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1 Introduction

Most practicing mathematicians see no need for the foundations of their subject. But
those who wish to place it on a solid ground usually pick set theory, an axiomatic
treatment of the membership relation expressed in first order logic. Some of us feel
that higher order logic is more appropriate and, since Russell and Whitehead’s Prin-
cipia Mathematica, such a system has been known as type theory (more precisely,
classical impredicative type theory with Peano’s axioms). Although type theory has
been greatly simplified by works of Alonzo Church, Leon Henkin, and others, and
despite its naturalness for expressing mathematics, it was unjustly neglected until
quite recently.

An apparently different approach to foundations is via category theory, a subject
that was introduced by Samuel Eilenberg and Saunders Mac Lane in 1945. In 1964,
F. W. Lawvere proposed to found mathematics on the category of categories (Law-
vere, 1966). When he lectured on this at an international conference in Jerusalem,
Alfred Tarski objected: “But what is a category if not a set of objects together with
a set of morphisms?” Lawvere replied by pointing out that set theory axiomatized
the binary relation of membership, while category theory axiomatized the ternary
relation of composition.

Later Lawvere returned from the category of categories to the category of sets.
Trying to axiomatize the latter (e.g. Lawvere, 1964), he ended up with the notion
of an elementary topos, which made its first public appearance in joint work with
Myles Tierney (Lawvere, 1970; Tierney, 1972). Elementary toposes have the advan-
tage of describing not only sets, but also sheaves (called “variable sets” by Lawvere).
Quoting Lawvere (1972):

This is the development on the basis of elementary (first-order) axioms of a theory of
“toposes” just good enough to be applicable not only to sheaf theory, algebraic spaces,
global spectrum etc. as originally envisaged by Grothendieck, Giraud, Verdier, and Hakim
but also to Kripke semantics, abstract proof theory, and the Cohen-Scott-Solovay method
for obtaining independence results in set theory.
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Indeed, it was soon realized that an elementary topos has an associated “inter-
nal” logic which is essentially a version of (intuitionistic) type theory. In the sec-
ond part of our book Introduction to higher order categorical logic (Lambek and
Scott, 1986), we tried to exploit the close connections between higher order logic
(better called “higher order arithmetic”) and topos theory.

2 Type Theory

By a type theory (or higher order arithmetic) we understand a formulation of higher
order logic with Peano’s axioms. We shall follow our book (1986) and consider type
theories based on equality. Thus the language contains both types and terms (of the
indicated types) as follows:

Types: 1 Ω N ΩA A × B

Terms: ∗ a = a′ 0 {x : A | ϕ(x)} 〈a, b〉
a ∈ α S n

It is assumed that 1,N, Ω are types, and that the types are closed under the operations
ΩA and A×B for given types A and B. Here 1 denotes a one-point type,Ω the type of
propositions (or truth values), N the type of natural numbers, ΩA the “powerset” of
A, and A×B the cartesian product of types A and B. Among the terms (not indicated
above) there are infinitely many variables of each type. We assume that ∗ is a term
of type 1, 0 is a term of type N, and that the terms are closed under the operations
=, ∈, S , {− | −}, and 〈−,−〉, as indicated above, where it is understood that a, a′ are
of the same type A, b is of type B, α is of type ΩA, n is of type N and ϕ(x) is of type
Ω. We adopt the current convention of writing t : A for “t is a term of type A”.

We also assume that there is a collection of theorems which include the usual
axioms and which is closed under the usual rules of inference (i.e. equality, pairing,
comprehension, extensionality, and Peano’s axioms). The familiar logical symbols
are now definable as follows (see also Lawvere, 1972)

> := ∗ = ∗
p ∧ q := 〈p, q〉 = 〈>,>〉 where p, q : Ω
p⇒ q := p ∧ q = p
∀x:Aφ(x) := {x : A | φ(x)} = {x : A | >} where φ(x) : Ω
⊥ := ∀x:Ωx
¬p := ∀x:Ω(p⇒ x)
p ∨ q := ∀x:Ω(((p⇒ x) ∧ (q⇒ x))⇒ x)
∃x:Aϕ(x) := ∀y:Ω(∀x:A((φ(x)⇒ y)⇒ y))

The usual properties of these logical connectives can now be proved (see Lambek
and Scott, 1986).
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We will call a type theory analytic if it contains no types and terms other than the
ones it must contain according to the above definition. Thus, an analytic type theory
does not contain the type of humans or the type of vegetables, nor does it contain
terms denoting the binary relations of loving or eating. Even the internal language
of a topos (see below) is not analytic, since it admits as types all sets (a set in a topos
being a morphism 1→ ΩA, for some object A).

Pure type theoryL0 is the analytic type theory containing no theorems other than
those following from the above inductive definition. Every analytic type theory has
the formL0/θ, where θ is a set of propositions (i.e. terms of type Ω) now considered
as additional nonlogical axioms. We may even take θ to be the set of all theorems.

3 Elementary Toposes

A topos, according to Lawvere, is a cartesian closed category (ccc) with pullbacks, a
subobject classifier Ω and a natural numbers object N. By a ccc we mean a category
with a terminal object 1, cartesian products A × B and exponentiation CB, together
with a canonical bijection between arrows (A × B) → C and arrows A → CB. As
Lawvere himself pointed out (Lawvere, 1969), the prime example of a ccc is the
proof theory of the positive intuitionistic propositional calculus, with

1 = T , A × B = A ∧ B , CB = B⇒ C

According to the so-called Curry-Howard isomorphism, the associated proof theory
can also be described by the typed lambda calculus (with surjective pairing); hence
it is quite natural that ccc’s, typed lambda calculi, and the proof theory of posi-
tive intuitionistic propositional calculi turn out to be equivalent (see Lambek and
Scott, 1986).

A subobject classifier in a ccc with pullbacks is an object Ω together with a
canonical (monic) arrow T : 1→ Ω and a canonical bijection between subobjects B
of A and their characteristic morphisms χB : A→ Ω .1 This generalizes the familiar
set-theoretic bijection between subsets of a set A and characteristic functions A →
Ω, where Ω is a two-element set. Viewed as usual classical sets, Ω and the powerset
ΩA are Boolean algebras, whereas in toposes, Ω and ΩA carry the more general
structure of a Heyting algebra. It is therefore not surprising that the “internal logic”
of a topos is in general intuitionistic.

According to Lawvere, a Natural Numbers Object (NNO) in a ccc is an object N,
together with arrows 0 : 1 → N and S : N → N such that, given arrows a : 1 → A
and f : N → N, there is a unique arrow h : N → A making the following diagram
commute:

1 This bijection is induced by pulling back the arrow T : 1→ Ω along χB : A→ Ω.
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In the case of a topos, this yields Lawvere’s categorical formulation of the well-
known Peano axioms for set theory (Lawvere, 1964), which is seen here by putting
h(n) = f n(a). In the case of cartesian closed categories (and their equivalent typed
lambda calculi), this leads to notions of higher-type “iteration” arising in proof the-
ory, recursive function theory, and theoretical computer science.

4 Comparing Type Theories and Toposes

In Lambek and Scott (1986) we compared two categories: the category of type theo-
ries, by which we mean intuitionistic type theories with axiom of infinity or, equiv-
alently, Peano’s axioms, and the category of toposes, which we understand to be
elementary toposes with natural numbers object. As morphisms in the former we
took “translations” between type theories, and in the latter, so-called “logical mor-
phisms” between toposes (we ignored the alternative “geometric morphisms” aris-
ing from the Grothendieck tradition; for that, see Mac Lane and Moerdijk, 1992;
Makkai and Reyes, 1977). We introduced functors between the two categories as
follows. One functor L assigns to any topos T its “internal language” L(T ) (an in-
tuitionistic type theory); the other functor T assigns to any type theory L, the topos
T (L) “generated” by it, a kind of Lindenbaum-Tarski category constructed from the
language. Let us briefly recall these two constructions.

The types of L(T ) are the objects of T and the closed terms of type A in L(T ) are
the arrows a : 1→ A inT . In particular, propositions of L(T ) are the arrows p : 1→
Ω in T . We say that p holds in T , p is true in T , or p is a theorem of the type theory
L(T ), if and only if p = T; that is, if p equals the distinguished arrow T : 1 → Ω.
Thus L(T ) has a “semantic” definition of theorem; it differs from logicians’ more
familiar (freely generated) type theories, in which terms are defined inductively from
a small set of primitives, and in which “theorems” are introduced with the help of
a recursive proof predicate. The internal language of a topos has some interesting
properties. For example, L(T ) satisfies the unique existence property: if ∃!x:Aφ(x)
holds in T , then there is a closed term of type A, namely an arrow a : 1 → A in
T , such that φ(a) holds in T . As Bertand Russell would have said: “a is the unique
x : A such that φ(x)”. We sometimes denote such a unique a by ι

x:A.φ(x).
The topos T (L) generated by the type theory L has as objects closed terms α of

type ΩA (modulo provable equality), and as morphisms α → β, where α : ΩA and
β : ΩB, we choose those binary “relations” (closed terms) φ : ΩA×B (again, modulo
provable equality) such that the following is provable in L:
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∀x:A(x ∈ α⇒ ∃!y:B(y ∈ β ∧ (x, y) ∈ φ))

Intuitively, T (L) is the category of “sets” and “functions” formally definable within
the higher-order logic L: its objects are the “sets” α, β, . . . in L and its morphisms
are the “provably functional relations” φ in L between such objects, all modulo
provable equality.

We proved quite formally that there are two natural transformations ε : LT → id
and η : id → T L rendering the functor T to be left adjoint to L. Moreover, we
showed that η was an isomorphism, so that every topos is equivalent to the topos
generated by its internal language. We pointed out in an exercise that a slight tight-
ening of the definition of translation would also make ε an isomorphism; this was
carried out by Lavendhomme and Lucas (1989). However, returning to our more
natural notion of translation, we showed that, for any type theory L, the translation
L → LT (L) is a conservative extension.

A type theory L may be interpreted in a topos T by means of a translation of
languages L → L(T ) or, equivalently, by a logical morphism T (L) → T , recalling
that T is left adjoint to L. In some sense, every such interpretation may be viewed as
a “model” ofL in T . By abuse of language, one often refers to T itself as the model.
In particular, this view is justified for models of pure type theory L0, the initial
object in the category of type theories and translations. For in this case, there is a
unique translation from L0 to any type theory. In particular, for any topos T , there
is a unique translation Lo → L(T ), thus a unique logical morphism T (L0) → T .
F = T (L0) is thus initial in the category of toposes and logical morphisms and
is known as the free topos. Hence any elementary topos (with Natural Numbers
Object) serves as a model of L0.

5 Models and Completeness

Following Leon Henkin’s presentation of classical type theory (Henkin, 1950), we
adopt a more restrictive notion of model. A model of a type theory L is a topos T
satisfying three properties (for formulas in L(T )):

(a) consistency: ⊥ is not true ;
(b) disjunction property: if p ∨ q is true in T , then so is p or q;
(c) existence property: if ∃x:Aφ(x) is true in T , then so is φ(a) for some closed

term a of type A in L(T ) , that is, for some morphism a : 1→ A in T .

Following Alexander Grothendieck, we now call such a topos a local topos.
Peter Freyd observed that the above three linguistic properties can be expressed

categorically as follows:

(a) the terminal object 1 is not initial;
(b) 1 is indecomposable;
(c) 1 is projective.

Local toposes of interest also have another property:
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(d) all numerals are standard; that is, all the arrows 1 → N have the form S n0 for
some natural number n.

As we mentioned earlier, Russell and Whitehead (as well as Gödel and Henkin)
dealt with classical type theory. This theory differs from intuitionistic type theory
by the addition of a single axiom β (the law of excluded middle), which we may
write as:

∀x:Ω(¬¬x⇒ x)

or, equivalently,
∀x:Ω(x ∨ ¬x)

A topos is said to be Boolean if its internal language is classical. In particular, this
implies that Ω � 1 + 1 (the coproduct). Boolean local toposes may be characterized
as follows (see Seldin and Hindley, 1980):

Proposition 5.1 A topos T is Boolean local iff it satisfies

I Consistency: T , F : 1→ Ω .
II Universal Property: If φ(x) is a formula in L(T ) such that φ(a) holds in T for all

closed terms a : A in L(T ), then ∀x:Aφ(x) holds in T .
The second property can be expressed in categorical language by saying that the
terminal object 1 of T is a generator : if f , g : A → B and f a = ga for all
a : 1→ A, then f = g.

Proof Assuming that T is Boolean and local, the universal property follows from
the existence property, using negation.

Conversely, assume that T satisfies properties (i) and (ii) above. Among the sub-
objects of 1 are the (isomorphism classes of) monomorphisms 0 ↪→ 1 and 1 ↪→ 1,
with characteristic morphisms F : 1 → Ω and T : 1 → Ω, respectively. Here 0 is
the initial object of T . By (i), these are distinct subobjects of 1. We claim there are
no others. For let m : A ↪→ 1 be any subobject of 1. If there is an arrow a : 1 → A,
clearly ma = 11, hence mam = m1A, so am = 1A and m is an isomorphism A � 1. If
there is no arrow 1 → A, we claim A � 0. For trivially φ(a) then holds in T for all
closed terms a of type A; hence ∀x:Aφ(x) holds in T , whatever formula φ(x) we take.
In particular, for any object B, let φ(x) be the formula ∃!y:Bψ(x, y), where ψ(x, y) is,
for example, x , x ∧ y = y. Then clearly ψ defines an arrow A → B. Since 1 is a
generator, there is at most one such arrow A→ B, and thus A is an initial object.

Therefore 1 has exactly two subobjects, and so there are exactly two arrows T,F :
1→ Ω. Thus the topos T is two-valued. Hence for all arrows p : 1→ Ω, ¬¬p = p,
hence ¬¬ = 1Ω, since 1 is a generator. Hence the formula ∀x:A¬¬x = x holds in T ,
so T is Boolean.

Once T is Boolean, the universal property gives rise to the existence property
(by negation). Similarly the conjunction property (which holds in any topos) gives
rise to the disjunction property by de Morgan’s law. Thus T is local.

Remark 5.2 In general in toposes, Boolean does not imply 2-valued; however it
does in the presence of the disjunction property. Conversely, 2-valued does not imply
Boolean, but it does if 1 is a generator.
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Gödel’s completeness theorem was originally enunciated for classical first order
logic, but was extended by Henkin to higher order as follows (in our terminology):

A proposition holds in T (L), the topos generated by a classical type theory L, if and only
if it is true in all models of L, i.e. in all Boolean local toposes.

Of course, if L is inductively generated, such propositions are usually called prov-
able, and the Completeness Theorem asserts the equivalence between provability in
L and truth in all models.

What about Gödel’s more famous Incompleteness Theorem, which he himself
had originally stated for classical type theory? An examination of its proof in our
setting (carried out in the next section) shows it actually asserts the following:

In a consistent analytic type theory L whose theorems are recursively enumerable, in order
to characterize provability in L, it is not sufficient to look only at local toposes which also
satisfy the ω-property: if φ(S n0) is true for all natural numbers n, then ∀x:Nφ(x) is also true
in the model.

The crucial role of the ω-property was first pointed out by David Hilbert. Classi-
cally, though not intuitionistically, it is equivalent to what we call the ω∗ property:
if ∃x:Nφ(x) is true in the model, then so is φ(S n0) for some natural number n. For
a local topos, the ω∗ property follows from the existence property, provided we as-
sume that all numerals are standard. In fact, for a local topos, the ω∗-property is
equivalent to the condition that all numerals are standard.

6 Gödel’s Incompleteness Theorem

In any analytic type theory L0/θ, we may effectively enumerate all terms of a given
type. This may be done with the help of the well-known method of Gödel number-
ing, or even just by putting the terms into alphabetical order. In particular, let pn be
the nth proposition (closed term of type Ω) and αn be the nth numerical predicate
(closed term of type ΩN).

The analytic type theories we are usually interested in also possess a recursive
proof predicate, ensuring that the set of theorems is recursively enumerable.2 If θ
contains all the axioms and is closed under the rules of inference, θ is the set of
theorems of L0/θ and is recursively enumerable by a primitive recursive function g.
Thus pg(n) denotes the nth theorem ofL0/θ. Note that the set of numerical predicates
in the internal language of the “usual” category of sets cannot be enumerated, recur-
sively or otherwise, as follows from Cantor’s theorem. This serves as an inspiration
for the theorems of Gödel and Tarski, as we shall see.

Here is our formulation of Gödel’s incompleteness theorem, which includes both
the classical and intuitionist cases.

2 The set of theorems (of an analytic type theory) is the set of propositions formally provable from
the logical and nonlogical axioms, using the rules of inference of L0.
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Theorem 6.1 In a consistent analytic type theoryL whose theorems are recursively
enumerable, there is a proposition q which does not hold in any model in which all
numerals are standard, yet its negation ¬q is not provable. Thus, ¬q must hold in
every Boolean model in which all numerals are standard. Hence, if L has at least
one model in which the numerals are standard, neither q nor ¬q is a theorem.

Proof For a type theory L, we write `L to denote provability in L. Recall that any
primitive recursive function f can be numeralwise represented by a formula φ(x, y)
in L0 such that

for all m ∈ N, `L0 S f (m)0 = ι

y:N .φ(S m0, y)

where ι

y:N .φ(x, y) denotes “the unique y : N such that φ(x, y)” (Russell’s definite
description operator, which we can introduce as an abbreviation in L0). Recall that
provability in L0 implies provability in any type theory. The representability of the
primitive recursive functions in L0 is shown in our book (Lambek and Scott, 1986,
Remark 3.6, p. 266).

Consider the two primitive recursive functions f and g, represented by φ and ψ,
respectively, where f enumerates the propositions S m0 < αm (already considered by
Cantor) and g enumerates the theorems of L. Thus, for any m ∈ N,

`L S m0 < αm iff for some n ∈ N, f (m) = g(n) . (1)

Putting χ = φ ∧ ψ, we may write the RHS of (1) as:

for some n ∈ N, `L χ(S m0, S n0), (2)

which implies
`L ∃y:Nχ(S m0, y), (3)

that is,
`L S m0 ∈ αk, where αk := {x : N | ∃y:Nχ(x, y)}. (4)

Therefore
`L S m0 < αm implies `L S m0 ∈ αk

Putting m = k, we infer by consistency that S k0 < αk is not a theorem of L.
Let us try to reverse the above reasoning. Clearly (4)⇒(3). The implication

(2)⇒(3) may be reversed if we pass to the internal language L′ of any model of
L in which all numerals are standard, which thus inherits the existence and disjunc-
tion properties. We thus obtain
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`L′ S m0 ∈ αk implies `L′ ∃y:Nχ(S m0, y)

implies for some n ∈ N `L′ χ(S m0, S n0)
by the Existence Property in L′

implies for some n ∈ N f (m) = g(n),

hence `L S m0 < αm by (1).

Again, putting m = k and recalling that S k0 < αk is not a theorem ofL, we infer that
not `L′ S k0 ∈ αk, hence S k0 ∈ αk does not hold in any model where the numerals
are standard.

The theorem follows if we take q to be (S k0 ∈ αk).

Corollary 6.2 Assuming that the “usual” category of sets S is a Boolean local
topos in which all numerals are standard, the set of propositions of L0 which hold
in S is not recursively enumerable. Hence S cannot be construed as the topos gen-
erated by an analytic type theory whose theorems are recursively enumerable.

Remark 6.3 The assumption that all numerals are standard is redundant, if we de-
fine “standard numerals” to be the arrows 1 → N in the “usual” category S of sets.
Thus Gödel’s proposition ¬q is true in S but not provable.

7 Reconciling Foundations

7.1 Constructive Nominalism

Gödel’s incompleteness theorem seemed to show that Formalism and Platonism are
mutually incompatible philosophies of mathematics. Indeed, this is what Gödel him-
self had in mind. He believed that the ω-property must hold in the Platonic universe
of mathematics, later to be called “the model in the sky” by William Tait (1986). The
contradiction disappears if one abandons classical mathematics for a moderate form
of Intuitionism. According to the Brouwer-Heyting-Kolmogorov interpretation of
formal intuitionistic arithmetic, the validity of a universal statement ∀x:Nφ(x) does
not follow from the collection of its numerical instances φ(S n0), for each n ∈ N,
unless the validity of all these instances has been established in a uniform way. For
all we know, a proof of φ(S n0) may increase in length and complexity with n. No
such objection applies to the ω∗- property.

Although the formulation of Gödel’s incompleteness theorem remains valid for
intuitionistic higher order logic, this is no longer the case if the ω-property is re-
placed by the ω∗-property. In fact, a statement in pure intuitionistic higher order
logic is provable if and only if it holds in F = T (L0), the free topos. Recall, this is
the initial object in the category of all toposes and logical morphisms, and is con-
structed linguistically as the topos generated from pure intuitionistic type theory
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L0. As has been pointed out repeatedly (Lambek, 2004; Lambek and Scott, 1986),
the free topos should satisfy moderate adherents of various traditional philosophical
schools in the foundations of mathematics:

– Platonists, because as an initial object it is unique up to isomorphism;
– Formalists, or even nominalists, because of its linguistic construction;
– Constructivists, or moderate intuitionists, because the underlying type theory is

intuitionistic;
– Logicists, because this type theory is a form of higher order logic, although

it must be complemented by an axiom of infinity, say in the form of Peano’s
axioms.

This eclectic point of view has been called “constructive nominalism” in Couture
and Lambek (1991).

Proofs that the free topos is local have been obtained by Boileau and Joyal
(Boileau, 1975; Boileau and Joyal, 1981), and by us (Lambek and Scott, 1980, 1986).
Our ultimate proof was based on what is called the Freyd Cover, obtained by “glue-
ing” F into the “usual” category of sets. Freyd showed that every locally small topos
T gives rise to a local topos T̂ in which all numerals are standard, together with a
logical functor G : T̂ → T . The condition that T is locally small ensures that each
set of arrows HomT (A, B) lives (as an object) in this category S of sets; the latter
is presumed to be local and such that all numerals are standard. But what is this
“usual” category of sets? We shall return to this question; for now, the reader may
have to use her intuition to identify S.

Returning to Freyd’s argument (Freyd, 1978), let T = F , the free topos. Then,
by initiality, there is a unique logical functor F : F → F̂ . Thus we obtain a logical
functor GF : F → F , which must equal idF , again by initiality. It follows that F
inherits (from F̂ , hence from S) the properties of being local and that all numerals
are standard.

7.2 What Is the Category of Sets?

We saw above that we were able to construct a local topos in which all numerals are
standard, which should satisfy moderate intuitionists. Unfortunately, Freyd’s proof
assumed the existence of the “usual” category of sets S, which is itself assumed to
be a local topos in which all numerals are standard. The category S may be said to
live, if not in the world of mathematics, then in the world of metamathematics. If
the metamathematician is herself an intuitionist, she might believe that this category
of sets could be the free topos itself. But then we reach a circularity: to prove the
free topos is a model in which numerals are standard, we must assume an ambient
category of sets S which itself has that property, and of course we cannot then
postulate that to be the free topos. One is reminded of Lewis Carroll (1895).

What if the metamathematician believes in classical logic? In that case, she must
assume the existence of a model topos S in which the terminal object is a generator,
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and in which all numerals are standard, the “usual” category of sets. While the
existence of such model toposes can be shown with the help of the axiom of choice
(Lambek and Scott, 1986), can even a single one be “constructed”? For example,
consider classical type theory L1 = L0/β, where the formula β = ∀x:Ω(¬¬x⇒ x) is
added toL0 as a new axiom. The Boolean topos T (L1) generated byL1 is the initial
object in the category of all Boolean toposes. Is T (L1) a model? Unfortunately it is
not local, by the Incompleteness Theorem for L1. Indeed, the disjunction property
fails for any undecidable sentence q, since we can prove in L1 that ` q∨¬q. Indeed,
we conjecture that no such classical model topos can be constructed, at least if we
require it to satisfy reasonable properties.

8 What Is Truth?

What is truth? This question, once raised by Pilate, received different answers from
different mathematicians.

Hilbert famously proposed the problem of showing that mathematical statements
are true if and only if they can be proved. Like all of us, he assumed the set of proofs
to be recursive.

Brouwer once asserted that mathematical statements are true if and only if they
are known. In retrospect, he should have said “can be known”, if truth is to be
independent of time.

Gödel believed that a (classical) mathematical statement is true if and only if it
holds in some kind of Platonic universe, which we take to be a Boolean local topos
in which numerals are standard.

It follows from Gödel’s incompleteness theorem that Hilbert’s position is incom-
patible with the assumption that the Platonic universe is classical. However, if we
assume that this universe is intuitionistic (the free topos), there is no contradiction.
Moreover, Brouwer’s modified position is vindicated if we interpret “knowable” as
“provable”.

Tarski defines truth differently. He said “p is true” instead of asserting p. By
abuse of language, we often abbreviate p is true by p, ignoring quotation marks,
like most mathematicians. Tarski then said that a numerical predicate τ defines truth
(for a language L) provided

for all n ∈ N, `L (pn ⇔ S n0 ∈ τ).

where we use the same conventions of Gödel numbering as in Gödel’s theorem.
Here is our formulation of Tarski’s undefinability theorem.

Theorem 8.1 In any consistent analytic type theory, truth (in Tarski’s sense) is not
definable by a numerical predicate.

Proof As in the proof of Gödel’s theorem, suppose there were such a τ, and let

p f (n) := S n0 < αn.
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Then
`L (S f (n)0 = ι

y:N .φ(S n0, y))

where φ represents f . Put

αk := {x : N | ∃y:N(y ∈ τ ∧ φ(x, y))}

Then we have the following provable equivalences:

`L (S k0 ∈ αk ⇔ S f (k)0 ∈ τ
⇔ p f (k)

⇔ S k0 < αk)

which contradicts consistency.
We will attempt to briefly compare the different notions of truth. Let `L0 stand

for provability in L0, hence for truth in the free topos F . We would like to interpret
this as truth in Brouwer’s sense. Comparing this with Tarski’s notion of meta-truth,
we would believe that, for all propositions p, (`L0 p) ⇔ p. In particular, soundness
corresponds to the entailment ( (`L0 p)⇒ p ).

Most post-Gödel mathematicians still believe in soundness. However soundness
already implies consistency; for by soundness

(`L0 p ∧ `L0 ¬p)⇒ (p ∧ ¬p) .

Yet, Gödel’s second incompleteness theorem (not treated here) shows that consis-
tency of L0 cannot be proved in L0; hence (using the encoding methods of the
second Gödel theorem) soundness in the above sense cannot be formally proved
either.

We may also ask whether Gödel’s notion of truth (in a classical Platonic universe
S) implies Tarski’s notion of meta-truth, i.e. whether ( (S |= p) ⇒ p ). Now this
implies ( (`L1 p) ⇒ p ), where L1 = L0/β is pure classical type theory, which
is initial among all classical type theories (including the internal language of S).
Thus Tarski’s notion of meta-truth implies soundness of L1, which again cannot be
proved in L1 (when suitably encoded), by the same argument as above.

9 Continuously Variable Sets

It would appear that metamathematics is an attempt by mathematicians to lift them-
selves up by their own bootstraps. This had already been noted by Lewis Car-
roll (1895), in connection with the rule of modus ponens. It is also evident to anyone
who looks at Gentzen style deductive systems, which derive the meaning of logical
connectives from that of the meta-logical ones.
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If we cannot single out a distinguished Boolean local topos as a candidate for the
classical category of sets, we may be forced to look at the totality of all such models.

From an algebraic point of view, Gödel’s completeness theorem asserts

Every topos is a subtopos of a direct product of local toposes.

This is analogous to the familiar assertion:

Every commutative ring is a subring of a direct product of local rings.

However, the latter statement can be improved to one that plays a crucial rôle in
modern algebraic geometry (see Grothendieck and Dieudonné, 1960)

Every commutative ring is the ring of continuous global sections of a sheaf of local rings.

It has been realized for some time that Gödel’s completeness theorem can be im-
proved analogously:

Every topos is equivalent to the topos of global sections of a sheaf of local toposes .

It had also been clear that the models of any type theory, including those of the
internal language of a topos, are the points of a topological space and that the truth
of a proposition varies continuously from point to point. With any proposition in L0
one associates a basic open set consisting of all models in which the proposition is
true. After various starts towards the sheaf representation of toposes, the result was
ultimately established by Awodey (2000).3

10 Some Intuitionistic Principles

The fact that the free topos is local (and has only standard numerals) may be ex-
ploited to prove a number of intuitionistic principles for pure intuitionistic type the-
ory L0, as we showed in our book (Lambek and Scott, 1986):

Consistency: not ( `⊥) .
Disjunction Property: If `L0 p ∨ q , then `L0 p or `L0 q.
Existence Property: If `L0 ∃x:Aφ(x) then `L0 φ(a) for some closed term a of

type A.

3 Having observed that the truth of a proposition varies continuously from point to point, one of
the present authors was led to announce the sheaf representation at conferences in Sussex and
Amsterdam, but he made a bad choice of the basic open sets and used a definition of “local” which
employed only the disjunction property. The first fault was rectified in a joint paper with Moerdijk
(Lambek, 1994), further expository development occurred in our book (Lambek and Scott, 1986),
and the second fault was rectified in (Lambek and Moerdijk, 1982), in which the author introduced
a large number of “Henkin constants” to witness existential statements. This was shown to be
unnecessary in a more recent article of Awodey (2000), who replaced the earlier logical proofs,
based on definition by cases, by a purely categorical one. Similar ideas had also been pursued by
Peter Freyd.
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Troelstra’s Uniformity principle for A = ΩC: If `L0 ∀x:A∃y:Nφ(x, y) then
`L0 ∃y:N∀x:Aφ(x, y).
In the free topos F , the uniformity principle says the arrows ΩC → N are con-
stant (i.e. factor through some standard numeral).

Independence of premisses: If `L0 ¬p⇒ ∃x:Aφ(x) then `L0 ∃x:A(¬p⇒ φ(x)).
Markov’s Rule: If `L0 ∀x:A(φ(x) ∨ ¬φ(x)) and `L0 ¬∀x:A¬φ(x), then `L0 ∃x:Aφ(x).

This says: if in pure intuitionist type theory L0 we have that φ is provably decid-
able, and if there is a proof of ¬∀x:A¬φ(x), then there must also be a constructive
proof of ∃x:Aφ(x), i.e. (by the existence property) a proof in L0 of φ(a), for some
closed term a of type A.

The Existence Property with a parameter of type A = ΩC: If `L0 ∀x:A∃y:Bφ(x, y)
then `L0 ∀x:Aφ(x, ψ(x)), where ψ(x) is some term of type B.

A similar statement for the disjunction property with a parameter of type A is
also provable. The disjunction property and already the unique existence property
fail for parameters of type N, but hold in the internal language L(F (x)), where
F (x) is the free topos with an indeterminate x : 1 → N adjoined. The existence
property in this case amounts to showing that the slice topos F /N is local, hence
that N is projective in F . This is equivalent to closure of the logical system under
a rule of countable choice. For second order arithmetic, there is a proof due to A.
Troelstra (1973, Theorem 4.5.12) based on methods of S. Hayashi (1977) which is
proof-theoretic in nature. There is apparently not yet a clean categorical proof of
such results.

11 Concluding Remarks

Aside from the historical discussion of our categorical approach to the foundations
of mathematics, our formulation of the proof of Gödel’s Incompleteness Theorem
exploits the struggle between two primitive recursive functions. One enumerates all
theorems and the other enumerates the Cantorian formulas which exclude the nth
numeral from the nth numerical predicate. In our view, Gödel’s theorem does not
assert that provability fails to capture the notion of absolute truth in the Platonic
universe. Rather, it asserts that other models of set theory are required than those
which resemble the alleged Platonic universe. In fact, we have some doubts about
the constructive existence of a Platonic universe, except in the context of intuitionis-
tic (higher-order) arithmetic. Even there, the proof that our candidate, the free topos,
is a model depends on the metamathematical assumption that a model of set theory
exists.
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