented simplicial object X• // X−1 is said to be con-
tractible if for each n ≥ −1 there is a map sn:Xn

// Xn+1 such
that d 0 ◦ s = 1 and d i ◦ s = s ◦ d i−1, 0 < i ≤ n and s0 ◦ s = s ◦ s and
si ◦ s = s ◦ si−1, 0 < i ≤ n+ 1.

A simplicial object is called constant if Xn is the same object for
each n and every face and degeneracy map is the identity of that object.
There is a constant simplicial object for each object of the category. For
an object X of X we will denote the corresponding simplicial object
also by X.
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3.3. Proposition. Suppose X• // X−1 is a contractible augmented
simplicial object in X . Then there are simplicial maps f•:X• // X−1

and g•:X−1
// X•, treating X−1 as a constant, such that f ◦ g = 1

and 1
∼ // g ◦ f . Conversely, a pair of arrows involving a constant sim-

plicial object satisfying such a condition corresponds to a contractible
augmented simplicial object.

Proof. Let us begin with a contractible augmented simplicial object
X• // X−1 with contracting homotopy s•. At this point, we require
some notational conventions. Upper indices are used on face and de-
generacies and this is usually satisfactory because we cannot usually
form powers. Here we will be using symbolic powers. They are not
really powers, because , for example, d 0 ◦ d 0 is really d 0

n+1 ◦ d
0
n for

some n, but it will be convenient to write it as a power. In order
to avoid confusion, we will write it as (d 0)2. In other words a true
exponent will always be marked with parentheses. It will be conve-
nient to write d 0 = d:X0

// X−1 and s−1 = s:Xn−1
// Xn for

n ≥ 0. In each case it because the equations satisfied are those appro-
priate to d 0, respectively s−1. Now let fn = (d 0)n+1:Xn

// X−1 and
gn = (s−1)n+1:X−1

// Xn. Before continuing, we need a lemma.

3.4. Lemma.

(d 0)j ◦ d i =

{
(d 0)j+1 if i ≤ j

d i−j ◦ (d 0)j if i > j

(d 0)j ◦ si =

{
(d 0)j−1 if i > j

si−j ◦ (d 0)j if i ≤ j

d i ◦ (s−1)j =

{
(s−1)j−1 if i < j

(s−1)j ◦ d i−j if i ≥ j

si ◦ (s−1)j =

{
(s−1)j+1 if i < j

(s−1)j ◦ si−j if i ≥ j

Proof. We will prove the first of these. The remaining ones are similar.
When j = 0, there is nothing to prove. We begin with the case that
i > j. When j = 0, there is nothing to prove. Assuming the conclusion
true for j − 1, then

(d 0)j ◦ d i = d 0 ◦ (d 0)j−1 ◦ d i = d 0 ◦ d i−j+1 ◦ (d 0)j−1

= d i−j ◦ d 0 ◦ (d 0)j−1 = d i−j ◦ (d 0)j

The case that i ≤ j is immediate for j = 0. Assuming it holds for j−1,
let us first consider the case that i < j. Then

(d 0)j ◦ d i = d 0 ◦ (d 0)j−1 ◦ d i = d 0 ◦ (d 0)j = (d 0)j+1
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If i = j, then

(d 0)j ◦d j = d 0◦(d 0)j−1◦d j = d 0◦d 1◦(d 0)j−1 = d 0◦d 0◦(d 0)j−1 = (d 0)j+1

In particular, taking j = n in the first one, we see that (d 0)n ◦ d i =
(d 0)n+1 for 0 < i < n so that f commutes with the face operators.
Taking j = n+ 2 in the second, we have that (d 0)n+2 ◦ si = (d 0)n+1 so
that f commutes with the degeneracies. Similarly, the third and fourth
equations of the lemma have as special case formulas that say that g
is a simplicial map.

No we return to the proof of the proposition. We have that

fn ◦ gn = (d 0)n+1 ◦ (s−1)n+1 = (d 0)n ◦ (s−1)n = · · · = 1

To see the homotopy in the other direction, we let hi:Xn
// Xn+1

by the formula hi = (s−1)i+1 ◦ (d 0)i. We see that d 0 ◦ h0 = d 0 ◦ s−1 = 1
by assumption, while

dn+1 ◦ hn = dn+1 ◦ (s−1)n+1 ◦ (d 0)n = (s−1)n+1 ◦ d 0 ◦ (d 0)n = gn ◦ fn

We claim that the hi constitute a homotopy 1
∼ // g ◦ f . For i < j, we

have
d i ◦ hj = d i ◦ (s−1)j+1 ◦ (d 0)j = (s−1)j ◦ (d 0)j

while
hj−1 ◦ d i = (s−1)j ◦ (d 0)j−1 ◦ d i = (s−1)j ◦ (d 0)j

If i > j + 1, we have

d i ◦ hj = d i ◦ (s−1)j+1 ◦ (d 0)j = (s−1)j+1 ◦ d i−j−1 ◦ (d 0)j

while

hj ◦ d i−1 = (s−1)j+1 ◦ (d 0)j ◦ d i−1 = (s−1)j+1 ◦ d i−1−j ◦ (d 0)j

Finally,

d i+1 ◦hi = d i+1 ◦(s−1)i+1 ◦(d 0)i = (s−1)i+1 ◦d 0 ◦(d 0)i = (s−1)i+1 ◦(d 0)i+1

while

d i+1 ◦ hi+1 = d i+1 ◦ (s−1)i+2 ◦ (d 0)i+1 = (s−1)i+1 ◦ (d 0)i+1

which establishes the homotopy.

There is another possible definition of contractible augmented sim-
plicial object. One can instead suppose the existence of sn:Xn−1

// Xn for all n ≥ 0 that satisfy dn ◦ sn = 1, d i ◦ sn = sn ◦ d
i for

i < n and sn ◦ s
i = si ◦ sn−1. In fact, instead of looking like degen-

eracies labeled −1, these look like ones labeled sn+1 in degree n. Not

surprisingly, this kind of homotopy gives rise to a homotopy g ◦f
∼ // 1.
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The two are not in general equivalent, an example of the fact that the
homotopy relation is not symmetric.

The following theorem gives a useful sufficient condition for a special
kind of augmented simplicial set to be contractible. First we need
a definition. If f :X // Y is a function, the nth fiber power Xn

Y

of f consists of all n-tuples 〈x0, . . . , xn〉 of elements of X on which
f is constant, that is fx0 = · · · = fxn. This becomes a simplicial
set with Xn+1

Y in degree n and the ith face operator d i〈x0, . . . , xn〉 =
〈x0, . . . , xi−1, xi+1, . . . , xn〉 for i = 0, . . . , n. The degeneracy operators
are given by si〈x0, . . . , xn〉 = 〈x0, . . . , xi, xi, . . . , xn〉.
3.5. Proposition. The above simplicial set, augmented by f :X //

Y , is contractible if and only if f is surjective.

Proof. The augmentation term of a contractible simplicial set is always
a split surjection, so that is a necessary condition. If f is surjective,
then there is a section s:Y // X such that f ◦ s = id. Define s:Xn+1

Y
// Xn+2

Y by s〈x0, . . . , xn〉 = 〈x0, . . . , xn, s ◦ fxn〉. Then

dn+1 ◦ s〈x0, . . . , xn〉 = dn+1〈x0, . . . , xn, s ◦ fxn〉 = 〈x0, . . . , xn〉
while for 0 ≤ i ≤ n,

d i ◦ s〈x0, . . . , xn〉 = d i〈x0, . . . , xn, s ◦ fxn〉

= 〈x0, . . . , xi−1, xi+1 . . . , xn, s ◦ fxn〉

= s〈x0, . . . , xi−1, xi+1 . . . , xn〉 = s ◦ d i〈x0, . . . , xn〉
which shows that this is contraction.

4. Associated chain complex

Suppose A• is a simplicial object in an additive category A . Then the
associated chain complex is the complex

· · · d // An+1
d // An

d // An−1
d // · · · d // A0

// 0

where d =
∑n

i=0(−1)id i:An // An−1. The first thing that has to be
verified is that it is a chain complex.

4.1. Proposition. d ◦ d = 0.
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Proof. Starting at An, we have

d ◦ d =
n−1∑
i=0

(−1)id i ◦
n∑
j=0

(−1)jd j =
n−1∑
i=0

n∑
j=0

(−1)i+jd i ◦ d j

=
n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +
n−1∑
i=0

n∑
j=i+1

(−1)i+jd i ◦ d j

=
n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +
n−1∑
i=0

n∑
j=i+1

(−1)i+jd j−1 ◦ d i

=
n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j +
n∑
j=1

j−1∑
i=0

(−1)i+jd j−1 ◦ d i

=
n−1∑
i=0

i∑
j=0

(−1)i+jd i ◦ d j −
n−1∑
j=0

j∑
i=0

(−1)i+jd j ◦ d i

= 0

It is evident that a simplicial map induces a chain map on the
associated chain complexes. Let us write C(A•) and C(f•) for the
associated chain complex and chain map.

4.2. Proposition. Let A be an additive category and f•, g•:A• //

B• be simplicial maps between simplicial objects in A . If h•: f•
∼ // g•

is a simplicial homotopy, then C(h•) defined in degree n as
∑n

i=1 h
i is

a chain homotopy from C(f•) // C(g•).
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Proof. The proof is the computation:

d ◦ h =
n+1∑
i=0

(−1)id i ◦
n∑
j=0

(−1)jhj =
n+1∑
i=0

n∑
j=0

(−1)i+jd i ◦ hj

=
n+1∑
i=2

i−2∑
j=0

(−1)i+jd i ◦ hj +
n+1∑
i=1

(−1)2i−1d i ◦ hi−1 +
n∑
i=0

(−1)2id i ◦ hi

+
n+1∑
i=0

n∑
j=i+1

(−1)i+jd i ◦ hj

=
n+1∑
i=2

i−2∑
j=0

(−1)i+jhj ◦ d i−1 +
n−1∑
i=0

n∑
j=i+1

(−1)i+jhj−1 ◦ d i

−
n∑
i=1

d i ◦ hi−1 − dn+1 ◦ hn + d 0 ◦ ho +
n∑
i=1

(−1)2id i ◦ hi

= fn − gn +
n∑
i=1

i−1∑
j=0

(−1)i+j+1hj ◦ d i +
n−1∑
i=0

n−1∑
j=i

(−1)i+j+1hj ◦ d i

= fn − gn −
n∑
i=0

n−1∑
j=0

(−1)i+jhj ◦ d i

= fn − gn − h ◦ d

4.3. Corollary. If A = A• is a contractible augmented simplicial
object in an abelian category, then CA is a contractible simplicial set.

Proof. For it is then homotopic to a constant simplicial set and it is
obvious that the chain complex associated to a constant simplicial set
is contractible.

4.4. Exercise

1. A simplicial object is called constant if every object is the same
and all faces and degeneracies are the identity arrow. Calculate the
associated chain complex of a constant simplicial object in an abelian
category.
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5. The Dold-Puppe theorem

In [1961], A. Dold and D. Puppe published a theorem that states that if
A is an abelian category, then the category of chain complexes in A is
equivalent to that of simplicial objects of A . In fact, their hypotheses
are even too strong. All that is needed is an additive category with split
idempotents. Although we will not prove their theorem (it is really not
relevant to the subject at hand), the basic construction is interesting and the
reader who wants the full proof can refer to the original paper. The functor
used is not C, but either of two isomorphic, but quite distinct functors that
we will call C and C, either of which we will call the normalized chain
complex associated with a simplicial object. If A• is a simplicial object,
define Cn(A•) =

⋂n
i=1 ker(d in) ⊆ An. This is made into a chain complex

using the restriction of d0. It turns out to be a subcomplex of C(A•) since the
remaining terms in the sum defining the boundary vanish on this subobject.
We let Cn(A) be the quotient of An/

∨n−1
i=0 im(sin−1) (the sum—non-direct—

of the images of the degeneracies). The boundary is induced by that of
C(A•). Then the Dold-Puppe theorem asserts that the composite C(A•)

// C(A•) // C(A•) is an isomorphism and the isomorphic functors C
and C induce an equivalence of categories.

The way to see you need only split idempotents is as follows. The kernel
of d i is easily seen to be the kernel of si−1 ◦ d i and that is idempotent.
(It is also the kernel of the idempotent si ◦ d i, but we cannot use that one
because a choice was made to use

⋂n
i=1 ker(d i) in the definition of C. We

could equally well have used
⋂n−1
i=0 ker(d i) with boundary (−1)ndn.) But

the kernel of an idempotent e in an additive category is the image of the
idempotent 1 − e so that in an additive category with split idempotents,
idempotents have kernels.

We have to work a bit harder to get the intersection of the kernels,
since these idempotents do not commute. The relevant facts are these. Let
ei = si−1 ◦ d i. Then ei commutes with ej provided |i − j| ≥ 2. While
ei does not commute with ei+1, they satisfy the identities ei ◦ ei+1 ◦ ei =
ei+1 ◦ ei ◦ ei+1 = ei+1 ◦ ei. Let ci = 1− ei. Again ci commutes with cj when
|i− j| ≥ 2, while ci ◦ ci+1 ◦ ci = ci+1 ◦ ci ◦ ci+1 = ci ◦ ci+1. Note the left/right
reversal here. It then follows that c1 ◦ c2 ◦ · · · ◦ cn is idempotent and the
image of that idempotent is exactly Cn.

The story of C is similar; the image is si is the same as the image of the

idempotent ei and the braided commutation identities allow the sum of the

images to be realized as the image of a single idempotent.



112 3. CHAIN COMPLEXES AND SIMPLICIAL OBJECTS

6. Double complexes

By a bigraded object of A , we mean a Z × Z indexed family Anm
of objects. This will often be denoted A••. A family of morphisms
fnm:Anm // An+km+l is said to have bidegree (k, l). A differential
bigraded object we mean a bigraded object with two differentials
dI and dII of bidegrees (k, 0) and (0, l), respectively, that satisfy, in
addition to dI ◦dI = 0 and dII ◦dII = 0, the equation dI ◦dII = −dII ◦dI.
Although d = dI + dII does not preserve the grading, it is trivial to see
that d ◦ d = 0, a fact we will need later.

A morphism of differential bigraded objects

f : (A′••, d
′ I, d′ II) // (A••, d

I, d′ II)

is a morphism of bidegree (0, 0) of the bigraded objects that commutes
with both boundary operators.

A sequence of morphisms of (differential) bigraded objects

(A′••, d
′ I, d′ II)

f
// (A••, d

I, dII)
g
// (A′′••, d

′′ I, d′′ II)

is exact if for each n, m the sequence A′nm
fnm // Anm

gnm // A′′nm
is exact. We similarly define a short exact sequence of (differential)
graded objects.

Now suppose that A = (A••, d
I, dII) is a differential bigraded object

in which k = l. In that case there is associated a differential graded
object called the total differential graded object. This object T (A) has
in degree n the direct sum Tn(A) =

∑
i+j=nAij. For the differential,

let a = (. . . , ai−1 j+1, aij, ai+1 j−1, . . .) be an element of Tn(A). Then
da = aI + aII where

aI = (. . . , dIai−1 j+1, d
Iaij, d

Iai+1 j−1, . . .)

and
aII = (. . . , dIIai−1 j+1, d

IIaij, d
IIai+1 j−1, . . .)

Of course, in the element dIaij lives in bidegree (i + k, j), while dIIaij
is in bidegree (i, j + k), but they are both in Tn+k(A).

The cases we are interested in will be those for which k = l =
±1. A double chain complex is a differential bigraded object whose
differentials have bidegrees (−1, 0) and (0,−1) and, moreover, there
are integers n0 and m0 for which Anm = 0 unless n ≥ n0 and m ≥ m0.
In this case, the total complex will have Tn(A) = 0 for n < n0 +m0, so
it will be a chain complex. Similarly, a double cochain complex is
a differential bigraded object whose differentials have bidegrees (+1, 0)
and (0,+1) and, moreover, there are integers n0 and m0 for which
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Anm = 0 unless n < n0 and m ≤ m0. In this case, the total complex
will have Tn(A) = 0 for n > n0 +m0, so it will be a cochain complex.

In the case that k = l = −1, we will usually denote the two bound-
ary operators by dI and dII and if k = l = 1, we will usually denote
them by δ I and δ II.

The way to picture a double chain complex is to imagine m0 = n0 =
0 (which is often the case) and the non-zero objects are situated at the
lattice points in the first quadrant. The first boundary operator maps
Anm to An−1m and so can be thought of as arrows going to the left in
each row and the second boundary operator can similarly be thought
of as arrows going down. When n or m is non-zero, then the picture is
similar, it just does not exactly fit into or fill out the quadrant.

If A is a double chain complex, we write H•(A) for the homology
of the total complex T•(A).

6.1. Homology of double complexes. Let us say that a double
differential object is an object A with two anticommuting differentials
dI and dII so that D = dI +dII is a differential. It would not be utterly
astonishing (although it would be false, see the examples below) if it
turned out that a double differential object was exact if both differen-
tials were. It is rather a surprise, however, that the total complex of a
double complex is already exact if just dI (or dII) is.

We begin with,

6.2. Proposition. Suppose

0 // A′
f
// A

g
// A′′ // 0

is a short exact sequence of double chain complexes. Then there is an
exact homology sequence

· · · Hn(A′)// Hn(A′) Hn(A)
Hn(f)

// Hn(A) Hn(A′′)
Hn(g)

// Hn(A′′)

Hn−1(A′)

Dn

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Hn−1(A′) Hn−1(A)
Hn−1(f)

// Hn−1(A) Hn−1(A′′)
Hn−1(g)

// Hn−1(A′′) · · ·//

is exact.

Proof. There is just one subtlety here. The object Tn(A) is the sum
of all the Aij for which i + j = n. There are only finitely many such
because there are integers m0 and n0 with Aij = 0 unless i ≥ m0 and
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j ≥ n0. The same is true of A′ and A′′. Thus the sequence

0 // Tn(A′) // Tn(A) // Tn(A′′) // 0

is the sum of only finitely many exact sequences and it is a standard
property of abelian categories that a finite sum of exact sequences is
exact.

6.3. Theorem. Suppose that A = (A••, d
I, dII) is a double complex

and that dI is exact. Then the total complex is also exact.

Proof. We will suppose for simplicity that the lower bounds m0 =
n0 = 0. Thus we will think of the double complex as living in the first
quadrant. Let Fn(A) denote the double complex truncated above the
nth row. That is, Fn(A) is the double complex whose (i, j)th term is
Aij for j ≤ n and is 0 when j > n. Since both dI and dII go down to
lower indices, Fn(A) is a subcomplex of A. Also for m < n, Fm(A) is a
subcomplex of Fn(A). Let Rn(A) be the nth row of A. That is, Rn(A)
is the double complex that has Ain in bidegree (i, n) and all other terms
are 0. The boundary operator is the restriction of dI. Except for n = 0,
it is not a subcomplex of A. However, there is an exact sequence

0 // Fn−1(A) // Fn(A) // Rn(A) // 0

Our hypothesis that dI is exact implies that Rn(A) is exact for all n.
The exact homology triangle then implies that the induced

H•(Fn−1(A)) // H•(Fn(A))

is an isomorphism. Since F0(A) = R0(A), this implies that H•(Fn(A))
is identically 0 for all n. But the computation of Hn(A) uses only terms
of total degree n − 1, n, and n + 1, which are all in Fn+1(A) so that
the inclusion Fn+1(A) // A induces an isomorphism Hn(Fn+1(A))

// Hn(A). Since the left hand side is 0, so is the right hand side.

6.4. Corollary. Suppose A = (A••, d
I, dII) is a double chain complex

with Amn = 0 for n < −1 or m < −1. Suppose for each n ≥ 0
the single complex (A•n, d

I) is acyclic and for each m ≥ 0, the single
complex (Am•, d

II) is acyclic. Then the chain complexes (A•−1, d
I) and

(A−1 •, d
II) are homology equivalent.

Proof. Let B denote the double complex in which all the terms Amn
with m = −1 or n = −1 are replaced by 0 and otherwise nothing is
changed. Although B is not a subcomplex of A it is a quotient complex.
Let B1 denote the complex in which all the terms Amn with n = −1
have been replaced by 0 and B2 denote the complex in which all the
Amn with m = −1 have been replaced by 0. Let C1 = (A•−1, d

I) and
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C2 = (A−1 •, d
II). These are single complexes, but we treat them as

double complexes with all other terms 0 for the purposes of this proof.
There are exact sequences

0 // C1
// A // B1

// 0

0 // C2
// A // B2

// 0

Moreover, the hypotheses state that B1 is acyclic with dI as boundary
and that B2 is acyclic with dII as boundary and therefore B1 and B2 are
acyclic and therefore that both C1

// A and C2
// A are homology

equivalences and therefore C1 is homology equivalent to C2.

6.5. Proof of 2.5.9. We are now ready to prove that the definitions
of Ext and Tor are independent of resolutions and also that Ext can
be defined by an injective resolution of the second argument. We deal
first with Ext. Given left modules N and M , let P• // N // 0 be
an exact sequence such that P• is a projective resolution of N and let
0 // M // Q• be an exact sequence such that Q• is an injective
resolution of M . Form the double cochain complex A = (Amn, d

I, dII)
defined by

Amn =


HomR(Pm, Qn), if m ≥ 0 and n ≥ 0
HomR(Pm,M), if m ≥ 0 and n = −1
HomR(N,Qn), if m = −1 and n ≥ 0
0, otherwise

The complex for n ≥ 0 is

0 // HomR(N,Qn) // HomR(P0, Qn) // HomR(P1, Qn) // · · ·
and is acyclic since hom into an injective is an exact functor. Similarly,
the complex for m ≥ 0 is

0 // HomR(Pm,M) // HomR(Pm, Q0) // HomR(Pm, Q1) // · · ·
which is acyclic since hom out of a projective is an exact functor. The
complexes on the edges are

0 // HomR(P0,M) // HomR(P1,M) // · · ·
0 // HomR(N,Q0) // HomR(N,Q1) // · · ·

whose homology groups correspond to the two definitions of Ext given
in the preceding chapter.

But we can also conclude that the Ext defined by using any projec-
tive resolution of M is the same as that using Q and so any projective
resolution of M gives the same value of Ext. A similar argument im-
plies that any injective resolution of N also gives the same value to
Ext.
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The argument for Tor is similar. Now suppose that M is a right
module and N a left module. Let P• // M // 0 and Q• // N

// 0 be flat resolutions of M and N , resp. Form the double complex
that has Pn ⊗Qm in bidegree n,m, for n,m ≥ −1. The flatness of the
Pn and Qm for n,m ≥ 0 implies that all the rows except the (−1)st
and all the columns except the (−1)st are exact and so the −1st row
and column are homologous. As above, this shows that you can resolve
either variable and the value of Tor is independent of the resolution.

6.6. Two examples. The first example shows that a double differ-
ential object in which both differentials are exact need not be exact.
Let (A, d) be any exact complex with A 6= 0. Then (A,−d) is also
exact and d(−d) = −(−d)d = 0, while (A, d− d) is not exact.

The second example is due to Rob Milson. It is a double differential
graded group in which each row and column is exact and has only
finitely many non-zero terms, but it does not fit in one quadrant and
the total complex is not exact. Define Aij for all i, j ∈ N as follows.

Aij =
{
Z if i = −j or i = −j + 1
0 otherwise

In one direction, the only non-zero boundary operator is dI = id:Ai+1,−i
// Ai,−i while in the other direction we use dII = −id:Ai+1,−i //

Ai+1,−i−1. This is acyclic in both directions, since each such complex
looks like

· · · // 0 // Z // Z // 0 // · · ·
with either id or −id for the arrow. The total complex is

· · · // 0 // A1
// A0

// 0 // · · ·
where both A0 and A1 are the direct sum of a Z-indexed family of
copies of Z. The boundary is D = dI + dII. Then if we let (a)1

i denote
the element a ∈ Ai,−i+1 and (a)0

i denote the element a ∈ Aii, we have
dI((a)1

i+1) = (a)0
i and dII((a)1

i+1) = −(a)0
i+1 so that

D((a)1
i+1) = (a)0

i − (a)0
i+1

We claim that D:A1
// A0 is not surjective while D:A0

// 0 is 0,
so that the total complex is not exact. To see this, let s:A0

// Z be
the sum of the coordinates function. Clearly s ◦D = 0 so it is sufficient
to observe that s 6= 0, which is obvious.

6.7. Exercise

1. A chain complex in the category of chain complexes is almost a
double chain complex object except that the squares commute instead



7. DOUBLE SIMPLICIAL OBJECTS 117

of anticommute. Show that given such a chain complex of chain com-
plexes, there is at least one way of negating some of the boundary maps
so that you get instead a double chain complex.

7. Double simplicial objects

7.1. definition. If X is a category, then an object of Simp(Simp(X ))
is called a double simplicial object of X . It consists of a doubly
indexed family Xnm, n ≥ 0, m ≥ 0, arrows d i:Xnm

// Xn−1m and
si:Xnm

// Xn+1m for 0 ≤ i ≤ n and arrows ∂ j:Xnm
// Xnm−1

and σj:Xnm
// Xnm+1 for 0 ≤ j ≤ m. In addition both directions

must satisfy the simplicial identities separately and all the horizontal
arrows commute with all vertical arrows, which is to say that all such
commutation identities as d i ◦ ∂ j = ∂ j ◦ d i, as well as three similar
kinds, must hold.

7.2. The diagonal object. If X = X•• together with all the requi-
site faces and degeneracies is a double simplicial object, the diagonal
simplicial object is simply the simplicial object that has Xnn in de-
gree n. The ith face operator is ∂ i ◦ d i = d i ◦∂ i and the ith degeneracy
is similarly σi ◦ si = si ◦ σ. The commutation laws imply that this
gives a simplicial set, called the diagonal simplicial set, which we
will denote by ∆X. There is an associated chain complex that has Xnn

in degree n and whose boundary operator is given by
∑

(−1)id i∂ i. Let
us call the functor so defined K•.

7.3. The double complex. On the other hand, there is a double
complex associated to each double simplicial set in an abelian cate-
gory. Or rather, there are many, as we will see. If we take a double
simplicial set A = A••, then form the doubly graded object that has
Anm in bidegree nm with two boundary operators dI =

∑
(−1)id i and

dII =
∑

(−1)i∂ i. There is a slight problem with this since if we take
this definition, the squares will commute rather than anticommute as is
necessary for a double simplicial object. There are many—uncountably
many—ways of assigning minus signs to some of the arrows so that
every square gets either one or three of them and winds up anti-
commuting (see Exercise 1). One way is to define dII

n =
∑

(−1)n+i∂ in so
that all boundary operators in the odd numbered columns are negated.
To be perfectly definite, let us make that change and call the resultant
double complex LA, which is clearly functorial in A. Then we can
form the single complex TLA (previous section). Thus we have two



118 3. CHAIN COMPLEXES AND SIMPLICIAL OBJECTS

functors, K and TL that turn a double simplicial object into a chain
complex. Remarkably, they are homotopic (see 7.4). This is even more
surprising for the fact that, for example, an element in Ann appears in
KA with degree n and in TLA with degree 2n. Nonetheless, simplicial
sets are so tightly bound that the two constructions are homotopic.

8. Homology and cohomology of a morphism

Suppose X is a category with a chain complex functor C•. If f :X //

Y is an arrow in X we let C•(f :X // Y ) denote the mapping cone of
C•f :C•X // C•(Y ). This means that Cn(f :X // Y ) = Cn(Y ) ⊕

Cn−1(X). The boundary operator has the matrix

(
d f
0 −d

)
. If f is

understood, we will write C•(Y,X), by analogy with the notation used
in algebraic topology, of which this is a generalization. Now suppose
that g:Y // Z is another map in X . Consider the sequence

0 // CnY ⊕ Cn−1X

−g 0
0 1
1 0
0 f


// CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y(

1 0 g 0
0 −f 0 1

)
// CnZ ⊕ Cn−1Y // 0

in which the boundary of the middle object is d −gf 0 0
0 −d 0 0
0 0 d 1
0 0 0 −d


Then one can check by a direct computation that the horizontal arrows
are maps of chain complexes. Exactness of the sequence is readily
proved using the arrows(

0 0 1 0
0 1 0 0

)
:CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y // CnY ⊕ Cn−1X

and 1 0
0 0
0 0
0 1

 :CnZ ⊕ Cn−1Y // CnZ ⊕ Cn−1X ⊕ CnY ⊕ Cn−1Y
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The end terms are the nth terms of C•(Y,X) and C•(Z, Y ), respec-
tively, while the middle term is the direct sum of the mapping cone
of C•(Z,X) (with a change of sign, which is irrelevant) and that of
C•(Y, Y ). Since the latter is the mapping cone of the identity functor
and is therefore contractible, the result is the exact sequence of pairs

· · · // Hn+1(Z, Y ) // Hn(Y,X) // Hn(Z,X) // Hn(Z, Y ) // Hn−1(Y,X) // · · ·



CHAPTER 4

Triples à la mode de Kan

1. Triples and cotriples

1.1. Definition of triple. Let C be a category. A triple T =
(T, η, µ) on C consists of an endofunctor T : C // C and natural
transformations η: Id // T and µ:T 2 // T for which the following
diagrams commute.

T T 2
Tη

//T

T

=

""DDDDDDDDDDDDDDD T 2 Too
ηT

T 2

T

µ

��

T

T

=

||zzzzzzzzzzzzzzz

T 2 Tµ
//

T 3

T 2

µT

��

T 3 T 2
Tµ

// T 2

T

µ

��

The two natural transformations are called the unit and the multi-
plication of the triple, respectively. The three diagrams that commute
are called the left and right unit and associativity laws. The reason for
these names comes from examples such as the following.

1.2. An example. Let R be a ring (associative with unit). There is
a triple T = (T, η, µ) on the category Ab of abelian groups for which
T (A) = R ⊗ A, ηA:A // R ⊗ A is defined by ηA(a) = 1 ⊗ a and
µA(r1 ⊗ r2 ⊗ a) = r1r2 ⊗ a.

1.3. Another example. Here is a simple example of a rather dif-
ferent nature. Let T be a functor on the category of sets that adds one
element to each set. We can write T (S) = S ∪ {S}. If f :S // S ′,
then define T (f):T (S) // T (S ′) by

Tf(s) =
{
f(s) if s ∈ S
S ′ if s = S

Then T is readily seen to be a functor. Let ηS:S // T (S) be the
inclusion and define µS:T 2(S) = S ∪ {S} ∪ {T (S)} // T (S) by

µS(s) =

{
s if s ∈ S
S if s = S or s = T (S)

120
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Many of the triples that arise in nature are shown to be triples by
using the following result.

1.4. Theorem. Suppose that F : C // B is left adjoint to U : B
// C . Suppose η: Id // UF and ε:FU // Id are the unit and

counit, respectively, of the adjunction. Then (UF, η, UεF ) is a triple
on C .

Proof. We have

µ ◦ Tη = UεF ◦ UFη = U(εF ◦ Fη) = U(id) = id

and
µ ◦ ηT = UεF ◦ ηUF = id

Finally, we have,

µ ◦ Tµ = UεF ◦ UFUεF = U(εF ◦ FUεF )

= U(εF ◦ εFUF ) = UεF ◦ UεFUF = µ ◦ µT

The interesting step here is the fourth, which is an instance of the
naturality law

A B
f

//

FUA

A

εA

��

FUA FUB
FUf

// FUB

B

εB

��

with B = F (really an instance of F ), A = TF , and f = εF .

1.5. Yet another example. Armed with this theorem, we can now
write down as many triples as we like. For example, the free group
triple on sets comes from the adjunction between the underlying set
functor on groups and its left adjoint the free group functor. The
endofunctor on Set assigns to each set S the underlying set of the free
group generated by S, which is to say the set of all words (including
the empty word) in the elements of S and their inverses, reduced by
the equations wss−1w′ = ws−1sw′ = ww′, for arbitrary words w and
w′. The unit of the triple takes an element of the set to the singleton
word. The multiplication takes a word made up of words and reinter-
prets it as a word. For example, let us write 〈a〉 for the element ηS(a)
corresponding to a ∈ S. Then a typical word in T (S) might look
like 〈a〉〈b〉−1〈c〉. And µS applied to 〈〈a〉〈b〉−1〈c〉〉〈〈c〉−1〈d〉−1〈e〉〉〈〈f〉〉
produces the word 〈a〉〈b〉−1〈c〉〈c〉−1〈d〉−1〈e〉〈f〉 = 〈a〉〈b〉−1〈d〉−1〈e〉〈f〉.
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One point to note is that the associativity law does not merely corre-
spond to the associativity law of group multiplication, but to the entire
set of equations that groups satisfy. Indeed, there are similar triples
involving free non-associative structures.

1.6. Cotriples. A cotriple in a category B is a triple in Bop. Thus
G = (G, ε, δ) (this is standard notation) is a cotriple in B if G is an
endofunctor of B, and ε:G // Id, δ:G // G2 are natural trans-
formations satisfying the duals to the diagrams of 1.1 above. (Thus a
cotriple is the opposite of a triple, not the dual of a triple. The dual of
a triple—in other words, a triple in Catop—is a triple.)

1.7. Proposition. Let U : B // C have a left adjoint F : C // B
with adjunction morphisms η: Id // UF and ε:FU // Id. Then
G = (FU, ε, FηU) is a cotriple on C .

Proof. This follows from Theorem 1 and the observation that U is left
adjoint to F as functors between Bop and C op with unit ε and counit
η.

1.8. Exercises

1. Show that the example of 1.2 satisfies the equations to be a triple.

2. Show that the example of 1.3 satisfies the equations to be a triple.

3. Verify the associative law in the case of the example of 1.5. (Hint:
Prove and make use of the fact that instances of µ are “really” group
homomorphisms.)

4. Consider the category N whose objects are the natural numbers
and there is a unique morphism n // m if and only if n ≤ m. Let
T :N // N be the functor defined by

T (n) =
{
n if n is even
n+ 1 if n is odd

so that T (n) is least even number ≥ n. Show that there is a unique η
and µ that makes (T, η, µ) into a triple.

5. Dually, there is a cotriple (G, ε, δ) on N in which G(n) is the greatest
odd number ≤ n. Show that G is left adjoint to T .

6. Let P denote the functor from Set to Set which takes a set to its
powerset and a function to its direct image function (Section 1.2). For
a set X, let ηX take an element of X to the singleton containing x,
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and let µX take a set of subsets of X (an element of PX) to its union.
Show that (P, η, µ) is a triple in Set.

7. Let R be any commutative ring. For each set X, let TX be the set
of polynomials in a finite number of variables with the variables in X
and coefficients from R. Show that T is the functor part of a triple (µ
is defined to “collect terms”).

8. An ordered binary rooted tree (OBRT) is a binary rooted tree
(assume trees are finite in this problem) which has an additional linear
order structure (referred to as left/right) on each set of siblings. An
X-labeled OBRT (LOBRT/X) is one together with a function from
the set of terminal nodes to X. Show that the following construction
produces a triple in Set: For any set X, TX is the set of all isomorphism
classes of LOBRT/X. If f :X // Y , then Tf is relabelling along f
(take a tree in TX and change the label of each node labeled x to
f(x)). ηX takes x ∈ X to the one-node tree labeled x, and µX takes
a tree whose labels are trees in TX to the tree obtained by attaching
to each node the tree whose name labels that node.

9. Let B be the category of sets with one binary operation (subject to
no conditions) and functions which preserve the binary operation.

(a) Show that the triple of Exercise 8 arises from the underlying
set functor B // Set and its left adjoint.

(b) Give an explicit description of the cotriple in B induced by the
adjoint functors in (a).

10. (a) Give an explicit description of the cotriple in Grp induced by
the underlying set functor and the free group functor.

(b) Give an explicit description of the model induced cotriple in
Grp when M consists of the free group on one generator. (Recall that
the sum in the category of groups is the free product.)

(c) Show that these cotriples are naturally equivalent.

11. Let M be a monoid and G = Hom(M,−): Set // Set. If X is a
set and f :M // X, let εX(f) = f(1) and [δX(f)](m)(n) = f(mn)
for m,n ∈ M . Show that δ and ε are natural transformations making
(G, ε, δ) a cotriple in Set.

12. Show that if T is any triple on C and A is an object of C, and
there is at least one mono A // TA, then ηA is monic. (Hint: If
m is the monic, put Tm into a commutative square with η and use a
unitary identity.)
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2. Model induced triples

2.1. Other sources of triples. Not all triples arise from adjunc-
tions. More precisely (since there is a theorem due to Kleisli [1965]
and to Eilenberg and Moore [1965] that states that all triples do arise
from adjunctions), there are other ways of getting triples besides using
adjoints. Here is a very important example of a class of triples that do
not naturally arise from an adjunction.

Let C be a category with arbitrary products and suppose that M is
a set of objects of C . Define T (C) =

∏
M∈M

∏
C //M M . This means

that T (C) consists of the product of one copy of M corresponding to
each M ∈ M and to each arrow C // M . Another way of writing
this is T (C) =

∏
M∈M MHom(C,M). For u:C // M , let 〈u〉:T (C)

//M denote the projection on the product corresponding to u. The
universal mapping property of products implies that an arrow into
T (C) is determined and uniquely by specifying its composite with each
〈u〉. We use this observation first off to say how T is a functor. For
f :C ′ // C, we define T (f):T (C ′) // T (C) by 〈u〉 ◦ T (f) = 〈u ◦ f〉
for u:C //M , M ∈M . If also g:C ′′ // C ′ is an arrow, then

〈u〉 ◦ T (f ◦ g) = 〈u ◦ f ◦ g〉 = 〈u ◦ f〉 ◦ T (g) = 〈u〉 ◦ T (f) ◦ T (g)

for any u:C // M and M ∈ M , whence by the universal mapping
property of products, we conclude that T (f ◦ g) = T (f) ◦T (g). We can
now define η by the formula 〈u〉 ◦ ηC = u and µ by 〈u〉 ◦ µC = 〈〈u〉〉.
To interpret the latter, we note that the projection 〈u〉:T (C) // M
is an arrow and corresponding to it is 〈〈u〉〉:T 2(C) //M . Of course,
there are usually other arrows from T (C) to objects in M in general.

Now we prove the various laws. For u:C //M , we have that

〈u〉 ◦ µC ◦ ηTC = 〈〈u〉〉 ◦ ηTC = 〈u〉
since the effect of η is to remove the (outermost) brackets. It follows
that µC ◦ ηTC = id. We also have

〈u〉 ◦ µC ◦ TηC = 〈〈u〉〉 ◦ TηC = 〈〈u〉 ◦ ηC〉 = 〈u〉
from which it follows that µC ◦ TηC = id. Finally, the associativity is
shown by

〈u〉 ◦ µC ◦ µTC = 〈〈u〉〉 ◦ µTC = 〈〈〈u〉〉〉
while

〈u〉 ◦ µC ◦ TµC = 〈〈u〉〉 ◦ TµC = 〈〈u〉 ◦ µC〉 = 〈〈〈u〉〉〉
This triple is called a model induced triple and M is the set of

models. This construction can be generalized to allow M to be an
arbitrary small subcategory of C or indeed replaced by an arbitrary
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functor into C with small domain, see Exercise 1. In this book, we
require only this version of the construction.

2.2. Model induced cotriples. There are also, of course, model
induced cotriples. If M is a set of objects in a category with sums,
then there is a cotriple G = (G, ε, δ) as follows:

GC =
∑
M∈M

∑
M //C

C

If [u]:M // GC is the element of the sum corresponding to u:M
// C, then εC:GC // C is the unique arrow such that εC ◦ [u] = u

and δC:GC // G2C is the unique arrow such that δC ◦ [u] = [[u]].

2.3. Exercises

1. Generalize the results of 2 as follows. Let M be a small category
and I: M // C a functor. Define, for C an object of C ,

TC = lim
C //IM

IM

That is, TC is the limit of the diagram whose nodes are arrows u:C
// IM and for which an arrow from u:C // IM to u′:C // IM ′

is an arrow α:M //M ′ such that Iα ◦u = u′. Extend T to a functor
and define η and µ so that (T, η, µ) is a triple that reduces to the
construction of 2 when M is the discrete category consisting of a set
of objects of C and I is the inclusion.

3. Triples on the simplicial category

A very simple triple can be described as follows. It is convenient to work
in the category of augmented simplicial sets. So suppose X // X−1

is an augmented simplicial set. Let GX // (GX)−1 be the simplicial
set described by (GX)n = Xn+1, (GX)−1 = X0, face operators (Gd)in =
d i+1
n+1 and degeneracies (Gs)in = si+1

n+1. Then d 0
n+1: (GX)n = Xn+1

//

Xn defines a simplicial map. In fact, the simplicial identities d 0 ◦d i+1 =
d i ◦ d 0 for all i ≥ 0 and d 0 ◦ si+1 = si ◦ d 0 say exactly that. This is the
map we call εX:GX // X. We also note that s0

n+1: (GX)n = Xn+1
// Xn+2 = (G2X)n is the nth component of a simplicial map. This

comes down to the simplicial identities s0 ◦d i = d i+1 ◦s0 and s0 ◦si+1 =
si+2 ◦ s0 for i > 0. This is the map δX:GX // G2X.
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3.1. Theorem. The maps εX and δX are components of natural
transformations and G = (G, ε, δ) is a cotriple on Simp(X ).

Proof. The naturality is easy and is left to the reader. The identities
d 0 ◦s0 = d 1 ◦s0 = id imply, respectively, that Gε◦δ = id and εG◦δ = id.
The reason is that applying G to ε changes only the lower index, not
the upper, while εGX is the 0th face of GX, which is d 1. The identity
s0 ◦ s0 = s1 ◦ s0 similarly implies Gδ ◦ δ = δG ◦ δ.

Finally, we observe the most important property of GX.

3.2. Theorem. The augmented simplicial object GX is contractible.

Proof. Let s = s0: (GX)n = Xn+1
// Xn+2 = (GX)n+1. The equa-

tions d 1 ◦ s0 = id, d i+1 ◦ s0 = s0 ◦ d i for i > 0 and si+1 ◦ s0 = s0 ◦ si for
i ≥ 0 give the result.

We will call this the path cotriple since it is the simplicial version
of the following cotriple on the category of locally connected locally
pointed spaces. These are locally connected spaces for which a base
point has been chosen in each component. This is analogous to aug-
mented simplicial objects since the augmentation corresponds to fixing
a point in each component (in the contractible case). Now consider
the subset, we will call it I −−◦X, of the continuous maps of the unit
interval I to the space X consisting of those maps f for which f(0)
is the base point. This is topologized by the compact/open topology.
The map H: I × I −−◦X // I −−◦X, defined by H(s, f)(t) = f(st)
is a homotopy between the identity and the discrete set of base points,
thus a contraction to the set of components.

3.3. Double simplicial objects. On the category of double aug-
mented simplicial objects over X , we could apply the path cotriple to
either the rows or columns of a double complex. Let us define cotriples
GI and GII by GI(X••)mn = Xm+1n and GII(X••)mn = Xmn+1. Of
course, the appropriate definitions have to be given for the face and
degeneracy operators, but these are obvious from the definition of G.
It is also obvious that GI commutes with GII to give a total cotriple
GT whose functor is GI ◦ GII = GII ◦ GI. The image of GT includes
double augmented simplicial objects that are contractible in both rows
and columns.
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4. Historical Notes

Adjoints were originated by Daniel Kan in [1958]. Triples were dis-
covered by Claude Chevalley in [1959]. He called his “The standard
construction” and it seems likely that this term was meant only to be
descriptive. But various people used the term substantively, including,
for example, Peter Huber who used “standard constructions” in his
Ph. D. dissertation in [1960] and proved that every adjoint pair gives
rise to a triple. He once told me that the reason he proved this the-
orem was that they (this presumably referred to him and his advisor,
Beno Eckmann) had had a lot of trouble proving the associative rule
for various triples and it occurred to them that they always did seem
to come from adjoint pairs. They wondered if this was a general phe-
nomenon and Huber proved that it was and that the associativity was
then automatic. Heinrich Kleisli later showed [1965] that, conversely,
every triple came from an adjoint pair. Samuel Eilenberg and John
Moore also proved that converse using a construction that almost al-
ways gives a category different from that of Kleisli in [1965]. Eilenberg
and Moore also invented the name “triple” by which they are known
today, at least to some of us. At lunch one day in Oberwohlfach in the
summer of 1966, Jean Bénabou suggested calling them “monads” and
this term is in wide use today.



CHAPTER 5

The main acyclic models theorem

In this chapter, we develop the machinery necessary to state the
main acyclic models theorem of which the various versions we use are
special cases. The first thing we do is introduce the idea of an abstract
class of acyclicity. This definition, as currently formulated, requires
that we are dealing with a class of chain complexes. Cochain com-
plexes also make sense, being chain complexes in the dual category.
But ungraded complexes (or doubly infinite complexes) do not seem to
work.

A word about notation should be inserted here. Till now, it has
not mattered if the differential objects was graded. In this chapter, it
definitely matters. We often denote by K• the chain complex

· · · // Kn
// Kn−1

// · · · // K1
// K0

// 0

and by f•:K• // L• a chain map between such complexes.

1. Acyclic classes

In this definition, C = CC(A ) is the category of chain complexes of an
abelian category A .

1.1. Acyclic classes. A class Γ of objects of C will be called an
acyclic class provided:

AC–1. The 0 complex is in Γ.
AC–2. The complex C• belongs to Γ if and only if SC• does.
AC–3. If the complexes K• and L• are homotopic and K• ∈ Γ, then

L• ∈ Γ.
AC–4. Every complex in Γ is acyclic.
AC–5. If K•• is a double complex, all of whose rows are in Γ, then

the total complex of C• belongs to Γ.

Of these conditions, the first two are routine, the third says the
class is closed under homotopy, which implies, among other things,
that every contractible complex belongs to Γ. The fourth says that
every complex in Γ is acyclic. But the real heart of the definition is

128
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the fifth condition. This is the one that does not seem to have an
obvious generalization to the ungraded case. One cannot strengthen
this condition to one involoving arbitrary (or even countable) filtered
colimits since all the cohomology examples would fail; filtered colimits
are not exact in the category Abop.

Before studying the properties of acyclic classes, we give some ex-
amples.

1.2. Acyclic complexes. Let Γ consist of the acyclic complexes.
AC–1, 2, 3 and 4 are obvious, while 5 is an immediate consequence
of 2.6.3.

1.3. Contractible complexes. Let Γ consist of the contractible
complexes. AC–1, 2 and 4 are obvious. To see AC–3, suppose that
f :K• // L• and g:L• // K• are chain maps and s:K• // K•
and t:L• // L• are maps such that 1 = ds+ sd and 1− fg = dt+ td.
The first of these equations says that K• is contractible and the second
that fg is homotopic to the identity. We could also suppose that gf is
homotopic to the identity, but that turns out to be unnecessary. For
already we have:

d(t+ fsg) + (t+ fsg)d = dt+ td+ f(ds+ sd)g = 1− fg + fg = 1

so that t+ fsg is a contracting homotopy for L•.
To prove AC–5, suppose that we are given a double complex Kmn,

with Kmn = 0 for m < 0 or n < 0. The actual lower bounds make no
real difference, but is just a convenience. In order to avoid ugly super-
scripts that make things harder to read, we will denote one boundary
operator by d:Kmn

// Kmn−1 and the other by ∂:Kmn
// Km−1n

and assume that d∂ = −∂d. Suppose that for each m and n, there is a
map s:Kmn

// Kmn+1 that satisfies ds+ sd = 1. The total complex
has, in degree n, the direct sum Ln =

∑n
i=0Ki n−i and is 0 when n < 0.

The boundary operator D:Ln // Ln−1 has the matrix
d ∂ 0 · · · 0 0
0 d ∂ · · · 0 0
0 0 d · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · d ∂


For the rest of this proof, we will use S not for suspension, but for a
contracting homotopy in the double complex, which we now define in
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degree n as a map S:Ln // Ln+1 with the matrix
s −s∂s s∂s∂s · · · (−1)ns(∂s)n

0 s −s∂s · · · (−1)n−1s(∂s)n−1

...
...

...
. . .

...
0 0 0 · · · s
0 0 0 · · · 0


Direct matrix multiplication shows that SD +DS is upper triangular
and has sd+ ds = 1 in each diagonal entry (including the last, since in
that case the sd = 0 so that ds = 1). In carrying that out, it is helpful
to block D into an upper triangular matrix and a single column and S
into an upper triangular matrix and a single row of zeros. In order to
see that SD +DS = 1, we must show that the above diagonal entries
vanish. First we claim that for i > 0, ds(∂s)i = (∂s)i + (s∂)ids. In
fact, for i = 1,

ds∂s = (1− sd)∂s = ∂s− sd∂s = ∂s+ s∂ds

Assuming that the conclusion is true for i− 1,

ds(∂s)i = ((∂s)i−1 + (s∂)i−1ds)∂s = (∂s)i + (s∂)i−1(1− sd)∂s

= (∂s)i + (s∂)i−1∂s− (s∂)i−1sd∂s = (∂s)i + (s∂)i−1s∂ds

= (∂s)i + (s∂)ids

Now suppose we choose indices i < j. The (i, j)th entry of SD is

( 0 · · · 0 s · · · (−1)j−i−1s(∂s)j−i−1 (−1)j−is(∂s)j−i · · · )



0
...
∂
d
0
...


= (−1)j−i−1s(∂s)j−i−1∂ + (−1)j−is(∂s)j−id

= (−1)j−i−1((s∂)j−i − (s∂)j−isd)

= (−1)j−i−1((s∂)j−i − (s∂)j−i(1− ds))

= (−1)j−i−1(s∂)j−ids
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and the (i, j)th entry of DS is

( 0 · · · 0 d ∂ 0 · · · )


(−1)js(∂s)j

...
(−1)j−is(∂s)j−i

(−1)j−i−1s(∂s)j−i−1

...


= (−1)j−ids(∂s)j−i + (−1)j−i−1∂s(∂s)j−i−1

= (−1)j−i(ds(∂s)j−i − (∂s)j−i)

= (−1)j−i((∂s)j−i + (s∂)j−ids− (∂s)j−i)

= (−1)j−i(s∂)j−ids

so that the terms cancel and SD +DS = 1.

1.4. Quasi-contractible complexes. For this example, we suppose
that A0 is an abelian category and that A = Func(X ,A0) is a cat-
egory of functors into A0. Say that a chain complex functor C•: X

// A0 is quasi-contractible if for each object X of X , the complex
C•X is contractible. Each of the previous results on contractible com-
plexes carries over to these quasi-contractible ones, except that in each
case the conclusion is object by object. Similarly we say that a map
f of chain complexes is a quasi-homotopy equivalence if at each ob-
ject X, fX is a is a homotopy equivalence. It is clear that f is a
quasi-homotopy equivalence if and only if its mapping cone is quasi-
contractible. The earlier material on contractible complexes implies
that the quasi-contractible complexes constitute an acyclic class.

1.5. A general condition. Here is one way of generating acyclic
classes. As we will explain, each of the three examples above is an
instance. Suppose A is a given abelian category and Φ is a class of
additive Ab-valued functors on A . Let Γ denote the class of all acyclic
chain complexes over A such that φ(C•) is acyclic for all φ ∈ Φ. Then
I claim that Γ is automatically an acyclic class. Conditions AC–1 and 2
are obvious. AC–3 follows since additive functors preserve homotopies.
AC–4 is clear. And AC–5 follows from the argument in 1.2 above
applied to the category of abelian groups. The way this works in the
three examples follows. To derive the first example, let Φ = ∅. You get
precisely the acyclic complexes. For the second, take all the covariant
homfunctors Hom(Z,−) for all objects Z of A . We have seen in 3.2.4
that C• is contractible if and only if Hom(Z,C•) is exact for all objects
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Z. For the third example, we are supposing that A = Func(X ,A0)
with A0 abelian. Each object X of X gives an evaluation functor
evX : A // A0 given by evX(F ) = F (X). Then C• ∈ Γ in the third
example if and only if evX(C•) is contractible for every object X of
X , which is true if and only if for each object Z of A0, the complex
Hom(Z, evX(C•)) is acyclic in Ab.

1.6. Exercises

1. Show that if

· · · ∂ // (Cn, dn)
∂ // (Cn−1, dn−1)

∂ // · · · ∂ // (C0, d0) // 0

is a chain complex of exact differential abelian groups with dn−1 ◦ ∂ =
−∂ ◦ dn and you let C• =

∑
Cn with boundary given by

d =


d0 ∂ 0 . . .
0 d1 ∂ . . .
0 0 d2 . . .
...

...
...

. . .


then (C•, d) is exact. Conclude that if you have a bigraded double
differential object

(Cnm, d:Cnm // Cn−1m, ∂:Cn,m // Cnm−1)

with ∂ ◦ d = −d ◦ ∂ such that Cnm = 0 for all m < 0 and if for each
m ≥ 0, the complex (Cnm, d) is exact, the double complex is exact.

2. Show that if

0 // (C0, d0)
δ // · · · δ // (Cn−1, dn−1)

δ // (Cn, dn)
δ // · · ·

is a cochain complex of exact differential abelian groups with dn+1 ◦δ =
−δ ◦ dn and you let C =

∏
Cn with boundary given by

d =


d0 0 0 . . .
δ d1 . . .
0 δ d2 . . .
...

...
...

. . .


then (C, d) is exact. Conclude that if you have a bigraded double
differential object

(Cnm, d:Cnm // Cn+1m, δ:Cn,m // Cnm+1)

with δ◦d = −d◦δ such that Cnm = 0 for all m < 0 and if for each m ≥ 0,
the complex (Cnm, d) is exact, the double complex is exact. Using the
fact that the dual of Ab is the category of compact abelian groups (and
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continuous homomorphisms), show that the preceding exercise is also
valid in the category of compact abelian groups.

2. Properties of acyclic classes

2.1. Proposition. If 0 // L• // C• // K• // 0 is a U-split
exact sequence of objects of C and if any two belong to Γ, then so does
the third.

Proof. Suppose that L• and K•, and hence S−1K• belong to Γ. We
know from 1.4 that C• is the mapping cone of a map f•:S

−1K• // L•.
We can think of this as a double complex as in the following diagram.
In this diagram, we use d for the boundary operator in K• so that −d
is the boundary operator in SK• and the squares commute as shown.

Ln Ln−1
d
// Ln−1 · · ·

d
//

Kn+1 Kn

−d //Kn+1

Ln

fn+1

��

Kn · · ·
−d //Kn

Ln−1

fn

��

· · ·

· · ·

· · ·

· · ·· · · L0
d

// L0 0//

· · · K1

−d //· · ·

· · ·

· · ·

· · ·

K1 K0

−d //K1

L0

f1

��

K0

0
��

· · · Ln
d
//

· · · Kn+1

−d //

If we replace the −d in the upper row by d, the squares will anticom-
mute and the resultant diagram can be considered as a double complex
in which all rows belong to Γ. From AC–5 the total complex also be-
longs to Γ, but that is just the mapping cone of f which is isomorphic
to C• and hence belongs to Γ.

Now suppose that L• and C• belong to Γ. We have just seen that
the mapping cone of L• // C• is in Γ. It then follows from Proposi-
tion 2.11 and AC–3 that K• ∈ Γ. Dually, if C• and K• are in Γ, so is
L•.

2.2. Arrows determined by an acyclic class. Given an acyclic
class Γ, let Σ denote the class of arrows f whose mapping cone is in
Γ. It follows from AC–3 and 4 and the preceding proposition that
this class lies between the class of homotopy equivalences and that of
homology equivalences.

2.3. Proposition. Σ is closed under composition.

Proof. Suppose that f = f•:K• // L• and g = g•:L• // M• are
each in Σ. Then Cf• and Cg• are in Γ. The nth term of S−1Cf• is
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Mn+1⊕Ln and that of Cf• is Ln⊕Kn−1. The boundary operators are(
−d −g
0 d

)
and

(
d f
0 −d

)
respectively, from which one calculates that h =

(
0 −1
0 0

)
is a chain

map from S−1Cg• // Cf•:(
0 −1
0 0

)(
−d −g
0 d

)
=

(
0 −d
0 0

)
=

(
d f
0 −d

)(
0 −1
0 0

)
Thus there is an exact sequence 0 // Cf• // Ch• // Cg• // 0
and it follows from Proposition 2.1 that Ch• ∈ Γ. The nth term of Ch•
is Ln⊕Kn−1⊕Mn⊕Ln−1 and the matrix of the boundary operator is d f 0 −1

0 −d 0 0
0 0 d g
0 0 0 −d


Let C−id• be the mapping cone of the negative of the identity of L.

Thus (C−id)n = Ln ⊕ Ln−1 and the boundary operator is

(
d −1
0 −d

)
.

The mapping cone of gf has Mn ⊕ Kn−1 in degree n and boundary

operator

(
d gf
0 −d

)
. I claim there is an exact sequence

0 // Cgf•
i // Ch•

j
// C−id• // 0

In fact, let i and j be the maps given by the matrixes

i =

 0 0
0 1
1 0
0 f

 , j =

(
1 0 0 0
0 −f 0 1

)
Matrix multiplication shows that these are chain maps. The sequences

are U -split exact; for example,

(
0 0 1 0
0 1 0 0

)
splits i and it follows

from Proposition 2.1 that Cgf• ∈ Γ and hence gf ∈ Σ.

The following theorem extends the main results of 3.6.1 to arbitrary
acyclic classes.
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2.4. Theorem. Suppose C•• = {Cmn | m ≥ 0, n ≥ 0} is a double
complex that is augmented over the single complex C−1 • and such that
for each n ≥ 0, the complex

· · · // Cmn // Cm−1n
// · · · // C0n

// C−1n
// 0

belongs to Γ. Then the induced map Tot(C) // C−1 • is in Σ.

Proof. The mapping cone of the induced map is just the double com-
plex including the augmentation term. From AC–5 it follows that that
total double complex is in Γ since each row is. Thus the induced map
is in Σ.

2.5. Corollary. Suppose C•• = {Cmn | m ≥ 0, n ≥ 0} is a double
complex that is augmented in each direction over the single complexes
C−1 • and C•−1. Suppose that for each n ≥ 0, both complexes

· · · // Cmn // Cm−1n
// · · · // C0n

// C−1n
// 0

and

· · · // Cmn // Cmn−1
// · · · // Cn0

// Cm−1
// 0

belong to Γ. Then in Σ−1C , the two chain complexes C−1 • and C•−1

are isomorphic.

2.6. Corollary. Suppose

· · · // K•n // K•n−1
// · · · // K•0 // K•−1

// 0

is a sequence of chain complexes such that for each n ≥ 0, the complex
Kn• ∈ Γ and for each m ≥ 0, the complex K•m ∈ Γ. Then K•−1 ∈ Γ.

Proof. We may treat this as a double complex of the form treated in the
theorem and the conclusion is that the arrow from the total complex
made up from

· · · // K•n // K•n−1
// · · · // K•0

is in Σ. But if for each n ≥ 0, the complex K•n ∈ Γ, then this total
complex also belongs to Γ and then so does K•−1.

2.7. Corollary. Suppose we have a commutative diagram of double
complexes

0 L•n// L•n L•n−1
// L•n−1 · · ·//

0 K•n// K•n K•n−1
//K•n

L•n

fn

��

K•n−1 · · ·//K•n−1

L•n−1

fn−1

��

· · ·

· · ·

· · ·

· · ·· · · L•0// L•0 L•−1
// L•−1 0//

· · · K•0//· · ·

· · ·

· · ·

· · ·

K•0 K•−1
//K•0

L•0

f0

��

K•−1

L•−1

f−1

��

K•−1 0//

such that for all n ≥ 0, the arrow fn ∈ Σ. Then f−1 ∈ Σ.
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Proof. This follows from the preceding corollary, by using mapping
cones.

Another useful property of Σ is the following.

2.8. Proposition. Suppose that

K ′• L′•u′
// L′• M ′

•v′
//

K• L•
u //K•

K ′•

f•

��

L• M•
v //L•

L′•

g•

��

M•

M ′
•

h•

��

is a commutative diagram with U-split exact rows. If two of the three
vertical arrows belong to Σ, so does the third.

Proof. The mapping cone sequence

0 // Cf•

(
u 0
0 u′

)
// Cg•

(
v 0
0 v′

)
// Ch• // 0

is readily seen to be exact. The claim now follows immediately
from 2.1.

3. The main theorem

Now let us suppose we are given an acyclic class Γ on C and that Σ is
the associated class of maps. Then Σ−1C is the category of fractions
gotten by inverting all the arrows in Σ. From AC–4 and Theorem 3.2.10
it follows that the homology inverts all arrows of Σ and hence that
homology factors through Σ−1C as described. In particular, any map
in Σ−1C induces a map in homology. We will see in Theorem 4.1 that
although Σ does not generally have either a right or left calculus of
fractions (see 1.10), it does have the weaker properties of homotopy
right and left classes of fractions.

Suppose that G: X // X is an endofunctor and that ε:G
// Id is a natural transformation. If F : X // A is a functor,

we define an augmented chain complex functor we will denote FG•+1

// F as the functor that has FGn+1 in degree n, for n ≥ −1. Let
∂ i = FGiεGn−i:FGn+1 // FGn. Then the boundary operator is
∂ =

∑n
i=0(−1)i∂ i. If, as usually happens in practice, G and ε are 2/3

of a cotriple, then this chain complex is the chain complex associated



3. THE MAIN THEOREM 137

to a simplicial set built using the comultiplication δ to define the de-
generacies. Next suppose that K• // K−1 is an augmented chain
complex functor. Then there is a double chain complex functor that
has in bidegree (n,m) the term KnG

m+1. This will actually commute
since

KnG
m Kn−1G

m

dGm
//

KnG
m+1

KnG
m

KnG
iεGm−i

��

KnG
m+1 Kn−1G

m+1dGm+1
// Kn−1G

m+1

Kn−1G
m

Kn−1G
iεGm−i

��

commutes by naturality for 0 ≤ i ≤ m and continues to commute
with the sums

∑m
i=0KnG

iεGm−i on the left and
∑m

i=0 Kn−1G
iεGm−i on

the right. However, the usual trick of negating every second column
produces an anticommuting double complex.

This is augmented in both directions. The first is ε:K•G
•+1:K•G

// K•; the second is K0G
•+1 // K−1G

•+1. We say that K• is
ε-presentable with respect to Γ if for each n ≥ 0, the augmented chain
complex KnG

•+1 // Kn
// 0 belongs to Γ. We say that K• is

G-acyclic with respect to Γ if the augmented complex K•G // K−1G
// 0 belongs to Γ.

The main theorem of this chapter, and in fact, of this book, follows:

3.1. Theorem. Let Γ be an acyclic class and Σ be the associated class
of arrows. Suppose α:K• // K−1 and β:L• // L−1 are augmented
chain complex functors. Suppose G is an endofunctor on X and ε:G

// Id a natural transformation for which K• is ε-presentable and L•
// L−1

// 0 is G-acyclic, both with respect to Γ. Then given any
natural transformation f−1:K−1

// L−1 there is, in Σ−1C , a unique
arrow f•:K• // L• that extends f−1.

Proof. For allm ≥ 0, the augmented complexKmG
•+1 // Km

// 0
belongs to Γ and hence, by AC–5, the total augmented complex K•G

•+1

// K• // 0 belongs to Γ whence, by Theorem 3.2.10 the arrow
K•ε:K•G

•+1 // K• belongs to Σ. The same reasoning implies that
βG•+1:L•G

•+1 // L−1G
•+1 is also in Σ. We can summarize the
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situation in the diagram

L−1G
•+1 L•G

•+1oo
βG•+1

K−1G
•+1

L−1G
•+1

f−1G
•+1

��

K−1G
•+1 K•G

•+1oo αG
•+1

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1L•G
•+1 L•

L•ε
//

K•G
•+1

L•G
•+1

K•G
•+1

L•G
•+1

K•G
•+1 K•

K•ε // K•

L•

K•

L•

with K•ε and βG•+1 in Σ. We now invert Σ to get the map

f• = L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 ◦ (K•ε)

−1:K• // L•

I claim that this map extends f−1 in the sense that f−1 ◦α = β ◦ f0 and
that f• is unique with this property. Begin by observing that naturality
of α and β imply that α◦K•ε = K−1ε◦αG

•+1 and β ◦L•ε = L−1ε◦βG
•+1.

Then the first claim follows from the diagram

K• K•G
•+1

(K•ε)
−1

//K•

K•

=
��????????????

K•G
•+1

K•

K•ε

��
K• K−1α

// K−1 L−1
f−1

//

K•G
•+1 K−1G

•+1αG•+1
//K•G

•+1

K•
��

K−1G
•+1 L−1G

•+1
f−1G

•+1

//K−1G
•+1

K−1

K−1ε

��

L−1G
•+1

L−1

L−1ε

��
L−1 L•oo

β

L−1G
•+1

L−1

L−1G
•+1

L−1

L−1G
•+1 L•G

•+1L−1G
•+1 L•G

•+1L•G
•+1

L•

L•ε

��

L−1G
•+1 L•G

•+1
(βG•+1)−1

//
L−1G

•+1 L•G
•+1oo

βG•+1

Now suppose that g•:K• // L• is another arrow in Σ−1C for
which f−1 ◦ α = β ◦ g0. Then

f−1G
•+1 ◦ αG•+1 = βG•+1 ◦ g•G

•+1

which implies that

(βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 = g•G

•+1

and then

L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 = L•ε ◦ gG

•+1 = g• ◦K•ε

from which we conclude that

g• = L•ε ◦ (βG•+1)−1 ◦ f−1G
•+1 ◦ αG•+1 ◦ (K•ε)

−1 = f•

3.2. Corollary. Suppose that K• and L• are each ε-presentable and
G-acyclic on models with respect to Γ. Then any natural isomorphism
f−1:K−1

// L−1 extends to a unique isomorphism f•:K• // L•
in Σ−1C . Moreover if g•:K• // L• is a natural transformation for
which β ◦ g0 = f−1 ◦ α, then g• = f• in Σ−1C .
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Proof. If f−1 is an isomorphism with inverse g−1, then there is a map
f•:K• // L• that extends f−1 and g•:L• // K• that extends g−1.
Then g• ◦ f• extends g−1 ◦ f−1 = id, as does the identity so that by the
uniqueness of the preceding, we see that in Σ−1C , g•◦f• = id. Similarly,
f• ◦ g• = id in the fraction category. This shows that K• ∼= L•. The
second claim is obvious.

3.3. Other conditions. Sometimes, other conditions that are easy
to verify can replace the stated ones. Here is one that is required to
recover the form of the acyclic models theorem from [Barr & Beck,
1966].

3.4. Theorem. Suppose G: X //X is a functor and ε:G // Id
is a natural transformation. Then for any functor C: X // A ,
CG•+1 // C // 0 is contractible if and only if Cε splits.

Proof. The necessity of the condition is obvious. If Cε splits, let θ:C
// CG be an arrow such that Cε ◦ θ = id. Let s = θGn:CGn

// CGn+1. Then ∂ 0 ◦ s = CεGn ◦ θGn = id and for i > 0,

∂ i ◦ s = CGiε ◦Gn−i ◦ θGn = (CGiε ◦ θGi)Gn−i

= (θGi−1 ◦ CGi−1ε)Gn−i = θGn−1 ◦ CGi−1εGn−i = s ◦ ∂ i−1

using naturality of θ. Then

∂ ◦ s+ s ◦ ∂ =
n∑
i=0

(−1)i∂ i ◦ s+
n−1∑
i=0

s ◦ ∂ i

= id +
n∑
i=1

(−1)is ◦ ∂ i−1 +
n−1∑
i=0

(−1)is ◦ ∂ i = 1

3.5. Corollary. Let K• // K−1
// 0 and L• // L−1

// 0
be augmented chain complex functors such that KnG // Kn is split
epic for all n ≥ 0 and L• // L−1

// 0 is G-contractible. Then
any natural transformation f−1:K−1

// L−1 extends to a natural
chain transformation f•:K• // L• and any two extensions of f−1 are
naturally homotopic.

Note (2020-01-18): Patrick Nicoedmus pointed out to me that the
above is not proven since the preceding material only gets a map in
Σ−1C . Again any two maps are certainly homotopic in Σ ∈ C . The
result is stated in [Barr, Beck (1966)] but the details of the proof are
omitted. Since they are somewhat tricky, I give the details below.
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Let θn:Kn
// KnG split εKn and let sn:Ln−1G // LnG be the

nth component of a contracting homotopy in K•G. If f−1:K−1 is given,
define fn inductively as the composite

Kn KnG
θn //

Kn−1G Ln−1G
fn−1G

//

KnG

Kn−1G

dnG

��

KnG LnGKnG LnGLnG

Ln−1G

OO

sn−1

LnG Ln
Lnε //

dnfn = dn ◦ Lnε ◦ sn−1 ◦ fn−1G ◦ dnG ◦ θn

= Ln−1ε ◦ dnG ◦ sn−1 ◦ fn−1G ◦ dnG ◦ θn

= Ln−1ε ◦ (1− sn−2 ◦ dn−1G) ◦ fn−1G ◦ dnG ◦ θn

= Ln−1ε ◦ fn−1G ◦ dnG ◦ θn − Ln−1ε ◦ sn−2 ◦ dn−1G ◦ fn−1G ◦ dnG ◦ θn

= fn−1Kn−1ε ◦ dnG ◦ θn − Ln−1ε ◦ sn−2 ◦ fn−2G ◦ dn−1G ◦ dnG ◦ θn

= fn−1 ◦ dn ◦Knεn = fn−1dn
as required.

For the homotopy, suppose f−1 = g−1. We construct a homotopy
h: f // g. Since the definition of homotopy refers only to the differ-
ence f − g, it suffices to consider the case that g = 0. We construct
inductively hn:Kn

// Ln+1 such that dn+1hn + hn−1dn = fn for all
n ≥ −1. We start with h−1 = 0. The equation d0h−1 = 0 = f−1

is clear. We now let hn:Kn
// Ln+1 as the difference between the

upper and lower composite in

Kn KnG
θn // KnG LnG

fnG //KnG

Kn−1G

dnG

��

LnG

Kn−1G

::

hn−1G
vvvvvvvvvvvvvvv

LnGLnG

Ln+1G

LnG

OO

sn

Ln+1G Ln+1

Ln+1ε // Ln+1Ln+1
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We now calculate dn+1hn. Let hn = h′n − h′′n where h′n is the upper
composite and h′′n the lower. Then

dn+1h
′
n = dn+1 ◦ εLn+1 ◦ sn ◦ fnG ◦ θn

= Lnε ◦ dn+1G ◦ sn ◦ fnG ◦ θn = Lnε ◦ (1− sn−1 ◦ dnG) ◦ fnG ◦ θn

= Lnε ◦ fnG ◦ θn − Lnε ◦ sn−1 ◦ dnG ◦ fnG ◦ θn

= fn ◦ εKn ◦ θn − Lnε ◦ sn−1 ◦ dnG ◦ fnG ◦ θn

= fn − Lnε ◦ sn−1 ◦ dnG ◦ fnG ◦ θn

dn+1h
′′
n = dn+1 ◦ εLn+1 ◦ sn ◦ hn−1G ◦ dnG ◦ θn

= Lnε ◦ dn+1G ◦ sn ◦ hn−1G ◦ dnG ◦ θn

= Lnε ◦ (1− sn−1 ◦ dnG) ◦ hn−1G ◦ dnG ◦ θn

= Lnε ◦ hn−1G ◦ dnG ◦ θn − Lnε ◦ sn−1 ◦ dnG ◦ hn−1G ◦ dnG ◦ θn

= hn−1 ◦Kn−1ε ◦ dnG ◦ θn − Lnε ◦ sn−1 ◦ (fnG−Ghn−2 ◦ dn−1G) ◦ dnG ◦ θn

= hn−1 ◦ dn ◦Knε ◦ θn − Lnε ◦ sn−1 ◦ fn−1G ◦ dnG ◦ θn

+ Lnε ◦ sn−1 ◦ hn−2G ◦ dn−1G ◦ dnG ◦ θn

= hn−1dn − Lnε ◦ sn−1 ◦ fn−1G ◦ dnG ◦ θn

= hn−1dn − Lnε ◦ sn−1 ◦ fn−1 ◦ dnG ◦ fnG ◦ θn

from which it is immediate that dn+1hn = dn+1h
′
n − dn+1h

′′
n = fn −

hn−1dn, as required.

If G = (G, ε, δ) is actually a cotriple, then it can be used to build a
resolution that is automatically both acyclic on models and presentable
with respect to homotopy.

3.6. Theorem. Let E: X // A be any functor and G = (G, ε, δ)
be cotriple on X . Then the chain complex EG•+1 that has EGn+1 in
degree n and boundary

∑n
i=0(−1)iE∂ i:EGn+1 // EGn is G-acyclic

on models and G-presentable with respect to homotopy.

Proof. To verify the presentability, it is sufficient, by Theorem 3.4
above, to give a map θn:EGn+1 // EGn+2 for each n such that
EGn+1ε◦θn = id. Evidently, EGnδ is such a map. As for the acyclicity,
again the arrows θn:EGn+1 // EGn+2 give a contracting homotopy
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in the complex EG•+1G // EG // 0. See the proof of 3.4 for
details.

4. Homotopy calculuses of fractions

We saw in Section 10 of Chapter 1 what a calculus of fractions is. In
the cases considered here there is no calculus of fractions (left or right),
but there is the next best thing, homotopy left and right calculuses of
fractions. We will write f ∼ g when f and g are homotopic and C ' D
to mean that there are chain maps f :C // D and g:D // C such
that g ◦ f ∼ idC and f ◦ g ∼ idD. Of course, C is contractible if and
only if C ' 0.

We will say that Σ has a homotopy left calculus of fractions if

1. Σ is closed under composition;
2. whenever σ ∈ Σ and f are arrows with the same domain, there

is a not necessarily commutative square

· ·τ
//

·

·

f

��

· ·σ // ·

·

g

��

with τ ∈ Σ and for which τ ∈ Σ and g ◦ σ ∼ τ ◦ f ;

3. for any diagram · σ // ·
f
//

g
// · with σ ∈ Σ such that f ◦ σ ∼

g ◦ σ, there is a diagram ·
f
//

g
// · τ // with τ ∈ Σ such that

τ ◦ f ∼ τ ◦ g.

Dually, we will say that the composition closed class Σ has a ho-
motopy right calculus of fractions if, whenever σ ∈ Σ and f are
arrows with the same codomain, there is a square

· ·
f

//

·

·

τ

��

· ·
g

// ·

·

σ

��
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with τ ∈ Σ for which f ◦ τ ∼ σ ◦ g and if, for any ·
f
//

g
// · σ // · with

σ ∈ Σ such that σ ◦ f ∼ σ ◦ g, there is a diagram · τ // ·
f
//

g
// · with

τ ∈ Σ such that f ◦ τ ∼ g ◦ τ .

4.1. Theorem. Every acyclic class has homotopy left and right cal-
culuses of fractions.

The presence of the homotopy left calculus of fractions will be
demonstrated by a series of propositions. The homotopy right calculus
of fractions is dual.

4.2. Proposition. Suppose L• oo
σ

N•
f
// M• are maps of chain

complexes with σ ∈ Σ. Then there is a homotopy commutative square

L• K•g
//

N•

L•

σ

��

N• M•
f

// M•

K•

τ

��

with τ ∈ Σ.

Proof. Let K• be the mapping cone of

(
f
σ

)
:N• //M• ⊕ L•. Then

K• is the chain complex whose nth term is Kn = Mn⊕Ln⊕Nn−1, with

boundary operator given by the matrix D =

 d 0 f
0 d σ
0 0 −d

. Let τ = 1
0
0

 :M• // K•, g =

 0
−1
0

 :L• // K•, and H =

 0
0
1

 :UN•

// UK•. Then it is immediate that D is a boundary operator and
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that g and τ are chain maps. We compute that

D ◦H +H ◦ d =

 d 0 f
0 d σ
0 0 −d

 0
0
1

+

 0
0
1

 d

=

 0
0
d

+

 f
σ
−d

 =

 f
σ
0

 =

 f
0
0

−
 0
−σ
0


= τ ◦ f − g ◦ σ

We still have to show that τ ∈ Σ. But there is obviously a U -split
exact sequence

0 //M•
τ // K•

(
0 1 0
0 0 1

)
// Cσ• // 0

which can readily be calculated to consist of chain morphisms. It fol-
lows from Proposition 3.2.11 that Cτ• is homotopic to Cσ•, so that
AC–3 implies that Cτ• ∈ Γ.

We note, for future reference, that since f and σ enter this proof
symmetrically, if f ∈ Σ, then also g ∈ Σ.

4.3. Proposition. Given any diagram

N•
σ // L•

f
//

g
//M•

with σ ∈ Σ and f ◦ σ homotopic to g ◦ σ, there is a diagram

L•
f
//

g
//M•

τ // K•

with τ ∈ Σ and τ ◦ f homotopic to τ ◦ g.

Proof. We can use the additivity of the category to replace f by f − g
and reduce the assertion to the case that g = 0. Then our hypotheses
are that σ ∈ Σ and f ◦ σ is null homotopic. We show that there is a
τ :L• // K• in Σ such that τ ◦ f is null homotopic. Since f ◦ σ is null
homotopic, there is an h:USN• // UM• such that f ◦σ = h◦d+d◦h.
Since σ ∈ Σ, the mapping cone Cσ• ∈ Γ by Theorem 2.10. One easily
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sees by direct computation that the square

L• ⊕ SN• M•
( f h )

//

L• ⊕ SN•

L• ⊕ SN•

(
d σ
0 −d

)
��

L• ⊕ SN• M•
( f h )

// M•

M•

d

��

commutes. Thus u = ( f h ) :Cσ• // M• is a map of chain com-
plexes. Let K• be the mapping cone of u. This gives us a U -split exact
sequence

0 //M•
τ // K• // SCσ• // 0

Since Cσ• ∈ Γ so is SCσ• and it follows from the converse part of The-
orem 3.2.10 that τ ∈ Σ. In order to see that τ ◦ f is null homotopic,
we actually calculate K• and τ . In fact, UK• = UM• ⊕ USCσ• and

has boundary operator

(
d u
0 −d

)
. When we replace Cσ• by its com-

ponents, we have UK• = UM• ⊕ USL• ⊕ US2N• and the boundary
is

D =

 d f h
0 −d −σ
0 0 d


with τ =

 1
0
0

. Then τ ◦ f =

 f
0
0

. Let H =

 0
1
0

. Then

H◦D+d◦H =

 0
1
0

 d+

 d f h
0 −d −σ
0 0 d

 0
1
0

 =

 f
−d
0

+

 0
d
0

 =

 f
0
0


which shows that τ ◦ f is null homotopic.

This finishes the proof of 4.1, but there is a bit more to be learned
from the developments in this section.

4.4. Proposition. Homotopic maps become equal in Σ−1C .
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Proof. We apply the construction used in the proof of 4.2 to L• oo
1

L•
1 // L• to give the homotopy commutative square

L• K•τ
//

L•

L•

1

��

L• L•
1 // L•

K•

σ

��

with both σ =

 1
0
0

 and τ =

 0
−1
0

 ∈ Σ. Moreover, the map

f = ( 1 −1 0 ) :K• // L• is a chain map such that f ◦σ = f ◦τ = id.
In Σ−1C , σ and τ are invertible, whence f = σ−1 = τ−1 so that
σ = τ . Now suppose that we are given two homotopic chain maps g,
h:L• // M•. Then there is a map s:UK• // US−1L• such that
g − h = s ◦ d + d ◦ s. Define the map k = ( g −h s ) :K• // M•.
We have that

k ◦D = ( g −h s )

 d 0 1
0 d 1
0 0 −d

 = ( gd −hd f − g − sd )

= ( dg −dh ds ) = d ◦ k

so that k is a chain map. Evidently, k ◦ σ = g and k ◦ τ = h so that
when we invert homotopy equivalences and σ = τ , then also g = h.

4.5. Proposition. Suppose that f ∼ g and g ∼ h. Then f ∼ h.

Proof. Assume that f − g = sd+ ds and g − h = td+ dt. Then

(s+ t)d+ d(s+ t) = sd+ ds+ td+ dt = f − g + g − h = f − h

4.6. Proposition. Suppose K ′•
h // K•

f
//

g
// L•

k // L′• are chain

maps such that f ∼ g. Then k ◦ f ◦ h ∼ k ◦ g ◦ h.

Proof. Assuming that f − g = sd+ ds, we have

kfh− kgh = k(f − g)h = k(sd+ ds)h = ksdh+ ksdh = kshd+ kshd

since h and k commute with d. Thus ksh is the required homotopy.

It follows that we can form the quotient category C /∼ with the
same objects as C and homotopy classes of maps as arrows.
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4.7. Theorem. Suppose Σ ⊆ C is the class of homotopy equivalences.
Then C /∼ is equivalent to Σ−1C . In particular, a parallel pair of maps
are homotopic in C if and only if they become equal in Σ−1C .

Proof. Let Γ denote the class of contractible complexes. We have just
seen that homotopic maps become equal in Σ−1C so that the canonical
functor C // Σ−1C factors through C /∼. Conversely, if σ ∈ Σ,
it has a homotopy inverse τ , so that σ ◦ τ and τ ◦ σ are homotopic
to identity arrows and hence those composites are identity arrows in
C /∼. Thus the maps in Σ become invertible in C /∼, which means
that the canonical functor C // C /∼ factors through Σ−1

0 C . Thus
the categories C // C /∼ and Σ−1C are homotopic.

4.8. Theorem. For any acyclic class Σ on C , we have that Σ−1C
is equivalent to Σ−1(C /∼) and, in the latter category, Σ has calculuses
of right and left fractions.

4.9. Corollary. Every map in Σ−1C has the form f ◦σ−1 where f ∈ C
and σ ∈ Σ. Moreover, f ◦ σ−1 = f ′ ◦ σ′−1 in σ−1C if and only if there
is a homotopy commutative diagram in C :

C BC BB DB D

E

C

σ

���������������
E

B

OO

a

E

D

f

��?????????????

C BC BC

E ′

__

σ′
????????????? B DB DB

E ′

a′

��

D

E ′

??

f ′
�������������

for which a ◦ σ (and therefore a′ ◦ σ′) belongs to Σ.

4.10. Corollary. Every map in Σ−1C has the form τ−1 ◦ g where
f ∈ C and σ ∈ Σ. Moreover, τ−1 ◦ g = τ ′−1 ◦ g′ in σ−1C if and only if
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there is a homotopy commutative diagram

C BC BB DB D

E

C

g

���������������
E

B

OO

a

E

D

τ

��?????????????

C BC BC

E ′

__

g′
????????????? B DB DB

E ′

a′

��

D

E ′

??

τ ′
�������������

for which a ◦ τ (and therefore a′ ◦ τ ′) belongs to Σ.

These facts hold despite the fact that there is no calculus of left—
or dually of right—fractions in this case. For example, in the proof of
Proposition 4.4, the homotopy equivalence f coequalizes σ and τ , but
only the 0 map equalizes them and that is a homotopy equivalence if
and only if K• is contractible.

5. Exactness conditions

In this section, we consider conditions that simplify the verification of
the main hypotheses of the acyclic models theorem. If G is a cotriple
on an additive category A , by the standard G-resolution of an object
A of A , we mean the chain complex

· · · // Gn+1A // GnA // · · · // GA

with boundary operator

d =
n∑
i=0

(−1)iGiεGn−iA:Gn+1A // GnA

This is augmented over A by εA:GA // A and by the augmented
standard G-resolution, we mean that augmented complex.

5.1. Homology. We do the case of homology first, since the argu-
ment for quasi-homotopy depends on it.

5.2. Theorem. Suppose that A is an abelian category and G is a
cotriple on A . A necessary and sufficient condition that the augmented
standard complex be acyclic for each A is that εA be an epimorphism
for each A.



5. EXACTNESS CONDITIONS 149

Proof. We begin by showing that for any object A, there is an exact
sequence

· · · // GAn // GAn−1
// · · · // GA0

// A // 0

We begin with A0 = A and εA:GA // A. If we have d:GAn−1
// GAn−2 already constructed, let An = ker d and then the next

term is the composite GAn
εAn // An // GAn−1. Since εAn is an

epimorphism, it follows that GAn // GAn−1
// GAn−2 is exact.

The remainder of the argument will follow from a sequence of propo-
sitions.

5.3. Proposition. For any object B, the chain complex of abelian
groups

· · · // Hom(GB,GAn) // Hom(GB,GAn−1) // · · ·

// Hom(GB,GA) // Hom(GB,A) // 0

is contractible.

Proof. The splitting of Hom(GB,GA) // Hom(GB,A) has already
been done. Suppose we have maps si: Hom(GB,GAi) // Hom(GB,GAi+1)
for i = 1, . . . , n−1 given such that dsi+si−1d = id for i = 0, · · · , n−1.
For f :GB // GAn, we define snf :GB // GAn+1 as follows. Let
un+1:An+1

// GAn be the inclusion of the kernel of d. Since

d ◦ (f − sn−1df) = d ◦ f − dsn−1d ◦ f = d ◦ f − (d ◦ f − sn−2d ◦ d ◦ f) = 0

there is a unique g:GB // An+1 such that un+1 ◦ g = f − sn−1d ◦ f .
Finally, let snf = Gg ◦ δB. Note that un+1 ◦ εAn+1 = d. Then

d ◦ snf = un+1 ◦ εAn+1 ◦Gg ◦ δB = un+1 ◦ g ◦ εGB ◦ δB = f − sn−1d ◦ f

so that d ◦ s+ s ◦ d = id as required.

5.4. Proposition. For any object B, the chain complex of abelian
groups

· · · // Hom(GB,Gn+1A) // Hom(GB,GnA) // · · ·

// Hom(GB,GA) // Hom(GB,A) // 0

is contractible.

Proof. In fact, for f :GB // GnA, let snf = Gf ◦ δB:GB //

Gn+1A. Then

εGnA ◦ snf = εGnA ◦Gf ◦ δB = f ◦ εGB ◦ δB = f
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while

Gi+1εGn−i ◦ snf = Gi+1εGn−i ◦Gf ◦ δB = G(GiεGn−i ◦ f) ◦ δB

= sn−1(GiεGn−i ◦ f)

from which it is immediate that d ◦ snf = f − sn−1d ◦ f so that s• is a
contracting homotopy.

The following proposition can be considered as an early version of
acyclic models.

5.5. Proposition. Suppose A• // A−1
// 0 and B• // B−1

// 0 are chain complexes in an abelian category. Suppose for all
n ≥ 0, the complex of abelian groups Hom(An, B•) // Hom(An, B−1)

// 0 is exact. Then any map f−1:A−1
// B−1 can be extended to

a chain map f•:A• // B• and any two extensions are homotopic.

Proof. Since Hom(A0, B0) // Hom(A0, B−1) // 0 is exact, there
is an element f0 ∈ Hom(A0, B0) such that d ◦ f0 = f−1 ◦ d. Suppose
fi:Ai // Bi has been constructed for i < n. Since Hom(An, Bn)

// Hom(An, Bn−1) // Hom(An, Bn−2) is exact and fn−1 ◦ d ∈
Hom(An, Bn−1) is a map such that d ◦ fn−1 ◦ d = fn−2 ◦ d ◦ d = 0,
there is an arrow fn:An // Bn such that d ◦ fn = fn−1 ◦ d. This
proves the existence. Now suppose that g• is another extension. Let
h−1 = 0:A−1

// B0. Suppose that hi:Ai // Bi+1 for i < n
such that d ◦ hi + hi−1 ◦ d = fi − gi for i < n. Since Hom(An, Bn+1)

// Hom(An, Bn) // Hom(An, Bn−1) is exact and

d ◦ (fn − gn − hn−1 ◦ d) = d ◦ fn − d ◦ gn − d ◦ hn−1 ◦ d

= fn−1 ◦ d− gn−1 ◦ g − (hn−2 ◦ d− fn−1 − gn−1) ◦ d

= 0

there is an arrow hn:An // Bn+1 such that d◦hn−1 = fn−gn−hn−1 ◦d
as required.

5.6. Corollary. Let G be a cotriple on the abelian category A such
that εA is epic for every object A of A . Then the standard resolution
G•+1A // A // 0 is exact for each object A of A .

Proof. Since there is an exact sequence GA• // A // 0, the iden-
tity map of A // A extends to maps G•+1A // GA•, as well as
in the other direction. Each composite extends the identity map of
A and is thus homotopic to the identity. Thus the two complexes are
homotopic. But the second is exact by construction and hence so is
the first.
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We can now complete the argument. If X is not small, replace
it by any small full subcategory that is closed under G and contains
the object X. For example, the objects of the form GnX will do.

Thus we can suppose that X is small. Now let Â be the functor
category Fun(X ,A ), which is easily seen to be abelian when A is.

Let Ĝ = (Ĝ, ε̂, δ̂) be the cotriple on Â defined by ĜK• = K•G with the

obvious ε̂ and δ̂. Since homotopic complexes have isomorphic homology,

it follows that the first is also exact. Thus the chain complex Ĝ•+1K•
// ĜK• // 0 is exact; but this is exactly K•G

•+1 // K• // 0.



CHAPTER 6

Cartan–Eilenberg cohomology

During a four year period more than fifty years ago, a series of
papers appeared describing cohomology theories for associative alge-
bras [Hochschild, 1945, 1946], groups [Eilenberg & Mac Lane, 1947],
and Lie algebras [Chevalley & Eilenberg, 1948]. Each one described
an n-cochain as a function of n variables taking values in a module.
There were some differences in that in the case of associative alge-
bra, the cochains were n-linear and in case of Lie algebras they were
both n-linear and skew symmetric. But the real differences were in the
coboundary operators. Those for associative algebras and groups were
essentially the same but the one for Lie algebras was entirely different.
The skew symmetric cochains are not closed under any coboundary op-
erator similar to the one used for associative algebras and groups. On
the other hand, showing that the square of the Lie coboundary opera-
tor is 0 requires not only the skew symmetry of the multiplication, but
also the Jacobi identity. In a similar way, when Harrison [1962] created
his cohomology theory for commutative algebras, to be discussed in
the next chapter, he could not simply take symmetric cochains; there
is no obvious coboundary operator that preserves symmetry and also
has square 0.

By the time of their 1956 book, Cartan and Eilenberg had found a
uniform treatment of the cohomology that included the three examples
described above. Suppose X denotes one of the categories of groups,
associative algebras, or Lie algebras. Then for each object X of X ,
they describe an associative algebra Xe and a canonical Xe-projective
resolution

· · · // An // An−1
// · · · // A1

// A0
// A // 0

of a canonical Xe module A. These had two properties. First, that
a left Xe module is the same thing as a coefficient module for the
cohomology and second, that for any such module M , the sequence

0 // HomXe(A0,M) // HomXe(A1,M) // · · · // HomXe(An,M) // · · ·
is isomorphic to one of the resolutions used to define the original co-
homology. (In the cases of groups and associative algebras, you have

152
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to cochains that have been normalized in the sense of the Dold-Puppe
theorem as described in the previous chapter.) It follows that in each
case the cohomology can be described as ExtXe(A,M).

There are two ad hoc elements to this description of cohomology.
One is the associated algebra Xe. It is always the case that the category
of coefficient modules is equivalent to the category of left Xe-modules.
This determines Xe, at least up to Morita equivalence. (Two rings are
Morita equivalent if and only if one—and hence each—is the ring of
endomorphisms of a finitely generated projective generator of the other;
essentially, a generalized matrix algebra.) This does not matter much
since Ext will not change if a ring is replaced by a Morita equivalent
ring.

The second arbitrary element is the choice of the module A. There
does not seem to be any such easy characterization of A. However,
there is a very interesting observation, due essentially to Jon Beck.
In each case, as it happens, A0 = Xe and the kernel of the map A0

// A is a module we will call DiffX , which has the property that
HomXe(DiffX ,M) is isomorphic to the group of derivations of X to M .
Derivations are defined slightly differently in each of the categories, but
we will leave the details to the individual examples. The conclusion is
that ExtnXe(DiffX ,M) ∼= Hn+1(X,M) for all n ≥ 1. For n = 0, there is
some difference, which we will describe later.

Therefore it was of great interest that Jon Beck discovered, in his
1967 thesis, a notion of module over an object in an arbitrary category
that also provides an abstract definition of derivation. This would
have enabled him to define cohomology theories in a wide class of cat-
egories as Ext(DiffX ,−). The reason this was not done is that by 1967
other cohomology theories had been defined, none of which followed
the Cartan-Eilenberg pattern. One of them, the cohomology theory
of commutative algebras, will be discussed in great detail in the next
chapter. Our first task here is to describe Beck’s notion of module.

1. Beck modules

1.1. The definition of Beck modules. We begin Beck’s theory by
looking at examples.

If K is a commutative ring, A is an associative K-algebra, and M
is a two sided A-module, then the split singular extension of A with
kernel M is the ring B that is, as an abelian group, just A ×M , and
whose multiplication is given by (a,m)(a′,m′) = (aa′, am′ + ma′). If
we identify M with 0×M , then M is a 2-sided ideal of B with M2 = 0.
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Since M is an ideal of B, it is a B-module. Since M annihilates this
module, it is a B/M ∼= A-module. The module structure is evidently
the original structure. Beck discovered that the B that arise in this way
can be characterized as the abelian group objects in the slice category
AlgK/A, where AlgK is the category of associative K-algebras.

If p:C // A is an algebra over A, by a p-derivation, or simply
derivation of C into a M , we mean a linear map τ :C // M such
that τ(cc′) = p(c)τ(c′) + τ(c)p(c′). If p is understood, we often write
τ(cc′) = cτ(c′) + τ(c)c′ with the understanding that p induces a C-
module structure on any A-module. A particular case is that of a
derivation of A into M .

If p:C // A is an algebra homomorphism and τ :C // M is a
function into the A-module M , let B be the split singular extension as
described above. Let q:C // B be the function defined by q(c) =
(p(c), τ(c)). Then one sees immediately that q is a K-linear function if
and only if τ is and from

q(c)q(c′) = (p(c)p(c′), p(c)τ(c′) + τ(c)p(c′))

that q is an algebra homomorphism if and only if τ is a derivation.
Thus we see that Hom(C // A,B // A) is just the abelian group
Der(C,M) of p-derivations of C to M .

For the second example, suppose that π is a group and M is a left
π-module. Let Π denote the group whose underlying set is π×M and
whose multiplication is given by (x,m)(x′,m′) = (xx′, x′−1m + m′).
The identity element is (1, 0) and one can calculate that (x,m)−1 =
(x−1,−xm). Then M , identified as 1 ×M , is a commutative normal
subgroup of Π. The group Π acts on M by conjugation. Since the
action of M on itself is trivial, this action gives an action of Π/M ∼= π
on M . This action can be calculated to be the original action. Beck
discovered that the algebras that arise in this way are the abelian group
objects in the category Grp/π.

For p: Φ // π, a function τ : Φ //M is a p-derivation or simply
derivation if τ(xy) = p(x)τ(y) + τ(x). Notice that this reduces to the
same formula for the associative algebra case if we take the right action
on a module to be the identity. An older name for a derivation of a
group into a module is a crossed homomorphism. Again it is easy to
show that if M is a π-module, then the abelian group Hom(Φ // π,Π

// π) is isomorphic to the group of p-derivations of Φ //M .
For the third example, let g be a K-Lie algebra and M be a g-

module. This is an abelian group that has an action of g on M that sat-
isfies [a, b]m = a(bm)−b(am). Given such an action, let h be the abelian
group g×M with bracket given by [(a,m), (a′,m′)] = ([a, a′], am′−a′m).
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This is a Lie algebra and M is an ideal with [M,M ] = 0 so that M is
an h-module that M acts trivially on and hence is an h/M = g-module.
Again, this action can be calculated to be the original. And again, the
algebras that arise in this way are just the abelian group objects in the
category LieK/g.

If p: f // g is Lie algebra homomorphism, then a p-derivation or
derivation of f into M is a linear map τ : h // M such that τ [c, c′] =
p(c)τ(c′)−p(c′)τ(c). This reduces to the same formula as the associative
algebra case if we define the right action to be the negative of the left
action. As in the other case, the abelian group Hom(f // g, h // g)
is isomorphic to the group of p-derivations of f to M .

Following these examples, Beck defined an X-module in any cate-
gory X to be an abelian group object in the category X /X. Moreover,
he defined, for an object p:Y // X and an abelian group object Z

// X of X /X, the abelian group Hom(Y // X,Z // X) to
be Der(Y, Z), called the group of p-derivations. Amazingly, in all three
examples (as well as others, such as commutative algebras), this turned
to give exactly the kind of coefficient modules that are used in defining
cohomology and the group Der turned out to be exactly the group of
derivations. Thus Beck removed all the adhockery from the definition
of cohomology.

Of course, although module can be defined in any category, it does
not follow that the category of modules is automatically an abelian
category. It is not hard to show that when X is an exact category (in
the sense of [Barr, 1971]), so is X /X, as well as the category of abelian
group objects in it, which is thereby abelian, see 1.8.12 and 2.2.3.

1.2. Associative algebras: an example. Here is how that works
in detail for associative K-algebras. Let A be an associative algebra,
M be an A-module, and B // A be the split extension as described
above. An abelian group object of a category is determined by certain
arrows, namely a zero map 1 // B, an inverse map B // B and
a group multiplication B × B // B. The terminal object of A /A is
id:A // A and the product is the fibered product (pullback) over A,
in this case B ×A B. The zero map takes the element a to (a, 0), the
inverse map is given by (a,m) 7→ (a,−m) and the multiplication takes
the pair ((a,m), (a,m′)) in the fiber over a to the element (a,m+m′).
Observe that each of these operations preserves the first coordinate, as
they must, to be arrows in the slice category. This makes B into an
abelian group object in AlgK/A and defines a full and faithful func-
tor IA:ModA // AlgK/A whose image is precisely the abelian group
objects.
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To get a module from an abelian group object, suppose p:B // A
is an abelian group object in AlgK/A. The first thing to note is that
there has to be a zero section, that is a map z:A // B in the category
AlgK/A. This means that z is an algebra homomorphism and that
p ◦ z = id. Then p is split as a homomorphism of K-algebras. This
implies, in particular, that as K-modules, we can write B = A ×M ,
where M = ker(p). In terms of this splitting, p is the projection on
the first coordinate and z is the injection into the first coordinate.
Since z is a ring homomorphism, it follows that (a, 0)(a′, 0) = (aa′, 0).
The additive structure takes the form of a commutative multiplication
B ×A B // B. Since B ∼= A×M , B ×A B ∼= A×M ×M so that an
operation over A takes the form (a,m)∗ (a,m′) = (a, f(a,m,m′)). The
fact that ∗ is additive implies that f(a,m,m′) = f1(a)+f2(m)+f3(m′)
and the commutativity implies that f2 = f3. The fact that z is the
zero map implies that (a,m) ∗ (a, 0) = (a,m), which says, for m =
0, that f1(a) = 0 and then for arbitrary m that f2(m) = m. Thus
(a,m) ∗ (a,m′) = (a,m + m′). Now the fact that z(1) = (1, 0) is the
identity and that ∗ is a ring homomorphism gives

(1,m)(1,m′) = ((1,m) ∗ (1, 0))((1, 0) ∗ (1,m′))

= ((1,m)(1, 0)) ∗ ((1, 0)(1,m′))

= (1,m) ∗ (1,m′) = (1,m+m′)

Then

(1,m+m′) = (1,m)(1,m′) = ((1, 0) + (0,m))((1, 0) + (0,m′))

= (1, 0)(1, 0) + (0,m)(1, 0) + (1, 0)(0,m′) + (0,m)(0,m′)

= (1, 0) + (0,m) + (0,m′) + (0,m)(0,m′)

= (1,m+m′) + (0,m)(0,m′)

which implies that (0,m)(0,m′) = (0, 0). Since M is the kernel of a
homomorphism, it is an ideal so that (a, 0)(0,m) ∈ M and we will
denote it by (0, am) and similarly for (0,m)(a, 0), which we denote
(0,ma). The equations of rings imply readily that M is a two-sided
A-module.

(a,m)(a′,m′) = ((a, 0) + (0,m))((a′, 0) + (0,m′))

= (a, 0)(a′, 0) + (0,m)(a′, 0) + (a, 0)(0,m′) + (0,m)(0,m′)

= (aa′, 0) + (0,ma′) + (0, am′) = (aa′,ma′ + am′)

The remaining details are found in [Beck, 1967].
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1.3. Differentials. Suppose that X is one of our categories andX is
an object of X . Then the category ModX is the category of X-modules
and for an object p:Y // X, there is a functor Der(Y,−):ModX

// Ab. This functor is the composite of the inclusion IX :ModX
// X /X with the homfunctor Hom(Y // X,−), each of which

preserves limits. Thus Der(Y,−) preserves limits and it is reasonable
to suppose that it is represented by an X-module, we call DiffXY or
simply DiffY , the module of differentials of Y .

The remarkable fact was that in the standard Cartan-Eilenberg
cohomology resolution

· · · // An // An−1
// · · · // A1

// A0
// A // 0

as described above, in every case, A0 = Xe and the kernel of A0
// A

was exactly DiffX . Thus

· · · // An // An−1
// · · · // A1

// DiffX // 0

is a projective resolution of DiffX . Thus if we define a cohomology

theory, say H̃ by H̃n(X,M) = ExtnXe(DiffX ,M) it will be related to
the Cartan-Eilenberg cohomology theory by

H̃n(X,M) =

{
Der(X,M) if n = 0

Hn+1(X,M) if n > 0

For simplicity, we will call this the dimension-shifted Cartan-Eilenberg
cohomology theory.

This would allow us to define the Cartan-Eilenberg cohomology
in wide generality, if we wanted. Unfortunately, the reality is that
while Cartan and Eilenberg believed that they had found a uniform
approach to algebraic cohomology theories, the three cases they con-
sidered turned out to be the only three for which their approach was
“right”. (Right means that it coincides with the cotriple cohomology
theory, which is really the natural one. When it can be described by
the Cartan-Eilenberg approach, that is interesting and useful, but that
is not the typical case.)

To summarize, here is the Cartan-Eilenberg cohomology. We as-
sume that the category X has the property that for each X there is
given an algebra Xe (which, in fact would have to be determined only
up to Morita equivalence) such that the category of X-modules in the
sense of Beck is equivalent to that of left Xe-modules. In addition,
we suppose that the inclusion IX :ModX ' ModXe // X /X has
a left adjoint DiffX , often denoted Diff. Then the dimension-shifted
Eilenberg cohomology is Ext•xe(Diff(X),−)
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1.4. Cotriple cohomology. Given a category X and a cotriple
G = (G, ε, δ) on X , there is a natural definition of cohomology of an
object A with coefficients in an X-module. This definition is due to
[Beck, 1967] and, in fact, was the reason for his introduction of Beck
modules. There will also be a homology theory in some cases, but that
has been less studied.

Given an object X, there is a simplicial object augmented over X:

· · ·
//... //
GnX

//... //
Gn−1X

//... //
· · · // // GX // X

For an X-module M we apply the functor Der(−,M) and take the
alternating sum of the induced homomorphisms to get the cochain
complex

0 // Der(GX,M) // Der(G2X,M) // · · · // Der(Gn+1X,M) // · · ·
whose cohomology is defined to be H•(X,M). The group H0(X,M)
can be identified as Der(X,M) and Beck showed that H1(X,M) can be
identified as the group of equivalence classes of “singular” extensions
Y // X with kernel M .

Just for the record, we describe briefly what a singular extension
is. If p:M // X is an X-module, that is an abelian group object
of X /X, and q:Y // X is an arbitrary object of X /X, then one
can show that Y ×X M // Y by the projection on the first factor,
makes Y ×XM into a Y -module, assuming that pullback exists. If the
pullback Y ×X Y also exists the first projection Y ×X Y // Y is an
object of X /Y . If Y ×X M ∼= Y ×X Y as objects of X /Y , then we
say that q is a singular extension with kernel M . This turns out to
coincide with the usual definitions in the three cases: for associative
algebras, a singular extension is a surjection whose kernel has square 0;
for groups a singular extension has abelian kernel; and for Lie algebras,
where abelian means square 0, it is the same as the other two.

Since it was known (one of the first results shown in the early pa-
pers) that the group of singular extensions was classified by H2 (recall
the dimension shift), it was a reasonable conjecture that the dimension-
shifted Cartan-Eilenberg cohomology was equivalent to the cotriple
cohomology. The early papers on cohomology also had an interpreta-
tion of H3 as certain kinds of obstructions. G. Orzech showed [1972a,b]
that this interpretation of the corresponding cotriple H2 had a simi-
lar interpretation as obstructions under certain conditions. Essentially,
the objects had to have an underlying group structure and it was re-
quired that the annihilator of an ideal be an ideal (in the case of groups,
that the centralizer of a normal subgroup be a normal subgroup). This
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holds for associative and Lie algebras, but not, for example, for Jordan
algebras.

1.5. Exercises

1. Suppose that S is a set. What is an S-module?

2. Show that the category of 2-modules is equivalent to the category
of modules over the ring Z× Z.

3. This exercise is for people who know about locally presentable
categories, which are complete categories that are accessible in the
sense of [Makkai & Paré, 1990].

(a) Show that for any category X , the underlying functor IA:Ab(X )
//X preserves limits.

(b) Show that if X is accessible, so is IA.

(c) Conclude that if X is locally presentable, then IA has a left
adjoint JA.

1.6. The standard setting. In order to understand these things in
some detail, we describe what we call a standard Cartan–Eilenberg or
CE setting.

We begin with an exact category X . For each object X of X , we
denote by Mod(X) the category Ab(X /X) of abelian group objects of
X /X. We assume that the inclusion IX :Mod(X) // X /X has a
left adjoint we denote DiffX . When f :Y // X is an arrow of X ,
the direct image (or composite with f) determines a functor f!: X /Y

//X /X that has a right adjoint f ∗ = Y ×X − of pulling back along
Y // X. The right adjoint f ∗ (but not the direct image f!) restricts
to a functor that we will also denote by f ∗:Mod(X) // Mod(Y ) and
that we will assume has a left adjoint we denote f#. The diagram is

X /Y Mod(Y )
DiffY //

X /X

X /Y

OO

f!

X /X Mod(X)
DiffX //

Mod(X)

Mod(Y )

OO

f#

X /Y Mod(Y )oo
IY

X /X

X /Y

f ∗

��

X /X Mod(X)oo
IX

Mod(X)

Mod(Y )

f ∗

��

The upper and left arrows are left adjoint, respectively to the lower and
right arrows and the diagram of the right adjoints commutes, and so,
therefore, does the diagram of left adjoints. (In principle, the diagram
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of left adjoints commute only up to natural equivalence. However the
left adjoints are defined only up to natural equivlance and therefore we
are free to modify them so that the diagram actually commutes on the
nose.) In the familiar cases involving an enveloping algebra Xe, the
left adjoint f# turns out to be the functor Xe ⊗Y e (−). That is, Xe

becomes a right Y e-module via f (actually, just the right hand version
of f ∗) and then that tensor product is an Xe-module.

1.7. Proposition. If X is an object of the regular category X , the
forgetful functor IX :Mod(X) //X /X preserves regular epis.

Proof. What we have to show is that if f :M ′ // M is a regular
epimorphism in the category Mod(X), then it is also a regular epi in
X /X. Actually, we will show that if f is strict epic in Mod(X), then
it is regular in X and hence in X /X.

An object of Mod(X) is an object Y // X equipped with certain
arrows of which the most important is the arrow m:Y ×X Y // Y
that defines the addition. There are also some equations to be satisfied.
The argument we give actually works in the generality of the models
of a finitary equational theory. So suppose f :M ′ // // M is a strict
epimorphism in Mod(X). If the map IXf is not strict epi, it can be
factored as Y ′ = IXM

′ // // Y ′′ // // Y = IXM in X /X. Since X ,
and hence X /X, is regular, the arrow Y ′×X Y ′ // Y ′′×X Y ′′ is also
regular epic and we have the commutative diagram

Y ′ Y ′′// // Y ′′ Y// //

Y ′ ×X Y ′ Y ′′ ×X Y ′′// //Y ′ ×X Y ′

Y ′

m′

��

Y ′′ ×X Y ′′ Y ×X Y// //Y ′′ ×X Y ′′

Y ′′

Y ′′ ×X Y ′′

Y ′′

Y ×X Y

Y

m

��

The “diagonal fill-in” (here vertical) provides the required arrowm′′:Y ′′×X
Y ′′ // Y ′′ at the same time showing that both of the arrows Y ′

// Y ′′ // Y preserve the new operation. A similar argument
works for any other finitary operation. As for the equations that have
to be satisfied, this follows from the usual argument that shows that
subcategories defined by equations are closed under the formation of
subobjects. For example, we show that m′′ is associative. This requires
showing that two arrows Y ′′ ×X Y ′′ ×X Y ′′ // Y ′′ are the same. But
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we have the diagram

Y ′′ Y// //

Y ′′ ×X Y ′′ ×X Y ′′

Y ′′
��

Y ′′ ×X Y ′′ ×X Y ′′ Y ×X Y ×X Y// // Y ×X Y ×X Y

Y
��

Y ′′ ×X Y ′′ ×X Y ′′

Y ′′
��

that commutes with either of the two left hand arrows. With the
bottom arrow monic, this means those two arrows are equal.

2. The main theorem

In this section we prove the main result of this chapter. We start with a
“base category” S and a functor U : X // S that preserves regular
epics and has a left adjoint F . For group cohomology, S is the category
of sets, while for associative or Lie algebras over the commutative ring
K it will be the category of K-modules. In any case, the cohomology
will be a K-relative cohomology. Let G = (G, ε, δ) denote the cotriple
on X that results from the adjunction F U .

We suppose there is given, for each object X of X , a chain complex
functor CX

• : X /X // C CMod(X), the category of chain complexes
in Mod(X). Such a functor assigns to each Y // X a chain complex

· · · // CX
n (Y ) // · · · // CX

0 (Y ) // 0

of X-modules. We further suppose that for f :Y // X the diagram

X /X C CMod(X)
CX
•

//

X /Y

X /X

f!

��

X /Y C CMod(Y )
CY
• // C CMod(Y )

C CMod(X)

C C f#

��

commutes.
Note that all these categories have initial objects. If we take Y

to be the initial object, then we get a standard complex for that case
and the complex in all the other cases is gotten by applying i#, where
i is the initial morphism. In light of a previous remark, this is just
tensoring with Xe.

For the purposes of this theorem, define an object X of X to be U -
projective if UX is projective in S with respect to the class of regular
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epis. The third hypothesis of this theorem looks a bit mysterious and I
will try to explain it. If you look at the complexes {Cn} in the Cartan-
Eilenberg theory, you will observe that for a fixed n and an object X,
Cn(X) does not depend on the group, respectively algebra, structure
of X, but only on the underlying set, respectively K-module UX. The
full structure of X is used only to define the boundary operator. We
formalize this property, which turns out to be important for the analysis
here, in the third hypothesis.

2.1. Theorem. Suppose that, in the context of a CE setting, when
X is U-projective,

(i) GX is U-projective;
(ii) CX

• (X) is a projective resolution of DiffX(X);

(iii) For each n ≥ 0, there is a functor C̃X
n : X /UX // Mod(X)

such that the diagram

X /X

S /UX

U/X
��????????????

X /X Mod(X)
CX
n // Mod(X)

S /UX

??

C̃X
n������������

commutes.

Then there is a natural chain transformation DiffX(G•+1−) //

CX
• (−) which is a weak homotopy equivalence.

Proof. We apply the acyclic models theoren with Γ the class of con-
tractible complexes. We have to show that both of the functors are
weakly contractible on models and presentable with respect to Γ. How-
ever, for DiffX(G•+1−), both of these are automatic (Theorem 5.3.6).
We turn to these properties for the Cartan–Eilenberg complex.

Presentability: For n ≥ 0, the complex

· · · // CnG
m+1 // · · · // CnG // Cn // 0 (∗)

is equivalent to

· · · // C̃nUG
m+1 // · · · // C̃nUG // C̃nU // 0

At this point we require,

2.2. Lemma. Let the functor U : X // S have left adjoint F and
let G be the resultant cotriple on X . Then the simplicial functor

· · ·
//... //
UGm+1

//... //
· · · ////// UG

2 //// UG // U

has a natural contraction.
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Proof. We let s = ηUGn:UGm // UGm+1. Then

Ud 0 ◦ s = UεGm ◦ ηUGm = id

while, for 0 < i ≤ m,

Ud i ◦ ηUGm = UGiεGm−i ◦ ηUGm

and the last term equals, by naturality of η,

ηUGm−1 ◦ UGi−1εGm−i = ηUGm−1 ◦ Ud i−1

This shows that s is a contracting homotopy in the simplicial functor.

If we apply the additive functor C̃n to this contractible complex,
we still get a contractible complex, which is (∗).

Acyclicity on models: We will show that for each Y // X, the com-
plex

· · · // CnGY // · · · // C1GY // C0GY // Diff GY // 0 (∗∗)
is contractible.

2.3. Lemma. Let P be a regular projective object of X . Then, for
any P // UX, DiffFP is projective.

Proof. When P is projective in X , any P // X is a projective object
of X /X. It is immediate that when L: X // Y is left adjoint to
R: Y // X , then L takes a projective in X to a projective in Y
provided R preserves the epimorphic class that defines the projectives.
In this case, the right adjoint is the composite UIX and the class is
that of regular epimorphisms. We have assumed that U , and hence
U/X, preserves regular epis and Proposition 1.7 says that IX does.

Since the two complexes reduce to Diff in degree −1, Diff G•+1 is
contractible with respect to homotopy and Cn is presentable with re-
spect to homotopy, the existence of a natural transformation Diff G•+1

// C• that extends the identity on Diff follows. Since Diff G•+1 is
presentable with respect to homotopy, hence weak homotopy and C•
is acyclic with respect to weak homotopy, it follows that for each Y

// X, there is a chain map C•(Y ) // Diff G•+1Y , the conclusion
follows.

With almost the same argument as the proof of 2.1, we can also
prove the following.

2.4. Theorem. Suppose that, in the context of a CE setting, when
X is U-projective,

(i) C•GX has a natural contracting homotopy;
(ii) CX

• (X) is a projective resolution of DiffX(X);
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(iii) For each n ≥ 0, there is a functor C̃X
n : X /UX // Mod(X)

such that the diagram

X /X

S /UX

U/X
��????????????

X /X Mod(X)
CX
n // Mod(X)

S /UX

??

C̃X
n������������

commutes.

Then there are natural chain transformations DiffX(G•+1−) // CX
• (−)

and CX
• (−) // DiffX(G•+1−) which are homotopy inverse to each

other.

3. Groups

Let Grp be the category of groups and π be a group. The underlying
functor U :Grp // Set evidently satisfies our conditions and the fact
that epimorphisms in Set split implies that every group is U -projective.

If we fix a group π, the functor C̃π
n : Set/Uπ // Mod(π) takes the set

g:S // Uπ to the free π-module generated by the (n+ 1)st cartesian
power Sn+1. Now suppose that g = Up for a group homomorphism
p: Π // π. The value of the boundary operator ∂ on a generator

〈x0, x1, · · · , xn〉 ∈ C̃π
n (Up:UΠ // Uπ) is

p(x0)〈x1, · · · , xn〉+
n−1∑
i=1

(−1)i〈x0, · · · , xi−1xi, · · · , xn〉+(−1)n〈x0, · · · , xn−1〉

which depends on the group structure in Π. This defines the functor
Cπ
• on Grp/π. The standard Cartan–Eilenberg resolution is the special

case of this one in which p is the identity π // π. We may denote
Cπ
• (id:Uπ // Uπ) as simply C•(π) (U applied to the identity of π is

the identity of Uπ).
For any group Π and any Π-module M a derivation τ : Π // M

is a function that satisfies τ(xy) = xτy + τx. This is sometimes called
a crossed homomorphism, since in the case the action is trivial it is
just a homomorphism. On the other hand, one can also interpret it as
τ(xy) = x(τy) + (τx)y with trivial right action.

From this we have that τ1 = τ(1 · 1) = 1τ1 + τ1 = 2τ1, which
implies that τ1 = 0. Also, τy = τ(xx−1y) = xτ(x−1y) + τx so that
τ(x−1y) = x−1τy − x−1τx. In particular, τ(x−1) = −x−1τx.
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3.1. Proposition. Suppose that Π is free on basis S and M is a Π-
module. Then any function τ :S //M extends to a unique derivation
Π //M .

Proof. We will extend τ to a function we also call τ : Π //M defined
recursively on the word length as follows. First τ1 = 0 as is required
for any derivation from τ1 = τ(1 · 1) = 1τ1 + 1τ1 = 2τ1. Assume
that τ is defined on all words whose length is less than the length of
w. Then either w = xv for some x ∈ X or w = x−1v for some x ∈ X.
In either case, v is a shorter word than w. In the first case, define
τw = xτv + τx and in the second, define τw = x−1τv − x−1τx. If
these give derivations, they are clearly unique, since these definitions
are forced, by the remarks above. So suppose that whenever v = tu is
shorter than w, it satisfies τ(v) = tτu + τt. Then for w = xv = xtu,
we have

τw = xτv + τx = xtτu+ xτt+ τx = xtτu+ τ(xt)

If, on the other hand, w = x−1v = x−1tu, then

τw = x−1τv−x−1τx = x−1tτu+x−1τt−x−1τx = x−1tτu+τ(x−1t)

This implies that Diffπ(Π) is the free π-module generated by X.
It is not hard to show that Cπ

• is an exact chain complex and hence
for any Π // π, Cπ

• (Π) is a free resolution of Diffπ(Π). In the case
that Π is free, this is then a free resolution of a free module and hence
necessarily split. However, we would rather get the extra information
available if we know that the splitting is natural, namely that we then
get a homotopy equivalence between the two chain complex functors.

Let us simplify notation by dropping the upper index π. We will
start by defining a homomorphism ∂:C0(Π) // Diff(Π). There is a
function τ :X // Diff(Π) which is the inclusion of the basis. This
extends to a derivation τ : Π // Diff(Π) as above. Since C0(Π) is
freely generated by the elements of Π, this derivation τ extends to a
π-linear function ∂:C0(Π) // Diff(Π). In accordance with the recipe
above, ∂ is defined on elements of Π recursively as follows. We will
denote by 〈w〉 the basis element of C0(Π) corresponding to w ∈ Π. As
above, either w = 1 or w = xv or w = x−1v for some x ∈ X and some
v ∈ Π shorter than w. Then

∂〈w〉 =

{
p(x)∂〈v〉+ x if w = xv

p(x−1)∂〈v〉 − p(x−1)x if w = x−1v
0 if w = 1

Now define s: Diff(Π) // C0(Π) to be the unique π-linear map such
that s(dx) = 〈x〉 for x ∈ X. Since Diff(Π) is freely generated by all dx
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for x ∈ X, this does define a unique homomorphism. For x ∈ X, we
have that ∂ ◦ s(dx) = ∂〈x〉 = dx and so ∂ ◦ s = id.

For each n ≥ 0 we define a homomorphism s:Cn // Cn+1 as
follows. We know that Cn is the free π-module generated by Πn+1. We
will denote a generator by 〈w0, · · · , wn〉 where w0, . . . , wn are words in
elements of X and their inverses. Then we define s:Cn // Cn+1 by
induction on the length of the first word:

s〈w0, . . . , wn〉

=


p(x)s〈w,w1, . . . , wn〉 − 〈x,w,w1, . . .〉 if w0 = xw

p(x−1)s〈w,w1, . . . , wn〉+ p(x−1)〈x,w0, w1, . . .〉 if w0 = x−1w
〈1, 1, w1, . . . , wn〉 if w0 = 1

3.2. Proposition. For any word w and any x ∈ X
s〈xw,w1, . . . , wn〉 = p(x)s〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉

s〈x−1w,w1, . . . , wn〉 = p(x−1)s〈w,w1, . . . , wn〉+ 〈x−1, w0, w1, . . . , wn〉
Proof. These are just the recursive definitions unless w begins with
x−1 for the first equation or with x for the second. Suppose w = x−1v.
Then from the definition of s,

s〈w,w1 . . . , wn〉 = x−1s〈v, w1, . . . , wn〉+ x−1〈x,w,w1, . . . , wn〉
so that

s〈xw,w1, . . . , wn〉 = s〈v, w1, . . . , wn〉

= xs〈w,w1, . . . , wn〉 − 〈x,w,w1, . . . , wn〉
The second one is proved similarly.

Now we can prove that s is a contraction. First we will do this
in dimension 0, then, by way of example, in dimension 2; nothing
significant changes in any higher dimension. In dimension 0, suppose
w is a word and we suppose that for any shorter word v, we have that
s ◦ ∂〈v〉+ ∂ ◦ s〈v〉 = 〈v〉. If x = 1, then

s ◦ ∂〈1〉+ ∂ ◦ s〈1〉 = d ◦ el〈1, 1〉 = 1〈1〉 − 〈1〉+ 〈1〉 = 〈1〉
If w = xv, with x ∈ X, then

∂ ◦ s〈w〉+ s ◦ ∂〈w〉 = ∂(p(x)s〈v〉 − ∂〈x, v〉) + s(dw)

= p(x)∂ ◦ s〈v〉 − p(x)〈v〉+ 〈xv〉 − 〈x〉+ s(p(x)∂(v) + dx)

= 〈w〉+ p(x)(∂ ◦ s+ s ◦ ∂ − 1)〈v〉 − 〈x〉+ 〈x〉 = 〈w〉
A similar argument takes care of the case that w = x−1v. In dimension
2, the chain group C2(Π) is freely generated by Π3. If we denote a
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generator by 〈w0, w1, w2〉, we argue by induction on the length of w0.
If w0 = 1, then

s ◦ ∂〈1, w1, w2〉 = s(〈w1, w2〉 − 〈w1, w2〉+ 〈1, w1w2〉 − 〈1, w1〉)

= 〈1, 1, w1w2〉 − 〈1, 1, w1〉
while

∂◦s〈1, w1, w2〉 = ∂(〈1, 1, w1, w2〉)

= 〈1, w1, w2〉 − 〈1, w1, w2〉+ 〈1, w1, w2〉 − 〈1, 1, w1w2〉+ 〈1, 1, w1〉
and these add up to 〈1, w1, w2〉. Assume that (∂ ◦ s + s ◦ ∂)〈w〉 = 〈w〉
when w is shorter than w0. Then for w0 = xw,

∂ ◦ s〈xw,w1, w2〉 = p(x)∂ ◦ s〈w,w1, w2〉 − ∂〈x,w,w1, w2〉

= p(x)∂ ◦ s〈w,w1, w2〉 − p(x)〈w,w1, w2〉+ 〈xw,w1, w2〉

− 〈x,ww1, w2〉+ 〈x,w,w1w2〉 − 〈x,w,w1〉
while

s ◦ ∂〈x,w,w1, w2〉

= p(xw)s〈w1, w2〉 − s〈xww1, w2〉+ s〈xw,w1w2〉 − s〈xw,w1〉

= p(xw)s〈w1, w2〉 − p(x)s〈ww1, w2〉+ 〈x,ww1, w2〉

+ p(x)s〈w,w1w2〉 − 〈x,w,w1w2〉 − p(x)s〈w,w1〉+ 〈x,w,w1〉

= p(x)s ◦ ∂〈w,w1, w2〉+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Then,

(∂ ◦ s+ s ◦ ∂)〈xw,w1, w2〉 = p(x)(∂ ◦ s+ s ◦ ∂)〈w,w1, w2〉 − p(x)〈w,w1, w2〉

+ 〈xw,w1, w2〉 − 〈x,ww1, w2〉+ 〈x,w,w1w2〉 − 〈x,w,w1〉

+ 〈x,ww1, w2〉 − 〈x,w,w1w2〉+ 〈x,w,w1〉
Using the inductive assumption, the first two terms cancel and all the
rest cancel in pairs, except for 〈xw,w1, w2〉, which shows that s ◦ ∂ +
∂ ◦ s = 1 in this case. The second case, that w0 begins with the inverse
of a letter is similar.

This completes the proof of the homotopy equivalence.
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4. Associative algebras

The situation with associative algebras is quite similar to that of
groups. We begin with a commutative (unitary) ring K. The category
X is the category of K-modules and A is the category of K-algebras.
If A is a K-algebra, the category Mod(A) is the category of two sided
A-modules. The enveloping algebra of A is Ae = A ⊗K Aop and it is
easy to see that two-sided A-modules are the same thing as left Ae-
modules. The free algebra generated by a K-module V is the tensor
algebra

F (V ) = K ⊕ V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ · · · ⊕ V (n) ⊕ · · ·
and it is evident that F (V ) is K-projective when V is. Note that we
use V (n) to denote the nth tensor power of V . If A is a K-algebra, the
functor CA

n is defined by the formula

CA
n (V // UA) = A⊗ V (n+1) ⊗ Aop ∼= Ae ⊗ V (n+1)

for g:V // UA. The boundary formula is similar to the one for
groups. If g has the form Uf :UB // UA, then

∂(a⊗ b0 ⊗ · · ·⊗bn ⊗ a′) = af(b0)⊗ b1 ⊗ · · · ⊗ bn ⊗ a′

+
n−1∑
i=1

(−1)ia⊗ b0 ⊗ · · · ⊗ bi−1bi ⊗ · · · ⊗ bn ⊗ a′

+ (−1)na⊗ b0 ⊗ · · · ⊗ bn−1 ⊗ f(bn)a′

(16)

differing only in the fact that we have operation on the right as well
as on the left. The remaining details are essentially similar to those of
the group case.

If A is an algebra and M is a two-sided A-module, then a derivation
τ :A //M is a linear function such that τ(ab) = a(τb) + (τa)b.

If A = F (V ) is a tensor algebra, then for an A-module M , every lin-
ear map τ :V //M extends to a unique derivation defined recursively
by the formulas τ1 = 0 and

τ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = v1τ(v2 ⊗ · · · ⊗ vn) + τv1

If p:A // B is an algebra homomorphism, the formula for the
contracting homotopy in the Cartan–Eilenberg complex of a tensor
algebra is

s(a0⊗ a1⊗ · · ·⊗ an) = p(v)s(a⊗ a1⊗ · · ·⊗ an) + (v⊗ a⊗ a1⊗ · · ·⊗ vn)

where a0 = v ⊗ a in the tensor algebra.
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5. Lie Algebras

This examples differs from the preceding ones more than just in some
details. For one thing, Cartan and Eilenberg limited their treatment
to K-Lie algebras that were K-free (instead of K-projective, as they
did for associative algebras) and we would like to extend the theory to
the projective case. For another, it requires some work to see that the
free Lie algebra generated by a projective K-module is still a projective
K-module. When the given K-module is free, this fact is buried in an
exercise in [Cartan & Eilenberg] (Exercise 8 on page 286), with a long
hint that still requires some effort to complete. We give the details,
since this argument (nor the fact itself) is certainly not well known.

It is instructive to see why Cartan and Eilenberg limited themselves
to K-free Lie algebras. Eilenberg explained it once. They made crucial
use of the fact of the Poincaré–Witt theorem that implies that the
enveloping algebra of a K-free Lie algebra is K-free. The enveloping
algebra functor is not additive and therefore they did not see how to
show that the enveloping algebra of a K-projective Lie algebra was
K-projective. The problem was that they defined projective as being a
direct summand of a free module. In the interim, we have learned, from
dealing with non-additive categories, that a more useful definition of
projective is as retract of a free. Since the property of being a retract is
preserved by all functors, any functor that takes a free object to a free
(or even projective) object will also take a projective to a projective.
It is interesting to note that at different places in the proof we actually
use both definitions of projective.

5.1. The enveloping algebra. There is a functor K-Assoc // K-
Lie that assigns to each associative algebra the Lie algebra with the
same underlying K-module and operation

[x, y] = xy − yx
This functor has a left adjoint given by g 7→ ge, which is a quotient of
the tensor algebra

T (g) = K ⊕ g⊕ (g⊗ g)⊕ (g⊗ g⊗ g)⊕ · · · ⊕ g(n) ⊕ · · ·
The multiplication is given by

(x1 ⊗ · · · ⊗ xn)(y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym
and the quotient is by the 2-sided ideal generated by all terms of the
form x⊗ y − y ⊗ x− [x, y]. Then the Poincaré–Witt theorem says:
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5.2. Theorem. Suppose that g is a K-Lie algebra that is free on the
basis {xi | i ∈ I} where I is a totally ordered index set. Then ge is
K-free on the basis

{xi1 ⊗ · · · ⊗ xin | i1, . . . , in ∈ I, i1 < · · · < in}
Since every set can be totally ordered, this implies,

5.3. Corollary. If the K-Lie algebra g is K-free, then so is ge.

Now we can extend this to K-projectives.

5.4. Proposition. Let g be a K-Lie algebra that is projective as a
K-module. Then the enveloping algebra ge is projective as a K-module.

Proof. Since g is K-projective, we can find a K-module g0 such that
g ⊕ g0 is a K-free K-module. We can make g ⊕ g0 into a Lie algebra
by making g0 a central ideal (that is, [(x, x0), (y, y0)] = ([x, y], 0) for
x, y ∈ g and x0, y0 ∈ g0). Then g is, as a Lie algebra, a retract of
g⊕g0. All functors preserve retracts so that ge is a retract of (g⊕g0)e.
By the Poincaré–Witt theorem, the latter is K-free, and so ge is K-
projective.

Cartan–Eilenberg made another use of freeness in their develop-
ment. It was used in the process of showing that if h is a Lie subalgebra
of the Lie algebra g, and if g, h and g/h are K-free, then ge is a free
he-module. We will prove this with “free” replaced everywhere by “pro-
jective”. Of course, if g and g/h are K-projective, so is h.

5.5. Proposition. Let 0 // h // g // g/h // 0 be an exact
sequence of K-projective K-Lie algebras. Then ge is projective as an
he-module.

Proof. The conclusion is valid when all three of g, h and g/h are K-free
([Cartan & Eilenberg ], Proposition XIII.4.1). For the general case, let
f = g/h. Since h is K-projective, there is a K-module h0 such that
h ⊕ h0 is K-free. If we give h0 the structure of a central ideal, then
h ⊕ h0 is a K-free K-Lie algebra. Similarly, choose f0 so that f ⊕ f0 is
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K-free and let g0 = f0 ⊕ h0. We have a commutative diagram

h⊕ h0 g⊕ h0 ⊕ f0

 f 0
0 1
0 0


// g⊕ h0 ⊕ f0 f⊕ f0

(
g 0 0
0 0 1

)
//

h g
f

//h

h⊕ h0

(
1
0

)
��

g f
g

//g

g⊕ h0 ⊕ f0

 1
0
0


��

f

f⊕ f0

(
1
0

)
��

Since, as K-modules, g ⊕ g0
∼= h ⊕ h0 ⊕ f ⊕ f0 is a direct sum of free

modules, it follows that g ⊕ g0 is free as well. Apply the enveloping
algebra functor to the left hand square to get the diagram,

(h⊕ h0)e (g⊕ g0)e//

he

(h⊕ h0)e
��

he ge// ge

(g⊕ g0)e
��

According to Proposition XIII.2.1 of [Cartan & Eilenberg ], for any two
Lie algebras g1 and g2, there is an isomorphism (g1 ⊕ g2)e ∼= ge1 ⊗ ge2.
This can be proved directly, as Cartan & Eilenberg do, but the easy
way is to observe that both sides represent the functor that assigns to
an associative algebra A the set of pointwise commuting pairs of ho-
momorphisms in Hom(ge1, A)×Hom(ge2, A) (see Exercise 1). Moreover,
he0 is K-projective since h0 is. If he0 is K-free, say he0

∼=
∑
K, then

he ⊗ he0
∼= he ⊗

∑
K ∼=

∑
he is a free he-module. If he0 is K-projective,

then it is a retract of a free K-module and it follows that he ⊗ he0 is a
retract of a free he-module. But (g ⊕ g0)e is, as an (h ⊕ h0)e-module,
a fortiori as an he-module, isomorphic to a direct sum of copies of
(h ⊕ h0)e and hence is also he-projective. Finally, ge is a retract as a
ring, therefore as a ge-module and hence as an he-module, of (g⊕ g0)e

and is therefore also he-projective.

With these two results, the entire chapter XIII of [Cartan & Eilen-
berg ] becomes valid with free replaced by projective.

Now we describe the standard theory from [Cartan & Eilenberg]
(with the usual dimension shift). For a K-module M , let

∧n(M)
denote the nth exterior power of M . If g:M // Ug is a module
homomorphism, Cg

n(M // Ug) = ge ⊗
∧n+1(M). If g = Uf for a

Lie algebra homomorphism f : h // g, the boundary is described on
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generators as follows. We adopt here a convention common in alge-
braic topology in which we denote the omission of a term by putting â on it. So, for example, a sequence x1, . . . , x̂i, . . . , xn is shorthand for
x1, . . . , xi−1, xi+1, . . . , xn.

∂(x0 ∧ x1∧ · · · ∧ xn) =
n∑
i=0

(−1)if(xi)⊗ (x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xn)

+
∑

1≤i<j≤n

(−1)i+j[xi, xj] ∧ x0 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn

In order to apply Theorem 2.1, we must show the following: (See [Car-
tan & Eilenberg ], Exercise 8 on page 286, where this is given as an
exercise for the case of a free K-module. The proof for that case follows
the long hint given there.)

5.6. Proposition. Let M be a projective K-module. Then the free
Lie algebra FM is also K-projective.

Proof. Consider first the case that M is a free K-module. There is a
diagram of categories and adjoints, in which ⊗ = ⊗Z:

Mod(K) Mod(Z)//

Lie(K)

Mod(K)

OO
Lie(K) Lie(Z)// Lie(Z)

Mod(Z)

OO

Mod(K) Mod(Z)
oo K ⊗−

Lie(K)

Mod(K)
��

Lie(K) Lie(Z)
oo K ⊗−

Lie(Z)

Mod(Z)
��

Mod(K)

Set
��????????????Mod(K) Mod(Z)Mod(K) Mod(Z)Mod(Z)

Set
��������������

Mod(K)

Set

__

????????????
Mod(K) Mod(Z)Mod(K) Mod(Z)Mod(Z)

Set

??

������������

It is clear from this diagram that if we show that the free Z-Lie
algebra generated by a free Z-module (that is, abelian group) is a free
abelian group, then by applying the functor K ⊗−, it follows that the
free K-Lie algebra by a free K-module will be K-free.

So let M be a free abelian group generated by the set X and let
F (M) be the free Lie algebra generated by M . By the commutation
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of adjoints in the diagram

Alg(Z)

Mod(Z)

aa

F (−)e
DDDDDDDDDDDDDDDD

Alg(Z) Lie(Z)oo
V

Lie(Z)

Mod(Z)

==

F

zzzzzzzzzzzzzzzz
Alg(Z)

Mod(Z)

UV

!!DDDDDDDDDDDDDDDDAlg(Z) Lie(Z)
(−)e

//
Lie(Z)

Mod(Z)

U
}}zzzzzzzzzzzzzzzz

Since F U and (−)e, it follows that (F−)e UV . But since UV
is just the underlying module functor, it follows that (F−)e is its left
adjoint, which is the tensor algebra functor T (M) = Z ⊕ M ⊕ (M ⊗
M) ⊕ M (3) ⊕ · · · which is Z-free. Then (FM)e and hence V (FM)e

are free abelian groups. The inner adjunction is a map e:F (M) //

V (F (M)e). If this map can be shown to be injective, then FM is a
subgroup of a free abelian group and is therefore free. The map e is
certainly injective when K is a field; the Poincaré–Witt theorem gives
an explicit linear basis for ge, assuming one for g and it includes, among
other things, the explicit basis of g.

For a set X, let FabX denote the free abelian group generated by
X. In particular, we can suppose there is an X with M = FabX. If e is
not injective, then there is a non-zero element a ∈ FM with e(a) = 0.
Now, a is made of up a finite sum of a finite number of finitely iterated
brackets applied to a finite number of free generators. For each finite
integer n let Fn(M) denote the abelian subgroup of FM consisting
of the elements that are finite sums of brackets of generators with no
more than n brackets. Then there is a finite subset Y ⊆ X and a finite
integer n, such that a ∈ Fn(FabY ). Now for any Y 6= ∅, the inclusion
Y // X is a split monic and hence so is V (F (FabY )e) // V (FM e).
Thus you can see from the diagram

V (F (FabY )e) V (FM e)// //

F (FabY )

V (F (FabY )e)
��

F (FabY ) FM// FM

V (FM e)
��

that if a is in the kernel of the arrow FM // V (FM)e, it also in
the kernel of F (FabY ) // V (F (FabY )e). Now Fn(FabY ) is a finitely
generated abelian group. At this point we need a lemma.

5.7. Lemma. Suppose f :A // B is a homomorphism of abelian
groups such that f is not injective, A is finitely generated and B is
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torsion free. Then there is an integer prime p such that the induced
map Z/pZ⊗ A // Z/pZ⊗B is not injective.

Proof. We begin by showing that Z/pZ ⊗ A ∼= A/pA. In fact, let
g:Z/pZ × A // A/pA be defined by g(n, a) = na + pA. It is easily
seen that this is a bilinear map. If h:Z/pZ×A // C is a bilinear map,

let h̃:A/pA // C be defined by h̃(a+pA) = h(1, a). Since h(1, pa) =
h(p, a) = 0 this is well defined and evidently a homomorphism such that

h̃ ◦ g = g. If l:A/pA // C is a homomorphism such that l ◦ g = h,

then l(a + pA) = l ◦ g(1, a) = h(1, a) = h̃(a + pA) so that h̃ is unique.
Now A is a finitely generated abelian group, hence a direct sum of
cyclic groups. Suppose there is an a ∈ ker f that is not torsion. Write
a =

∑
nxx, the sum taken over a chosen set of generators of the cyclic

group. There is some x for which nx 6= 0 and x is not torsion. Let p be
any prime that does not divide nx. Then a /∈ pA and is in the kernel of
the induced map A/pA // B/pB. If not, then the kernel of f is the
torsion subgroup of At ⊆ A. Since At is a direct sum of cyclic groups,
choose a prime that divides one of the orders and then At/pAt 6= 0 and
the class of any element a /∈ pAt will do.

This implies that

Zp ⊗ Fn(M) // Zp ⊗ Vn // Zp ⊗ U(F (M)e)

is not monic. But Zp is a field and both ()e and U commute with
Zp ⊗−, so that reduces the question to the case of a field for which e
is monic.

This finishes the case of a free module; projectives are readily han-
dled as retracts of free modules.

With this, Theorem 2.1 applies and shows that the cotriple resolu-
tion is homotopic to the one developed in [Cartan & Eilenberg ].

5.8. Exercise

1. (a) Show that if g1, g2 and g are Lie algebras, there is a one-one
correspondence between Lie algebra homomorphisms f : g1 ⊕ g2

// g
and pairs of homomorphisms (f1, f2) where f1: g1

// g and f2: g2
// g such that for all x1 ∈ g1 and x2 ∈ g2, [f1x1, f2x2] = 0.

(b) Show that if A1, A2 and A are associative algebras, there is a
one-one correspondence between algebra homomorphisms f :A1 ⊗ A2

// A and pairs of homomorphisms (f1, f2) where f1:A1
// A and

f2:A2
// A such that for all x1 ∈ A1 and x2 ∈ A2, f1x1f2x2 =

f2x2f2x1.
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(c) Conclude that (g1 ⊕ g2)e ∼= ge1 ⊗ ge2 since both represent the
same functor.

2. (a) Say that Lie algebra homomorphisms f1: g1
// h and f2: g2

// h pointwise commute if for any x1 ∈ g1 and x2 ∈ g2, we have
[f1(x1), f2(x2)] = 0. Fix h and define a functor K-Lie×K-Lie // Set
that assigns to each pair (g1, g2) the set of pointwise commuting pairs of
homomorphisms to h. Show that this functor is represented by g1⊕g2,
the commuting sum.

(b) Say that associative algebra homomorphisms f :A1
// B and

f2:A2
// B pointwise commute if for any x1 ∈ A1 and x2 ∈ A2,

we have f(x1)f(x2) = f(x2)f(x1). Fix B and define a functor K −
Assoc ×K − Assoc // Set that assigns to each pair (A1, A2) the set
of pointwise commuting homomorphisms to B. Show that this functor
is represented by the algebra A1 ⊗ A2.

(c) Use these two facts to show that (g1 ⊕ g2)e ∼= ge1 ⊗ ge2.
All these functors commute with filtered colimits. The left adjoints

commute with all colimits, 1.9.7, and the right adjoints with filtered
colimits, 1.12.3. Since the free Lie algebra is the filtered colimit of
Lie algebras that are free on a finite base, 1.12.5, and since a filtered
colimit of monics is monic, 1.12.4, it is sufficient M is free on a finite
base. Also, F (M) is the free nonassociative algebra generated by M
modulo the identities of a Lie algebra. The free nonassociative alge-
bra is a graded algebra whose nth gradation is the sum of as many
copies of the nth tensor power M (n) as there are associations of n el-

ements, which happens to be
1

n+ 1

(
2n
n

)
, but is, in any case, finite.

The identities are the two sided ideal generated by the homogeneous
elements x ⊗ x and x ⊗ (y ⊗ z) + z ⊗ (x ⊗ y) + y ⊗ (z ⊗ x). Thus
F (M) is a graded algebra and when M is finitely generated, so is the
nth homogeneous component. Let Fn(M) denote the sum of all the
homogeneous components of F (M) up to the nth. Let N be the kernel
of F (M) // U(F (M)e) and Nn = N ∩ Fn(M). Then Nn is finitely
generated. If N 6= 0, then for some n, Nn 6= 0 since N is the union of
them. Thus Nn is a non-zero finitely generated abelian group. Let Vn
be the image of Fn(M) // F (M) // U(F (M)e). Then we have an
exact sequence

0 // Nn
// Fn(M) // Vn // 0

and the sequence is split since Vn is a subgroup of a free abelian group
and is thus free. It is a standard result that there is some prime p for
which Zp ⊗Nn 6= 0.



CHAPTER 7

Other applications in algebra

The previous chapter applied the acyclic models theorems to the
homology and cohomology theories from the book of Cartan and Eilen-
berg. In order that a homology theory fit their patter, it must be a
Tor, and therefore the higher homology groups must vanish when the
coefficient module is projective (or even flat). Similarly, the higher
cohomology groups must vanish when the coefficient module is injec-
tive. The theories described in this chapter either do not satisfy that
criterion (the Harrison and Shukla theories) or are not (co)homology
theories at all (the Eilenberg–Zilber theorem).

We describe the Harrison theory in detail. It has been heavily
applied to the theory of commutative algebras. See [André, 1967, 1974]
and other references found there. We give only a pointer to the Shukla
theory and to the proof that it is a cotriple cohomology. It is extremely
complicated and has not, to my knowledge, had any applications. The
Eilenberg–Zilber theorem has had important applications. It was also
the first occasion, as far as I know, for a proof that uses a method
called acyclic models. The connection between that method and the
one used here is long and tenuous, but real.

1. Commutative Algebras

In 1962, D. K. Harrison defined a cohomology theory for commutative
algebras. It turns out that for an algebra over a field of characteristic
0, Harrison’s groups are isomorphic to those given by cotriple cohomol-
ogy. In the process of demonstrating that, we show that the Hochschild
cohomology groups of a commutative ring split into a direct sum of the
commutative cohomology and a natural complement. This splitting is
effected by a series of idempotents in the rational group ring of the sym-
metric groups, one in each degree. The nth symmetric group acts on
the nth chain group by permuting its terms and this allows the idempo-
tents to act as well. Since the series of idempotents commute with the
boundary, they also induce splittings on the homology groups and the
commutative cohomology turns out to be one of the two summands.

176
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M. Gerstenhaber and D. Schack showed that this splitting is just the
first step in a splitting of the nth Hochschild cohomology groups into
the direct sum of n pieces, one of which is the commutative cohomology.
This “Hodge decomposition” has been the subject of intensive study
by Gerstenhaber and Schack and others. The “shuffle idempotents” in
the rational group ring of the symmetric groups have found other uses,
including even in the study of card shuffling (see [Bayer and Diaconis,
1992]).

1.1. The Hochschild cohomology of a commutative algebra.
In this chapter, we will, for the time being adhere to the original
numbering that shifts the cohomology one dimension from the cotriple
cohomology. The reason we do this is that a number of formulas are
considerably more natural in that numbering. The shuffle product, de-
scribed below, is much easier to define and show compatible with the
boundary operator.

With the ring K fixed, we write ⊗ for ⊗K and B⊗n for the nth
tensor power of a K-module B. The Hochschild (co)homology groups
of a K-algebra homomorphism p:B // A are calculated from a res-
olution that has CA

n (B) = Ae ⊗ B⊗n in degree n and the boundary
operator described in 6, Equation (16). For a right Ae-module N the
homology H•(B,N) is computed as the homology of the chain complex
CA
• (B)⊗AeN and for a left Ae-module M the cohomology H•(B,M) is

the cohomology of the cochain complex HomAe(CA
• (B),M). Note that

CA
• (B)⊗Ae M = Ae ⊗B⊗n ⊗Ae M ∼= B⊗n ⊗M

and

HomAe(CA
• (B),M) = HomAe(Ae ⊗B⊗n,M) ∼= Hom(B⊗n,M)

The module structure is needed only for defining the boundary and
coboundary operators. The Harrison (co)homology is defined in the
case that A and B are commutative and the coefficient module M has
the same action on the left and right. In that case we can replace the
Hochschild complex by the complex defined by CA

n (B) = A ⊗ Bn and
then compute the homology of CA

n (B) ⊗A M and the cohomology of
HomA(CA

n (B),M). The boundary operator will be somewhat different
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too, being given by

∂(a⊗ b1 ⊗ · · · ⊗ bn) = ap(b1)⊗ b2 ⊗ · · · ⊗ bn

+
n−1∑
i=1

(−1)ia⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn

+ (−1)np(bn)a⊗ b1 ⊗ · · · ⊗ bn−1

taking advantage of the same action on the right and left.

1.2. Some notation. With p:B // A fixed, we will write Cn for
CA
n (B). We will denote the element a⊗b1⊗· · ·⊗bn ∈ Cn by a[b1, . . . , bn]

or simply [b1, . . . , bn] when a = 1. The element a ∈ A in degree 0 will
also be written as a[ ] or simply [ ] when a = 1. This notation also
makes use of the usual practice of ignoring associations of tensors by
making the identification

[b1, . . . , bi−1, [bi, . . . , bj], bj+1, . . . , bn] = [b1, . . . , bi−1, bi, . . . , bj, bj+1, . . . , bn]

If we write b for [b1, . . . , bn], as we often do, we will let b@, b@@, denote
[b2, · · · , bn], [b3, · · · , bn], etc., including [b1]@ = [ ].

The boundary operator can then be described as the as the A-linear
map for which

∂[b1, . . . , bn] = p(b1)[b2, . . . , bn] +
n−1∑
i=1

(−1)i[b1, . . . , bibi+1, . . . , bn]

+ (−1)np(bn)[b0, . . . , bn−1]

1.3. Shuffle products. The shuffle product ∗ is a graded product
defined on Cn as the A-bilinear map defined recursively by [ ]∗b = b =
b ∗ [ ] and for all n ≥ 1 and for all b ∈ Cn and c ∈ Cm,

b ∗ c = [b1,b
@ ∗ c] + (−1)n[c1,b ∗ c@]

Except for the sign, this is just all the permutations of the terms in b
and in c that leave those of b and those of c in their original relative
order, just like the riffle (or dovetail) shuffle. The inductive definition
can be understood as follows. In order to shuffle a pack of n cards with
one of m, you do nothing if n = 0 or m = 0. If they are both non-zero,
take a card off one of the two piles, shuffle the remaining piles and then
replace the missing card on top. The sign is just the ordinary sign of
the permutation.
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1.4. Theorem. For any b = [b1, · · · , bn] ∈ Cn and c = [c1, · · · , cm] ∈
Cm, ∂(b ∗ c) = (∂b) ∗ c + (−1)nb ∗ (∂c).

The proof is fairly complicated and uses several lemmas. We in-
troduce some auxiliary operators. We will say that an operator that
satisfies this equation is a derivation with respect to ∗ or a ∗-derivation.
We define recursively

b ∗̃ c =

{
0 if n = 0 or m = 0
[b1c1,b@ ∗ c@] otherwise

(♠)

We let ∂ 0 denotes the first face operator given by

∂ 0b = p(b1)b@

and we define ∂̃ by

∂̃b =
n−1∑
i=1

(−1)i−1[b1, · · · , bibi+1, · · · , bn]− (−1)np(bn)[b1, · · · , bn−1]

so that ∂ = ∂ 0 − ∂̃.

1.5. Lemma. ∂ 0(b ∗ c) = (∂ 0b) ∗ c + (−1)nb ∗ (∂ 0c).

Proof. We have

∂ 0(b ∗ c) = ∂ 0
(
[b1,b

@ ∗ c]
)

+ (−1)n∂ 0([c1,b ∗ c@])

= p(b1)(b@ ∗ c) + (−1)np(c1)(b ∗ c@) = (∂ 0b) ∗ c + (−1)nb ∗ (∂ 0c)

1.6. Lemma. Suppose for some n ≥ 0 and m ≥ 0, we know that for
all b ∈ Cn and all c ∈ Cm, ∂(b ∗ c) = (∂b) ∗ c + (−1)nb ∗ (∂c). Then

∂̃(b ∗ c) = (∂̃b) ∗ c + (−1)nb ∗ (∂̃c)

Proof. This is immediate since ∂ 0 is a ∗-derivation and if ∂ is, so is

∂̃ = ∂ 0 − ∂.

1.7. Lemma. Suppose for some n ≥ 0 and m ≥ 0, we know that for all
b ∈ Cn and all c ∈ Cm, ∂(b∗c) = (∂b)∗c+(−1)nb∗(∂c). Then for all

b ∈ Cn+1 and c ∈ Cm+1, we have ∂̃(b ∗̃ c) = (∂̃b) ∗̃ c + (−1)nb ∗̃ (∂̃c).

Proof. Write ∂ 1 for the first face operator, namely

∂ 1[b1, . . . , bn+1] = [b1b2, . . . , bn+1]
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A computation shows that ∂̃b = ∂ 1b − [b1, ∂̃b@], where the ∂̃ on the
right hand side is that of one lower dimension. Then

∂̃(b ∗̃ c) = ∂̃[b1c1,b
@ ∗ c@]

= ∂ 1[b1c1,b
@ ∗ c@]− [b1c1, ∂̃(b@ ∗ c@)]

= ∂ 1
(
[b1c1, b2,b

@@ ∗ c@] + (−1)n[b1c1, c2,b
@ ∗ c@@]

)
−
(

[b1c1, (∂̃b
@) ∗ c@] + (−1)n[b1c1,b

@ ∗ (∂̃c@)]
)

= [b1b2c1,b
@@ ∗ c@]− [b1c1, (∂̃b

@) ∗ c@]

+ (−1)n
(

[b1c1c2,b
@ ∗ c@@]− [b1c1,b

@ ∗ (∂̃c@)]
)

On the other hand,

(∂̃b) ∗̃ c = (∂ 1b− [b1, ∂̃b
@]) ∗̃ c = ∂ 1b ∗̃ c− [b1, ∂̃b

@] ∗̃ c

= [b1b2,b
@@] ∗̃ [c1, c

@]− [b1, ∂̃b
@] ∗̃ [c1, c

@]

= [b1b2c1,b
@@ ∗ c@]− [b1c1, (∂̃b

@) ∗ c@]

and similarly,

b ∗̃ (∂̃c) = [b1c1c2,b
@ ∗ c@@]− [b1c1,b

@ ∗ (∂̃c@)]

1.8. Lemma. For b ∈ Cn, we have b∗c = b ∗̃ [1, c]+(−1)n[1,b] ∗̃ c.

Proof. For b = [b1, . . . , bn] ∈ Cn] and c = [c1, . . . , cm] ∈ Cm,

b ∗̃ [1, c] + (−1)n[1,b] ∗̃ c = [b1,b
@] ∗̃ [1,b] + (−1)n[1,b] ∗̃ [c1, c

@]

= [b1,b
@ ∗ c] + (−1)n[c1,b ∗ c@] = b ∗ c

We are now ready to prove the theorem. The case n = m = 1 is an
immediate computation. We will suppose that the conclusion is valid
for all pairs of indices whose sum is smaller than n+m. It follows from
Lemma 1.7 that if b ∈ Ci, c ∈ Cj and i+ j < m+ n+ 2, then

∂̃(b ∗̃ c) = (∂̃b) ∗̃ c + (−1)i−1b ∗̃ (∂̃c) (♣)

Since ∂ 0 is a derivation with respect to ∗, it is sufficient to show that

∂̃ is. For b ∈ Ci and c ∈ Cj, we apply 1.8 to ∂(b ∗ c):

∂̃(b ∗ c) = ∂̃(b ∗̃ [1, c]) + (−1)i∂̃([1,b] ∗̃ c)
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If we apply (♣) to the first term and make the obvious expansion of
the second, we get

(∂̃b) ∗̃ [1, c] + (−1)i−1b ∗̃ (∂̃[1, c]) + (−1)i∂̃[1,b] ∗̃ c + [1,b] ∗̃ ∂̃c

Since ∂̃[1,b] = b − [1, ∂̃b] and similarly for c, this last expands and
then cancels to

(∂̃b) ∗̃ [1, c] + (−1)i−1b ∗̃ c + (−1)ib ∗̃ [1, ∂̃c]

+ (−1)ib ∗̃ c + (−1)i+1[1, ∂̃b] ∗̃ c + [1,b] ∗̃ (∂̃c)

= (∂̃b) ∗̃ [1, c] + (−1)i−1[1, ∂̃b] ∗̃ c + (−1)i
(
b ∗̃ [1, ∂̃c] + (−1)i[1,b] ∗̃ (∂̃c)

)
But from (♠), this is nothing but

(∂̃b) ∗ c + (−1)ib ∗ (∂̃c)

1.9. The shuffle idempotent. At this point, we define the Harri-
son complex of p:B // A as follows. Let SA• (B) be the subspace
of C• consisting of all shuffles of elements of positive degrees. Then
the Harrison complex is C•/S•. For convenience we will denote this
quotient CHa

• (B), suppressing mention of A.

1.10. Theorem. Suppose K is a field of characteristic 0. Then the
projection φ:C•(B) // CHa

• (B) is a split epimorphism and the split-
ting maps are natural chain transformations.

Proof. It is clear that Cn is acted on by the symmetric group Sn by

σ−1[b1, . . . , bn] = [bσ1, . . . , bσn]

When K is a field of characteristic 0 (although it would suffice that K
be a commutative ring containing Q), Cn becomes a module over the
group algebra Q[Sn]. We will be finding appropriate idempotents in
the group algebra to give the splitting. If e =

∑
λσσ is an element of

the group algebra, we let sgn(e) =
∑
λσ sgn(σ), where sgn is the usual

signum function. If we denote by εn the element 1
n!

∑
σ∈Sn

sgn(σ)σ,
then it is clear that for any e ∈ Sn, eεn = εne = sgn(e)εn. The same
equation will be true with e replaced by any element of the group.
Since, sgn(εn) = 1, it also follows that εn is idempotent.

For the purposes of the next discussion, we will understand the
generic chain in Cn, or the generic n-chain, to be the chain [x1, . . . , xn]
in the polynomial ring B = K[x1, . . . , xn]. An equation is true of
the generic chain if and only if it is true for an arbitrary chain in an
arbitrary algebra.
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1.11. Proposition. Let x be the generic chain in Cn. Then ∂εnx = 0.
If e ∈ Q[Sn] has the property that ∂ex = 0, then e is a multiple of εn,
namely e = sgn(e)εn = eεn. In particular, if eεn = 0 as well, then
e = 0.

Proof. Let us calculate n!∂εnx to avoid fractions. For any σ ∈ Sn, there
are two terms of the form xσ1[xσ2, · · · , xσn], namely the first term of
the boundary of σ−1x and the last term of the boundary of (σζ)−1x,
where ζ = ( 1 2 · · · n ) is the cyclic permutation. In the first
instance, it appears with the coefficient sgn(σ) and in the second with
the coefficient (−1)n sgn(σ) sgn(ζ) = − sgn(σ) and so they cancel. In a
similar way, the term [xσ1, · · · , xσixσ(i+1), · · · , xσn] appears twice, but
with opposite sign, once as the ith term in the boundary of σ−1x and
once as the ith term of the boundary of (( i i+ 1 )σ)−1x. Thus all
terms cancel.

For the converse, let e =
∑
λσσ. In the polynomial ring Q[x1, . . . , xn]

we can carry out the same analysis to ex to conclude that if ex = 0,
then for all transpositions τ = ( i i+ 1 ), we have λσ = −λστ . Since
the adjacent transpositions generate Sn, it follows that λσ = sgn(σ)λ1.
The remaining statements are now evident.

1.12. Corollary. Let x be the generic n-chain and u, v ∈ Q[Sn].
Then u = v if and only if ∂ux = ∂vx and εnu = εnv.

This corollary is what allows us to apply induction to get the split-
ting we seek.

Let us write sij for the operator on Ci+j defined by

sijx = [x1, · · · , xi] ∗ [xi+1, · · · , xi+j]
If we let ∂i:Ci // Ci−1 denote the ith boundary operator, then the
results of Theorem 1.4 can be summarized by the equation

∂i+j ◦ sij = si−1 j ◦ (∂i ⊗ 1) + (−1)isi j−1 ◦ (1⊗ ∂j)
Note that ∂1 is identically 0 on a symmetric module, so that the first
term vanishes when i = 1 and the second term does when j = 1.

1.13. Proposition. When 0 < m < n, ∂n = ∂m+1 ⊗ 1 + (−1)m(1⊗
∂n−m).



1. COMMUTATIVE ALGEBRAS 183

Proof. We calculate that

(∂m+1 ⊗ 1)x = (∂[x1, · · · , xm+1])⊗ [xm+2, · · · , xn]

= p(x1)[x2, · · · , xn] +
m∑
i=1

(−1)i[x1, · · · , xixi+1, · · · , xn]

+ (−1)m+1p(xm+1)[x1, · · · , xm, xm+2, · · · , xn]

while

(−1)m(1⊗ ∂n−m)x = [x1, · · · , xm]⊗ (∂[xm+1, · · · , xn])

= (−1)mp(xm+1)[x1, · · · , xm, xm+2, · · · , xn]

+
n−1∑

i=m+1

(−1)i[x1, · · · , xixi+1, · · · , xn]

+ (−1)nxn[x1, · · · , xn−1]

and the sum of these two sums is evidently ∂x.

We now define sn:Cn // Cn as
∑n−1

i=1 si n−i.

1.14. Proposition. ∂ ◦ sn = sn−1 ◦ ∂.

Proof. We have

∂n ◦ sn =
n−1∑
i=1

∂n ◦ si n−1

=
n−1∑
i=2

si−1n−i ◦ (∂i ⊗ 1) + (−1)i
n−2∑
i=1

si n−1−i ◦ (1⊗ ∂n−i−1)

=
n−2∑
i=1

si n−1−i ◦ (∂i+1 ⊗ 1) + (−1)i
n−2∑
i=1

si n−1−i ◦ (1⊗ ∂n−i−1)

=
n−2∑
i=1

si n−1−i ◦ (∂i+1 ⊗ 1 + (−1)i(1⊗ ∂n−i−1))

=
n−2∑
i=1

si n−1−i ◦ ∂n = sn−1 ◦ ∂

1.15. Theorem. There is a sequence of elements e2 ∈ Q[S2], . . . ,
en ∈ Q[Sn], . . . , with the following properties:

(a) en is a polynomial in sn without constant term;
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(b) sgn en = 1;
(c) ∂ ◦ en = en−1 ◦ ∂;
(d) e2

n = en;
(e) ensi n−i = si n−1, for 0 < i < n.

Proof. One easily proves, using induction, that sgn(sij) is the binomial

coefficient

(
i+ j

i

)
. It follows that sgn(sn) is the sum of all the bino-

mial coefficients except the first and last, so that sgn(sn) = 2n−2. Let
e2 = ε2 = 1

2
s2. Assuming that we have found e2, e3, . . . , en−1, satisfying

the conditions above, let p be a polynomial such that p(sn−1) = en−1.
Define

en = p(sn) + (1− p(sn))
sn

sgn sn
It is obvious that (a) is satisfied and (b) is an immediate calculation.
Since ∂ ◦ sn = sn−1 ◦ ∂, it is immediate that ∂ ◦ p(sn) = p(sn−1) ◦ ∂ and
then we have

∂ ◦ en = ∂ ◦ p(sn) + ∂ ◦ (1− p(sn))
sn

sgn sn

= p(sn−1) ◦ ∂ + (1− p(sn−1))
sn−1 ◦ ∂

sgn sn

= en−1 ◦ ∂ + (1− en−1)
sn−1 ◦ ∂

sgn sn

= en−1 ◦ ∂ +
(sn−1 − en−1sn−1) ◦ ∂

sgn sn

= en−1 ◦ ∂

From ∂ ◦ e2
n = e2

n−1 ◦ ∂ = en−1 ◦ ∂ = ∂ ◦ en together with sgn(e2
n) =

1 = sgn(en), we conclude from Proposition 1.11 that en is idempotent.
Finally, we calculate that

∂ ◦ en ◦ si n−i = en−1 ◦ ∂ ◦ si n−i

= en−1 ◦ (si−1 ◦ (∂i ⊗ 1) + (−1)isi,n−1−i ◦ (1⊗ ∂n−i))

= si−1 ◦ (∂i ⊗ 1) + (−1)isi,n−1−i ◦ (1⊗ ∂n−i) = sn−1 ◦ ∂

In addition, εnensi n−i = εnsi n−i so we conclude from Proposition 1.11
that ensi n−i = si n−i.

From (a) it follows that im en ⊆ im sn, while from (e) and the
definition of sn, we see that im si n−i ⊆ im en for i = 1, . . . , n − 1, so
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that

im en ⊆ im sn ⊆
n−1∑
i=1

im si n−i ⊆ im en

and thus the image of en is exactly the shuffles. Since en is idempotent,
this image along with the quotient modulo it is split and, from (c), the
splitting is compatible with the boundary operator and so we have split
the chain (as well as cochain) complexes, as seen in the following.

1.16. Corollary. In characteristic 0, the Harrison chain complex is
a direct summand of the Hochschild chain complex, being the chains
that are annihilated by en.

We call en the nth shuffle idempotent since it characterizes sums
of shuffles as though permutations it preserves. Gerstenhaber and
Schack have made remarkable use of it as the first idempotent of their
“Hodge decomposition” of the Hochschild cohomology groups of a com-
mutative algebra, which we briefly describe.

We begin with the observation that e2 = ε2, which we call e22. If
we let e21 = 1 − e2, we have 1 = e21 + e22 is a sum of orthogonal
idempotents, one of which is the shuffle idempotent. The idempotent
e3 can be written as e3 = e32 + e33, where e32 = e3 − ε3 and e33 = ε3
are orthogonal idempotents. If we let e31 = 1 − e3, then we have
1 = e31 + e32 + e33 and e3 = e32 + e33. Moreover, ∂ ◦ e31 = e21 ◦ ∂,
∂ ◦ e32 = e22 ◦ ∂ and ∂ ◦ e33 = 0. For general n, they make clever use of
Corollary 1.12 to show inductively that the characteristic polynomial
of sn acting on the subring of Q[sn] ⊆ Q[Sn] generated by sn is

µn(t) = t(t− 2)(t− 6) · · · (t− (2n − 2)) = (t− (2n − 2))µn−1(t)

Since the eigenvalues are distinct, it follows that Q[sn] is a direct sum of
one dimensional ideals generated by idempotents eni, which generates
the kernel of sn − (2i − 2). The idempotent corresponding to 2n − 2 is
εn and it is not hard to prove, using 1.12 once more, that ∂ ◦eni = en−1 i

for i < n and ∂ ◦ enn = 0. It is also not hard to show that

en = 1− en1 = en2 + · · ·+ enn

These idempotents divides the nth Hochschild chain group into a direct
sum of n pieces and, being compatible with the boundary, do the same
for the homology and cohomology groups. The commutative cohomol-
ogy is the first piece. The remaining pieces are not well understood,
but the whole process is reminiscent of the Hodge decomposition of the
(co-)homology of a manifold.
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1.17. Harrison cohomology of polynomial rings. Free commu-
tative algebras are polynomial algebras. We want to use the splitting
of the Hochschild cohomology to show that the Harrison cohomology of
polynomial algebras vanishes in characteristic 0, which is a necessary
condition for the Harrison cohomology being isomorphic to the coho-
mology derived from the free algebra resolution. In light of the acyclic
models theorem, it is close to being sufficient. The basic idea is to be-
gin by analyzing the Hochschild cohomology and showing that all the
cohomology classes are represented by cochains that are in the image of
sn. We will do this for polynomial rings in a finite number of indetermi-
nates by a counting argument and then use a direct limit construction
for the general case. Let B = K[x1, · · · , xn] be a polynomial ring in n
variables. We will be treating K as a B-module in which the variables
annihilate K. We begin with a preliminary result. In the statement,
we form the tensor product (over K) of the ring B with D-modules M
and N . It is understood that the resultant objects are B⊗D-modules
in the obvious way, which is to say that (b⊗ d)(b′ ⊗m) = bb′ ⊗ dm.

1.18. Proposition. Let B and D be algebras over the commutative
ring K with B being K-flat. Then for any right D-module M and left
D-module N , we have TorB⊗D• (B ⊗M,B ⊗N) ∼= B ⊗ TorD• (M,N).

Proof. Let P• be an D-projective resolution of N . Then B ⊗ P• is an
B ⊗D projective resolution of B ⊗N . It is exact because B is flat. If
we apply (B ⊗M)⊗B⊗D −, we get

(B ⊗M)⊗B⊗D (B ⊗ P•) ∼= B ⊗M ⊗D P•
Since B is K-flat, the functor B⊗− is exact, which means it commutes
with homology, so that the homology of the right hand side is B ⊗
TorD• (M,N). The homology of the left hand side of that isomorphism
is, of course,
TorB⊗D• (B ⊗M,B ⊗N).

1.19. Corollary. TorB⊗B(B ⊗K,B ⊗K) ∼= B ⊗ TorB(K,K)

Of course, B ⊗ K ∼= B as an abelian group (and K-module) but
not as an B-module. The reason is that on B ⊗ K the variables in
the second copy of B act trivially, which is not true in B. We have,
however, the following.

1.20. Proposition. In the category of all modules (see 1.11), (B ⊗
B,B) ∼= (B ⊗B,B ⊗K).

Proof. The ring B ⊗B is a polynomial ring in 2n indeterminates x1⊗
1, . . . , xn⊗1, 1⊗x1, . . . , 1⊗xn. The action on B is that both xi⊗1 and
1 ⊗ xi act as multiplication by xi. The action on B ⊗K ∼= B is that
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xi ⊗ 1 acts as multiplication by xi, but 1 ⊗ xi acts trivially. We now
define (φ, f): (B ⊗ B,B) // (B ⊗ B,B ⊗K) by φ(xi ⊗ 1) = xi ⊗ 1,
φ(1⊗ xi) = xi ⊗ 1− 1⊗ xi and f(r) = r ⊗ 1. Then

φ(xi ⊗ 1)f(r) = (xi ⊗ 1)(r ⊗ 1) = xir ⊗ 1 = f(xir) = f((xi ⊗ 1)r)

and

φ(1⊗xi)f(r) = (xi⊗1−1⊗xi)(r⊗1) = xir⊗1 = f(xir) = f((1⊗xi)r)
which shows that (φ, f) is a morphism in the category of modules.
The inverse is given by (γ, g) where γ(xi ⊗ 1) = xi ⊗ 1, γ(1 ⊗ xi) =
xi ⊗ 1 + 1 ⊗ xi and g(r ⊗ a = ar). These maps are readily seen to be
inverse to each other.

1.21. Proposition. TorB⊗B(B,B) ∼= B⊗TorB(K,K) as K-modules.

Proof. If I is a set, denote by I · B the direct sum of I copies of B.
There is a free resolution of K of the form

· · · // In ·B // In−1 ·B // · · · // I1 ·B // I0 ·B
By using 1.11.1, we have a long sequence augmented over B⊗K using
the same (or isomorphic) objects. Exactness is a property of sequences
of abelian groups so the isomorphic sequence is also exact. The result
will follow from the next proposition.

1.22. Proposition. Tensor product is defined as a functor

B−Rmod×Ring B−Lmod // Ab

Proof. The domain category has as objects all pairs ((B,M), (B,M ′))
where M is a right B-module and M ′ is a left B-module. An arrow is
a 3-tuple

(φ, f, f ′): ((B,M), (B,M ′)) // ((D,N), (D,N ′))

such that (φ, f) is an arrow of B-Rmod and (φ, f ′) is an arrow of Lmod.
On objects we define (B,M)⊗ (B,M ′) = M ⊗B M ′. Suppose that

(φ, f, f ′): ((B,M), (B,M ′)) // ((D,N), (D,N ′))

is an arrow. Then the composite g:M ×M ′ f × f ′
// N × N ′ //

N⊗DN ′ has to be shown to be middle bilinear. It is evidently biadditive
since f and f ′ are additive. For the middle exchange, we have

g(mr,m′) = f(mr)⊗ f ′(m′) = f(m)φ(r)⊗ f ′(m′)

= f(m)⊗ φ(r)f ′(m′) = f(m)⊗ f ′(rm′) = g(m, rm′)
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1.23. Proposition. Let B be as above. Then TorBm(K,K) is a free

B-module of dimension
( n
m

)
.

Proof. We will prove this by induction on the number of variables.
When n = 0, it is obvious. From the inductive definition of the binomial
coefficients, it will follow immediately from,

1.24. Proposition. For any ring B, right B-module M and left
B-module N , we have M ⊗B[x] N ∼= M ⊗B N and for n > 0,

TorB[x]
n (M,N) ∼= TorBn (M,N)⊕ TorBn−1(M,N).

Proof. There is an exact sequence of B[x]-modules

0 // B[x]
x // B[x] // B // 0

whose first three terms constitute an B[x]-projective resolution of B.
Let P• be an B-projective resolution of N . Then in the double complex

· · · Pn// Pn Pn−1
//Pn

0
��

Pn−1

0
��

B[x]⊗ Pn B[x]⊗ Pn−1
//· · · B[x]⊗ Pn//

· · · B[x]⊗ Pn// B[x]⊗ Pn B[x]⊗ Pn−1
//B[x]⊗ Pn

0

��
B[x]⊗ Pn−1

0

��
B[x]⊗ Pn−1

B[x]⊗ Pn−1

��

B[x]⊗ Pn

B[x]⊗ Pn
��

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

B[x]⊗ Pn

Pn
��

B[x]⊗ Pn−1

Pn−1

��
Pn−1 · · ·// · · · P0

// P0

0
��

P0 0//

B[x]⊗ P0 0//· · · B[x]⊗ P0
//B[x]⊗ Pn−1 · · ·//

B[x]⊗ Pn−1 · · ·// · · · B[x]⊗ P0
// B[x]⊗ P0

0

��
B[x]⊗ P0 0//B[x]⊗ P0

B[x]⊗ P0

��

· · ·

· · ·

· · ·

· · ·

B[x]⊗ Pn−1

B[x]⊗ Pn−1

��
B[x]⊗ Pn−1

Pn−1

��

· · ·

· · ·

· · ·

· · ·

B[x]⊗ P0

P0

��

The double complex as a whole is acyclic, from Theorem 3.6.3, since
each column is. It follows that the subcomplex consisting of the top two
non-zero rows is homologous to the bottom row, whose homology is M
concentrated in degree 0. Since each term in that subcomplex is B[x]
projective, it follows that those top two rows are an B[x]-projective
resolution of M . Condensing this into a single complex, we have an
B[x] projective resolution of M

· · · // (B[x]⊗ Pn)⊕ (B[x]⊗ Pn−1) // (B[x]⊗ Pn−1)⊕ (B[x]⊗ Pn−2)

// · · · // B[x]⊗ P0
// 0
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The boundary operator has matrix(
B[x]⊗ d x⊗ id

0 B[x]⊗ d

)
After applying M ⊗B[x] − we get the complex

· · · //(M ⊗ Pn)⊕ (M ⊗ Pn−1) // (M ⊗ Pn−1)⊕ (M ⊗ Pn−2)

// · · · //M ⊗ P0
// 0

However, since x is the 0 operator on M , the boundary is now(
M ⊗ d 0

0 M ⊗ d

)
Now the conclusion is evident.

1.25. Proposition. Let B be a polynomial ring over K and M be a
submodule of a free B-module such that K ⊗B M = 0. Then M = 0.

Proof. Let J be the ideal generated by the variables. Since

0 // J // B // K // 0

is exact, so is

J ⊗B M // B ⊗B M ∼= M // K ⊗B M // 0

so that K ⊗B M = 0 implies that JM = M . Therefore M =
⋂
i J

iM ,
which is impossible for a free module or any non-zero submodule since⋂∞
i=1 J

iM ⊆
⋂∞
i=1 J

iF = 0.

1.26. Proposition. In Cm(B)⊗BK, there is a K-subspace of dimen-

sion
( n
m

)
consisting of cocycles, that is independent modulo boundaries

and on which sm acts as the identity.

Proof. For each subset i1 < i2 < · · · < im of {1, . . . , n}, let 〈xi1 , . . . , xim〉
denote εm[xi1 , . . . , xim ]. These are clearly linearly independent and

there exactly
( n
m

)
of them. It follows from d ◦ εm = 0 that these

are cycles and from sm ◦ εm = εm that sm acts as the identity.
Let Bm(B)⊗BK denote the group of boundaries. Now Cm(B)⊗BK

is free on all forms b = [b1, . . . , bm], where b1, . . . , bm are monomials,
so that Bm(B) is generated by all d[b1, . . . , bm]. If for some i, bi = 1
while bi−1 6= 1 6= bi+1, then d i−1b = d ib so that those terms cancel. If
there are two or more consecutive 1s, then every term of db has a 1. If
b1 6= 1, then d 0b = 0 because all variables annihilate K and similarly
for dm. Finally, if bi−1 6= 1 6= bi, then the i − 1st term of d ib has
degree greater than 1. Thus no term of db has a single term consisting
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of monomials of degree exactly 1. But every 〈xi1 , . . . , xim〉 has exactly
that form.

1.27. Corollary. CHa
• (B)⊗B K = 0 is exact.

Proof. For we have the exact sequence

0 // CHa
• (B)⊗BK

// C•(B)⊗BK
// snC•(B)⊗B K // 0

and we have just seen that the second map induces an isomorphism of
homology.

1.28. Proposition. H(CHa
• (B)⊗BK) ∼= H(CHa

• (B))⊗BK.

Proof. We know from 1.23 that the homology of the Hochschild com-
plex consists of B projectives. These facts are still true for the Harrison
subcomplex, because that is a retract. Thus it is sufficient to show,

1.29. Lemma. Suppose C• // 0 is a chain complex of B-projectives
whose homology also consists of B projectives. Then for any B-module
M , H(C• ⊗B M) ∼= H(C•)⊗B M .

Proof. Suppose the starting degree of C• is 0, that is that Cn = 0 for
n < 0. Let Bi, Zi and Hi denote the ith boundary, cycle and homology
groups. We have exact sequences

0 // Zi // Ci // Bi−1
// 0

0 // Bi
// Zi // Hi

// 0

Since B−1 = 0, it follows that Z0 = C0 is projective. But then Z0 and
H0 are projective and therefore B0 is. Continuing in this way, we see
inductively that each Zi and Bi is projective. But then the sequences

0 // Zi ⊗B M // Ci ⊗B M // Bi−1 ⊗B M // 0

0 // Bi ⊗B M // Zi ⊗B M // Hi ⊗B M // 0

are exact from which it follows that the homology of C•⊗BM is H•⊗B
M .

1.30. Corollary. A polynomial ring in a finite number of indetermi-
nates has trivial Harrison homology and cohomology.

Proof. Just put together the preceding with Corollary 1.27 and Propo-
sition 1.25.
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1.31. Theorem. The Harrison homology and cohomology of a poly-
nomial ring is trivial.

Proof. For a polynomial ring in finitely many indeterminates, we have
seen this already. Any cycle in the Harrison chain complex of an arbi-
trary polynomial ring involves only a finitely many indeterminates and
so is a cycle in the chain group of a finite polynomial algebra and hence
a boundary. Thus the chain complex is exact. When B is a polynomial
ring, the module of differentials is B-projective and so the chain com-
plex augmented over Diff(B) is contractible, whence the cohomology
is also trivial.

1.32. Corollary. For algebras over a field of characteristic 0, the
Harrison homology and cohomology theories are weakly equivalent to
the cotriple homology and cohomology.

Proof. On each ring there is a map of the complexes that is a homo-
topy equivalence. Thus we can use the acyclic models by taking Γ to
be the weakly contractible complexes. This gives us weak homotopy
equivalences between the Harrison and cotriple cohomology theories.
We have not constructed, nor do we know how to construct, a natural
homotopy inverse.

1.33. An example in finite characteristic. Let K be a field of
characteristic p 6= 0. We will show that there is a non-trivial Harri-
son cohomology class in degrees 2pm for any m > 0. In particular,
H4

Ha(B,B) 6= 0 when K has characteristic 2.
We begin by counting the number of even less the number of odd

permutations in sij. Call this number qij. It is apparent from the
inductive definition of sij that

qij = qji

qi1 =
{

1 if i is even
0 if i is odd

qij =

{
qi−1 j + qi j−1 if i is even
qi−1 j − qi j−1 if i is odd

from which we can show by induction that

qij =


0 if i and j are both odd(

[i/2] + [j/2]

[i/2]

)
otherwise

From this and standard properties of binomial coefficients, we see that
when i+ j = n = 2pm, then for all 0 < i < n, p divides n. Now define
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a cochain f of degree n on K[x] with coefficients in K by

f [xi1 , . . . , xin ] =
{

1 if i1 = · · · = in = 1
0 otherwise

Then fsi n−i[x, . . . , x] = qi,n−if [x, . . . , x] = 0 for 0 < i < n from which
it follows that fsn[x, · · · , x] = 0 and since en is a polynomial without
constant in sn, it follows that fen[x, . . . , x] = 0 and, since f vanishes
on all other terms, that fen = 0 and therefore f is a Harrison cochain.
On the other hand, it is trivially seen to be a cocycle and, from the
previous analysis, the linear space generated by this cycle does not
meet the coboundaries except in 0.

1.34. n! suffices. Although there is no known application for this
fact, it is at least of minor interest that in the construction of the idem-
potent en ∈ Q[Sn], the denominator is only n! instead of the

∏n
i=1(2i−2)

that appears in the construction. Thus, for example, e4, e5 and e6 are
definable over a field of characteristic 7, even though 7|24 − 2.

Let B = Q[x1, x2, . . .] be the polynomial ring in countably many
variables and let x be the chain [x1, x2, . . . , xn] ∈ Cn(B). Also write Cn
for Cn(B).

A most important observation is that if c ∈ Q[Sn] is such that
∂cx ∈ Z[Sn−1Cn−1], then there is an a ∈ Q such that c − aεn ∈ Z[Sn].
The proof of this assertion is essentially the same as the proof that if
∂cx = 0, then c is a multiple of εn. In the computation of ∂cx each term
appears twice one from a term of the form rσσx and once from rττx
where σ = ( i i+ 1 ) τ and the only way that they can contribute an
integer to the sum is if rσ − rτ is an integer. Let bσ be the fractional
part of rσ. Then bσ − bτ is an integer which must be 0. This is true
whenever σ and τ differ by an adjacent transposition. But the adjacent
transpositions generate Sn.

From this we conclude that if ∂cx ∈ Z[Sn−1]Cn−1 and cεn is an
integer multiple of εn, then c ∈ Z[Sn]. In fact, if we write c = c′ + aεn
with c′ ∈ Z[Sn], then cεn = c′εn + aεn. Since c′ has integer coefficients,
c′εn clearly is an integer multiple of εn and if cεn is too, then a must be
an integer.

Now suppose that p ∈ Q[t] is a polynomial such that p(sn−1) has
integer coefficients. (We do not assume that p has integer coefficients.)
Then ∂p(sn)x = p(sn−1)∂x has integer coefficients. Moreover, p(sn)εn =
p(snεn) = p((2n − 2)εn) = p(2n − 2)εn.

We apply this to the polynomial p(t) = (n− 1)!pn−1,i(t) where

pn−1 i(t) =
(t− λ1) . . . (t− λi−1)(t− λi+1) . . . (t− λn−1)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn−1)
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Here λi = 2i − 2 à la Gerstenhaber and Schack. I claim that

pn−1 i(λn) =
(λn − λ1) . . . (λn − λi−1)(λn − λi+1) . . . (λn − λn−1)

(λi − λ1) . . . (λi − λi−1)(λi − λi+1) . . . (λi − λn−1)

is an integer (even without the (n−1)! factor). We break it up into two
factors. The second is

(2n − 2i+1) . . . (2n − 2n−1)

(2i − 2i+1) . . . (2i − 2n−1)

which after reversing the numerator is, up to a sign

(2n − 2i+1) . . . (2n − 2n−1)

(2n−1 − 2i) . . . (2i+1 − 2i)
= 2 · 4 · · · 2n−i−1

(Note that i ≤ n− 1.) The first factor is

(2n − 2) . . . (2n − 2i−1)

(2i − 2) . . . (2i − 2i−1)

This numerator and denominator in this fraction are clearly divisible by
the same factor of 2. For the rest, we work modulo powers of two in the
multiplicative group of positive rationals. We have

(2n − 2) · · · (2n − 2i−1)

(2i − 2) · · · (2i − 2i−1)
=

(2n−1 − 1) · · · (2n−1 − 2i−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)

=
(2n−1 − 1) · · · (2n−1 − 2i−2)(2n−1 − 2i−1)(2n−1 − 2n−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)(2n−1 − 2i−1)(2n−1 − 2n−2)

=
(2n−1 − 1) · · · (2n−1 − 2i−2)(2n−1 − 2i−1) · · · (2n−1 − 2n−2)

(2i−1 − 1) · · · (2i−1 − 2i−2)(2n−i − 1) · · · (2n−i − 2n−i−1)

=
f(n− 1)

f(i− 1)f(n− i)
where f(k) = (2k − 1)(2k − 2) · · · (2k − 2k−1). One way of seeing that
f(k+l)
f(k)f(l) is always an integer, is to begin by showing that f(k) is the order

of GLk(2). For in choosing an invertible kxk matrix we must first choose
a non-zero vector in k dimensional space, of which there are exactly 2k−1
choices. Having chosen one such vector, the second row is any vector not
a multiple of the first row, of which there are 2k − 2 choices. The first
two rows span a space of four vectors and any vector not in that space
is an admissible third row, thus there are 2k−4 choices and so on. Now
we can embed GLk(2) and GLl(2) into GLk+l(2) as the automorphisms
of some k dimensional subspace and some complementary l dimensional
subspace of an m dimensional space. These subgroups are disjoint and
commute pointwise so that their product is a subgroup of order f(k)f(l)
and the index is the number we seek.
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The conclusion is that (n− 1)!pn−1 i(sn) is an integer. Now suppose
that p(t) is a polynomial such that p(sn−1) is idempotent and such
that p(sn)εn = aεn. Then I claim that a is the unique number such
that p(sn) − aεn is an idempotent orthogonal to εn. In fact, from the
fact that p(sn−1) is idempotent, it is immediate that p(sn)2− p(sn) is a
multiple of εn and clearly the coefficient is a2−a. Then (p(sn)−aεn)2 =
p(sn)2−2ap(sn)εn+a2εn = p(sn)+(a2−a)εn−2a2εn+a2εn = p(sn)−aεn.
The uniqueness is clear. It follows from the preceding analysis that
pni = pn−1 i − pn−1 i(2

n − 2)εn and the first term uses only (n − 1)! in
the denominator, while the second uses n!.

1.35. Exercise

1. The purpose of this exercise is to sketch another proof that when
A = K[x1, . . . , xn], then TorAm(K,K) is a vector space of dimension( n
m

)
. Let Am denote the free A-module generated by all sequences

[xj1 , . . . , xjm ] such that j1 < j2 < · · · < xjm . The module A0 = A is
thought of as generated by an empty bracket. Define ∂:Am // Am−1

to be the A-linear map such that

∂[xj1 , . . . , xjm ] =
m∑
i=1

(−1)ixji [xj1 , . . . , x̂ji , . . . , xjm ]

Also define ∂:A0
// A by ∂[] = 1.

(a) Show that this is a chain complex.

(b) Define a K-linear map σ:Am // Am+1 as follows. There is a
K-basis of Am consisting of all µ[xj1 , . . . , xjm ] where µ is a monomial,
possibly 1. If µ 6= 1, let j be the smallest index of a variable in µ. Then
define

s(µ[xj1 , . . . , xjm ]) =
{
µ/xj[xj, xj1 , . . . , xjm if j < j1
0 otherwise

In particular s[xj1 , . . . , xjm ] = 0. In degree −1, σ1 = []. Show that
σ ◦ ∂ + ∂ ◦ σ = id.

(c) Show that K ⊗A Am is the vector space generated by all
[xj1 , . . . , xjm for j1 < · · · < jm and that K ⊗A ∂ = 0.

(d) Conclude that TorAm(K,K) is a vector space of dimension
( n
m

)
.

1.36. Historical comment. In my 1962 dissertation, I gave explicit
proofs of the splitting of the Hochschild complex in dimensions 3 and 4
over fields of characteristic not 2 or 3. (The remaining dimensions were
settled in [Barr, 1968b]). The argument above, from 1.17 to here, was
sketched out instantly by Harrison as soon as I had told him about the
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splitting. Although we never discussed it (and his memory for this part
of his career is now virtually nil), it seems clear in retrospect that he
was already aware that the splitting of the Hochschild complex would
lead to this proof of the vanishing of the cohomology of polynomial
rings. The argument he gave in [Harrison, 1962] (limited to dimension
2 and 3) was based on giving an explicit proof for a polynomial ring in
one generator and then proving that the cohomology of a tensor prod-
uct of commutative algebras is the direct product of the cohomology
groups of the factors. My guess is that he had used this argument in di-
mension 2 (where the splitting is obvious) then did not push it through
in dimension 3, but instead found the different argument using ten-
sor products. André proves the general tensor product theorem in his
1967 notes, but his definition of the cohomology is rather obviously
equivalent to the one derived from the cotriple resolution.

2. More on cohomology of commutative cohomology

2.1. André cohomology. Michel André [1967, 1974] developed the
commutative cohomology into a powerful tool for studying commuta-
tive algebras. He used a definition of cohomology via polynomial alge-
bra resolutions that was equivalent to the polynomial algebra cotriple
cohomology.

Let K be a commutative ring and A be a commutative K-algebra.
A polynomial resolution of A is a simplicial K-algebra

· · ·
d0

//... //
dn+1

An

d0
//... //

dn
An−1

d0
//... //

dn−1

· · ·
d0
//

d1
// A0

d // A

for which each An, n ≥ 0 is a polynomial algebra and for which the
associated chain complex

· · ·
∑

(−1)d
i

// An

∑
(−1)d

i

// An−1
// · · · d0 − d1

// A0
d // A // 0

is exact. Then the cohomology with coefficients in the A-module M is
defined to be that of the cochain complex

0 // Der(A0,M) // · · · // Der(An,M) // Der(An+1,M) // · · ·
using, in degree n, the map

∑n+1
i=0 (−1)idi. Since the polynomial algebra

cotriples complex satisfies André’s conditions, his cohomology theory
is just the cotriple cohomology.
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2.2. The long exact sequence. We wish to show that the homol-
ogy and cohomology of pairs introduced in 3.8 takes a particularly
useful form in the case of commutative algebras. A commutative al-
gebra homomorphism A // B defines B as an A-algebra. Thus for
a B-module M we have both H•A(B,M) and H•K(B,A,M). What we
want to do in this section is to show that the two groups are naturally
isomorphic. The facts for homology are similar, but we give proofs
mainly for cohomology. We begin with,

2.3. Theorem. Suppose K is a commutative ring and A and B are
K-algebras such that TorKn (A,B) = 0 for all n > 0. Then for any
A, B-bimodule M , the natural map H•(A ⊗ B,M) // H•(A,M) ⊕
H•(B,M) is an isomorphism.

Proof. Let A• // A and B• // B be simplicial resolution of A
and B, respectively by polynomial algebras. Then I claim that the
homology associated to the simplicial set C• defined by Cn = An ⊗Bn

with each face and degeneracy operator being the tensor product of the
corresponding face and degeneracy operators, is Tor(A,B). Consider
the double chain complex associated to the double simplicial object
whose m,nth term is Am ⊗Bn. The mth row is

· · · // Am ⊗Bn
// Am ⊗Bn−1

// · · · // Am ⊗B0

which is the tensor product of Am with a K-projective resolution of B,
whose homology is Tor(Am, B). But Am is K-projective and hence the
homology is Am ⊗B concentrated in degree 0. Thus the complex aug-
mented by Am ⊗B is acyclic and the homology of the double complex
is the same as the homology of the augmentation row, which is

· · · // Am ⊗B // Am−1 ⊗B // · · · // A0 ⊗B
which is the homology of a K-projective resolution of A tensored with
B, whose homology is thereby Tor(A,B). If all the higher Tor groups
vanish, then this homology is A⊗B concentrated in degree 0, so that
the double complex is a polynomial algebra resolution of A ⊗ B. The
Eilenberg-Zilber theorem, which we will be taking up in Section 4
below, states that the total chain complex of the double chain com-
plex associated to a double simplicial object is homotopic to the chain
complex associated to the diagonal simplicial object. In this case the
diagonal simplicial algebra is

· · ·
//... //
An ⊗Bn

//... //
An−1 ⊗Bn−1

//... //
· · · //// A0

and so it follows that An ⊗ Bn is a resolution of A ⊗ B. It is easy
to prove that Der(An ⊗ Bn,M) // Der(An,M) ⊕ Der(Bn,M) is an
isomorphism, from which the conclusion follows.
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2.4. Corollary. Suppose X is a set B = A[X] is the algebra of
polynomials in X over A. Then for any B-module M

Hn(B,M) ∼=
{
Hn(A,M) if n > 0

Der(A,M)⊕MX if n = 0

Proof. This is an immediate consequence of the fact that B ∼= A ⊗
K[X], the preceding theorem and the homology of a polynomial alge-
bra.

2.5. Theorem. Suppose that f :A // B is a homomorphism of
commutative K-algebras. Then for any B-module M , there is a natural
equivalence H•AB,M

∼= H•(B,A,M).

Proof. Let G = (G, ε, δ) denote the free commutative K-algebra
cotriple on the category of A-algebras and GA = (GA, εA, δA) denote
the free commutative A-algebra cotriple on the same category. The
groups H•A(B,M) are the cohomology of the cochain complex

0 // DerA(GAB,M) // · · · // DerA(Gn
AB,M

// DerA(Gn+1
A B,M) // · · ·

with boundary operator given by
n∑
i=0

(−1)i Der(Gi
AεAG

n−i
A ,M)

while the groups H•(B,A,M) are the cohomology of the cochain com-
plex

0 // Der(GB,M) // Der(G2B,M)⊕Der(GA,M) // · · ·

Der(GnB,M)⊕Der(Gn−1A,M) // Der(Gn+1,M)⊕Der(GnA,M) // · · ·
with boundary operator given by(∑n

i=0(−1)i Der(GiεGn−i) 0

Der(Gnf,M)
∑n−1

i=0 (−1)i Der(GiεGn−i−1A,M)

)
We will use acyclic models to compare these two cochain complexes.
Consider the case that B = A[X] is a polynomial algebra over A with
variable set X. Then

Hn
A(B,M) =

{
MX if n = 0
0 if n > 0

From the fact that B ∼= A⊗ k[X] we have just seen that

Hn(B,M) =

{
H0(A,M)⊕MX if n = 0
Hn(A,M) if n > 0
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However, the inclusion A // B is split monic in the category of k-
algebras so that the map Hn(B,M) // Hn(A,M) is split epic for all
n ≥ 0 and so the long exact mapping cone sequence breaks up into a
series of short exact sequences

0 // H0(B,A,M) // Der(B,M) // Der(A,M) // 0

for n = 0 and

0 // Hn(B,A,M) // Hn(B,M) // Hn(A,M) // 0

for n > 0. Thus H0(B,A,M) is the kernel of Der(B,M) //

Der(A,M), which is easily seen to be DerA(B,M) = MX so that the
augmented complex C•(B,A,M) // MX // 0 is acyclic. Simi-
larly, the augmented complex C•A(B,M) //MX is acyclic. Thus the
two complexes are acyclic on models and have the same 0 dimensional
group. Finally, for n > 0, we need maps Cn

A(GAB,M) // Cn
A(B,M)

that splits Cn
A(εA,M) and similarly for Cn(B,A,M). For the first, take

DerA(δAG
n
AB,M): DerA(Gn+2

A B,M) // DerA(Gn+1
A B,M)

and for the second,

Der(δGnB,M)⊕ id: Der(Gn+2B,M)⊕Der(Gn+1A,M)

// Der(Gn+2B,M)⊕Der(GnA,M)

Then the two theories are equivalent.

3. Shukla cohomology

Hochschild’s original cohomology theory for associative algebras, [1945]
was for algebras over a field. In the Cartan–Eilenberg version, the
ground ring was allowed to be an arbitrary commutative ring. However,
the theory was relative to that ring. For example, the second cohomol-
ogy group (in the original numbering) classified the singular extensions
of the ring with the coefficient module as kernel. The Cartan–Eilenberg
version classified only those extensions that split as modules over the
ground ring. Such a theory is called a relative cohomology the-
ory. Actually, the same was true for Harrison’s theory. His original
paper, [1962], included an appendix that computed the absolute H2 of
a commutative ring, written by me. The referee insisted on an appen-
dectomy, since the results had no obvious application. The referee was
probably right and the same comment could be made for the Shukla
cohomology groups we discuss briefly below. This is why we give no
details, but refer to the original papers for the proofs.
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In is dissertation, published as [1961], Shukla produced a cohomol-
ogy theory for associative algebras that takes into account both the
additive and multiplicative structure. In dimension k, there were k
different kinds of chain groups that had to be sum to produce the k-
dimensional chain groups. Each kind had its own coboundary operator.
In each dimension, one of the kinds concerned purely the multiplicative
structure and one the linear structure and the others were a mixture.
The crucial step in showing that this theory was equivalent to the coho-
mology defined by the (absolutely) free algebra functor was, as usual,
to show that it vanished on free algebras. The details are found in
[Barr, 1967]. A crucial part of the argument was the use of distribu-
tive laws among cotriples, another important idea of Jon Beck’s (but
unpublished by him).

4. The Eilenberg–Zilber theorem

The Eilenberg–Zilber theorem states that the two functors K and TL,
described in 3.7.3, from the category of double simplicial objects to
the category of chain complexes are homotopic. The classical proof is
geometric, based on a triangulation of a product of two simplexes. But
a straightforward acyclic models proof is quite easy. For more details
on the statement of the theorem, see 7.3 of Chapter 3

4.1. Theorem. Let A be an abelian category, let B be the category
of double simplicial objects over A , and let C be the category of chain
complexes over A . Let C∆: B // C assign to each double simplicial
object the chain complex associated to the diagonal complex and TL
assign to each double simplicial object the total complex of the double
chain complex associated to it. Then C∆ is homotopic to TL.

Proof. We use the cotriple GT from 3.3 of Chapter 4. In order to
apply it to ordinary double simplicial objects, we consider every double
simplicial object an augmented double simplicial object with 0 objects
in all terms with at least one negative index. An object of the formGTA
has contractible rows and columns and hence so does the double chain
complex associated. Either the row or column contractions suffice to
give a contraction on the total complex. Hence TL is acyclic on models.
Since the rows and columns are contractible, so is the diagonal and
hence so is C∆ and hence that functor is also acyclic on models. For
the GT -presentability, we first observe that the adjunction arrow GT

// Id is induced by d 0 and ∂ 0. On C∆ it is just d 0∂ 0 and has a right
inverse σ0s0. These faces and degeneracies are just the ones that are
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dropped from the simplicial objects when GT is applied. The case of
TL is a little more complicated. In degree n,

TLεA:An+1 0 ⊕ An1 ⊕ · · · ⊕ A0n+1
// An0 ⊕ An−1 0 ⊕ · · · ⊕ A0n

has an n+1× n matrix d 0 ∂ 0 0 · · · 0
0 d 0 ∂ 0 · · · 0
· · · · · · ·
0 0 0 · · · d 0


and has a right inverse given by the n× n+1 matrix

s0 −s0∂ 0s0 s0∂ 0s0∂ 0s0 · · · (−1)n+1s0(∂ 0s0)n

0 s0 −s0∂ 0s0 · · · (−1)ns0(∂ 0s0)n−1

· · · · · · ·
0 0 0 · · · s0

0 0 0 · · · 0


as can be verified by direct calculation.

Finally, we have to show that the two chain complex functors give
naturally equivalent 0 dimensional homology. This means showing that
the coequalizer of

A10 ⊕ A01

( d 0 − d 1 ∂ 0 − ∂ 1 )
// A00

is naturally equivalent to the coequalizer of

A11
d 0∂ 0 − d 1∂ 1

// A00

To see this, we show that both squares commute in

A11 A00
//

A10 ⊕ A01

A11

(σ0 s0 )

��

A10 ⊕ A01 A00

( d 0 − d 1 ∂ 0 − ∂ 1 )
// A00

A00

id

��

A10 ⊕ A01 A00
( d 0 − d 1 ∂ 0 − ∂ 1 )

//

A11

A10 ⊕ A01

(
∂ 0

d 1

)
��

A11 A00

d 0∂ 0 − d 1∂ 1
// A00

A00

id

��
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In fact,

( d 0 − d 1 ∂ 0 − ∂ 1 )

(
∂ 0

d 1

)
= ∂ 0d 0−∂ 0d 1+d 1∂ 0−∂ 1d 1 = ∂ 0d 0−∂ 1d 1

and

(∂ 0d 0 − ∂ 1d 1) (σ0 s0 ) = ( (∂ 0d 0 − ∂ 1d 1)σ0 (∂ 0d 0 − ∂ 1d 1)s0 ) =

( d 0 − d 1 ∂ 0 − ∂ 1 )

That this implies that the induced map between the coequalizers is
the identity follows from:

4.2. Proposition. Suppose both squares of

A′1 A′0
//

A1

A′1

f1

��

A1 A0
d // A0

A′0

f0

��

A1 A0
d //

A′1

A1

g1

��

A′1 A′0
d′ // A′0

A0

g0

��

commute and that f0 and g0 are inverse isomorphisms. Then the in-
duced coker d // coker d′ is an isomorphism.

Proof. The composite square

A1 A0
d

//

A1

A1

g1f1

��

A1 A0
d // A0

A0

g0f0 = id

��

and the identity induces id: coker d // coker d. The same is true of
the map induced by f0g0 and the conclusion follows.



CHAPTER 8

Applications in topology

1. Singular homology

1.1. Singular chains. This is the time to read 2.6. Although singu-
lar chain groups can, and usually are, defined on the category Top, we
will find it helpful to define them as additive functors on the additive
category ZTop. To emphasize this, we will write ZHom(X, Y ) for the
set of morphisms between two spaces in ZTop.

We denote by ∆n the subset of (n + 1)-dimensional euclidean
space consisting of all (t0, . . . , tn) for which ti ≥ 0, i = 0, . . . , n and
t0 + · · · + tn = 1. This set is, in fact, the convex hull of the basis
vectors in (n + 1)-dimensional euclidean space. Geometrically, it is
an n-dimensional simplex. There is a map ∂ i: ∆n−1

// ∆n defined
for i = 0, . . . , n by ∂ i(t0, . . . , tn−1) = (t0, · · · , ti−1, 0, ti, . . . , tn−1). Then
∂ =

∑n
i=0(−1)i∂ i: ∆n−1

// ∆n is an arrow of ZTop. One easily shows
that ∂◦∂ = 0. In fact, assuming that i < j the term in which ti = tj = 0
appears in the sum, one in which the coefficient is (−1)i+j because first
tj and then ti was set to 0 and second with coefficient (−1)i+j−1 since
first ti was set to 0 and second the (j − 1)st entry, now tj was.

The nth singular chain group, Cn(X) of a space X is defined as
the free abelian group generated by the set Hom(∆n, X) of continu-
ous functions of the n-simplex into X. An element of Hom(∆n, X) is
called an n-simplex (or singular n-simplex) in X, while an element of
ZHom(∆n, X) is called an n-chain. We define d:Cn(X) // Cn−1(X)
by dc = c ◦ ∂. From ∂ ◦ ∂ = 0, it immediately follows that d ◦ d = 0.

1.2. Cone construction. If U is a convex open subset of a euclidean
space, b is an element of U and σ: ∆n

// U is a singular n-simplex,
the cone b ·σ is a singular n+1-simplex. There is a standard definition,
but later on we will want to vary it, so we use a somewhat less obvious
definition.

Let r(t) be any continuous bijective function I // I such that
r(0) = 0 and r(1) = 1. The identity function obviously qualifies, but

202
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we will have occasion to use a different one. Fix a choice of r and define

b·σ(t0, t1, . . . , tn+1) =

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if t0 6= 1

b if t0 = 1

This is continuous since 1− r(t0) // 0 as t0 // 1, while the second
term is bounded, since it is a continuous function on a compact set.

1.3. Proposition. For a singular n-simplex σ in a convex set U in
euclidean space,

d(b · σ) =

{
σ − b · (σ ◦ ∂) if n > 0
σ − [b] if n = 0

Proof. We will show that (b · σ) ◦ ∂ 0 = σ and (b · σ) ◦ ∂ i = b · (σ ◦ ∂ i−1)
for i > 0. For the first, we have

(b · σ) ◦ ∂ 0(t0, . . . , tn) = b · σ(0, t0, . . . , tn)

= r(0)b+ (1− r(0))σ(t0, . . . , tn)

= σ(t0, . . . , tn)

For i > 0 and t 6= 1, we have

(b·σ) ◦ ∂ i(t0, . . . , tn) = b · σ(t0, . . . , ti−1, 0, ti, . . . , tn)

= r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

ti−1

1− t0
, 0,

ti
1− t0

, . . . ,
tn

1− t0

)
while

b·(σ ◦ ∂ i−1)(t0, . . . , tn) = r(t0)b+ (1− r(t0))σ ◦ ∂ i−1

(
t1

1− t0
, . . . ,

tn
1− t0

)
= r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

ti−1

1− t0
, 0,

ti
1− t0

, . . . ,
tn

1− t0

)

The argument when t0 = 1 is trivial.

When you see a special case in a formula as above, you might wonder
if there is something behind it. There is good reason for thinking that
there ought to be an empty, dimension −1-simplex that is the boundary
of every 0 dimensional simplex and whose boundary is 0. If you are
familiar with homology theory, you will see that that would give reduced
homology instead of ordinary. The formula for the boundary of b · σ =
σ − b · ∂σ would then work without restriction, including dimension 0.
This is not a very important point, however.
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1.4. Corollary. The singular chain complex of a convex subset of
euclidean space is contractible.

Proof. Let U be a convex subset of euclidean space and let b ∈ U be
arbitrary. Then the maps sn:Cn(U) // Cn+1 defined by sσ = b · σ
satisfy

dsnσ + sn−1dσ = (b · σ) ◦ ∂ + b · (σ ◦ ∂)

= σ − b · (σ ◦ ∂) + b · (σ ◦ ∂) = σ

so that dsn + sn−1d = id

1.5. Barycentric subdivision. Barycentric subdivision is a way of
dividing simplexes into smaller pieces and is crucial for proving such
things as that homology with small simplexes (see 2.1 below) is the
same as the full homology. The basic idea is not really hard; however
the formal description is complicated. Basically, the standard simplex
is divided into a number of smaller pieces and a singular simplex is
equivalent, up to homotopy with the sum of singular simplexes on the
pieces. We illustrate with the subdivision of a triangle as the sum of
the six individual triangles shown below.

ttttttttt

JJJJJJJJJ

ttttttttt

��������

JJJJJ JJJJJJJJJ

////////

ttttt

JJJJJ

�������� ttttt

////////

We will show that a simplex is homotopic to its subdivision. This fact
is a good illustration of the fact that the algebraic operation of formal
addition of simplexes turns into the topological union, at least in a
certain sense. It is the same sense in which algebraic topology turns
topology into algebra.

We begin by inductively defining an arrow ξn: ∆n
// ∆n in ZTop.

Let bn denote the point (1/(n + 1), 1/(n + 1), . . . , 1/(n + 1)) of the n-
simplex. This point is called the barycenter. Then ξ0 is the identity
and for n > 0,

ξn = bn · (∂ ◦ ξn−1)

1.6. Proposition. For n > 0, ξn ◦ ∂ = ∂ ◦ ξn−1.

Proof. For n = 1,

ξ1 ◦ ∂ = (b1 · (∂ ◦ ξ0)) ◦ ∂

= ∂ ◦ ξ0 − [b1] ◦ ∂ = ∂ ◦ ξ0
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For n > 1, assume the result inductively for n− 1. Then

ξn ◦ ∂ = (bn · (∂ ◦ ξn−1)) ◦ ∂ = ∂ ◦ ξn−1 − bn · (∂ ◦ ξn−1 ◦ ∂)

= ∂ ◦ ξn−1 − bn · (∂ ◦ ∂ ◦ ξn−2) = ∂ ◦ ξn−1

For a space X define SdnX:Cn(X) // Cn(X) on simplexes by
Sdn σ = σ ◦ ξn.

1.7. Proposition. The transformation Sdn(X) is the component at
X of a natural chain transformation.

Proof. For a map f :X // Y and σ ∈ Cn(X)

Cn(f) ◦ Sdn(X)(σ) = Cn(f)(σ ◦ ξn) = f ◦ σ ◦ ξn

= Sdn(Y )(f ◦ σ) = Sdn(Y ) ◦ Cn(f)(σ)

d ◦ Sdn(X)(σ) = d(σ ◦ ξn) = σ ◦ xin ◦ ∂

= σ ◦ ∂ ◦ ξn−1 = d(σ) ◦ ξn−1 = Sdn−1 ◦d(σ)

Let U be a convex subset of euclidean space and σ: ∆n
// U be a

singular simplex. We will say that σ is totally convex if for any face
φ: ∆m

// ∆n the image of σ ◦ φ is a convex subset of U . It follows,
among other things, that the only extreme points of σ(∆n) occur at
the vertices.

1.8. Proposition. Suppose U is a subset of euclidean space, b ∈ U
and σ is a totally convex n-simplex in U . Then b · σ is totally convex.

Proof. If b /∈ ∆n, the equation

b · σ(t0, . . . , tn+1) = r(t0)b+ (1− r(t0))σ

(
t1

1− t0
, . . . ,

tn+1

1− t0

)
implies that the image of b · σ is convex. The faces for t0 = 0 are the
faces of σ and are convex by assumption. The remaining faces are b · τ
where τ is a face of σ and it is convex by the first remark.

1.9. Proposition. The diameter of any simplex of the barycentric
subdivision of the standard n-simplex does not exceed n

n+1
times the

diameter of the original simplex.

Proof. Let us suppose that U is a subset of euclidean space and that
σ: ∆n

// U is an affine simplex. Suppose the vertices of σ are v0,
. . . , vn. Let

b(σ) =
v0 + v1 + · · ·+ vn

n+ 1
The subdivision formula on such a simplex is

Sd(σ) = b(σ) · (σ ◦ ∂)
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and a simplex of the subdivision is a simplex of b(σ) · (σ ◦ ∂ i) for 0 ≤
i ≤ n. By induction, a simplex Sdn(σ) is a sum of simplexes of the
form

b(σ) · b(σ ◦ ∂ i) · b(σ ◦ ∂ i ◦ ∂ j) · · · · · b(σ ◦ ∂ i ◦ ∂ j ◦ · · · ◦ ∂k)
and these factors are the vertices. Thus the diameter is the maximum
distance between any two of these barycenters. After renumbering,
we can assume that the maximum is assumed between the barycenters
(v0 + · · ·+ vi)/(i+ 1) and (v0 + · · ·+ vj)/j+ 1 with i < j. The distance
between them is∥∥∥∥v0 + . . .+ vi

i+ 1
− v0 + · · ·+ vj

j + 1

∥∥∥∥
=

∥∥∥∥v0 + · · ·+ vi
i+ 1

− v0 + · · ·+ vi
j + 1

− vi+1 + · · ·+ vj
j + 1

∥∥∥∥
=

∥∥∥∥(v0 + · · ·+ vi)

(
1

i+ 1
− 1

j + 1

)
− vi+1 + · · ·+ vj

j + 1

∥∥∥∥
=

∥∥∥∥(v0 + · · ·+ vi)
j − i

(i+ 1)(j + 1)
− vi+1 + · · ·+ vj

j + 1

∥∥∥∥
=
‖(v0 + · · ·+ vi)(j − i)− (i+ 1)(vi+1 + · · ·+ vj)‖

(i+ 1)(j + 1)

What is inside the distance sign is the difference of two expressions,
each of which is the sum of exactly (i+1)(j− i) vertices of the simplex.
No matter how these are arranged, none of those differences can exceed
r and so the whole sum is at most

(i+ 1)(j − i)
(i+ 1)(j + 1)

r =
j − i
j + 1

r ≤ j

j + 1
r ≤ n

n+ 1
r

1.10. Lemma. [Hausdorff covering lemma.] Let X be a compact met-
ric space and suppose U is an open cover of X. Then there is an r > 0
such that every set of diameter less than r is in some element of U .

Proof. For x ∈ X, let Nε(x) denote the ε sphere around x. For each
ε > 0, let Vε consist of all points x ∈ X for which there is a δ > ε
such that Nδ is included in some set in U . It is clear that ε1 < ε2
implies that Vε1 ⊇ Vε2 . If x ∈ Vε and δ > ε is such that Nδ(x) is in
some member of U , then for any y ∈ N(δ−ε)/2(x), it is immediate that
N(δ+ε)/2(y) is in the same member of U and thus Vε is open. Since the
set of all Vε covers X, a finite subset does. Since they are nested, a
single one does.



1. SINGULAR HOMOLOGY 207

1.11. Corollary. Let ∆ be a simplex and U a cover of ∆. Then
there is an integer k such that every simplex of Sdk(∆) is contained in
some single member of U .

1.12. A cotriple. We will use a model-induced cotriple on the cat-
egory of topological spaces that is gotten by taking the simplexes as
models (see 2). This means that

GX =
∑
n

∑
σ:∆n

//X

∆n

For σ: ∆n
// X, we denote by 〈σ〉: ∆n

// GX the inclusion into
the sum. Then εX:GX // X is defined by εX ◦ 〈σ〉 = σ and δX:GX
by δX ◦ 〈σ〉 = 〈〈σ〉〉. Then G = (G, ε, δ) is a cotriple.

1.13. Proposition. The singular chain complex functor C• is G-
presentable and G-acyclic on models with respect to the class of homo-
topy equivalences.

Proof. If σ: ∆n
// X is a singular n-simplex in X, then 〈σ〉: ∆n

// GX is a singular n-simplex in GX for which ε ◦ 〈σ〉 = σ. If f :X
// Y is a continuous map, then, by definition, Gf ◦ 〈σ〉 = 〈f ◦ σ〉,

which shows that 〈−〉:Cn(X) // Cn(GX) is natural. This is the
G-presentability. As for the G acyclicity, GX is a disjoint union of
simplexes and the chain complex of every simplex is contractible.

1.14. Corollary. Suppose α•:C• // C• is an endomorphism of the
singular chain complex functor which induces the identity arrow on H0.
Then α• is homotopic to the identity.

Proof. From the commutative

C0 H0
d

//

C0

C0

id

��

C0 H0
d // // H0

H0

α−1

����

we conclude that α−1 is the identity.

1.15. Corollary. The chain map Sd•:C• // C• induces a natural
homotopy equivalence.
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1.16. An explicit formula. It will be useful to have an explicit
formula for the homotopy. Define ηn+1: ∆n+1

// ∆n in ZTop for
n ≥ 0 by η1 = 0 and ηn+1 = bn · (1− ξn − ∂ ◦ ηn). Assume inductively
that ηn∂ = 1− ξn−1 − ∂ ◦ ηn−1. Then

ηn+1 ◦ ∂ = (bn · (1− ξn − ∂ ◦ ηn)) ◦ ∂

= 1− ξn − ∂ ◦ ηn − bn · (∂ − ξn ◦ ∂ − ∂ ◦ ηn ◦ ∂)

= 1− ξn − ∂ ◦ ηn − bn · (∂ − ∂ ◦ ξn−1 − ∂ ◦ (1− ξn−1 − ∂ ◦ ξn−1))

= 1− ξn − ∂ ◦ ηn
so that ηn+1 ◦ ∂ + ∂ ◦ ηn = 1 − ξn. It follows immediately that if we
define hn(X):Cn(X) // Cn+1(X) by hn(σ) = σ◦ηn+1, then d◦hn(X)+
hn−1(X) ◦ d = 1− Sdn(X). The naturality of hn is also clear.

1.17. Exercise

1. Show that the diameter of an affine simplex is the largest distance
between any two vertices. One way is to first show that if this maximum
is M , then the distance from any point in the simplex to any vertex is
at most M and then use that to show that the distance of any point
in the simplex to any other is at most M .

2. Covered spaces

Some of what we do in algebraic topology is best dealt with by con-
sidering the category Cov of covered topological spaces. An object of
Cov is a pair (X,U ) where X is a topological space and U is an open
cover of X. An arrow f : (X,U ) // (Y,V ) in this category consists
of a continuous function f such that for U ∈ U , there is a V ∈ V
such that fU ⊆ V . Since this is equivalent to U ⊆ f−1V , we can also
describe this by saying that U refines f−1V .

2.1. Small simplexes. If (X,U ) is a covered space, we denote by

Ĉ•(X,U ) the chain complex defined by Ĉn(X,U ) = ZHomCov((∆n, {∆n}), (X,U )).
This means that ∆n is given the singleton cover and an n-simplex is a
singular simplex whose image is entirely contained in some member of
U . Such a simplex will be called a U -small simplex or simply small
simplex, if no confusion can result. Since any face of a small simplex is

small, it follows that Ĉ•(X,U ) is a subcomplex of C•(X). Moreover,
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C•(X) = C•(X, {X}). We will also write C•(X,U ) = C•(X) so that

we can compare C• with Ĉ• as functors on the same category.

2.2. Two cotriples. There are two ways of extending the cotriple
G to Cov. The first is not actually model induced, although the same
formulas apply. We continue to call it G and it is defined at the covered
space (X,U ) by

G(X,U ) =
∑
n≥0

∑
σ:∆n

//X

(∆n, σ
−1U )

Note that we do not use only small simplexes, which is why this is not
model induced. On the other hand, the cover of X survives to become
the covers of the components of G(X,U ), which is why ε is an arrow
of Cov.

We use the same notation as for the model induced cotriple, that
is for σ: ∆n

// X, we denote by 〈σ〉: (∆n, σ
−1U ) // G(X,U ) the

inclusion into the sum. Then ε(X,U ):G(X,U ) // (X,U ) is defined
by ε(X,U ) ◦ 〈σ〉 = σ and δ(X,U ):G(X,U ) by δ(X,U ) ◦ 〈σ〉 = 〈〈σ〉〉.
The thing to note is that these are maps in the category of covered
spaces, even though the original simplexes did not respect the covers.
Then G = (G, ε, δ) is a cotriple. As with model induced cotriples, if
f : (X,U ) // (Y,V ) is an arrow in the category of covered spaces,
then Gf is defined by Gf ◦ 〈σ〉 = 〈f ◦ σ〉. If σ: ∆n

// X, then the
cover on ∆n is σ−1U . In order to show that Gf is an arrow in the
category of covered spaces, we have to show that the identity map on
∆n is an arrow (∆n, σ

−1U ) // (∆n, (f ◦ σ)−1V ). This is the same
thing as saying that the cover by σ−1U refines that of (f ◦σ)−1V . Now
if U ∈ U , there is some V ∈ V such that f(U) ⊆ V or V ⊆ f−1V . But
then σ−1U ⊆ σ−1 ◦ f−1V = (f ◦ σ)−1V . We note that this cotriple also
makes sense on the category of ordinary spaces, thought of as having
a single element cover. In that case it is model induced.

The second cotriple, Ĝ = (Ĝ, ε̂, δ̂) is a model induced cotriple, in-
duced by the simplexes ∆n, covered by themselves. So a map ∆n

// (X,U ) is, by definition, a small simplex. The cotriples are simi-
lar, but each has a role to play in the development.

2.3. Singular homology on Cov. We will not repeat the argu-
ments, but the same development that we have just carried out with

G and C• can be repeated, mutatis mutandis, with Ĝ and Ĉ•. We
conclude that,
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2.4. Theorem. Any chain map α: Ĉ• // Ĉ• that induces an iso-
morphism of 0 dimensional homology and, in particular any for which
α0 is the identity, is homotopic to the identity.

2.5. Corollary. The chain map Sd•: Ĉ•(X,U ) // Ĉ•(X,U ) in-
duces a homotopy equivalence.

2.6. Proposition. If (∆n,U ) is a covered simplex, the complex

Ĉ•(∆n,U ) is contractible.

Proof. Since it is a complex of free abelian groups, it suffices to show it
is acyclic. Given an m-cycle c, it is an m-cycle in the complex Cm(∆n).
That complex is certainly contractible, so there is a c′ ∈ Cm+1(∆n) such
that ∂c′ = c. Of course, c′ is not necessarily a sum of small simplexes,
but it is the sum of a finitely many simplexes, so there is a k such that
each simplex of βkc′ is small. Then ∂βkc′ = βk∂c′ = βkc and we know
that in Cn(∆,U ), βkc ∼ c. Thus c− βkc and βkc are both boundaries
and hence so is c.

Notice that no naturality is claimed here. It is hard to see how
there could be.

2.7. Theorem. The inclusion Ĉ• // C• is a weak homotopy equiva-
lence.

Proof. We use the acyclic models theorem with weak contractions as
the acyclic class and G as the cotriple. If σ: ∆n

// (X,U ) is a
small simplex, then there is a corresponding summand 〈σ〉: ∆n

//

G(X,U ). Moreover, since σ is small, the summand 〈σ〉 is covered by
itself. That is, the cover will generally contain many, even infinitely
many sets, but one of them will be the whole simplex. Then we can

think of 〈σ〉 as defining a simplex of Ĉn(G(X,U )). Clearly, ε̂(X,U ) ◦

〈σ〉 = σ. If σ: ∆n
// X is a simplex, then 〈σ〉: ∆n

// Cn(GX)
is also a simplex and clearly εX ◦ 〈σ〉 = σ. Thus both functors are
G-presentable. Now G(X,U ) is simply a sum of simplexes and so the
standard argument that the augmented chain complex of a contractible
space carries over to a disjoint sum of them and shows that C• is G-

contractible on models. Finally Proposition 2.6 shows that Ĉ• is as
well.

2.8. Homology of the nerve of a cover. Let (X,U ) be a covered
space. Define a chain complex as follows: An n-simplex is a string
[U0, U1, . . . , Un] with each Ui ∈ U and such that U0∩U1∩· · ·∩Un 6= ∅.
If [U0, U1, . . . , Un] is an n-simplex, then for i = 0, . . . , n, we define

di[U0, U1, · · · , Un] = [U0, U1, . . . , Ûi, . . . , Un]
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and
si[U0, U1, . . . , Un] = [U0, U1, . . . , Ui, Ui, . . . , Un]

We let Kn(U ) denote the free abelian group generated by the n-
simplexes of the cover with the boundary operator defined as usual
for the simplicial abelian group defined by the di and si. The simpli-
cial set is called the nerve of the cover and its homology is called the
homology of the nerve of the cover.

2.9. Theorem. Let the topological space X be contractible to a point.
Then the singular homology complex of X is contractible.

Proof. There is a continuous map H:X × [0, 1] // X such that
H(−, 0) is the identity and H(−, 1) is constant at a point ∗. Define
s:Cn(X) // Cn+1 by the formula

sf(x0, . . . , xn+1) =

{
∗ if x0 = 1

H
(
f
(

x1
1−x0 , . . . ,

xn+1

1−x0

)
, x0

)
if x0 6= 1

This is obviously continuous for x0 6= 1 and the continuity at the re-
maining point follows readily from the fact that H(−, 1) is constant.
Now we calculate (assuming x0 6= 1; the remaining case is similar),
writing y0 = 1− x0

(d ◦ s)f(x0, . . . , xn)

= sf(0, x0, . . . , xn) +
n+1∑
i=1

(−1)isf(x0, . . . , xi−1, 0, xi, . . . , xn)

= H(f(x0, . . . , xn), 0) +
n+1∑
i=1

(−1)iH

(
f

(
x1

y0

, . . . ,
xi−1

y0

, 0,
xi
y0

, . . . ,
xn
y0

)
, x0

)

= f(x0, . . . , xn) +
n+1∑
i=1

(−1)iH

(
f

(
x1

y0

, . . . ,
xi−1

y0

, 0,
xi
y0

, . . . ,
xn
y0

)
, x0

)

= f(x0, . . . , xn) +
n∑
i=0

(−1)i+1H

(
f

(
x1

y0

, . . . ,
xi
y0

, 0,
xi+1

y0

, . . . ,
xn
y0

)
, x0

)
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and

(s ◦ d)f(x0, . . . , xn) =
n∑
i=0

(−1)i(s ◦ d i)f(x0, . . . , xn)

=
n∑
i=0

(−1)iH

(
d if

(
x1

y0

, . . . ,
xn
y0

)
, x0

)

=
n∑
i=0

(−1)iH

(
f

(
x1

y0

, . . . ,
xi
y0

, 0,
xi+1

y0

, . . . ,
xn
y0

)
, x0

)
and adding these we see that

s ◦ d+ d ◦ s = id

2.10. Simple covers. A cover U of a space X is called simple if
for every finite set U0, . . . , Un of sets in U , either U0∩ . . .∩Un is empty
or it is contractible to a point. In the rest of this section, U will always
be a simple cover.

Now, let Y be the disjoint union of the members of U . There is an
obvious map Y // X which includes each U ∈ U into X. It is clear
that the image of Cn(Y ) // Cn(X) is exactly Cn(Y,U ).

An element of Y can be denoted (x, U) where x ∈ U ∈ U . Let
Y n
X be the nth fiber power of Y // X, which we can describe as

a subset of the nth cartesian power Y n. An element of Y n is an n-
tuple ((x1, U1), . . . , (xn, Un)). This element is in Y n

X if and only if x1 =
· · · = xn. The element x must then be in U1 ∩ . . . ∩ Un. Thus Y n

X is a
disjoint union of all the non-empty sets U1 ∩ . . . ∩ Un, each of which is
connected. These intersections are thus the connected components of
the fiber power and each is, by assumption, contractible to a point.

A point to note is that the cover induced on each component of Y n
X

by U is refined by the whole component. Thus the cover induced on Y n
X

is that of the connected components. Since simplexes are connected,

there is no difference between C• and Ĉ• on Y n
X .

There are projections ∂ i:Y n+1
X

// Y n
X for i = 0, . . . , n given by

∂ i((x, U0), . . . , (x, Un)) = ((x, U0), . . . , (̂x, Ui), . . . , (xn, Un))

We now form the double complex C••(X,U ) as follows:

Cmn =


Cn(Y m+1

X ), n ≥ 0 and m ≥ 0

Km(U ), n ≥ 0 and m = −1

Ĉn(X,U ), m ≥ 0 and n = −1
0, otherwise



2. COVERED SPACES 213

The operators di and ∂ j induce the horizontal and vertical boundary
operators. They naturally commute, but if we negate the boundary in
every other row, they will anticommute.

2.11. Proposition. The rows and columns of this double complex are
contractible, except for the bottom row and right hand column.

Proof. The columns of this double complex are the singular complex
of a space that is the disjoint union of spaces contractible to a point,
augmented over the free abelian group generated by its components.
To prove this contractible, it is sufficient to show that if the space X
is contractible, then the augmented singular complex C•(X) // Z is
contractible, which is the content of Theorem 2.9. As for the rows, we
must find a contraction in the complex

· · · // Cn(Y m
X ) // · · · // Cn(Y ) // Cn(X,U ) // 0

This complex is just the chain complex associated to the Z operator
applied to the augmented simplicial set

· · · ...

//
//Hom(∆n, Y

M
X ) ...

//
// · · · ////// Hom(∆n, Y

2
X) // // Hom(∆n, Y ) // Hom(∆n, (X,U ))

We define a contracting homotopy in this simplicial set as follows.
Choose, for each small simplex σ: ∆n

// (X,U ), a set f(σ) ∈ U
such that σ(∆n) ⊆ f(σ). The space Y m

X is the disjoint union of
subspaces of the form U1 ∩ U2 ∩ · · · ∩ Um, taken over all sequences
U1, U2, . . . , Um ∈ U m. An n-simplex in Hom(∆n, Y

m
X ) is a map σ: ∆n

// U1 ∩ U2 ∩ · · · ∩ Um, indexed by such a sequence. We denote
this element of Hom(∆n, Y

m
X ) by 〈σ;U1, U2, . . . , Um〉. Then define

s: Hom(∆n, Y
m
X ) // Hom(∆n, Y

m+1
X ) by

s〈σ;U1, · · · , Um〉 = 〈σ; f(σ), U1, U2, . . . , Um〉
When n = −1, this is interpreted to mean that sσ = 〈σ; f(σ)〉. Then
one sees immediately that d 0 ◦ s = id and d i+1 ◦ s = s ◦ d i so that s is
a contracting homotopy in the row.

2.12. Corollary. The homology of the nerve of a simple cover is
equivalent to that of the singular homology with small simplexes.

Proof. This follows immediately from 3.6.1.

Here is another application.
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2.13. Theorem. Suppose X is a topological space and A and B are
two open subsets such that X = A∪B. Then there is an exact homology
sequence

· · · // Hn(A∩B) // Hn(A)⊕Hn(B) // Hn(X) // Hn−1(A∩B) // · · ·
Proof. Let U = {A,B} be the 2 element cover of X. Let i:A // X,
j:B // X, u:A ∩ B // A, and v:A ∩ B // B be the inclusions.
Then we have an exact sequence

0 // Cn(A ∩B)

(
Cn(u)
−Cn(v)

)
// Cn(A)⊕ Cn(B)

(Cn(i) Cn(j) )
// Cn(X,U ) // 0

from which the conclusion follows.

This is, essentially, the Mayer-Vietoris exact sequence which is
proved under hypotheses on A and B that guarantee that they are
retracts of open neighborhoods so that this theorem can be applied to
other than open sets.

3. Simplicial homology

In this section, we describe the simplicial homology on the category of
triangulated spaces using so-called oriented simplexes. In addition, we
will show that for a triangulated space, the simplicial homology and
singular homology coincide.

3.1. Triangulated spaces. By a triangulated space we mean a
space that is a union of simplexes subject to two conditions

1. A set is open if and only if its intersection with each simplex
is open.

2. The intersection of two simplexes is a face of each.

The first condition says the space is a quotient of a disjoint union
of simplexes and the second is a restriction on the nature of the kernel
pair of that quotient mapping.

3.2. The simplicial category. Let T be a triangulated space. Let
V (T ) denote the set of all the vertices of the simplexes of T . We
denote by Simp the category whose objects are triangulated spaces and
whose morphisms are functions that take simplexes to simplexes and
are linear on the interiors. If T is a triangulated space, we let |T | denote
the underlying topological space.
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3.3. Chains. Let T be a triangulated space. We define a chain com-
plexes, called C•(T ). An n-simplex, denoted [v0, . . . , vn], is a string
of vertices of T , not necessarily distinct, such that {v0, . . . , vn} is the
set of vertices of some simplex. Then Cn(T ) is the free abelian group
generated by the set of n-simplexes. For i = 0 . . . n we define face op-
erators d i:Cn(T ) // Cn−1(T ) by d i[v0, . . . , vn] = [v0, . . . , v̂i, . . . , vn]
and degeneracy operators si:Cn(T ) // Cn−1(T ) by si[v0, . . . , vn] =
[v0, . . . , vi, vi, . . . , vn].

We define a cotriple on Simp that takes a triangulated space T to
the space GT defined as the disjoint union of all the simplexes of T ,
each triangulated in the standard way. So an element of GT is a pair
(x, σ), where x ∈ σ and σ is a simplex of T . A vertex of GT is then
a pair (v, σ) where σ is a simplex of T and v a vertex of σ. We define
εT :GT // T by εT (x, σ) = x. A simplex of GT is a pair (σ, τ)
where τ is a simplex of T and σ is a face of τ . Thus an element of
G2T is a triplet (x, σ, τ) where τ is a simplex of T , σ is a face of τ
and x ∈ σ. Then we define δT :GT // G2T by δT (x, σ) = (x, σ, σ).
If f :T // T ′ is an arrow in Simp, then Gf(x, σ) = (fx, fσ), which
makes sense since f takes simplexes to simplexes.

3.4. Proposition. The complex C•(T ) is G-presentable.

Proof. Let [v0, . . . , vn] be an n-simplex of Cn(T ). Let σ be the simplex
of T whose vertices are the set {v0, · · · , vn}. Then we let θ[v0, . . . , vn] =
[(v0, σ), . . . , (vn, σ)]. It is clear that εT ◦ θ = id. To show naturality,
suppose f :T // T ′ is a simplicial map. Then f(σ) is the unique
simplex whose vertices are fv0, . . . , fvn. Then

θ ◦ Cn(T )f [v0, . . . , vn] = θ[fv0, . . . , fvn]

= [(fv0, fσ), . . . , (fvn, fσ)] = Cn(GT )f [(v0, σ), . . . , (vn, σ)]

= Cn(GT )f ◦ θ[v0, . . . , vn]

3.5. Proposition. The complex C•(T ) is G-acyclic.

Proof. Since GT is a disjoint union of simplexes and both chain groups
take disjoint unions to direct sums, it is sufficient to show this for
simplexes. So let ∆n denote an n-simplex, with a total order on its
vertices, say v0 < · · · < vn. An m-simplex in Cm(∆n) is an m-tuple
[vi0 , . . . , vim ]. Now let s[vi0 , . . . , vim ] = [v0, vi0 , . . . , vim ]. It is clear that
d 0 ◦ s = id and d i ◦ s = s ◦ d i−1 for 0 < i ≤ m, so that s is a contracting
homotopy on the complex C•(∆n).
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3.6. Corollary. Suppose α•:C• // C• is an endomorphism of the
simplicial chain complex functor which induces the identity arrow on
H0. Then α• is homotopic to the identity.

4. Singular homology of triangulated spaces

4.1. Barycentric coordinates. There is a special coordinate sys-
tem induced by a triangulation of a space that is quite useful. We begin
by observing that each point of a triangulated space is in the interior of
a unique simplex. For each point of the space is in at least one simplex
and each point of a simplex is interior to some face of the simplex (a
vertex is interior to itself). Second, since two simplexes can intersect
only at a common face and the points in the face cannot be interior to
both, no point can be interior to more than one simplex.

If {v0, . . . , vn} are the set of vertices of an n-simplex, then a point
of that simplex can be written uniquely as t0v0 + · · · tnvn where each ti
is a non-negative real number and t0 + · · · tn = 1. The point is interior
to the simplex if every ti > 0.

Now we think of the n-simplex as being the set of points (t0, t1, . . . , tn) ∈
Rn such that

∑n
i=0 ti = 1 and each ti ≥ 0. It is interior if and only

if each ti > 0. These coordinates are called the barycentric coordi-
nates of the point. (Question: Why are they called the “barycentric
coordinates”? The barycenter is the center of gravity. “Affine coordi-
nates” would make a lot more sense.)

We can make use of this in the following way. Let V be the set of
vertices of the triangulated space. Let {tv | v ∈ V } be a set of real
numbers, finitely non-zero, all non-negative with

∑
v∈V tv = 1. Let v0,

. . . ,vn denote the set of vertices for which tvi 6= 0. If there is a simplex
σ whose vertices are v0, . . . , vn then there is a unique point x ∈ σ whose
barycentric coordinates are (tv1 , . . . , tvn). If there is no such simplex,
then there is no point with those barycentric coordinates. However,
each point gives rise to a unique set {tv | v ∈ V } which will be called
its barycentric coordinates.

4.2. Open star cover. If σ is a simplex of T , the open star of σ,
denoted st σ, is the union of the interiors of all the simplexes of which
σ is a face. In particular, if v is a vertex, st v is the union the interiors
of all the simplexes that v is a vertex of and the interior of a 0-simplex
is itself. Clearly every point of X = |T | is an interior point of at least
one simplex. Thus the open stars of the vertices are a cover of X called
the open star cover.
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4.3. Proposition. Let v0, . . . , vn be vertices of simplexes in X. Then

st v0 ∩ · · · ∩ st vn =

{
stσ if v0, . . ., vn are the vertices of σ
∅ if they are not the vertices of any simplex

Proof. Suppose that v0, . . . , vn are the vertices of the simplex σ. Then
each vi is a face of any simplex that σ is a face of, so that any point in
the interior of one of those simplexes in the star of each vi and hence
in their intersection. On the other hand, any simplex of which σ is
not a face cannot have every vi as a vertex and hence any interior
point of such a simplex is not in the star of at least one vi. The same
argument applies in the case that there is no simplex that v0, . . . , vn
are all members of.

4.4. Proposition. For any simplex σ, stσ is contractible.

Proof. Define H: stσ × [0, 1] // σ as follows, using the barycentric
coordinates. Fix a vertex v0 of σ. If p is a point of stσ with barycen-
tric coordinates {pv | v ∈ V }, define H(p, t) to be the point whose
barycentric coordinates are{

(1− t)pv + t, if v = v0

(1− t)pv, otherwise

Since p is in the open star of σ, it has non-zero coordinates correspond-
ing to each vertex of σ, in particular for v0. It follows that for 0 ≤ t < 1,
p has the same non-zero coordinates as those of H(p, t), which implies
that the latter point actually exists. Evidently H(p, 0) = p, while
H(p, 1) = v0.

Put the two preceding propositions together to conclude:

4.5. Theorem. The open star cover of a simplicial complex is sim-
ple.

This fact is a direct consequence of the requirement that in a tri-
angulation any two simplexes, if they meet, do so in a common face.

4.6. Theorem. The homology of the nerve of the open star cover of
a simplicial complex is isomorphic to the simplicial homology.

Proof. If Y is the disjoint union of the stars of the vertices, then Y n
X is

the disjoint unions of the all the non-empty sets

st v0 ∩ . . . ∩ st vn

This set is stσ if the vertices of σ are v0, . . . , vn. Note that these vertices
may be repeated, so that σ is not necessarily an n-simplex. Thus we
get one copy of st v for each ordering of the vertices of σ. But this is
the definition of the chain complex of a simplicial complex.
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5. Homology with ordered simplexes

The original definitions of homology went to some effort to avoid sim-
plexes with repeated vertices and having simplexes that differed only
in the order of the vertices. I do not know whether this was merely for
computational efficiency or that it was not realized at first that two
such simplexes were necessarily in the same homology class. The same
thing happened for the early definitions of singular homology. In this
section, we will use acyclic models to show that these older definitions
give the same homology and cohomology.

5.1. Ordered simplicial homology. Let T be a triangulated space
and suppose a total order is chosen on the set V of vertices. Then an
ordered n-simplex 〈v0, v1, . . . , vn〉 consists of a string of vertices such
that

1. v0, v1, . . . , vn are the vertices of some simplex of T ; and
2. v0 < v1 < · · · < vn.

Note that this means, among other things, that the vi are all dis-
tinct. We let Cord

n (T ) denote the free abelian group generated by
the ordered n-simplexes. Although there are no degeneracy operators,
the same formula works to give a boundary operator. Namely, define
d i:Cord

n (T ) // Cord
n−1(T ) for i = 0, . . . , n by

d i〈v0, v1, . . . , vn〉 = 〈v0, v1, . . . , vi−1, vi+1, . . . , vn〉
The right hand side of that formula is usually denoted 〈v0, v1, . . . , v̂i, . . . , vn〉.
Then

d =
n∑
i=0

(−1)id i:Cord
n (T ) // Cord

n−1(T )

One readily shows that d ◦ d = 0 and then there are homology groups
Hord
• (T ).

There is an obvious natural inclusion α•:C
ord
•

// C• that com-
mutes with the boundary operator. It is less obvious, but this inclusion
has a natural splitting. To see this, define an action of the symmetric
group Sn+1 on Cn(T ) by letting, for π ∈ Sn+1 and σ = [v0, v1, . . . , vn],

π−1σ = sgn(π)[vπ0, vπ1, . . . , vπn]

Define βn:Cn // Cord
n as follows. Suppose that T is a triangulated

space with a total order on its vertices. and σ = [v0, . . . , vn] ∈ Cn(T ) is
a simplex. If σ has a repeated vertex, let βn(σ) = 0. Otherwise, there is
a unique permutation π ∈ Sn+1 such that πσ is ± an ordered simplex
and we let βn(σ) = πσ. This definition on simplexes extends to a
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unique homomorphism Cn(T ) // Cord
n (T ). Clearly βn ◦αn = id, from

which we conclude that if Kn = ker(βn), then Cn(T ) ∼= Cord
n (T )⊕Kn.

5.2. Theorem. For any triangulated space T , we have d◦βn = βn−1◦d.

Proof. If σ is an ordered simplex, let Kn(σ) denote the subgroup of
Kn spanned by all σ− πσ for π ∈ Sn+1 and Dn be the subgroup of Kn

spanned by all degenerate simplexes (those with at least one repeated
vertex). It is clear that Kn = Dn ⊕

∑
Kn(σ), the sum taken over all

the ordered simplexes. Hence it is sufficient to show that d takes every
degenerate simplex as well as every simplex of the form σ − πσ into
Kn−1. If σ = 〈v0, . . . , vn〉 is multiply degenerate, that is two vertices
are repeated or one vertex is repeated more than once, then every d iσ
is degenerate and hence dσ ∈ Kn−1. Thus we can suppose that vi = vj,
i < j and there is no other degeneracy. In that case, all but two terms
of dσ are degenerate and those terms are

(−1)i〈v0, . . . , v̂i, . . . , vj, . . . , vn〉+ (−1)j〈v0, . . . , vi, . . . , v̂j, . . . , vn〉
and these two terms differ only by j − i − 1 transpositions and hence
add up to an element of Kn−1.

We now consider the case of σ− πσ, where σ is an ordered simplex
and π ∈ Sn+1, by induction on the number of adjacent transpositions
necessary to express π. If this number is 0, π is the identity and there is
nothing to prove. Write π = θφ, where θ is an adjacent transposition
and φ is expressible as a composite of fewer adjacent transpositions
than π. Then σ − πσ = (σ − φσ) + (φσ − θφσ). We assume that
d(σ − φσ) ∈ Kn−1. We will let τ = ±φσ, the sign chosen so that τ is
an ordered simplex and will show that d(τ − θτ) ∈ Kn−1.

Suppose that τ = 〈v0, . . . , vj, vj+1, . . . , vn and that θ interchanges j
with j + 1. Let θ′, θ′′ ∈ Sn interchange j − 1 with j and j with j + 1,
respectively. (In the cases that j = 0 or j = n only one of these will
actually occur.) Now we calculate easily that

d i(τ − θτ) =


d iτ − θ′d iτ if i < j
d jτ + d i+1τ if i = j
d j+1τ + d jτ if i = j + 1
d iτ − θ′′d iτ if i > j + 1

from which we can readily calculate that

d(τ − θτ) =

j−1∑
i=1

(−1)idiτ − θ′d iτ +
n∑

i=j+1

(−1)idiτ − θ′′d iτ

and therefore lies in Kn−1.
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It is clear that when σ is an ordered simplex, so is dσ and so d ◦

βn(σ) = dσ = βn−1 ◦dσ. Given a simplex σ /∈ Kn choose a permutation
θ such that θσ is an ordered simplex. Then

bn−1dσ = βn−1dθσ + βn−1d(σ − θσ)

= dβnθσ = dβn−1σ + dβn(θσ − σ)

= dβnσ

from which the conclusion follows.

5.3. Theorem. The inclusion Cord
•

// C• is a homotopy equivalence
on the category of triangulated spaces.

Proof. If we identify Cord
• with C•/K•, then we have that the composite

Cord
•

// C• // Cord
• is the identity. Since Cord

0 = C0, the other
composite is the identity in degree 0 and the conclusion now follows
from Corollary 3.5.

5.4. Ordered singular chains. Now we consider the category of
spaces. There is no analog of the subgroup of ordered singular chains,
but there is an analog of the C•/D• construction. If σ: ∆n

// X is
a singular n-simplex and π ∈ Sn+1, define π−1σ by (πσ)(t0, . . . , tn) =
sgn(π)σ(tπ0, . . . , tπn). This extends to a unique additive operation on
singular chains. Let Dn(X) consist of those singular chains c for which
πc = −c.
5.5. Proposition. Let θ be an adjacent transposition. Then d(c−θc) ∈
Dn−1.

Proof. Assume that θ ∈ Sn+1 interchanges j with j + 1. As above, we
will let θ′, θ′′ ∈ Sn denote the permutations that interchange j−1 with
j and j with j + 1, respectively.

As usual d i:Cn(X) // Cn−1(X) is defined by

d iσ(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn−1)

Then we claim that

d iθσ =


θ′d iσ if i < j
d j+1σ if i = j
d jσ, if i = j + 1
θ′′ ◦ d iσ, if i > j + 1
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We prove, for example, the first one. The others are proved similarly.
We have, for i < j,

d i ◦ θjσ(t0, . . . , tn−1) = θjσ(t0, . . . , ti−1, 0, ti, . . . , tj−1, tj, . . . , tn−1)

= σ(t0, . . . , ti−1, 0, ti, . . . , tj, tj−1, . . . , tn−1)

= d iσ(t0, . . . , ti−1, ti, . . . , tj, tj−1, . . . , tn−1)

= θj−1d iσ(t0, . . . , ti−1, ti, . . . , tj−1, tj, . . . , tn−1)

From this we calculate that

d ◦ (1− θ) =
n∑
i=0

(−1)id i ◦ (1− θ)

=

j−1∑
i=0

(−1)id i ◦ (1− θ) + (−1)jd j(1− θ)

+ (−1)j+1d j+1(1− θ) +
n∑

i=j+2

(−1)id i ◦ (1− θ)

=

j−1∑
i=0

(−1)i(1− θ′) ◦ d i + (−1)j(d j + d j+1)

+ (−1)j+1(d j+1 + d j) +
n∑

i=j+2

(−1)i(1− θ′′) ◦ d i

= (1− θ′) ◦
j−1∑
i=0

(−1)id i + (1− θ′′)
n∑

i=j+2

(−1)i ◦ d i

Now if θσ = −σ, then (1− θ)σ = 2σ and then

d(2σ) = d(1− θ)σ

= (1− θj−1) ◦
j−1∑
i=0

(−1)id iσ + (1− θ)
n∑

i=j+2

(−1)i ◦ d iσ

⊆ Dn−1
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This implies that there is a natural homomorphism C• // Cord
• .

We would now like to show it is a homotopy equivalence. Unlike the
case of simplicial complexes, there does not seem to be any way of
making it natural, but rather will show that it is a weak homotopy
equivalence. In order to do this, we make use of a cotriple that was
first used by Kleisli [1974] for similar purposes. I = [0, 1] is the unit
interval of real numbers.

For a space X and element x ∈ X, let I −−◦
x
X denote the space of

continuous functions (called paths) p: I // X such that p(0) = x,
topologized with the compact/open topology. This means that for a
compact subset K ⊆ I and an open subset U ⊆ X, we let N(K,U)
denote the set {p: I // X | p(K) ⊆ U}. Then the compact/open
topology is the one that takes the set of all N(K,U) as a basis for the
topology.

Define GX =
∑

x∈X I −−◦x X. Of course, the point set of GX is just
the set of paths in X, but the topology is not that of the path space,
since paths starting at distinct points are in different components. We
define εX:GX // X as evaluation at 1. We could also define δ:G

// G2 so as to make (G, ε, δ) a cotriple, but this part of the structure
is not needed.

In order to interpret the next theorem, we will think of Σn+1 as
embedded as the subgroup of Σn+2 consisting of those permutations of
{0, . . . , n+ 1} that fix n+ 1.

5.6. Proposition. There is a natural chain contraction s in the aug-
mented chain complex functor C•G // C−1G // 0 such that for an
n-simplex σ and π ∈ Σn+1, s(πσ) = πs(σ).

Proof. Let X be any space and suppose that σ: ∆n
// GX is a

singular n-simplex. Since σ is a continuous function from a connected
space into a disjoint sum of spaces, it necessarily factors through one of
the summands. Thus we can think of σ as being a continuous function
∆n

// I −−◦
x
X for a uniquely determined x ∈ X. A function σ: ∆n

// I −−◦
x
X transposes to a function that will also denote σ: ∆ × I

// X and we will denote its value at the point t = (t0, . . . , tn) such
that t0 + · · ·+ tn = 1 and u ∈ I by σ(t;u). First we consider the case
of dimensions −1 and 0. Any path in I −−◦

x
X is homotopic to the

constant path at x which we will denote px. In fact, the map H: I × I
// X given by H(u0, u1) = p(u0u1) gives the path p when u0 = 1

and px when u0 = 0. On the other hand, two distinct elements of x
correspond to distinct components of GX. Thus C−1(GX) = H0(GX)
is the free abelian group generated by the elements of X. We now let
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s:C−1(GX) // C0(GX) given by sx = px. The group C0(GX) is the
free abelian group generated by the paths in GX. For n ≥ 0, define
s:Cn(GX) // Cn+1(GX) by

(sσ)(t, tn+1;u)

= (−1)n+1

{
σ
(

t0
1−tn+1

, . . . , tn
1−tn+1

; (1− tn+1)u
)
, if tn+1 6= 1

x, if tn+1 = 1

This is obviously continuous for tn+1 < 1. We will defer to later the
proof that it is continuous at tn+1 = 1.

The first thing we want to do is calculate sd+ ds in degree 0. A 0-
path in GX is just an element of GX, that is a path in X. To conform
with the notation in higher degrees, we denote it p(1;u). The 1 stands
for the single element of ∆0 and u ∈ I. By definition, dp = p(1; 0),
the starting point, which we will call x. Then sdp = px, which we can
write as sdp(1;u) = p(1; 0). We have,

dsp(1;u) = sp(0, 1;u)− sp(1, 0;u) = −p(1; 0) + p(1;u) = p(1;u)− sd(1;u)

as required. For n > 0, we calculate, assuming tn 6= 1,

dsσ(t0, . . . , tn;u) =
n+1∑
i=0

(−1)isσ (t0, . . . , ti−1, 0, ti, . . . , tn;u)

= (−1)n+1

n∑
i=0

(−1)isσ (t0, . . . , ti−1, 0, ti, . . . , tn;u)

+ (−1)n+1sσ (t0, . . . , tn, 0;u)

= (−1)n+1

n∑
i=0

(−1)iσ

(
t0

1− tn
, . . . ,

ti−1

1− tn
, 0,

ti
1− tn

, . . . ,
tn−1

1− tn
; (1− tn)u

)
+ (−1)n+1(−1)n+1σ (t0, . . . , tn;u)

= (−1)n+1dσ

(
t0

1− tn
, . . . ,

tn−1

1− tn
; (1− tn)u

)
+ σ (t0, . . . , tn;u)

= −sdσ (t0, . . . , tn;u) + σ (t0, . . . , tn;u)

so that ds = −sd + 1. The case that tn = 1 can be handled similarly
(or use continuity).

Next we show that s is continuous at tn+1 = 1. Let U be a
neighborhood of x. Since σ is continuous and σ(t; 1) = x for all
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t = (t0, . . . , tn) ∈ ∆n, there is a neighborhood Vt of t and a num-
ber εt > 0 such that t′ ∈ Vt and 0 < u < εt implies that σ(t, u) ∈ U .
Since ∆n is compact, it is covered by a finite number of these Vt. Tak-
ing ε as the minimum of the εt corresponding to those finitely many Vt,
we see that when 0 < u < ε, then σ(t, u) ∈ U for all t ∈ ∆n and hence

lim
tn+1

//1
σ

(
t0

1− tn+1

, . . . ,
tn

1− tn+1

; (1− tn+1)u

)
= x

The fact that πs = sπ for π ∈ Σn+1 is obvious.

5.7. Proposition. For all n ≥ 0, there is a natural transformation
θn:Cn // CnG such that Cnε ◦ θn = id and such that for each π ∈
Σn+1, θn(πσ) = πθn(σ).

Proof. Let X be a topological space. Define θnX:CnX // CnGX by

θn(σ)(t0, . . . , tn)(u) = σ

(
ut0 +

1− u
n+ 1

, . . . , utn +
1− u
n+ 1

)
which is a simplex in the component of GX based at σ( 1−u

n+1
, . . . , 1−u

n+1
).

It is clear that θn(σ)(t0, . . . , tn)(1) = σ(t0, . . . , tn) and that θ(σ ◦ p) =
θ(σ) ◦ p, from which the second claim follows.

Now we can apply acyclic models to C• as well as Cord
• . We have

shown that C• is ε-presentable and that C• // C−1
// 0 is G-

contractible and both natural transformations commute with the action
of the symmetric groups. This implies that s(Dn) ⊆ Dn+1, and sim-
ilarly that θn(Dn) ⊆ DnG and so Cord

• is also ε-presentable and that
Cord
•

// Cord
−1

// 0 is G-contractible. Since C0 = Cord
0 , it follows

that

5.8. Theorem. C• // Cord
• is a homotopy equivalence.

6. Application to homology on manifolds

Consider a differentiable manifold M of class Cq, for 0 ≤ q ≤ ∞.
For p ≤ q, we can form the group Cp

n(M) of singular n-simplexes in M
that are p times continuously differentiable. Intuitively, we feel that the
resultant chain complex should not depend, up to homology, on q. We
would expect a process analogous to simplicial approximation to allow
us to smooth a simplex of class Cp to obtain a homologous simplex of
class Cq. The case q =∞ and p = 0 is well known, in connection with
de Rham cohomology see [Bredon, 1993]. Here we deal with the general
case and show homotopy equivalence directly. The basic argument is
a modification of the one used in Bredon. We have previously given
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an argument that is based even more directly on our acyclic models
theorem, but it depends on the existence of a simple cover and on
paracompactness, which this one does not. See [Barr, 1996].

A simplex is not a manifold, so that one has to define what it means
for a singular simplex in a manifold to be smooth. One possibility
would be to extend the category to manifolds with boundary and thus
to include the simplexes. Then smoothness would have to be defined
in terms of one-sided derivative. I know no reason that this would not
work, but simplexes have lots of corners and this leads us into uncharted
(for me!) waters that I would rather avoid. Thus I will follow Bredon
and define a smooth simplex as one that has a smooth extension to
some neighborhood of ∆ in the space defined by t0 + · · · + tn = 1,
which is, essentially, Rn.

The main consequence of this decision for us is that the various
cotriples that are used to prove, for example, the subdivision and
Mayer-Vietoris theorems are no longer available. However, the explicit
formula of 1.16 will be valid as soon as we can describe a ”smooth
cone” construction that takes smooth cones to smooth cones.

Recall that in 1.2 we defined, for a convex subset U of a euclidean
space, a point b ∈ U and a singular simplex σ: ∆n

// U a cone
b · σ: ∆n+1

// U by

b·σ(t0, t1, . . . , tn+1) =

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if t0 6= 1

b if t0 = 1

The function r: I // I is any continuous bijective function such that
r(0) = 0 and r(1) = 1. The problem is the 1 − t0 in the denominator
that does not interfere with continuity since σ is bounded on the com-
pact set ∆n, but does interfere with smoothness. We will show that for
the choice of

r(t) =

{
1− e1− 1

1−t if 0 ≤ t ≤ 1
1 if t = 1

In order to extend this to a neighborhood, we extend the definition of
r(t) to the entire line by

r(t) =

{
1− e1− 1

1−t if t ≤ 1
1 if t ≥ 1

Since U is open, b is at positive distance from the complement and
hence there will be some ε > 0 such that for all t0 ∈ [−ε, 1 + ε], the
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extension defined by

b · σ(t0,t1, . . . , tn+1)

=

{
r(t0)b+ (1− r(t0))σ

(
t1

1−t0 , · · · ,
tn+1

1−t0

)
if −ε < t0 < 1

b if 1 ≤ t0 ≤ 1 + ε

still takes values in U .

6.1. Proposition. If σ is p times continuous differential, then so is
b · σ.

Proof. There is obviously no problem except when t0 = 1. As t0 //

1−, the exponent goes to −∞ and hence limt0
//1− r(t) = 1, which

establishes continuity. The differentiability follows from the following
lemma.

6.2. Lemma. Suppose we write τ = 1/(1 − t0) and that k and l
are positive integers, s is a polynomial in t0, . . . , tn and φ is at least k
times continuously differentiable on a neighborhood of ∆n. Let f be the
function defined on a neighborhood of ∆n to be 0 for t0 ≥ 1 for t0 < 1
by

e−ττ−ls(t0, . . . , tn)φ(τt0, . . . , τ tn) (∗)
has a continuous partial derivative that is a finite sum of terms of the
same form involving the functions and their first partial derivatives of
those appearing in (∗) and is, therefore, at least k−1 times continuously
differentiable.

Proof. Let φi denote the partial derivative of φ with respect to its ith
variable. Then the partial derivative of (∗) with respect to t0 is

− e−τ ∂τ
∂t0

τ−ls(t0, . . . , tn)φ(τt0, . . . , τ tn)

− 2ke−ττ−l−1s(t0, . . . , tn)φ(τt0, . . . , τ tn)

+ e−ττ−l
∂s(t0, . . . , tn)

∂t0
φ(τt0, . . . , τ tn)

+ e−ττ−ls(t0, . . . , tn)φ0(τt0, . . . , τ tn)τ

+ e−ττ−ls(t0, . . . , tn)
n∑
i=0

φi(τt0, . . . , τ tn)ti
∂τ

∂t0

Since ∂τ/∂t0 = −1/τ 2 each term has the required form and is at least
k − 1 times differentiable. Since limτ //∞ e

−ττ−l = 0, each term is
continuous at the boundary.
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Let M be a manifold of class Cq as above, p ≤ q and suppose that
j(M):Cp

• (M) // C•(M) is the inclusion of the group of q-smooth
singular chains into the group of all chains. It is clear that j(M) is
the M component of a natural transformation between these functors.
We will be showing that it is a quasi-homotopy equivalence, that is
a homotopy equivalence at each object, without necessarily having a
natural homotopy inverse. We note that with the smooth cone, the
proof of 1.4 remains valid and we can conclude that

6.3. Lemma. Let U be a non-empty convex open subset of Rn. Then
the simplicial set of smooth simplexes on U is contractible.

Similarly the construction of the simplicial subdivision, as well as
the proof, using the explicit formula of 1.16 that it is homotopic to the
identity, remain unchanged.

If M is a manifold of class Cp, 1 ≤ p ≤ ∞, let j•(M):Cp
• (M) //

C•(M) denote the inclusion of the subgroup of p times differentiable
chains into the group of all singular chains. We wish to show that this
is, for each M , a homotopy equivalence. To this end, we let J• denote
the mapping cone of j•. In accordance with 2.9, to prove that j• is a
homotopy equivalence, it suffices to show that J• is contractible. Since
the terms are all projective, it suffices to show that it is exact.

6.4. Proposition. The complex J• satisfies the Mayer-Vietoris the-
orem.

Proof. Suppose U and V are open subsets of the manifold M . Let

C• = C•(U ∪ V ) and Cp
• = Cp

• (U ∪ V ). Let C̃p
• = Cp

• (U ∪ V, {U, V }),
C̃• = C•(U ∪ V, {U, V }) and J̃• = C̃p

•/C̃•. Let Ĉp
• = Cp

•/C̃
p
• , Ĉ• =
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C•/C̃•, and Ĵ• = J•/J̃•. The 3× 3 lemma (2.3.12)applied to

J̃• J•//J̃•0 // J̃•

0
��

J• Ĵ•//J•

0
��

Ĵ•

0
��

Ĵ• 0//

Ĉ• 0//C• Ĉ•//C̃• C•//C̃•0 //

C̃p
• Cp

•
//C̃p

•0 // C̃p
•

0

��

Cp
• Ĉp

•
//Cp

•

0

��
Ĉp
•

0

��

Ĉp
• 0//Ĉp
•

Ĉ•

��

Cp
•

C•
��

C̃p
•

C̃•

��

C̃•

J̃•

��

C•

J•
��

Ĉ•

Ĵ•

��

implies that Ĵ• is acyclic so that the inclusion J̃• // J• is a homology,
hence homotopy equivalence.

The 3× 3 lemma applied to

J•(U ∩ V ) J•(U)⊕ J•(V )//J•(U ∩ V )0 // J•(U ∩ V )

0
��

J•(U)⊕ J•(V ) J̃•//J•(U)⊕ J•(V )

0
��

J̃•

0
��

J̃• 0//

C̃• 0//C•(U)⊕ C•(V ) C̃•//C•(U ∩ V ) C•(U)⊕ C•(V )//C•(U ∩ V )0 //

Cp
• (U ∩ V ) C•(U)⊕ C•(V )//Cp
• (U ∩ V )0 // Cp
• (U ∩ V )

0

��
C•(U)⊕ C•(V ) C̃•//C•(U)⊕ C•(V )

0

��
C̃•

0

��

C̃• 0//C̃•

C̃•

��

C•(U)⊕ C•(V )

C•(U)⊕ C•(V )
��

Cp
• (U ∩ V )

C•(U ∩ V )
��

C•(U ∩ V )

J•(U ∩ V )
��

C•(U)⊕ C•(V )

J•(U)⊕ J•(V )
��

C̃•

J̃•

��

implies that the bottom row is exact. In conjunction with the previous
diagram, this implies the Mayer-Vietoris theorem for J .
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6.5. Proposition. Suppose U is a cover of the manifold M . Ev-
ery simplex and hence every chain of C•(M) lies in a finite union of
elements of U .

Proof. This is an immediate consequence of the compactness of sim-
plexes.

6.6. Corollary. The groups J•(M) are the union, taken over all finite
subsets {U1, . . . , Un} ⊆ U of J•(U1 ∪ · · · ∪ Un).

Proof. This is true of both C•(M) and Cp
• (M) and is easily seen to be

true of the quotient.

6.7. Corollary. If J•(U1 ∪ · · · ∪ Un) = 0 for every finite subset
{U1, . . . , Un} ⊆ U , then J•(M) = 0.

Proof. For any cycle c ∈ Jm(M), there is a finite subset {U1, . . . , Un} ⊆
U such that c is a cycle in Jm({U1 ∪ · · · ∪ Un). If c is not a boundary
in Jm(M), then it is certainly not a boundary in Jm({U1 ∪ · · · ∪Un).

6.8. Proposition. Suppose that U and V are open subsets of M such
that J• is acyclic at U , V and U ∩ V . Then it is acyclic at U ∪ V .

Proof. This is an immediate consequence of the Mayer-Vietoris theo-
rem.

6.9. Proposition. Suppose U1, . . . , Un are open subsets of M such
that J• is acyclic at the intersection of every non-empty finite subset
of them. Then J• is acyclic at their union.

Proof. Assume this is true for all sets of n − 1 open sets. It follows
that J• is acyclic at U1 ∪ · · · ∪ Un−1, at Un and also at

(U1 ∪ · · · ∪ Un−1) ∩ Un = (U1 ∩ Un) ∪ · · · ∪ (Un−1 ∩ Un)

and hence, by the preceding result, at U1 ∪ · · · ∪ Un−1 ∪ Un.

6.10. Proposition. Suppose that U is an open subset of euclidean
space. Then J•(U) is acyclic.

Proof. On a convex subset of euclidean space, the homology of both
Cp
• and C• reduce to Z concentrated in degree 0 and the induced map

in degree 0 is the identity, since all 0-simplexes are smooth. Hence J•
is exact on a convex subset. A spherical neighborhood is convex and
any intersection of convex sets is convex, so that the cover by spherical
neighborhoods has the property that any finite intersection is convex
and hence J• is acyclic on any finite union and hence on all of U .
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6.11. Theorem. The chain functor J• is acyclic, and hence con-
tractible, on any manifold M . It follows that the inclusion Cp

• (M)
// C•(M) is a homotopy equivalence.

Proof. A manifold has an open cover by euclidean spaces. Any finite
intersection of these is an open subset of a euclidean space and hence
J• is acyclic on all those finite intersections and hence on every finite
union of them and therefore on all of M .

6.12. De Rham’s Theorem. One of the reasons that homology the-
ory was captured the interest of mathematicians in the early part of
the century was the connection between integrability of forms and the
topological properties of the set on which they were defined. A closed
(or exact) form on a contractible space was integrable, but on a non-
contractible space need not be. This comes to fruition in de Rham’s
theorem which connects these facts by an equivalence of cohomology
theories.

We will not here develop the theory of de Rham cohomology, which
is far from the purposes of this book. Nor will we include a proof of the
Poincaré Lemma on which all proofs I am aware of depend on. What
we will do is show how the methods developed here can help organize
the argument. See, for example, [Bredon, 1993] or [Spivak, 1965] for
excellent treatments of the de Rham theory.

Although previous results did not require paracompactness, this
one apparently does. At any rate, the proof given here uses it. A para-
compact manifold has a partition of unity [Bredon, 1993, pages 35–37].
For our purposes, the partition of unity is more basic than the atlas.
To explain, if X is a topological space and {αi | i ∈ I} is a partition of
unity such that for each i ∈ I, the support of αi, denoted suppαi, is
homeomorphic to an open subset of Rn, then X is obviously a manifold
since each point will have a neighborhood that is homeomorphic to an
open ball in Rn and hence to Rn. If on suppαi∩ suppαj, the transition
map from the αi coordinates to the αj coordinates are smooth, then
we have a smooth manifold. Conversely, if we begin with a smooth
manifold, we can begin by choosing a smooth partition of unity [Bre-
don, 1993, pages 89–90] and then we will have a smooth manifold in
the sense just described.

Thus motivated, we can define a special category for the proof.
An object of the category is a pair (X, {αi | i ∈ I}) such that X is a
topological space and {αi | i ∈ I}) is a partition of unity that gives X
a smooth structure. A mapping (X, {αi | i ∈ I}) // (Y, {βj | j ∈ J})
is a pair (f, φ) where f :X // Y is a smooth map and φ: I // J
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is a function that induces, for each x ∈ X a bijection between the
{i ∈ I | αix 6= 0} and {j ∈ J | βjfx 6= 0} such that the diagram

X

R

αi
��?????????????X Y
f

// Y

R

βφi
���������������

commutes. It is not required, and not generally true, that φ be a
bijection, but it must be locally so, in the sense described. We will call
this category the category of partitioned spaces and denote it Part.

Let G(X, {αi}) =
⋃
i∈I(suppαi, {αi′ | suppαi}). That is, we take

the disjoint union of the supports and on each one, restrict the par-
tition of unity to that support. Of course, these will mostly vanish
on this support, but the way things are set up, this causes no harm.
The index set of the partition of unity in G(X, {αi}) is then I × I
with the function αi′| suppαi being the function indexed by the pair
(i, i′). If (f, φ): (X, {αi}) // (Y, {βj}) is an arrow of Part, we have a
commutative square, for each i ∈ I,

supp βφi Y//

suppαi

supp βφi
��

suppαi X// X

Y

f

��

in which the vertical maps are inclusions and the left hand arrow
the unique one making the square commute. This defines the arrow
G(f, φ). The map ε:G(X, {αi}) is the unique arrow whose restriction
to the component indexed by i is (⊆, p2), the latter being the second
coordinate projection. This is clearly an arrow of Part and the compo-
nent at (X, {αi}) of a natural transformation. We do not need it, but
a natural transformation δ making (G, ε, δ) into a cotriple can also be
defined. There is a contravariant functor Ωm that associates to each
smooth manifold the group of differential m forms on that manifold.
This functor is clearly defined on Part, ignoring the partition. I claim
there is a natural transformation t: ΩG // Ω for which t ◦ Ωε = id.
In fact, a differential m form on G(X, {αi}) consists of an I indexed
family {ωi} of m forms ωi on suppαi. Then we let t({αi}) =

∑
i∈I αiωi.
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We see that if {ωi} = {ω| suppαi}, then

t({αi}) =
∑
i∈I

αiωi =
∑
i∈I

αiω = ω

which shows that t ◦ Ωε = id. We still have to show that t is natural
on Part. This means showing that if (f, φ): (X, {αi}) // (Y, {βj}) is
an arrow of Part, that the square

Ωm(GX) Ωm(X)
tX

//

Ωm(GY )

Ωm(GX)

Ωm(Gf)

��

Ωm(GY ) Ωm(Y )
tY // Ωm(Y )

Ωm(X)

Ωm(f)

��

commutes. We have that

Ω(Gf) {ωj | j ∈ J} = {f ∗(ωφi) | i ∈ I}
which comes from the commutative square

supp βφi Y//

suppαi

supp βφi
��

suppαi X// X

Y

f

��

that tells how G is a functor. Then

tX ◦ Ω(Gf){ωj} = tX{f ∗ωφi} =
∑
i∈I

αif
∗(ωφi)

Going the other way, we have

Ω(f) ◦ tY {ωj} = Ω(f)
∑
j∈J

ωj =
∑
j∈J

βjf
∗(ωj)

Now when this is applied at an element x ∈ X, we can write each j ∈ J
for which βj(fx) 6= 0 as φi for a unique i ∈ I for which αi(x) 6= 0. Thus
this last sum becomes∑

i∈I

βφif
∗(ωφi) =

∑
i∈I

αif
∗(ωφi)

What this argument shows is that the de Rham cochain complex
is G acyclic with respect to natural homotopy equivalence in Part.
The Poincaré Lemma shows that the de Rham complex is contractible
on convex subspaces of Rn. The same argument as used previously
shows that the canonical map from the de Rham complex to the smooth
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cochain complex is a homotopy equivalence on open subspaces of eu-
clidean spaces and then on all paracompact manifolds.
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