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Bicategories in algebra and linguistics.0)

J. Lambek, McGill University

To Saunders Mac Lane on his 90th birthday.

Reporting on applications of bicategories to algebra and linguistics led me to take a new look at multicategories

and polycategories: to replace free monoids by free categories and to introduce a new notation for Gentzen’s

cuts. This makes it clear that the equations holding in a multi- or polycategory are just those of the 2-category

which contains it. Thus, a polycategory is almost the same as a 2-category whose underlying 1-category is freely

generated by a graph, except that the class of 2-cells need not be closed under composition, but only under planar

cuts.

0. Summary of contents
In Section 1 we point out that multicategories, slightly generalized, will do for bicate-

gories what they originally did for monoidal categories, i.e. bicategories with one object.
At the same time we introduce a new notation for Gentzen’s “cut”, to present it as a
special case of composition in a 2-category.

In Section 2 we look at adjunctions in 2-categories and bicategories, with the aim of
studying those bicategories in which each 1-cell has both a left and a right adjoint, namely
compact noncommutative ∗-autonomous categories with several 0-cells.

In Section 3 we give a short exposition of some applications of bicategories to linguistics
that were developed by Claudia Casadio and the present author. These touch on three
deductive systems: the syntactic calculus, classical bilinear logic and compact bilinear
logic.

In Section 4 we take a new look at polycategories, which are to classical bilinear logic
as multicategories are to the syntactic calculus. Equations in a polycategory are explained
by viewing the latter as contained in a 2-category.

In Section 5 we show that polycategories in the new sense will do for the linear bicate-
gories of Cockett, Seely and Koslowski what multicategories can do for Bénabou’s original
bicategories.

In Section 6 we study adjoints in polycategories and show that, in a polycategory with
residual quotients and “zero” 1-cells, every 1-cell has both a left and a right adjoint.
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1. Multicategories recalled.
A good part of my book “Lectures on rings and modules” [1966] was devoted to

the residuated bicategory of bimodules, although, at the time, I did not know what a
bicategory was. Later I learned from Bénabou [1967] that a bicategory resembles a 2-
category in having 0-cells (in my case rings R, S, · · ·), 1-cells (bimodules RAS : S → R)
and 2-cells (bimodule homomorphisms f : RAS → RA

′
S), except that composition of 1-

cells (the tensor product RAS⊗ SBT ) satisfies the usual identity laws (R⊗A ∼= A ∼= A⊗S)
and associative law only up to coherent isomorphism. All these properties of the tensor
product of bimodules may be derived from Bourbaki’s [1948] universal property, which
stipulates a bilinear mapping mAB : AB → A ⊗ B such that, for each bilinear mapping
f : AB → C into a bimodule RCT , there is a unique homomorphism g : A⊗B → C such
that g ◦mAB = f .

Influenced by an early collaboration with George Findlay, I was particularly inter-
ested in the fact that the bicategory of bimodules was residuated, there being canonical
isomorphisms

Hom (A⊗B,C) ∼= Hom (A,C/B) ∼= Hom (B,A\C),

where
R(C/B)S = HomS(B,C),

S(A\C)T = HomR(A,C).

To explain the universal properties of ⊗ (tensor), / (over) and \ (under) in general
bicategories, I introduced the concept of a multicategory [L 19691), 1989]. A multicategory
consisted of multilinear maps

f : A1 · · ·Am → B,

which might be viewed as context-free rules in grammar (I have reversed the usual arrow
to reflect the hearer’s point of view), as deductions in logic (called “sequents” by Gentzen,
though here without his structural rules: interchange, contraction and weakening) or as
multisorted operations in algebra (where one might write fa1 · · · am ∈ B, the ai being
variables or indeterminates of type Ai).

Originally, I had assumed that the left side of a multilinear map lives in the free
monoid generated by a set, but one may as well let it live in the free category generated

by a graph, so that f becomes an arrow from S
A1←−· · · Am←−T to S

B←−T . The step of
replacing a monoid by a category, while obvious in the bimodule example, was taken in
linguistics by Brame [1984, 1985, 1987] (who may not, however, agree with my [1999a]
interpretation of his ideas). It does not make sense in any logical system which admits
the interchange rule.

Among the multilinear maps are the identities 1A : A → A, as in a category, but
composition is replaced by a more restricted notion, called “cut” by Gentzen:

f : Λ→ A g : ΓA∆→ C

g ◦ Γf∆ : ΓΛ∆→ C
,
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where capital Greek letters denote strings in the free monoid or chains in the free category,
say

Λ = R
L1←−· · · Lk←−S.

(At one time, I had written g & f for this cut, gaining simplicity at the cost of sacrificing
information.)

There are the expected identity and associative laws for the cut, but also a kind of
commutative law: if f : Λ→ A, g : Λ′ → A′ and h : ΓA∆A′Θ→ C then

(h ◦ Γf∆A′Θ) ◦ ΓΛ∆gΘ = (h ◦ ΓA∆gΘ) ◦ Γf∆Λ′Θ.

This and similar equations will become clear if we think of the multicategory as being
contained in a 2-category (see Section 4 below). It should be pointed out that Γ and ∆
here do not denote terms of the multicategory, but merely serve to remove the ambiguity of
the notation g&f by indicating where f is substituted into g. However, in the 2-category
they may be interpreted as horizontal compositions of 1-cells.

In earlier papers [L 1989, 1993a] I found it useful to pass to an internal language,
where the 1-cells are thought of as sorts and variables of each sort are admitted. Thus, to
each operation f : A1 · · ·Am → B there is associated a term fa1 · · · am of sort B, where
the ai are terms, e.g. variables, of sort Ai. Then 1A : A → A gives rise to the term
1Ax = x, where x is a variable of sort A. If ~x,~c and ~d are appropriate strings of variables,

g ◦ Γf∆ : ΓΛ∆→ C

gives rise to the term
(g ◦ Γf∆)(~c~x~d) = g~cf~x~d,

which results by substituting f~x for x in g~cx~d. The associative, commutative and identity
laws can now be proved, provided we identify two operations f and f ′ whenever f~x = f ′~x
is provable in the language. The variables may be called “indeterminates” in algebra and
“assumptions” in logic.

Bourbaki’s universal property for the tensor product stipulates a multilinear map
mAB : AB → A ⊗ B such that, for every f : ΓAB∆ → C, there exists a unique g :
ΓA⊗B∆→ C such that g ◦ ΓmAB∆ = f , equivalently that

g~cmABab~d = f~cab~d.

Similar universal properties may be given for the operations “over” and “under”. Thus,
one stipulates a multilinear map eCB : (C/B)B → C such that, for every f : ΛB → C
there exists a unique g : Λ→ C/B such that eCB ◦ gB = f , equivalently that

eCBg~lb = f~lb.

It is now easy to prove that the operations ⊗, / and \ are bifunctors and that ⊗ is
associative up to coherent isomorphism. In particular, one can derive Mac Lane’s [1967]
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famous pentagonal condition. See e.g. [loc. cit.], where it was unnecessarily assumed that
the multicategory has only one 0-cell.

Following Gentzen, one may reformulate the rules for tensor, over and under as intro-
duction rules on the left and on the right:

ΓAB∆→ C

ΓA⊗B∆→ C
,

Γ→ A ∆→ B

Γ∆→ A⊗B
,

ΓC∆→ ∆ Λ→ B

ΓC/BΛ∆→ D
,

ΛB → C

Λ→ C/B
.

The rules for \ are obtained from those for / by taking the mirror image on each side of
the arrow. All these rules are subject to appropriate equations.

While these introduction rules incorporate some cuts, no further cuts are necessary.
A categorical version of Gentzen’s cut elimination theorem asserts the following:

PROPOSITION 1.1. Given a multicategoryM, one may construct the free residuated
tensored multicategory F (M) generated byM without using any cuts or identities, except
those in M.

For example, 1A⊗B and 1C/B may be constructed as follows:

A→ A B → B

AB → A⊗B
A⊗B → A⊗B

C → C B → B

(C/B)B → C

C/B → C/B

where we introduce ⊗ first on the right and then on the left, but we introduce / first on
the left and then on the right. Similar rules hold for the cartesian product and coproduct.
For proofs see [loc. cit.].

2. Adjoints in bicategories.
I have lately become interested in adjoints in 2-categories and bicategories. For the

usual definition of a 2-category see [Mac Lane 1971]. For the present purpose, a 2-category
may be described as having 0-cells (objects), 1-cells (arrows) and 2-cells (transformations).
The first two constitute a category and the last act as arrows between 1-cells subject to
a vertical composition

f : A→ B g : B → C

g ◦ f : A→ C

and identity arrows 1A : A→ A rendering the 1-cells S → R objects of a category. The 2-
cells can be composed with 1-cells and behave like natural transformations in the familiar
2-category of categories: given

A−→ F−→
T ⇓ f S ⇓ t R
−→
B

−→
G
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one has the commutative diagram

FA
Ff−→ FB

tA

y ytB
GA −→

Gf
GB

which may be interpreted mnemonically as describing the naturality of t. Its diagonal
defines the horizontal composition

tf = tB ◦ Ff = Gf ◦ tA.

Moreover, 1-cells distribute over composition of 2-cells:

F (g ◦ f) = Fg ◦ Ff, (g ◦ f)H = gH ◦ fH.

In the same spirit,

F1A = 1FA = 1FA.

The exchange property [Mac Lane 1971]

ug ◦ tf = (u ◦ t)(g ◦ f)

may be deduced. Conversely, one presentation of 2-categories may be deduced from the
traditional one [loc.cit.], by defining

tA = t1A, Ff = 1Ff.

An adjunction between 1-cells F : R → S and U : S → R in a 2-category is given by
transformations η : 1R → UF and ε : FU → 1S such that

Uε ◦ ηU = 1U , εF ◦ Fη = 1F .

PROPOSITION 2.1 Adjoints in a 2-category are unique up to isomorphism.

While this is well-known, I have never seen a proof and shall produce one here, as it
is a little tricky and because the same proof will also serve for the analogous result for
polycategories in Section 6 below.

Proof: Suppose, for example, that U has another left adjoint F ′ given by η′ : 1R → UF ′

and ε′ : F ′U → 1S. We claim that the composite transformations

ϕ = εF ′ ◦ Fη′, ψ = ε′F ◦ F ′η
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are inverse to one another. Here, for example is a proof that ψ ◦ ϕ = 1F :

ψ ◦ ϕ = ψ ◦ εF ′ ◦ Fη′

= εF ◦ FUψ ◦ Fη′ by naturality of ε

= εF ◦ FUε′F ◦ FUF ′η ◦ Fη′ by distributivity of FU

= εF ◦ FUε′F ◦ F (UF ′η ◦ η′) by distributivity of F

= εF ◦ FUε′F ◦ F (η′UF ◦ η) by naturality of η′

= εF ◦ F (Uε′ ◦ η′U)F ◦ Fη by distributivity of F

= εF ◦ Fη since Uε′ ◦ η′U = 1U

= 1F .

The notion of adjunction has been generalized to bicategories, e.g. by Kelly [1972] and
Street and Walters [1978]. When is F : R → S left adjoint to U : S → R? We require
2-cells IR → U ⊗ F and F ⊗ U → IS such that the composite 2-cell U → IR ⊗ U →
(U ⊗ F ) ⊗ U → U ⊗ (F ⊗ U) → U ⊗ IS → U is the identity on U and similarly for the
analogous 2-cell F → F . For example, we may ask: when does a bimodule RUS have a
left adjoint SFR? (Note that IR is the bimodule RRR.) I was surprised to find the answer
in the exercises to Section 4.1 in my 1966 book: RUS has a left adjoint SFR if and only if
US is finitely generated and projective, and then F = S/U .

I have become particularly interested in bicategories in which each 1-cell has both a
left and a right adjoint. Such bicategories are called compact, following Kelly [1972]2).
For expository purposes, let me now confine attention to 2-categories with one object in
which all 2-cells are just partial orders.

A pregroup is a partially ordered monoid with two operations (−)` and (−)r satisfying

a`a→ 1→ aa`, aar → 1→ ara

for each element a, the arrow denoting the partial order. In the discrete case, when
the arrow denotes equality, a pregroup is just a group. More generally, in the cyclic3)

case, when a` = ar, a pregroup is just a partially ordered group. My favorite example
[L1994, 1995b] of a non-cyclic pregroup is the monoid of unbounded monotone mappings
f : Z → Z under composition with elementwise order. Then adjoints may be defined
thus:

f r(y) = max{x ∈ Z|f(x) ≤ y},
f `(y) = min{x ∈ Z|y ≤ f(x)}.

For example, let f(x) = 2x, then

f r(y) = [y/2], f `(y) = [(y + 1)/2].

We note that

f rr(y) = 2y + 1 6= f(y);
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but, of course, f r` = f = f `r. Other examples of pregroups are provided by all natural
languages, as we shall illustrate with English in the next section.

3. Linguistic applications.
We shall look at three possible applications of bicategories to linguistics, see [Casadio

and Lambek t.a.]. For expository purposes, we first confine attention to partially ordered
monoids:

(1) Residuated monoids, namely partially ordered monoids with two operations / and \
such that

a · b→ c iff a→ c/b iff b→ a\c.

(2) Grishin algebras, namely residuated monoids with a dualizing element 0 such that

0/(a\0) = a = (0/a)\0.

It is convenient to write
0/a = a`, a\0 = ar

and one can introduce a second associative operation + by defining

a+ b = (b` · a`)r = (br · ar)`

such that
a+ 0 = a = 0 + a.

One can then prove Grishin’s [1983] mixed associative laws:

c(a+ b)→ ca+ b, (a+ b)c→ a+ bc.

(3) Pregroups as defined above. These may also be viewed as compact Grishin algebras,
in which

a+ b = a · b, 0 = 1.

In the corresponding deductive systems, the arrow is not restricted to be a partial
order, but equality of arrows is usually ignored. The above partially ordered monoids will
then give rise to the following deductive systems:

(1) The syntactic calculus, introduced in [L1958] to study sentence structure.

(2) Classical bilinear logic [Abrusci 1991, L1993b], which was pioneered by Claudia Casa-
dio [1997] for grammatical investigations.

(3) Compact bilinear logic, recently proposed by me [L 1999c] for linguistic applications.
Each of these deductive systems becomes a monoidal category (that is, a bicategory

with one object), once attention is paid to equality between arrows:
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(1) A residuated monoidal category.

(2) A noncommutative ∗-autonomouns category.

(3) A compact noncommutative ∗-autonomous category.
As already pointed out, one may remove the restriction to one object. In Linguistics, this
step has already been taken by Brame [1984, 1985, 1987].

The idea common to the linguistic applications of these three systems is this: one
assigns to each word, say of English, one or more syntactic types, namely elements of the
free residuated monoid, Grishin algebra or pregroup generated by a partially ordered set
of basic types and then calculates the type or types of any string of words. We shall
illustrate this idea by looking at a single English sentence:

whom had she kissed−?

The dash at the end represents Chomsky’s trace and is introduced for comparison only.
In (1), the words of this sentence are assigned the types

(q′/(q/o))((q1/p2)/π3)π3(p2/o)→ q′.

The basic types employed here are:

q′ = question,

q = yes-or-no question,

q1 = yes-or-no question in the present tense,

o = object,

p2 = past participle,

π3 = third person singular pronoun.

The partial order on the set of basic types required for this example stipulates q1 → q→
q′.

Although the method advocated here received a belated acceptance by a small group
of linguists, I came to reject it myself for various reasons, one being the following. When
a person hears the words whom has, she may calculate the type of this short string to be
(q′/(p2/o))/π3, but the formal proof of this, carried out in the syntactic calculus, is fairly
long and, when put to paper, may occupy a quarter page. I had a strong feeling that this
kind of calculation could not reflect the pychological reality of how people analyze speech.

In (2), the successive types for the same sentence are

(q′ + o``q`)(q1 + p`
2 + π`

3)π3(p2 + o`)→ q′.
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Here the type of whom has is easily calculated algebraically to be q′ + o``p`
2 + π`

3; the
calculation makes repeated use of the mixed associative laws.

In (3), the distinction between + and · disappears and the successive types of the
given sentence are simply

(q′o``q`)(q
1
p`

2π
`
3)π3(p2o

`
)→ q′,

where the underlining indicates the cancellations

q`q1 → q`q→ 1, π`
3π3 → 1, p`

2p2 → 1, o``o` → 1.

Here the type of the initial segment whom has is immediately seen to be q′o``p`
2π

`
3.

The reader should not be misled by this single example that only / and (−)` are useful
in grammar and not \ and (−)r. For example, in the sentence

she kissed me

the transitive verb has types

π3\(s2/o), πr
3 + s2 + o`, πr

3s2o
`

in the three systems respectively, where

s2 = statement in the past tense.

I believe that a good approximation to English grammar can be obtained by working
with the free pregroup generated by a partially ordered set of basic syntactic types. For
a better approximation, however, freeness must be abandoned. For example, it is difficult
to justify the well-formedness of

people she knows like pizza

by the methods outlined above. The problem here is that there is no place for the type
of the missing pronoun whom. To get around this, one may have to admit grammatical
rules not listed in the dictionary, in other words, one may have to work with a pregroup
which is not freely generated by its basic types.



10

4. A new look at polycategories.

If we adopt the slogan: don’t ignore equality between deductions (also known in
linguistics as derivations, productions or rewrite rules), a production grammar (also known
as a semi-Thue system or rewrite system) is just a 2-category whose underlying 1-category
is the free monoid generated by a set. Some greater generality is achieved if we allow
the free category generated by a graph instead. In fact, for context-free grammars this
generality has been advocated by Brame [loc.cit.].

We recall that a multicategory is essentially a context-free grammar dealing with
deductions of the form

f : A1 · · ·Am → B,

where juxtaposition on the left represents the tensor product, attention being paid to
equality between deductions. In the presence of Gentzen’s structural rules (interchange,
contraction and weakening), these deductions are Gentzen’s sequents for intuitionistic
logic and the tensor product is just conjunction.

Gentzen also devised a deductive system for dealing with classical logic. Its sequents
have the form

f : A1 · · ·Am → B1 · · ·Bn,

where juxtaposition on the left stands for conjunction and juxtaposition on the right
stands for disjunction, although, in place of juxtaposition he had used commas on both
sides. One may wonder why he did not use a comma on the left and a semicolon, say,
on the right, to suggest the two different interpretations? We shall take advantage of
his daring notation to embed polycategories, our categorical version of his system (in the
absence of his structural rules) into 2-categories.

Polycategories may be regarded as underlying the grammar of Claudia Casadio [1997],
where juxtaposition on the left and on the right of a deduction represent the tensor
and the cotensor, its De Morgan dual, respectively. Compact polycategories, in which
the tensor and cotensor are identified, are then essentially production grammars, hence
2- categories whose underlying 1-category is freely generated. Polycategories are like
production grammars, except that composition of 1-cells is restricted to cuts.

Cuts in polycategories have the form

f : Λ→ ΓA∆ g : ΦAΨ→ Θ

Γg∆ ◦ ΦfΨ : ΦΛΨ→ ΓΘ∆

subject to the restriction that Γ or Φ is empty and ∆ or Ψ is empty. Thus there are four
cases:

Case 1. Φ and Ψ are empty and the conclusion is Γg∆ ◦ f : Λ→ ΓΘ∆.

Case 2. Φ and ∆ are empty and the conclusion is Γg ◦ fΨ : ΛΨ→ ΓΘ.

Case 3. Γ and ∆ are empty and the conclusion is g ◦ ΦfΨ : ΦΛΨ→ Θ.

Case 4. Ψ and Γ are empty and the conclusion is g∆ ◦ Φf : ΦΛ→ Θ∆.
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The four cases may be illustrated by the following planar diagrams respectively:

Λ

ΓA∆
Θ

Λ

ΓAΨ
Θ

Λ

ΦAΨ
Θ

Λ

ΦA∆
Θ

where the 2-cells f and g are represented by horizontal lines.
In case the reader is still skeptical, here is a formal definition to convince her that a

polycategory can be embedded into a 2-category with additional 2-cells.
Definition 4.1. A polycategory over a graph4) has 0-cells, 1-cells, 2-cells and equations
between 2-cells:
• its 0-cells are the nodes of the graph;
• its 1-cells are the arrows of the free category generated by the graph;
• its 2-cells are certain arrows between 1-cells, Γ and ∆, assuming that Γ and ∆ have

the same source and target;
• among the 2-cells are all the identity arrows 1A : A→ A, where A is an arrow of the

graph;
• the set of 2-cells is closed under the four kinds of cuts listed above;
• its equations are precisely those which hold in the 2-category obtained by allowing

all identity 2-cells and arbitrary composition of 2-cells, Provided we interpret a cut with
premisses f : Λ → ΓA∆ and g : ΦAΨ → Θ as the composition of Γg∆ and ΦfΨ, as
suggested by the above notation.

It was in order to get a grip on the possible equations between deductions that I had
suggested the idea of a polycategory in [L1969]. However, I did not take the trouble to
spell out exactly what equations had to hold. This was done by Szabo [1975], although
he allowed too many cases of the cut for the substructural system of bilinear logic studied
here. Polycategories were also investigated by Velinov [1988], who considered many vari-
ations, even the compact case. A detailed set of equations that meet my approval were
presented by Cockett and Seely [1992], who were using polycategories to introduce the
tensor and cotensor into what they then called “weakly distributive categories”. In fact,
they obtained an equivalence between the category of polycategories and the category of
weakly distributive categories.

I believe that the present method of inferring all equations between deductions from
those valid in 2-categories is new. (We shall ignore here another approach I have been
exploring, which replaces the operations that had proved useful in multicategories by
binary relations.) We shall look at a few examples of such equations. (A list of five such
equations will be found in Cockett and Seely [1992]. I have not checked whether these
five equations imply all the equations that can be inferred from those of 2-categories.)

EXAMPLE 1.

Λ
f−→ΓA A∆

g−→ΦBΨ B
h−→Θ

Λ∆→ ΓΦΘΨ
There are two ways of deriving the conclusion, depending on whether we first compose g
with f or h with g. These are represented by the two sides of the equation

ΓΦhΨ ◦ (Γg ◦ f∆) = Γ(ΦhΨ ◦ g) ◦ f∆,
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which is justified by associativity and distributivity in a 2-category. Note that the inter-
mediate term

Γ(ΦhΨ ◦ g) ◦ f∆

does not live in the polycategory, but in the embedding 2-category.

EXAMPLE 2.

Λ
f−→ΓA∆ A

g−→ΦBΨ B
h−→Θ

Λ→ ΓΦΘΨ∆

Here we have the equation

ΓΦhΨ∆ ◦ (Γg∆ ◦ f) = Γ(ΦhΨ ◦ g)∆ ◦ f,

which is also justified by associativity and distributivity.

EXAMPLE 3.

Φ
f−→A Ψ

g−→B ΓA∆BΛ
h−→Θ

ΓΦ∆ΨΛ→ Θ

Here the equation

(h ◦ ΓA∆gΛ) ◦ Γf∆ΨΛ = (h ◦ Γf∆BΛ) ◦ ΓΦ∆gΛ

may be reduced by associativity and distributivity to showing that

A∆g ◦ f∆Ψ = f∆B ◦ Φ∆g,

which follows from naturality of f .
These examples should support the claim that the equations holding in a polycategory

are precisely those which hold in the 2-category which contains it. In retrospect, the same
is true for a multicategory. Perhaps a polycategory should have been called a “sesqui-
category”! The algebraic derivations of the equations in the three examples above become
redundant if one relies instead on the planar diagrams which illustrate how the conclusion
is obtained:

Λ

ΓA∆
ΦBΨ

Θ

Λ

ΓA∆
ΦBΨ

Θ

Φ Ψ

ΓA∆BΛ

Θ

where the horizontal lines represent the deductions f, g and h: two deductions are iden-
tified if they give rise to the same diagram.

A final example will illustrate the behaviour of the identity arrow.

EXAMPLE 4.

Λ
f−→ΓA∆ A

1A−→A

Λ
f−→ΓA∆
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Here we have
Γ1A∆ ◦ f = 1ΓA∆ ◦ f = f.

5. Polycategories and linear bicategories.
After composing the first draft of this paper, I was presented with a copy of the article

by Cockett, Koslowski and Seely [2000], in which they developed the notion of “linear
bicategory” and studied “linear adjoints”, a generalization of adjoints in the original
bicategories of Bénabou.

One purpose of multicategories had been to introduce the tensor product ⊗ and the
corresponding identity 1-cells IR into a bicategory so that their properties can be proved
instead of having to be postulated. Polycategories will do the same for linear bicategories
in helping to introduce also the cotensor ⊕ and the corresponding zero 1-cells OR. This
program had in fact been carried out by Cockett and Seely [1992], although they had
presented polycategories more directly than here.

We recapitulate the definitions of these operations in a present style polycategory:
⊗ is given by mAB : AB → A⊗ B such that, for each f : ΓAB∆→ Θ, there exists a

unique g : ΓA⊗B∆→ Θ such that g ◦ ΓmAB∆ = f .
IR is given by iR : 1R → IR such that, for each f : Γ∆ → Θ, there exists a unique

g : ΓIR∆ → Θ such that g ◦ ΓiR∆ = f . Here 1R denotes the identity arrow R → R in a

2-category, that is, the empty chain between Γ and ∆ in
Γ←−R ∆−→.

⊕ is given by nAB : A⊕ B → AB such that, for each f : Θ → ΓAB∆, there exists a
unique g : Θ→ ΓA⊕B∆ such that ΓnAB∆ ◦ g = f .

OR is given by jR : OR → 1R such that, for each f : Θ → Γ∆, there exists a unique
g : Θ→ ΓOR∆ such that ΓjR∆ ◦ g = f .

A residuated polycategory has residual quotients / and \, the first of which is introduced
as follows:

/ is given by eAB : (A/B)B → A such that, for each f : ΓB → ∆A, there exists a
unique g : Γ→ ∆A/B such that ∆eAB ◦ gB = f .

For \ one takes the mirror image of each side of the arrow.
One may also consider residual differences ·

· (less) and ·
· (from). For a discussion of

these see [L1993b].
Gentzen style introduction rules for ⊗ and IR take the following form, while those for

⊕ and OR may be obtained by reversing the arrows:

ΓAB∆→ Θ

ΓA⊗B∆→ Θ
,

Γ→ ΦA ∆→ BΨ

Γ∆→ ΦA⊗BΨ
,

Γ∆→ Θ

ΓIR∆→ Θ
, 1R → IR.

The introduction rules for / have the form

ΓA∆→ Θ Λ→ B

ΓA/BΛ∆→ Θ

ΓB → ∆A

Γ→ ∆A/B
,
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while those for \ are obtained by taking the mirror image on each side of the arrow.
Here, for example, is how one may construct the arrow

(A⊕B)⊗ C → A⊕ (B ⊗ C),

representing one of Grishin’s mixed associative laws:

A→ A B → B

A⊕B → AB C → C

(A⊕B)C → A(B ⊗ C)

A⊕B)C → A⊕ (B ⊗ C)

(A⊕B)⊗ C → A⊕ (B ⊗ C)

One introduces first ⊕ on the left and then ⊗ on the right, next ⊕ on the right and then
⊗ on the left,

At first sight, it looks as though the system comprising all these operations should
enjoy the cut elimination property.5) Indeed, here are two cut-free proofs:

A→ A

A→ AO
1→ A(O/A)

I → A(O/A)

I → A⊕ (O/A)

O → O A→ A

(O/A)A→ O

(O/A)⊗ A→ O

where 1 denotes the empty string or chain and subscripts on 1, I and O have been omitted.
Similarly one shows

I → (B\O)⊕B , B ⊗ (B\O)→ O,

and one obtains

B\O → I ⊗ (B\O)→ (A⊕ (O/A))⊗ (B\O)→ A⊕ ((O/A)⊗ (B\O)).

Taking B = O/A, so that
(O/A)⊗ (B\O)→ O,

one thus obtains a deduction
(O/A)\O → A.

Evidently, this can have no cut-free proof.

6. Adjoints in polycategories.
The linear adjoints of Cockett, Koslowski and Seely may be traced back to polycate-

gories. In fact, the definition of adjoints for 2-categories given in Section 2 remains valid
for polycategories, once one realizes that the compositions Uε ◦ ηU and εF ◦Fη are cuts,
illustrating cases 2 and 4 of Section 2:

η : 1R → UF ε : FU → 1S

Uε ◦ ηU : U → U
,

η : 1R → UF ε : FU → 1S

εF ◦ Fη : F → F
.
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The proof of Proposition 2.1 also remains valid for polycategories, so we conclude:
PROPOSITION 6.1. In a polycategory any existing adjoints are unique up to isomor-

phism.
When can we infer that adjoints exist?
PROPOSITION 6.2. In a residuated polycategory with zero 1-cells, every 1-cell A :

S → R has both a left and a right adjoint:

A` = OS/A , Ar = A\OR.

Proof: To show the existence of left adjoints, for example, we have to define

εA : (OS/A)A→ 1S , ηA : 1R → A(OS/A)

and verify that

AεA ◦ ηAA = 1A , εA(OS/A) ◦ (OS/A)ηA = 1O/A.

We define εA = j ◦ eOA by the cut

eOA : (O/A)A→ O j : O → 1

εA : (O/A)A→ 1

and ηA : 1→ A(O/A) as the unique g : 1→ A(O/A) such that

AeOA ◦ gA = f,

where f : A→ AO is the unique arrow such that

Aj ◦ f = 1A :

A
f−→AO O

j−→ 1

A→ A
,

1
g−→A(O/A) (O/A)A

eOA−→O

A→ OA
.

Then
AεA ◦ ηAA = Aj ◦ AeOA ◦ gA = Aj ◦ f = 1A.

To show the other equation to be proved, we recall that 1A` is the unique h : A` → A`

such that
eOA ◦ hA = eOA.

Hence this equation has to be verified when

h = εAA
` ◦ A`ηA.

Indeed
eOA ◦ hA = eOA ◦ εAA`A ◦ A`ηAA

= εAO ◦ A`AeOA ◦ A`ηAA by naturality of εA

= jO ◦ eOAO ◦ A`f by definition of εa and ηA
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Now, by lemma 6.3 below, we may replace jO by Oj, hence this

= eOA ◦ A`Aj ◦ A`f by naturality of eOA

= eOA ◦ A`(1A) by definition of f

= eOA ◦ 1A`A = eOA.

COROLLARY 6.4. In a residuated polycategory with zero 1-cells, the zeros are dualizing:

for any 1-cell A : S → R,

(OS/A)\OR
∼= A ∼= OS/(A\OR).

Proof: If A` is left adjoint to A, then both A and A`r are right adjoints of A`, hence
A`r ∼= A by Proposition 6.1. Similarly Ar` ∼= A.

LEMMA 6.3. In a polycategory with zero 1-cells, jO = Oj.
Proof: By the universal property of j : O → 1, any 2-cell f : OO → 1 gives rise to a

unique g : OO → O such that j ◦ g = f . Now take f = j ◦ Oj, then g = Oj. But, by
naturality of j, j ◦Oj = j ◦ jO, hence g = jO.

7. Postscript.
This article is an elaboration of a talk at the 1999 category conference in Coimbra.

Its major aim was to explain my idea of what the equations of a polycategory should be.
I had introduced this concept in 1969 without spelling out these equations. In the mean
time, attempts to produce such equations axiomatically were made by several authors,
though not in agreement with one another. While the axioms provided by Cockett and
Seely are “sound”, “completeness” with respect to the present treatment remains to be
shown: the equations of a polycategory should be those that ensure its embedding into a
2-category to be faithful.
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ENDNOTES
0) This research was supported by NSERC and SSHRC.
1) The cited paper contains some mistakes, but these do not affect the concept of a

multicategory.
2) Kelly used the word “compact” for symmetric monoidal categories in which each

object has a right adjoint. These are the compact ∗-autonomous categories of Barr [1979],

and the concept was generalized to bicategories by Street and Walters [1978].
3) The word “cyclic” in this context is due to Yetter [1990].
4) By a graph is here understood what graph theorists call an “oriented multigraph”.
5) I had mistakenly thought so in [L1993b], although a counterexample had been

produced by Abrusci [1991].


