
Studia Logica (2012) 100: 667–681
DOI: 10.1007/s11225-012-9426-7 © Springer 2012

Joachim Lambek Logic and Grammar

Abstract. Grammar can be formulated as a kind of substructural propositional logic.

In support of this claim, we survey bare Gentzen style deductive systems and two kinds

of non-commutative linear logic: intuitionistic and compact bilinear logic. We also glance

at their categorical refinements.

Keywords: Categorial grammar, Substructural logic, Pregroup grammar, Bilinear logic,

Compact bicategories.

The medieval undergraduate university curriculum consisted of seven liberal
arts. Four of them, the quadrivium, comprised pure and applied mathematics
and had been inherited from the ancient Pythagorean school. (This may be
a surprise to students who enroll in a liberal arts course expecting to avoid
mathematics.) The more elementary trivium consisted of logic, grammar
and rhetoric. Logic has long been accepted as a necessary ingredient of
the foundations of mathematics, and grammar too has recently entered the
realm of mathematics, even if a majority of linguists have not welcomed this
development.

The main difference between formal logic and formal grammar is the
absence in the latter of Gentzen’s three structural rules: weakening, con-
traction and interchange. Gentzen had introduced his so-called sequents to
represent deductions in intuitionistic logic. We write

f : A1 · · ·Am → Am+1,

where the Ai are formulas or empty strings. (I have replaced Gentzen’s
original comma by juxtaposition and written 1 for the empty string or just
left a blank.) In particular, there were the identity axiom 1A : A → A and
the cut rule

f : Λ → A g : ΓAΔ → B

g〈f〉 : ΓΛΔ → B
.

Special issue: Logic and Natural Language
Edited by Nissim Francez and Ian Pratt-Hartmann



668 J. Lambek

(We use capital Greek letters to denote strings of formulas.) There were
three structural rules:

weakening :
f : ΓΔ → B

fω : ΓAΔ → B
,

contraction :
f : ΓAAΔ → B

fc : ΓAΔ → B
,

interchange :
f : ΓABΔ → C

fi : ΓBAΔ → C
.

If we ignore these structural rules, Gentzen’s sequents may represent con-
textfree derivations in linguistics, although our arrow, replacing Gentzen’s
symbol �, suggests that we are recognizing, rather than generating, sen-
tences. For example, to recognize the sentence

John likes her

we might adopt the derivations

John → Subj, likes → Vtrans, her → Obj,
VtransObj → Pred, Subj Pred → S.

The resulting compound derivation may be represented by a tree, usually
pictured upside-down:

her

V

S

Subj

John

Pred

Obj

likes

trans

It is known that contextfree derivations do not suffice to describe certain
languages, e.g. Dutch, Swiss German and Bambara. So we are tempted to
turn to Gentzen’s sequents for classical logic:

A1 · · ·Am → B1 · · ·Bn .



Logic and Grammar 669

In the absence of the classical structural rules (not stated here), these will
do service for non-commutative classical bilinear logic, aka bilinear logic.
However, juxtaposition (replacing Gentzen’s comma) on the left stands for
the tensor product and juxtaposition on the right for its de Morgan dual,
called “par” by linear logicians.

In linguistic applications, a derivation Γ → Δ is known as a rewrite
rule, but juxtaposition on the right plays the same role as that on the left.
Thus the tensor product and its de Morgan dual should be identified, as it
will be in the “compact bilinear logic” to be discussed presently. We thus
obtain what linguists call a production grammar and mathematicians call a
semi-Thue system.

A production grammar was first employed by Panini in the fifth century
BCA for describing Sanskrit. The above sentence will serve to show how a
production grammar works for English.

First, one augments the English vocabulary by a number of grammatical
terms, such as the above:

S = declarative sentence,

Subj = subject,

Pred = predicate,

Obj = object,

Vtrans = transitive verb phrase,

as well as what I have called “inflectors”:

P3 = third person singular,

T1 = present tense,

Acc = accusative,

C13 = present tense third person singular.

Thus, one adopts not only contextfree rules, but also the morphological rules

P3T1 → C13,

C13 like → likes,

Acc she → her.

Finally, one employs the appropriate derivations to show how the string of
words John likes her reduces to S, as pictured in the following diagram, no
longer a tree:



670 J. Lambek

likes

1P 3

C13 transV

Acc

Subj

John

S

Pred

NP VP

NP

like she

her

T

Although we have used the arrow primarily to recognize sentences, the
reversed arrow can be used to generate sentences, thus showing that the
set of sentences is recursively enumerable. Production grammars are useful
for handling morphology, such as verb conjugation as in [LY2008], and for
limited semantic fields, e.g. kinship relations as in [BL1995].

Logicians employ sequents subject to structural rules as a basic frame-
work for introducing connectives such as ⇒, ∧ or ∨. Logical systems have
algebraic analogues: Boolean algebras or Heyting algebras for classical or in-
tuitionistic logic respectively. Although linguists have used rewrite systems
without structural rules and without connectives to formulate grammars of
natural languages, some mathematically inclined linguists prefer to carry out
calculations not on words, but on associated types (that used to be called
“categories”), which live in a substructural logical system or its algebraic
equivalent.

The main idea of a “categorial” grammar is to associate with each word
or morpheme of the language one or more types, which are listed in the
mental dictionary, and then to perform a logical or algebraic calculation on
the sequence of types associated with a string of words to check whether it is
a well-formed sentence or some other syntactic entity. I myself have worked
on two such systems: the syntactic calculus [1958] and compact bilinear logic
[1999b, 2008].

The syntactic calculus involved three binary operations, ⊗, \ and /, sat-
isfying the rules



Logic and Grammar 671

a ⊗ b → c iff a → c/b iff b → a\c.

These connectives may be introduced by Gentzen style rules such as ⊗ and /:

Γ → a Δ → b

ΓΔ → a ⊗ b
,

Λb → a

Λ → a/b
,

Λ → b ΓaΔ → c

Γ(a/b)ΛΔ → c
,

and similarly for \. It was shown in [L1958] that the resulting system satisfies
Gentzen’s cut elimination theorem when the types are freely generated from
a set of basic types. It asserts that the cut rule is then redundant, and so is
the identity rule, except for basic types. Sometimes the syntactic calculus is
augmented by a nullary operation I, satisfying the introduction rules

Λ → 1
Λ → I

,
ΓΛ → c

ΓIΔ → c

(Recall that 1 denotes the empty string.)
From an algebraic point of view, the resulting system is a residuated

semigroup, or monoid if the identity element I is admitted, freely generated
from the set of basic types. At first [1958], this set was taken to be {s, n}, s
for “sentence” and n for “name” or “noun phrase”, but later more basic
types were admitted and the set of basic types was allowed to be partially
ordered.

Here is an example illustrating the original approach:

John likes her
n n\(s/n) (s/n)\s

which is justified by the cutfree proof, using only the axiom a → a for basic
types:

n → n s → s
(s/n)n → s

s/n → s/n s → s
n → n (s/n)((s/n)\s) → s

n(n\(s/n))((s/n)\s) → s

(The identity rule for s/n can easily be derived from those for s and n.)
Unfortunately, such a calculation may easily overload the temporary

storage capacity of the brain. Recall Miller’s [1956] observation that our



672 J. Lambek

short-term memory cannot hold more than about seven chunks of informa-
tion. (This is easily checked by anyone trying to dial a nine-digit telephone
number.)

The question had been raised by Noam Chomsky whether languages de-
scribable by the syntactic calculus could also be described by a contextfree
grammar. This question remained open for many years and was finally an-
swered positively by Mati Pentus [1993]. Perhaps this is a good place to
remind the reader not to take the equivalence of two grammars too seri-
ously. It may happen that a computation in one grammar obeys Miller’s
restriction to seven chunks of information in the short-term memory, but
that the corresponding computation in the equivalent grammar exceeds it.

The syntactic calculus had predecessors in the grammars of Ajdukiewicz
[1935] and Bar-Hillel [1953]. It has now been around for half a century,
but was unable to compete with the more powerful techniques of Chomsky
[1957] and his school, which made use of rewrite systems enhanced by trans-
formations. On the other hand, it was recognized that the syntactic calculus
had an intriguing affinity to the semantic calculi of Curry [1961] and Mon-
tague [1974]. This observation led to further developments by a small but
dedicated group of type logical grammarians (see e.g. Moortgat [1988,1997]).

Other substructural logics were studied by philosophers, e.g. relevance
logic, which dropped the weakening rule, and by computer scientists, e.g.
the linear logic of Girard [1987], which retained only the interchange rule.
Evidently, the latter system was not useful for syntactic applications, and so
Claudia Casadio proposed to turn to non-commutative classical linear logic,
now called bilinear logic. However, the distinction between the tensor prod-
uct and its de Morgan dual, called par by Girard, seemed to be irrelevant for
linguistic purposes. We therefore decided to drop it (see [CL2002]) and turn
to what is now known as compact bilinear logic and its algebraic presentation
in the form of pregroups. These are partially ordered monoids in which each
element a has both a left adjoint a� and a right adjoint ar satisfying

a�a → 1 → aa�, aar → 1 → ara,

Evidently, a pregroup is a residuated monoid if we define

a/b = ab�, a\b = arb.

The converse is not the case, since (ab)/c and a(b/c) both correspond to
abc�, in view of the associative law.

The idea of applying pregroups to grammar is again to ascribe to each
word of the language one or more types, a type now being an element of the



Logic and Grammar 673

pregroup freely generated by a partially ordered set of basic types. A decision
procedure is obtained [L1999b] by realizing that, without loss of generality,
one may assume that all contractions a�a → 1 and aar → 1 precede all
expansions 1 → aa� and 1 → ara. In particular, if one wants to show that
a string of types reduces to s, or any other basic type for that matter, no
expansions are needed at all.

This observation does in fact amount to cut elimination, as was shown by
Buszkowski [2002]. Thus, in practice, one works with the kind of grammar
already advocated by Zellig Harris [1966,1968], although one now has the
advantage of being able to use double adjoints. These are useful in contexts
where Chomsky [1980] would introduce traces, e.g. in questions and relative
clauses. Let us just look at a few examples:

John likes her
n(πr

3s1o
�) o → s

Does John like her ?
(q1i

�π�
3)n(io�)o → q

Whom does John like −?
(qo��q�)(q1i

�π�
3)n(io�) → q

Here we have made use of the basic types

n = noun phrase,
π3 = third person singular,
s = declarative sentence,
s1 = declarative sentence in present tense,
o = direct object,
q = question,
q1 = question in present tense,
i = infinitive of intransitive verb phrase.

We also assume
n → π3, s1 → s, q1 → q

in the partially ordered set of basic types. Note that

nπr
3 → π3π

r
3 → 1.



674 J. Lambek

The dash in the third sentence above represents a Chomskyan trace. Under-
links indicating contractions had already been used by Harris and correspond
to the proofnets of linear logicians.

One advantage of the pregroup analysis over the earlier syntactic calculus
is that now proofs can proceed horizontally, as in algebra, and need not fill
whole pages or blackboards as proof-trees did before.

If working with one free pregroup offers a decision procedure, the same is
true, if we work with the direct product of two or more free pregroups. This
allows us, for example, to make separate calculations on syntactic types and
feature types, as illustrated by the following example from French [L2010]:

elle veut être embrassée
π3 (πr

3s1j
�) (io��p�

2) (p2o
�) → s1

π3f π
′r
3f → 1

Here i → j represent intransitive infinitives, p2 any intransitive past partici-
ple, and π3f → π′

3f stand for third person singular feminine.
The idea to perform parallel computation on multiple free pregroups had

been proposed by Ed Stabler [2008] and Brendon Gillon [oral communica-
tion] and was carried out by some of their students, notably Kobele [2008]
and Kusalik [2008]. Further developments along these lines are to be ex-
pected, for example to deal with natural languages known not to be describ-
able by contextfree grammars. The simplest example of a non-contextfree
formal language is in fact the intersection of two contextfree ones, hence
can be analyzed by parallel computation in two free pregroups, in view of
Buszkowski’s [2001] proof of the equivalence of free pregroup grammars and
contextfree ones.

Pure mathematicians try to prove theorems about an abstract Platonic
world, but in proof theory the proofs or deductions themselves become the
objects of study. Proof theoretic techniques may also be applied to grammat-
ical derivations. To start with, deductions and derivations may be viewed
as arrows in a category or multicategory. (I will disregard the classical poly-
categories in this article.)

So far, we have used the arrow to denote a partial order. In logic this is
deducability, usually denoted by the symbol �. From now on we will regard
a labelled arrow as an actual deduction and take it to be a morphism in a
category, for example a function between sets.

The original Gentzen sequent calculus may be conceived as dealing with
functions of many variables. The structural rules then correspond to common
manipulation of functions:



Logic and Grammar 675

f : ΓABΔ → C

fi : ΓBAΔ → C
,

fi(· · · yx · · · ) = f(· · ·xy · · · )
interchanging variables,

f : ΓΔ → C

fw : ΓAΔ → C
,

fw(· · ·x · · · ) = f(· · · · · · )
introducing a superfluous variable,

f : ΓAAΔ → C

fc : ΓAΔ → C
,

fc(· · ·x · · · ) = f(· · ·xx · · · )
replacing two identical variables by one.

We also interpret the identity arrow as the identity function:

1A : A → A, 1A(x) = x,

and Gentzen’s cut rule represents substitution:

f : Λ → A g : ΓAΔ → B

g〈f〉 : ΓΛΔ → B
,

g〈f〉(· · · · · · ) = g(· · · f(· · · ) · · · )
substituting a function for a variable.

Of course, the structural rules play no role in our substructural grammars
and even the identity and cut rules may be eliminated except for the basic
types.

Abstractly, the intuitionistic Gentzen systems turn into multicategories
(see e.g. [L2004]). The classical Gentzen systems turn into polycategories;
not to be considered in this article.

We may adopt the functional notation even in the absence of structural
rules, interpreting arrows as multilinear functions. The easiest way to justify
this is to introduce indeterminate arrows x : 1 → A and to define

1Ax = x

and
g〈f〉(· · · · · · · · · ) = g(· · · f(· · · ) · · · )

for f : Λ → A and g : ΓAΔ → B. It is then seen that the arrows of a multi-
category must satisfy the following identity, associativity and commutativity
laws:

1A〈f〉 = f when f : Λ → A
g〈1A〉 = g when g : ΓAΔ → B,
h〈g〈f〉〉 = h〈g〉〈f〉 when h : ΦBΨ → C

and f, g as above, but
k〈f〉〈f ′〉 = k〈f ′〉〈f〉

when f : Λ → A, f ′ : Δ → B and k : ΦAΘBΨ → C.

Following the categorical imperative, we replace partially ordered alge-
bras by categories with additional structure, thus partially ordered monoids



676 J. Lambek

by monoidal categories, residuated monoids by residuated (monoidal) cate-
gories and pregroups by compact (monoidal) categories.

Monoidal categories are categories endowed with a binary operation ⊗,
the tensor product, between objects and an identity object I. These may
be introduced in Gentzen style (as pioneered by Bourbaki [1948]), adopting
labelled bilinear arrows,

mAB : AB → A ⊗ B, ι : 1 → I

and the rules, assigning to each multilinear arrow

h : ΓABΔ → C a unique h′ : ΓA ⊗ BΔ → C such that

h′〈mAB〉 = h,

and to each h : ΓΔ → C a unique h′ : ΓIΔ → C such that

h′〈ι〉 = h.

Everything you want to know about ⊗ and I follows from these catego-
rized introduction rules. For example, the associativity of the tensor product
is obtained with the help of an arrow αABC : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C),
which is defined below.

When x : 1 → A and y : 1 → B are indeterminates, it is convenient to
write

{x, y} = mABxy.

Given f : A → B and g : C → D, we may then define f ⊗g : A⊗B → C⊗D
by putting

(f ⊗ g){x, y} = {fx, gy}
and verifying functionality, e.g. that

(f ⊗ g)(h ⊗ k) = fh ⊗ gk.

The associativity arrow αABC : (A⊗B)⊗C → A⊗ (B ⊗C) is now defined
by putting

αABC{{x, y}, z} = {x, {y, z}}.
It is easily checked that α is a natural isomorphism which satisfies Mac
Lane’s [1971] pentagonal condition. (For more details see [L2004]).

In a residuated category we have two binary operations on objects, in
addition to the tensor product, namely / (over) and \ (under) to satisfy

Hom(B, A\C) 
 Hom(A ⊗ B, C) 
 Hom(A,C/B).



Logic and Grammar 677

The operation / can be introduced via a multicategory as follows:

eCB : (C/B)B → C,

and for all h : ΛB → C there exists a unique

h′ : Λ → C/B such that eCB〈h′〉 = h.

The operation \ is of course introduced similarly.
Although residuated categories are mentioned here because they provide

an insight into the proof theory of the syntactic calculus, they originated
in the category of R − R-bimodules, R being any ring. In particular, C/B
and B\C stood for Hom(BR, CR) and Hom(RB, RC) respectively, viewed as
R − R-bimodules. In fact, this ring-theoretic application was the original
inspiration for the syntactic calculus.

A compact monoidal category has, in addition to the tensor product, two
unary operations on objects, called left and right adjunction and satisfying

Hom(B, Ar) 
 Hom(A ⊗ B, I) 
 Hom(A,B�).

A ring-theoretical example is the category of all R − R-bimodules where R
is a division ring and the bimodules are finitely generated on each side.

These algebraic examples call for an obvious generalization to R − S-
bimodules, where R and S are two rings, hence for a generalized multicat-
egory in which strings A1 · · ·Am are subject to the restriction that each Ai

has a source and a target and that the target of Ai is the source of Ai+1.
The string A1 · · ·Am is then assumed to have the same source as A1 and the
same target as Am. Even the empty string 1 will have a source and a target,
depending on where it occurs.

These generalized multicategories have a direct application to grammar,
as is implicit in the proposal by Mishal Brame [1984,1985,1987]. One allows
the arrows Ai to be words of a natural language, say English, and the objects
serving as sources and targets grammatical terms. For example, one might
analyze the boy likes her as follows:

the boy likes her.
1 → Art Art → NP NP → Vtrans Vtrans → S

Here each English word is viewed as an arrow between grammatical types,
e.g. likes transforms a noun phrase into a transitive verb phrase.

Generalized multicategories may also be used for studying categories with
more than one object. For example, a bicategory has been described as a



678 J. Lambek

monoidal category with several objects, although it is more reasonable to
say that a monoidal category is a bicategory with one object, better: one
0-cell (see below). In particular, a strictly monoidal category, in which the
tensor product is associative on the nose, is known as a 2-category when it
has more than one object. For a direct definition of a 2-category, see Mac
Lane[1971]. In bicategories and 2-categories, it is customary to call

objects = 0 − cells,
arrows between objects = 1 − cells,
arrows between arrows = 2 − cells.

Note that, in addition to the expected vertical composition of 2-cells, there
is a horizontal composition:

if fi : Ai → Bi then f1 · · · fm : A1 · · ·Am → B1 · · ·Bn.

From our point of view, a 2-category is just a categorical refinement of a
production grammar.

Of possible interest in grammar are residuated and compact 2-categories.
In the latter, each 1-cell has both a left and a right adjoint, in the original
sense of “adjoint”, as first defined by Peter Freyd.

Examples of residuated and compact bicategories are easily found in
algebra. A typical residuated bicategory has

0 − cells = rings
1 − cells = bimodules
2 − cells = bilinear transformations.

To obtain a compact bicategory one must also assume that the rings are
division rings and that the bimodules are finitely generated on each side.

Returning from grammar and algebra to logic, we note that the Heyt-
ing algebras corresponding to the intuitionistic propositional calculus give
rise to the cartesian closed categories introduced by Bill Lawvere [1969]. In
particular, T becomes the initial object I, A ∧ B becomes the direct prod-
uct A × B and B ⇒ C becomes the exponential CB. The free cartesian
closed category generated by two objects E (entities) and Ω (truth values)
has been used for the semantic calculus studied by Haskell Curry and his
followers, although they did not employ the language of category theory.
Curry replaced the arrows I → A by combinators avoiding bound variables,
while other authors preferred to make use of the lambda-calculus of Alonzo
Church who admitted them. Richard Montague [1974] even envisaged the
cartesian closed category of sets, albeit an intensional version of it, with Ω



Logic and Grammar 679

the object of Boolean truth values. More generally, we would expect an
elementary topos, also introduced by Lawvere [1972]. Its objects need not
be sets, but could be sheaves, and Ω need not be Boolean, allowing the full
sway of higher order intuitionistic logic.

An obvious generalization of the original syntactic calculus leads to the
residuated bicategory freely generated by two objects S and N. Its interpre-
tation in a topos, here indicated by square brackets, may be viewed as a
structure preserving functor (see Benson [1970]) which sends S on to Ω, N
on to E, A ⊗ B on to [A × B] = [A] × [B] and both C/A and A\C on to
[C][A], the set of functions from [A] to [C].

To target semantics in the usual category of sets causes one problem
already faced by Montague. It assumes that in the latter one can substitute
equals for equals: if Jack is the murderer one could infer that the police
know that Jack is the murderer. One way to overcome this difficulty is to
allow the topos T in which the speaker lives to embrace an internal topos T ′

representing the world in the speaker’s mind. From the truth of a proposition
in T one cannot infer its truth in T ′.

How should the internal topos be constructed? Categorists have a fancy
way of doing this; but Gödel’s process of arithmetization will do as well. For
example, the so-called free topos, the initial object in the category of all small
toposes with natural numbers object, acceptable as the world of mathematics
to moderate intuitionists, can be constructed from natural numbers and lives
in any topos that contains them.

POSTSCRIPT

While the above account hints at two methods for looking at non-context-
free grammars, a promising alternative approach has been proposed by
Francez and Kaminski [2007] and adopted by Preller [2010]. It allows the
freely generated pregroup to be augmented by a finite set of commuting
inequations, yet retains the above decision procedure and is capable of han-
dling mildly context-sensitive languages.

References

[1] Ajdukiewicz, K. 1935, Die Syntaktische Konnexitàt, Studia Philosophica 1:1–27.

English translation: Syntactic connection, in S. McCall (ed.), Polish Logic, Oxford,

Clarendon Press, 1967.

[2] Bar-Hillel, Y. 1953, A quasi-arithmetical notation for syntactic description, Lan-

guage 29:47–58.

[3] Bar-Hillel, Y. 1964, Language and Information: Selected Essays, Palo Alto,

Addison-Wesley.



680 J. Lambek

[4] Benson, D.B. 1970, Syntax and semantics, a categorical view, Information and

Control 17:145–166.

[5] Bhargava, M., and J. Lambek 1995, A rewrite system of the Western Pa-

cific: Lounsbury’s analysis of Trobriand kinship terminology, Theoretical Linguistics

21:241–253.

[6] Bourbaki, N. 1948, Algèbre linéaire, Paris, Hermann.

[7] Brame, M. 1984, 1985, 1987, Recursive categorical syntax and morphology I, II, III,

Linguistic Analysis 14,15,17.

[8] Buszkowski, W. 2001, Lambek grammars based on pregroups, in P.G. De Groote et

al. (eds.), Logical aspects of computational linguistics, LNAI 2099, Berlin, Springer.

[9] Buszkowski, W. 2002, Cut elimination for the Lambek calculus of adjoints, in V.M.

Abrusci et al. (eds.), New perspectives in logic and formal linguistics, Rome, Bulzoni.

[10] Casadio, C., and J. Lambek 2002, A tale of four grammars, Studia Logica 71:315–

329.

[11] Chomsky, N. 1957, Syntactic Structures, The Hague, Mouton.

[12] Chomsky, N. 1980, Rules and representations, New York, Columbia University Press.

[13] Curry, H.B. 1961, Some logical aspects of grammatical structure, in R. Jacobson

(ed.), Structure of language and its mathematical aspects, Providence, R.I., AMS.

[14] Francez, N., and M. Kaminski 2007, Commutation-Augmented Pregroup Gram-

mars and Mildly Context-Sensitive Languages, Studia Logica 87:295–321.

[15] Girard, J.-Y. 1987, Linear logic, Theoretical Computer Science 50:1–102.

[16] Harris, Z. S. 1966, A cyclic cancellation automaton for sentence well-formedness,

International Computation Centre Bulletin 5:69–94.

[17] Harris, Z. S. 1968, Mathematical structure of language, New York, John Wiley and

Sons.

[18] Kobele, G.M. 2008, Agreement bottlenecks in Italian, in C. Casadio et al. (eds.),

Computational algebraic approaches to natural languages, Milan, Polimetrica.

[19] Kusalik, T. 2008, Product pregroups as an alternative to inflectors, in C. Casadio

et al. (eds.), Computational algebraic approaches to natural languages, Milan, Poli-

metrica.

[20] Lambek, J. 1958, The mathematics of sentence structure, American Mathematical

Monthly 65:154–170.

[21] Lambek, J. 1999a, Deductive systems and categories in linguistics, in H. J. Ohlbach

et al. (eds.), Logic, Language and Reasoning, Dordrecht, Kluwer.

[22] Lambek, J. 1999b, Type grammar revisited, in Lecomte et al. (eds.), Logical aspects

of computational linguistics LNCS/LNAI 1582, Berlin, Springer.

[23] Lambek, J. 2004, Bicategories in algebra and linguistics, in T. Ehrhard et al. (eds.),

Linear logic in computer science, London Mathematical Society Lecture Notes Series

316, Cambridge University Press.

[24] Lambek, J. 2008, From word to sentence, Milan, Polimetrica.

[25] Lambek, J. 2010, Exploring feature agreement in French with parallel pregroup

computations, Journal of Logic, Language and Information 19:75–88.

[26] Lambek, J., and N. S. Yanofsky 2008, A computational approach to Biblical He-

brew, in C. Casadio et al. (eds.), Computational algebraic approaches to natural lan-

guages, Milan, Polimetrica.



Logic and Grammar 681

[27] Lawvere, F.W., Toposes, Algebraic Geometry and Logic, Lecture Note in Mathe-

matics 274, New York, Springer.

[28] Miller, G.A. 1956, The magical number seven plus or minus two, Psychological

Review 63:81–97.

[29] Mac Lane, S. 1971, Categories for the working mathematician, New York, Springer.

[30] Montague, R. 1974, Formal Philosophy: Selected Papers, New Haven, Yale Univer-

sity Press.

[31] Moortgat, M. 1988, Categorial Investigations, Dordrecht, Foris.

[32] Moortgat, M. 1997, Categorial type logics, in J. van Benthem et al. (eds.), Handbook

of Logic and Language, Amsterdam, Elsevier.

[33] Pentus, M. 1993, Lambek grammars are context free, in Proceedings of the 8th

annual symposium of logic in Computer Science, pp. 429–433.

[34] Preller, A. 2010, Polynomial pregroup grammars pursue context sensitive lan-

guages, Linguistic Analysis 36:483.

[35] Stabler, E. P. 2008, Tupled pregroup grammars, in C. Casadio et al. (eds.), Com-

putational algebraic approaches to natural languages, Milan, Polimetrica.

Joachim Lambek
Department of Mathematics and Statistics
McGill University
805 Sherbrooke Street West
Montreal, Canada
lambek@math.mcgill.ca


	Logic and Grammar
	Abstract
	POSTSCRIPT
	References



