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Iterated Galois connections
in arithmetic and linguistics

J. Lambek, McGill University

Abstract: Galois connections may be viewed as pairs of adjoint functors, specialized
from categories to partially ordered sets. We study situations that permit iterations of
such adjoints. While their occurrence in elementary number theory is a curiosity, they
play a crucial rôle in a new algebraic approach to sentence structure in natural languages.

1. Adjunction and complementation.
We begin by looking at two well-known functions in number theory:

p(n) = the nth prime (for good measure, we put p(0) = 0),

π(n) = the number of primes ≤ n.

Inspection of the following table leads to a curious observation first made in [1]:

n p(n) p(n) + n π(n) π(n) + n+ 1
0 0 0 0 1
1 2 3 0 2
2 3 5 1 4
3 5 8 2 6
4 7 11 2 7
5 11 16 3 9
· · · · · · · · · · · · · · ·

We note that the sets

{p(n) + n|n ∈ N}, {π(n) + n+ 1|n ∈ N}

are complementary subsets of N. The proof, though tricky, is quite easy. It has nothing
whatever to do with properties of prime numbers and depends only on the fact that p
and π constitute a Galois correspondence:

p(x) ≤ y ⇔ x ≤ π(y).

We borrow the terminology of category theory and call p the left adjoint of π.
In general, let f, g : N→ N be order preserving functions such that

f(x) ≤ y ⇔ x ≤ g(y),

then
f(x) + x ≤ x+ y ⇔ x+ y ≤ g(y) + y

⇔ g(y) + y + 1 > x+ y.
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It follows immediately that the sets

(i) F = {f(x) + x|x ∈ N}, G+ 1 = {g(y) + y + 1|y ∈ N}

have no elements in common. Moreover, consider the range

0 ≤ x ≤ n, 0 ≤ y ≤ n− x.

Then F and G + 1 together have exactly n + 1 elements between 0 and n, hence all the
elements between 0 and n. Thus F and G+ 1 are complementary sets.

We leave as an exercise the converse observation: if F and G are infinite subsets of N
so that F and G + 1 are complementary (hence 0 ∈ F ), then F and G have the form (i)
with f left adjoint to g.

2. Iterated adjoints.
When does an order preserving function g : N→ N have a left adjoint?
More generally, let

f : (X,≤)→ (Y,≤), g : (Y,≤)→ (X,≤)

be a Galois connection, that is

(ii) f(x) ≤ y ⇔ x ≤ g(y)

This equivalence may also be written:

(iii) f(x) = inf{y ∈ Y |x ≤ g(y)}.

Given g order preserving, we can find its left adjoint f = g` if and only if

(a) g preserves infs,

(b) the inf (iii) exists.

This is a special case of Freyd’s Adjoint Functor Theorem in category theory.

Return now to the special case X = Y = N. Then

f(x) = min{y ∈ N|x ≤ g(y)}.

In this case, (a) holds trivially and (b) holds if and only if {y ∈ N|x ≤ g(y)} 6= ∅ for each
x in N, that is, provided g is unbounded.

We note that then f = g` will also be unbounded, since f(x) ≤ b would imply x ≤ g(b).
Therefore, g` also has a left adjoint g``, and so on.

In summary, if g : N → N has a left adjoint g`, then it also has iterated left adjoints
g``, g``` etc.

One way to construct these is to look at the corresponding subsets of N:
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The functions
g, g`, g``, · · ·

correspond to the sets
G, (G+ 1)c, ((G+ 1)c + 1)c, · · · ,

where F c denotes the complement of F .
What about the right adjoints? (ii) may also be written thus:

(iv) g(y) = sup{x ∈ X|f(x) ≤ y}.

Given f , its right adjoint g = f r exists if and only if

(a′) f preserves sups,

(b′) the sup (iv) exists.

In the special case X = Y = N, sup = max, hence

(a′) holds if and only if f(0) = 0 (the supremum of the empty set being 0),

(b′) holds if and only if f is unbounded.

Thus the order preserving function f : N→ N has a right adjoint f r if and only if f(0) = 0
and f is unbounded.

What about iterated right adjoints?

f, f r, f rr, · · ·

correspond to the sets
F, F c − 1, (F c − 1)c − 1, · · · .

Now
f r(0) = 0 iff 0 ∈ F c − 1, i.e. 1 ∈ F c, i.e. 1 6∈ F,

f rr(0) = 0 iff 0 ∈ (F c − 1)c − 1, i.e. 1 ∈ (F c − 1)c,
i.e. 1 6∈ F c − 1, i.e. 2 6∈ F c, i.e. 2 ∈ F.

Continuing in this way, we see that iterated right adjoints exists if and only if F =
{f(x) + x|x ∈ N} is the set of even numbers, i.e. f(x) + x = 2x, i.e., f is the identity
function.

For example, if f = p, pr = π and prr = πr, where πr(y) = p(y + 1) − 1. But
πr(0) = 1 6= 0, so prrr = πrr does not exist.

However, let f : Z → Z be order preserving and unbounded on both sides. Then f is
left adjoint to g if and only if

F = {f(x) + x|x ∈ Z}, G+ 1 = {g(y) + y + 1|y ∈ Z}

are complementary subsets of Z (see [2]). In this case all iterated left and right adjoints
exist, as was pointed out in [3]. Note that, in general, f ` and f r are distinct. For example,
if f(x) = 2x, then f r(x) = [x/2] and f `(x) = [(x+ 1)/2].
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3. Adjunction in 2−categories.
Adjoints are usually defined in the 2−category of all small categories, where

0− cells = small categories,
1− cells = functors,
2− cells = natural transformations.

The usual definition carries over to any 2−category: let f : A→ B and g : B → A be
1−cells, then f is left adjoint to g if and only if there exist 2−cells

η : 1A → gf, ε : fg → 1B

such that

(v) g → gfg → g = 1g, f → fgf → f = 1f .

As perhaps the simplest example of a 2−category, let us look at any partially ordered
monoid, where

0− cells : just one,
1− cells = elements,
2− cells : f ≤ g.

(Note that there is at most one 2-cell between two 1-cells and we write f ≤ g for f → g.)
Here elements f and g form an adjoint pair if and only if

1 ≤ gf, fg ≤ 1.

The equations (v), like other equations between 2−cells, are automatically satisfied.
As an example consider the partially ordered monoid of all order preserving functions

N→ N under composition. Then f is left adjoint to g provided

f(x) ≤ y ⇔ x ≤ g(y).

4. Pregroups.
We shall introduce a couple of definitions.
A left pregroup is a partially ordered monoid in which every element has a left adjoint.

Of course, every partially ordered group is a left pregroup in which f ` = f−1 = f r. More
interesting is the partially ordered monoid of all unbounded order preserving functions
N→ N.

A right pregroup is a partially ordered monoid in which every element has a right
adjoint. Finally, a pregroup is both a left and a right pregroup. Again, every partially
ordered group is a pregroup, but so is the partially ordered monoid of all order preserving
functions Z→ Z which are unbounded on both sides. In this example, f ` 6= f r in general.
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Recent applications to linguistics make use of the free pregroup generated by a partially
ordered set of so-called basic types. Given a basic type a, one forms simple types

· · · , a``, a`, a, ar, arr, · · · .

Compound types, or just types, are strings of simple types, say

A = α1α2 · · ·αn ,

the αi being simple types. In particular, when n = 0 one obtains the empty string 1.
The types from a monoid under concatenation which is partially ordered due to the

order of basic types and the following contractions

Uβ`αV ≤ UV, UαβrV ≤ UV if α ≤ β

and expansions
UV ≤ Uβα`V, UV ≤ UαrβV if α ≤ β.

Both contractions and expansions are needed to prove that the compound types form
a pregroup with adjoints

A` = α`
n · · ·α`

1, Ar = αr
n · · ·αr

1 .

But there is a kind of Church-Rosser theorem [3], which asserts:

Without loss in generality, one may assume that all contractions precede all expansions.

It follows that to show A ≤ β, where β is a simple type, no expansions are needed. In
particular, to show that a string of words of compound type A is a sentence of type s in
a natural language it suffices to check that A ≤ s by repeated contractions.

5. Linguistic applications.
We shall discuss briefly how free pregroups may help to investigate certain aspects of

three European languages:

(1) Chomskyan traces in English [3,4],
(2) word order in German [5],
(3) clitic pronouns in French [6].

It so happens that the same list of basic types will do for the fragments of the languages
discussed here.

πj = j-th person pronoun (j = 1, 2, 3),
s1 = declarative sentence in present tense,
o = direct object,
p2 = past participle,
q1 = yes-or-no question in present tense,
q = yes-or-no question, q1 ≤ q,
w = wh-question,
i = infinitive of intransitive verb.
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English.

I see her
π1 (πr

1s1o
`) o ≤ s1

I have seen her
π1 (πr

1s1p
`
2)(p2o

`)o ≤ s1

have I seen her?
(q1p

`
2π

`
1)π

1
(p

2

o`) o ≤ q1

whom have I seen − ?

(wo``q`)(q
1
p`2π

`
1)π

1
(p

2

o
`
) ≤ w

Note that q`q1 ≤ q`q ≤ 1. The dash here represents a Chomskyan trace, which is put in
for comparison only. In writing whom rather than who, I am following the late Inspector
Morse.

she is seen −
π3 (πr

3
s1o

``p`2)(p
2
o
`
) ≤ s1

she has been seen −
π3 (πr

3
s1p

`
2)(p

2
o``p`2)(p

2
o`) ≤ s1

German.

du siehst ihn
π2 (πr

2
s1o

`) o ≤ s1

siehst du ihn ?
(q1o

`π`
2) (π

2
o ≤ q1

ich habe ihn gesehn
π1 (πr

1
s1p

`
2) o (orp2) ≤ s1

ich kann ihn sehen
π1 (πr

1s1i
`) o (ori) ≤ s1

er kann gesehn werden
π3 (πr

3
s1i

`) (orp2) (pr2o
rri) ≤ s1



7

kann er gesehn werden ?
(q1i

`π`
3) π3 (orp2) (pr2o

rri) ≤ q1

French.

je veux dormir
π1 (πr

1
s1i

`) i ≤ s1

je veux voir Jean
π1 (πr

1
s1i

`) (io`) o ≤ s1

je veux le voir

π1 (πr

1
s1i

`) (io``i`)(io
`
) ≤ s1

Note that the three languages considered here all require the simple type o``, but
German also requires orr. So far, I have not come across a language that requires o``` or
orrr.
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