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Introduction

The connection between ∗-autonomous categories and linear logic has been pointed out
in several places, including [Seely, 1989] and [Barr, to appear]. The only essential dif-
ference between them is the question of the existence of cofree coalgebras (counitary,
coassociative, cocommutative, to be precise). In my previous paper, I gave a construc-
tion that did lead to models of linear logic, but only by beginning with a category that
was already cartesian closed (with additional properties).

This paper follows quite a different tack. We begin with a category that is locally
presentable in the sense of [Gabriel & Ulmer, 1971], which is equivalent to its being
accessible in the sense of [Makkai & Paré, 1990] together with being either complete or
cocomplete, as well as being autonomous and show that in that case the ∗-autonomous
category constructed in [Chu, 1979] has cofree coalgebras and is thus a model of full
linear logic.

1 Generalities on accessible categories

The most important conceptual tool we need is that of the accessible categories of
[Makkai & Paré, 1990]. In fact, a locally presentable category can be defined as a
complete (or cocomplete, see below) accessible category. We thus begin with some
discussion of this important class of categories.

If κ is a regular cardinal, a diagram D: I −→C is called κ-filtered if

1. Given any set of objects Iα of I of cardinality less than κ , there is an object I
of I and arrows Iα−→ I in I .

∗ In the preparation of this paper, I have been assisted by a grant from the NSERC of Canada. I
would also like to thank McGill University for a sabbatical leave and to the University of Pennsylvania
for a very congenial setting in which to spend that leave.
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2. For any set of arrows fα: I −→ I ′ of I of cardinality less than κ , there is an
arrow g: I ′−→ I ′′ of I such that all the composites Dg ◦ Dfα are all the same.

An object C of a category is said to be κ-presentable if Hom(C,−) commutes
with the colimits of κ-filtered diagrams.

A category is κ-accessible if:

1. Every κ-filtered diagram has a colimit;

2. Every object is a colimit of a κ-filtered diagram of κ-presentable objects.

No assumption is made of the existence of any particular finite limits but the con-
dition implies, for example, that a κ-filtered colimit of monomorphisms is a monomor-
phism. The fact that every object is a colimit of κ-presentable objects implies that
those objects generate. As mentioned below, there is only a set of them.

A functor is κ-accessible if it preserves the colimit of κ-filtered diagrams.
A category or functor is accessible if it is κ-accessible for some regular cardinal κ .

If a category is κ-accessible, it is not necessarily λ-accessible for all λ > κ , but there
are arbitrary large values of λ for which it is λ-accessible.

We record here some properties of accessible categories and functors which are found
in [Makkai & Paré, 1990].

1. An accessible category is complete if and only if it is cocomplete.

2. An accessible category is well-powered and, provided it has coequalizers, is well-
copowered.

3. If U : B−→C is an accessible functor, it satisfies the solution set condition.

4. A colimit or finite limit of accessible functors is accessible.

5. For any cardinal λ , there is only a set of isomorphism classes of λ-accessible
objects.

6. The full subcategory of κ-accessible objects in a κ-accessible category is closed
under finite limits (whenever they exist) and colimits taken over diagrams with
fewer than κ nodes.

Let R, S: C −→D be functors. We define a category (R:S) to be the category
whose objects are pairs (C, c) where C is an object of C and c:RC −→SC is an arrow
of D . A morphism f : (C, c)−→(C ′, c′) is an arrow f :C −→C ′ such that

RC ′ SC ′-
c′

RC SC-c

?

Rf

?

Sf
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commutes.

1.1 Theorem. Suppose that R and S are accessible functors between accessible
categories. Then (R:S) is accessible.

This is an example of a weighted bilimit and thus follows from Theorem 5.1.6 of
[Makkai & Paré, 1990].

1.2 Corollary. Let C be locally presentable and suppose that in addition to R and
S being accessible, either R preserves colimits or S preserves limits. Then (R:S) is
locally presentable.

Proof. An accessible category is complete if and only if it is cocomplete and hence is
locally presentable if it is either. If C is cocomplete and R preserves colimits, then it
is a triviality to show that the obvious underlying functor (R:S)−→C creates colimits
and so (R:S) is cocomplete. If S preserves limits, then the same underlying functor
creates limits and (R:S) is complete.

The most important special case is when C = D and one of R or S is the identity
functor. If R = id, the category (R:S) is called the category of S -coalgebras and
denoted CS . If S is the identity, it is called the category of R-algebras and denoted
C R .

1.3 Corollary. If R is an accessible endofunctor on a locally presentable category
C , then both CR and C R are locally presentable.

1.4 Theorem. Let R: C −→D be an accessible functor between locally presentable
categories. Then R has a left adjoint if and only if it preserves limits; it has a right
adjoint if and only if it preserves colimits.

Proof. The first claim is implicit in the fact that any accessible functor between acces-
sible categories satisfies the solution set condition. As for the second, it is an immediate
consequence of the special adjoint functor theorem since accessible categories have gen-
erators and are well-powered.

2 Coalgebras and cartesian closed categories

By an autonomous category, we mean a closed symmetric monoidal category. We
denote the tensor product by ⊗ and the internal hom by −◦ , so that basic adjointness
becomes

Hom(A⊗B,C) ∼= Hom(A,B −◦ C)

If C is an autonomous category, let us say that an object C equipped with a map
C −→C⊗C and a map C −→> is a pre-coalgebra and a coalgebra if those operations
are counitary, coassociative and cocommutative, these notions defined dually as they
are for algebras.
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The reason that linear logic requires cofree coalgebras is to model ordinary (or
even intuitionistic) logic inside itself. If you begin with an autonomous category, the
category of counitary, coassociative, cocommutative coalgebras has a tensor product,
which is given by the original tensor product and which turns out to be the cartesian
product in this coalgebra category. As a result, this coalgebra category will be cartesian
closed if it is closed, and for this it is sufficient that cofree coalgebras and equalizers
exist. In fact, it is also the case that the Kleisli category (that is the full subcategory
of cofree coalgebras) is cartesian closed and for that you don’t even need the equalizers.

Actually, you don’t need it to be the category of coalgebras either. What you need
is a cotriple G = (G, ε, δ) for which G(A × B) is naturally isomorphic to GA ⊗ GB .
The reason is the following.

2.1 Theorem. Let C be an autonomous category and G = (G, ε, δ) a cotriple on C
such that the functor G(A×−) is naturally isomorphic to the functor GA⊗G− for all
objects A of C . Then the Kleisli category of the cotriple is cartesian closed.

Proof. Let K be the Kleisli category of the cotriple. Then one description of K is
that it has the same objects as C and

HomK (A,B) = HomC (GA,B)

First we have that

HomK (A,B × C) ∼= HomC (GA,B × C) ∼= HomC (GA,B)× HomC (GA,C)

∼= HomK (A,B)× HomC (A,C)

This shows that the cartesian product in K is the same as that of C , which is just
another way of saying that the right adjoint preserves products. Then we have that for
any objects A , B and C ,

HomK (A×B,C) = HomK (G(A×B), C) ∼= HomC (GA⊗GB,C)

∼= HomC (GB,GA−◦C) ∼= HomK (B,GA−◦C)

and this isomorphism is natural in B . This means that for all objects A and C ,
the functor Hom(A × −, C) is representable, which is what is required for cartesian
closedness.

As for the category of coalgebras, one easily sees that the tensor product of two
coalgebras is their cartesian product (just dualize the argument that the tensor prod-
uct is the sum in the category of commutative rings). This is just a way a way of
saying that the underlying functor takes the product of two coalgebras to the tensor
product of the underlying objects. Since the cofree functor is the right adjoint to the
underlying functor, it preserves products so the composite functor takes products to
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tensor products. Thus in this case, not only is the Kleisli category cartesian closed, but
so is the Eilenberg-Moore category.

There are certainly other instances than that of coalgebras of cotriples on an au-
tonomous category that take product to the tensor product. Nonetheless, the cofree
coalgebra cotriple, when it exists, is the only one that I know of that one “expects”.
Others may exist on an ad hoc basis.

3 The ∗V functor

For the rest of this paper, V will denote a locally presentable autonomous category,
that is, one equipped with a closed symmetric monoidal structure. In view of the
preceding theorem, it is necessary to suppose only that the monoidal functor, is co-
continuous. We suppose chosen once and for all a fixed object we will denote ⊥ and
called the dualizing object. We will use the results, terminology and notation of [Barr,
to appear] throughout. In particular, for any object V , we will denote V −◦ ⊥ by V ⊥ .

The category A = V⊥ is described in [Barr, to appear] as consisting of triplets
(V, V ′, v) where V and V ′ are objects of V and v:V ⊗ V ′−→⊥ is a morphism. Such
a map induces by adjointness maps V −→V ′⊥ and V ′−→V ⊥ . A morphism between
such structures is a pair (f, f ′): (V, V ′, v)−→(W,W ′, w) where f :V −→W and f ′:W ′

−→V ′ are maps in V such that any (and hence all) of the following equivalent diagrams
commutes.

W ⊗W ′ ⊥-w

V ⊗W ′ V ⊗ V ′-V ⊗ f ′

?

f ⊗W ′

?

v

V ′⊥ W ′⊥-
f ′⊥

V W-
f

? ?
W⊥ V ⊥-

f⊥

W ′ V ′-f ′

? ?

To simplify notation, we will henceforth suppress the mention of the structure map
v , except when necessary, so that the objects of A are pairs (V, V ′).

In light of the preceding section, we are interested in the category of coalgebras in
A . Let PC(A ) and PC(V ) denote the categories of pre-coalgebras over A and V
respectively. An object of PC(A ) is an object (V, V ′) of A together with maps (V, V ′)
−→(V, V ′)⊗ (V, V ′) and (V, V ′)−→(>,⊥). This is equivalent to maps V −→V ⊗ V , V
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−→> , V ((V, V ′), (V ′, V ))−→V ′ and ⊥−→V ′ such that

(V ⊗ V )⊥ V ⊥-

V ((V, V ′), (V ′, V )) V ′-

? ?
⊥ V ⊥-

⊥ V ′-

? ?

(1)

commute. It will be convenient to look at this condition in a slightly different way.

If (V, V ′) and (W,W ′) are objects of A , then we have already seen in the definition
of their tensor product that there is a map V ((V, V ′), (W ′,W ))−→(V ⊗W )⊥ . If V =
W , this specializes to a map V ((V, V ′), (W ′, V ))−→(V ⊗ V )⊥ . If there is, in addition,
a comultiplication V −→V ⊗ V , then this can be followed by the dual map (V ⊗ V )⊥

−→V ⊥ to give a map V ((V, V ′), (W ′, V ))−→V ⊥ . An object (V, V ′) can be alternately
described as giving an object V ′−→V ⊥ of V /V ⊥ . What we have said amounts to
describing a biproduct V ′,W ′ 7→ V ((V, V ′), (W ′, V )) on V /V ⊥ . We will denote this
biproduct by V ′ ∗V W ′ . Since both diagrams of (1) end in V ⊥ , the pre-coalgebra
structure on (V, V ′) can be summarized—given the pre-coalgebra structure on V —as
saying that there are maps V ′ ∗V V ′−→V ′ and ⊥−→V ′ in the category V /V ⊥ . Let
us say that an object V ′ equipped with V ′ ∗V V ′−→V ′ and ⊥−→V ′ is a pre-algebra
in V /V ⊥ . Let PA(V /V ⊥) denote the category of pre-algebras in V /V ⊥ with the
definition of maps that follows.

If V ′−→V ⊥←−W ′ are objects of V /V ⊥ with pre-algebra structure maps V ′ ∗V V ′
−→V ′ , ⊥−→V ′ , W ′ ∗V W ′−→W ′ and ⊥−→W ′ , then a map f :W ′−→V ′ is a map of
pre-algebras provided the following squares commute:

V ′ ∗V V ′ V ′-

W ′ ∗V W ′ W ′-

?
f ∗V f

?

f

⊥ W ′-

⊥ W ′-

? ?

f

On the other hand, the arrow (id, f): (V, V ′)−→(V,W ′) is a map of pre-coalgebras if
and only if the squares

(V,W ′) (V ⊗ V,W ′ ∗V W ′)-

(V, V ′) (V ⊗ V, V ′ ∗V V ′)-

? ?
(V,W ′) (>,⊥)-

(V, V ′) (>,⊥)-

? ?

commute. It is immediate that these conditions are exactly the same.
This development can be summarized as follows.
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3.1 Theorem. There is a functor K: PC(A )−→PC(V ) and the fiber over a pre-
coalgebra V −→V ⊗ V and V −→> is isomorphic to the category PA(V /V ⊥).

Suppose now that V is locally presentable. Let Φ: V −→V be the functor defined
by Φ(V ) = > × V ⊗ V . Then a Φ-coalgebra is exactly what we have called a pre-
coalgebra. Since Φ is a finite product of accessible functors, it is accessible. It follows
that the underlying functor U : PC(V )−→V has a right adjoint R .

For a pre-coalgebra V , let ΨV be the endofunctor on the category V /V ⊥ defined
by ΨV (V ′) = ⊥+ V ′ ∗V V ′ .
3.2 Proposition. The category VV is locally presentable and the functor ΨV is
accessible.

Proof. The category V /V ⊥ has the form (R:S), where R is the identity functor and
S is constant at V . As for ΨV , it is the sum of a constant functor and the functor
that takes V ′−→V to the pullback

V −◦V ′ (V ⊗ V )⊥-

V ′ ∗V V ′ V −◦V ′-

? ?

and if the functor that takes V ′ to V −◦ V ′ is accessible, ΨV certainly is. Let λ
be a cardinal sufficiently large that as G ranges over a set of generators for V all the
objects G and G⊗V as well as V are λ-accessible. Suppose V ′ = colimVi , a λ-filtered
diagram. Then since

Hom(G⊗ V, V ′) ∼= colim Hom(G⊗ V, Vi)

it follows that

Hom(G, V −◦ V ′) ∼= colim Hom(G, V −◦ Vi) ∼= Hom(G, colim(V −◦ Vi))

for each such G and so
V −◦ V ′ ∼= colim(V −◦ Vi)

It follows that the underlying functor PA(V /V ⊥)−→V /V ⊥ has a left adjoint, de-
noted LV .

3.3 Proposition. Let V be a pre-coalgebra in V . Then (V, V ⊥) (equipped with
the evaluation map V ⊗ V ⊥−→⊥) can be given the structure of a pre-coalgebra in A .
Moreover, the resulting functor PC(V )−→PC(A ) is left adjoint to the functor that
takes first components.
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Proof. It is shown in [Barr, to appear] that

(V, V ⊥)⊗ (W,W⊥) ∼= (V ⊗W, (V ⊗W )⊥)

It follows that given V −→V ⊗ V and V −→> , we automatically get (V, V ⊥)−→(V ⊗
V, (V ⊗ V )⊥) and (V, V ⊥)−→(>,⊥). If (W,W ′) is a pre-coalgebra in A and V −→W
is a morphism of pre-coalgebras, then we have W ′−→W⊥−→V ⊥ , which gives an arrow
(V, V ⊥)−→(W,W ′) which is easily seen to be a pre-coalgebra morphism.

3.4 Theorem. Let V be locally presentable and A = V⊥ the Chu category cor-
responding to an object ⊥ of V . The underlying functor PC(A )−→A has a right
adjoint that takes the object (V, V ′) to (RV,LRV (V ′)).

Proof. Suppose (W,W ′) is a pre-coalgebra over A , (V, V ′) is an object of A and
(f, f ′): (W,W ′)−→(V, V ′) is a map in A . Then f :W −→V is a map in V and there

is thus a unique coalgebra morphism f̃ :W −→RV such that the composite W −→RV
−→V is f . Define W ′′ so the diagram

W ′ W⊥-

W ′′ (RV )⊥-

? ?
(f̃)⊥

is a pullback. It is shown in [Barr, to appear] that colimits in A are calculated by
taking colimits in the first component and limits in the second. It follows that the
diagram

(W,W ′) (RV,W ′′)-

(W,W⊥) (RV, (RV )⊥)-

? ?

is a pushout in A . But the maps (W,W⊥)−→(W,W ′) and (W,W⊥)−→(RV, (RV )⊥)
are easily seen to be pre-coalgebra morphisms (the latter being an instance of the func-
tor in the preceding proposition and the former being the back adjunction morphism).
It is standard that the underlying functor PC(A )−→A creates colimits and so there
is a unique coalgebra structure on (RV,W ′′) so that the above square is a pushout.

In [Barr, to appear], it is shown that there is a morphism (g, g′): (RV,W ′′)−→(V, V ′)
so that the composite (W,W ′)−→(RV,W ′′)−→(V, V ′) is f . The composite V ′−→V ⊥

−→(RV )⊥ gives V ′ the structure of an object of V /(RV )⊥ and g′:V ′−→W ′′ is a map
in that category. Since (RV,W ′′) is a coalgebra, W ′′ is a ΨRV -algebra and so there is
a unique arrow ĝ:LRV V

′−→W ′′ such that the composite

V ′−→LRV V
′−→W ′′
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is g′ . Thus we have that f factors as

(W,W ′)−→(RV,W ′′)−→(RV,LRV V
′)−→(V, V ′)

and the first two arrows are pre-coalgebra morphisms.
The argument up to here suffices to establish that every arrow factors through

(RV,LRV V
′) and hence this object by itself is a solution set for the adjoint. However,

the uniqueness of the constructed arrow is not hard to prove and shows that that
object is the adjoint. For suppose that (g, g′), (h, h′): (W,W ′)−→(RV,LRV V

′) are two
morphisms of pre-coalgebras whose composites with the constructed map (RV,LRV V

′)
−→(V, V ′) are each (f, f ′). Then g, h:W −→RV both have the property that their
composite with the back adjunction RV −→V is f . The uniqueness of that adjunction
implies that g = h . It follows that if U −→LRV V

′ is the equalizer of g′ and h′ , then
there is a pre-coalgebra structure on (RV,U) so that

(W,W ′) −→−→(RV,LRV V
′)−→(RV,U)

is a coequalizer in the category of pre-coalgebras. Since the underlying functor preserves
colimits, the same diagram is a coequalizer in A . Since (g, g′) and (h, h′) have the
same composite into (V, V ′), it follows that V ′−→LRV V

′ factors through the pre-
coalgebra subobject U ⊆ LRV V

′ , which is impossible for a front adjunction. For plainly
any subobject with that property would have the same universal mapping property and,
in particular, the inclusion would split.

4 Equations

Let C be a category. By an equation on C we mean two functors F,G: C −→D
and two natural transformations φ, ψ:F −→G . We say that C satisfies the equation
φ = ψ if φC = ψC The full subcategory of all objects C of C that satisfy an equation
is called an equational subcategory of C . For example, suppose V is a monoidal
category with tensor product ⊗ , and C is the category of ⊗-algebras. Let G be the
underlying functor and F be the functor that assigns to an algebra (V,m:V ⊗V −→V )
the object V ⊗ V ⊗ V . Then for φ = m ◦ m ⊗ V and ψ = m ◦ V ⊗m , the equation
φ = ψ is just the associative law. Similarly, the commutative law can be made by an
equation. If we modifying the algebra to put in a nullary operation, then the unitary
law can also be described by an equation.

A set of equations φi, ψi:Fi−→Gi: C −→Di can be combined into a single equation
φ, ψ:F −→G: C −→∏Di by letting F and G have components Fi and Gi respectively
and similarly for φ and ψ . No Di can be empty unless C is so that an object satisfies
that single equation if and only if it satisfies each one. Thus there is no loss of generality
in supposing that there is just one equation.
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In order to simplify the exposition, we will suppose a single fixed equation and say
that an object of C that satisfies it is admissible and call the full subcategory of
admissible objects, the admissible subcategory.

4.1 Proposition. If φ, ψ:F −→G is an equation and G preserves limits, then the
admissible subcategory is closed under limits; if F preserves colimits, then the admissible
subcategory is closed under colimits.

The proof is left as an exercise. In fact the hypotheses are even too strong. It
suffices for the first that the map from limF −→F lim be monic and dually for the
second that the induced map be epic. We note that a functor into a product of non-
empty categories preserves products if and only if each component does, so that there
is no loss of generality in supposing there is just one equation.

4.2 Proposition. If G preserves epics, then any quotient of an admissible object is
admissible; dually if F preserves monics, then any subobject of an admissible object is
admissible.

Proof. Both statements can be read off from the serially commutative diagram, for a
map f :A−→B

FB FD

FA GA

?

Ff

?

Gf

-φA
-

ψA

-φB
-

ψB

In any well-powered complete category, every morphism can be factored as an
epimorphism followed by an extremal monomorphism. Dually, in a well-copowered
cocomplete category, every morphism can be factored as an extremal epimorphism fol-
lowed by a monomorphism.

4.3 Theorem. Let C be complete and well-copowered and let φ, ψ:F −→G be an
equation. If F preserves limits, then the admissible category is reflexive. Dually, if C
is cocomplete and well-powered and G preserves colimits, then the admissible category
is coreflective.

Proof. We will prove the second statement, it being conceptually easier to deal with
subobjects than quotient objects. The condition that G preserves colimits implies that
the admissible objects are closed under colimits and, in particular, that the union of
any set of admissible subobjects of an object is admissible. It follows that the union
of all the admissible subobjects of an object is also admissible. If f :A−→B is a map
from an admissible object, then it factors A−→→B0 )−→B where the first arrow is epic
and the second extremal monic. But then B0 is an admissible subobject of B and
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hence contained in the union of all of them. Thus every map from an admissible object
to B factors through this largest admissible subobject, evidently uniquely.

A locally presentable category satisfies all these conditions and hence we have:

4.4 Corollary. Let C be a locally presentable category and let φ, ψ:F −→G an
equation on C . If F preserves limits, then the admissible category is reflexive; if G
preserves colimits, then the admissible category is coreflexive.

Unfortunately, a ∗-autonomous category cannot be locally presentable (unless it is a
poset) because only a poset can be locally presentable and colocally presentable. Hence
we have to work to apply the above.

4.5 Proposition. If (f, f ′): (V, V ′)−→(W,W ′) is a monomorphism in the cate-
gory PC(A ), then f :V −→V ′ is monic in the category PC(V ) and W ′−→V ′ has
the property that the least ∗V -sub-coalgebra of V ′ that includes the image of W ′ maps
epimorphically to V ′ .

Proof. To take the first point, suppose that f is not monic in PC(A ). Then there is
a pair of Φ-coalgebra homomorphisms g, h:U −→V such that g 6= h and f ◦ g = f ◦ h .
Let v:V ′−→V denote the transpose of the structure map of the object (V, V ′). Define
g′ and h′ as the upper and lower composites in the diagram

V ′ v−−→V ⊥
g⊥−−−→−−−→
h⊥

U⊥

As we have seen, (U,U⊥) has the structure of a coalgebra and from the adjunc-
tion PC(A )−→PC(V ) we have two pre-coalgebra morphisms (g, g′), (h, h′): (U,U⊥)
−→(V, V ′) that have the same composite with (f, f ′). Hence f is a monomorphism.

Now suppose there is a ∗V -subalgebra V ′′ ⊆ V ′ such that W ′−→V ′ factors through
V ′′ . If the inclusion V ′′−→V ′ is not an epimorphism in the category of ∗V -algebras,
there are two morphisms g′′, h′′:V ′−→V ′′′ of ∗V -algebras such that g′′ 6= h′′ , but
g′′|V ′′ = h′′|V ′′ . But then (f, f ′) ◦ (id, g′′) = (f, f ′) ◦ (id, h′′), which contradicts the
fact that (f, f ′) is monic.

4.6 Corollary. The category PC(A ) is well-powered.

Proof. Fix an object (W,W ′). As an object of PC(V ), W has only a set of subobjects
V . Since PC(V ) is locally presentable, it is well-powered, so it is sufficient to show
that for each such V there is only a set of subobjects of the form (V, V ′). But for any
such subobject, the map W ′−→V ′ has to have the property that the ∗V -subalgebra
it generates maps epimorphically to V ′ . But it follows from the accessibility that W ′

can generate only a set of ∗V -algebras (recall that W ′ is fixed and, in this part of
the argument, so is V ). Since the category of V -algebras is also locally presentable,
it is well-copowered and so any of the ∗V -algebras generated by V ′ has only a set of
quotients. Thus there is only a set of possibilities for W ′ .
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4.7 Proposition. The underlying functor from the category of counitary, coassocia-
tive, cocommutative coalgebras over A to A has a right adjoint.

Proof. Since the equations to be satisfied have the form ρ, σ: Γ−→Λ, where Γ is the
underlying functor that preserves colimits, it follows that the subcategory is closed
under colimits, in particular unions. Thus the union of all the subcoalgebras that satisfy
the equations does as well. Any arrow factors as an epi followed by a regular mono and
a quotient of an object that satisfies the equation does as well. Hence any map from an
admissible coalgebra to another factors through an admissible subcoalgebra and hence
through that union. Thus that union defines a left adjoint to the inclusion of the
admissible subcoalgebras.

Putting this all together, we have:

4.8 Theorem. Suppose that V is a closed symmetric monoidal category that is locally
presentable. Suppose ⊥ is an internal cogenerator in V and A is the Chu category V⊥ .
Then A is a model of the full linear logic.

5 Examples

5.1 Complete lattices. A category that is locally presentable and colocally pre-
sentable is a complete lattice. Therefore a ∗-autonomous category cannot be locally
presentable unless it is a poset. For this reason, it seems interesting to consider that
case, even though the resultant models of linear logic are probably not interesting. A
complete lattice that is autonomous could use the inf operation as the tensor, in which
case it is a Heyting algebra. However, it can be closed instead under another operation
⊗ . Also, it is necessary to choose a dualizing object ⊥ . The bottom element can be
chosen, but so could any other.

For example, the lattice of ideals of a commutative ring (or even a commutative
monoid) is an autonomous category with the operations of ideal multiplication and
division. If I and J are ideals, then I/J = J −◦ I consists of all x such that xJ ⊆ I .
In the case of a ring, one possibility for the dualizing object is the zero ideal, although
the unit ideal is also possible (in which case the Chu category consists of all pairs of
ideals). In the case of a monoid, there is not necessarily a zero element, but any ideal
can be chosen.

So let P be a complete lattice with a symmetric biproduct ⊗ , a unit element for the
biproduct > and a right adjoint −◦ for ⊗ . Choose an element ⊥ for the duality. Then
the Chu category has for objects all pairs (x, x′) of elements of P such that x⊗x′ ≤ ⊥ .
The set of morphisms from (x, x′) to (y, y′) is a subset of Hom(x, y)×Hom(y′, x′) and
evidently contains at most one element. Thus this category is again a poset, a lattice
in fact, since it is also complete. Then (x, x′) ≤ (y, y′) if and only if x ≤ y and y′ ≤ x′ .
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Also since pullbacks in a lattice are just infs,

P ((x, x′), (y, y′)) = (x −◦ y) ∧ (y′ −◦ x′)

Thus we have
(x, x′)⊗ (y, y′) = (x⊗ y, (x −◦ y′) ∧ (y −◦ x′))

and
(x, x′) −◦ (y, y′) = ((x −◦ y) ∧ (y′ −◦ x′), x⊗ y′)

Note that the dualizing object determines the objects of the category, but has no
effect on the structure.

It is interesting to see what the coalgebra category is in this case. Since we are in a
poset, an object either is or isn’t a coalgebra. Since (x, x′) ⊗ (x, x′) = (x ⊗ x, x −◦ x′)
and > = (>,⊥), we need that x ≤ > , ⊥ ≤ x′ , x ≤ x⊗x and x −◦ x′ ≤ x′ , in addition
to x ∧ x′ ≤ ⊥ that every object must satisfy. Then x ≤ > implies that x ⊗ x ≤ x so
we must have x ⊗ x = x . Also x ⊗ x′ ≤ ⊥ implies x′ ≤ ×⊥ while x ⊗ x⊥ ≤ ⊥ ≤ x′

implies that x⊥ ≤ x −◦ x′ = x′ so that x′ = x⊥ . Hence the coalgebras are all of the
form (x, x⊥) such that x ≤ > and x = x ⊗ x . The condition ⊥ ≤ ×⊥ is automatic.
The bottom of the lattice 0 is automatically a coalgebra, as is the tensor unit > . The
cofree coalgebra assigns to each object (x, x′) the object (y, y⊥) which is the union of
all the coalgebras included in (x, x′).

5.2 Other examples. For other examples of accessible autonomous categories, it
is harder to find a complete autonomous category that isn’t accessible than one that is.
(Of course, as observed above, a complete ∗-autonomous category can’t be accessible.)
So this class includes all the common autonomous categories such as modules over
a commutative ring, M -sets for a commutative monoid M and the natural tensor
product in that category. Any Grothendieck topos with its cartesian closed structure is
also accessible. Of course, this means that M -sets has two quite different structures.

This example of M -sets is not entirely familiar, so I will give some more details.
First off, if M is any monoid, commutative or not, the category of left M -sets is a
topos and thus has the cartesian closed structure of any topos. The tensor product
is the cartesian product and the internal hom is quite complicated. It simplifies in
the case that M is a group to the set of all functions (not just the equivariant ones)
between the two sets, with the group acting by conjugation (so that the points of the
homset are the equivariant maps).

If M is an arbitrary monoid X a right M -set and Y a left M set then you can
define a set X⊗MY quite analogous to the tensor product of modules as the coequalizer
in

X ×M × Y X × Y-- X ⊗M Y-
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For any set Z , the adjunction relation

Hom(X ⊗M Y, Z) ∼= HomMop(X,Hom(Y, Z))

is valid, where Hom(Y, Z) is made into a right M -set in the usual way. When M is
commutative, then we can just speak of M -sets and we get a closed monoidal category,
just like modules over a commutative ring.

In the case that M is a group, the internal hom consists of just the equivariant maps,
made into an M -set by translation. So the structure is quite “linear”, in contrast to
the cartesian closed structure.

An interesting example that is ℵ1 accessible, but not ℵ0 accessible is the category
of Banach spaces. The internal hom is the set of bounded linear maps with the sup on
the unit ball norm. The tensor product is given the greatest cross-norm and completed.
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