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Abstract. It may be argued that the language of mathematics is about the category
of sets, although the definite article requires some justification. As possible worlds
of mathematics we may admit all models of type theory, by which we mean all local
toposes. For an intuitionist, there is a distinguished local topos, namely the so-called
free topos, which may be constructed as the Tarski-Lindenbaum category of intuitionistic
type theory. However, for a classical mathematician, to pick a distinguished model may
be as difficult as to define the notion of truth in classical type theory, which Tarski has
shown to be impossible.

By ‘mathematics’ we shall here mean elementary mathematics, to include arithmetic
and analysis, not metamathematics and category theory, if the former is to be adequate for
a proof of Gödel’s completeness theorem and the latter for the so-called Yoneda embedding
of small categories into functor categories.

We aim to address the question: what is the world of mathematics? In particular, we
wish to discuss whether the definite article is justified. Mathematicians are by no means
in agreement on how this question is to be answered, yet there seems to be a general
consensus on the language of mathematics, of which the world of mathematics is to be a
model. Ever since Cantor and Frege, most mathematicians have agreed that this is some
form of set theory, although there have been dissenting voices, notably those of Kronecker
and Poincaré.

There is less agreement as to the precise form of the language of set theory. Logi-
cists believe that the natural numbers can be defined, but at the price of an axiom of
infinity. This axiom can be avoided if the numeral zero and the successor operation are
incorporated into the language to start with, following Peano.

Frege’s original attempt was based on his comprehension scheme, which asserted that
for each formula ϕ(x), x being a free variable, one could construct an entity A such that,
for all x, x belongs to A if and only if ϕ(x). Unfortunately, this led to Russell’s paradox
when one took ϕ(x) to be the formula ‘x does not belong to x’. To avoid this, precautions
have to be taken, and this is done in a number of proposed languages.

On the whole, mathematicians prefer to work in Gödel-Bernays set theory, which
distinguishes between small sets and large classes. In this language one can only say that
x belongs to A, in symbols x ∈ A, if x denotes a set and A a class. Logicians generally
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prefer an essentially equivalent first-order language, Zermelo-Fraenkel set theory, where
the comprehension scheme is restricted to those x which belong to a previously given set.
Some philosophers may prefer another formulation of set theory, due to Quine, which
restores the legitimacy of the universal set.

However, Russell and Whitehead had previously elaborated a theory of types, which
only admitted the formula x ∈ A if A was of an appropriate higher type than x. Unfortu-
nately, their original formulation of type theory was too cumbersome to appeal to a wide
audience, and type theory did not catch on, even though Church and Henkin gave more
elegant formulations later.

Phil Scott and the present author made use of another formulation of type theory, in
connection with category theory. It was based on the following types:

1, Ω, N, P(A), A×B ,

where A and B are given types, Ω is the type of truth-values (or propositions), N is the
type of natural numbers, P(A) is the type of sets of entities of type A and A × B is the
type of pairs of entities of types A and B respectively. The type 1 is not really necessary,
being only introduced for convenience; it is supposed to be the type of a distinguished
entity, often denoted by ∗.

In the formal language of type theory we also admit countably many variables of each
type, as well as the following terms (in addition to the variables):

∗ of type 1 ,

a = a′, a ∈ α of type Ω ,

0, Sn of type N ,

{x ∈ A|ϕ(x)} of type P(A) ,

(a, b) of type A×B ,

where a, a′, α, n, ϕ(x) and b are assumed to be of types A,A,P(A),N,Ω and B respectively.
In this language, we can define logical symbols as follows, assuming p, q and ϕ(x) to

be of type Ω:
> as ∗ = ∗

p ∧ q as (p, q) = (>,>) ,

p⇒ q as p ∧ q = p ,

∀x∈Aϕ(x) as {x ∈ A|ϕ(x)} = {x ∈ A|>} ,
p ∨ q as ∀t∈Ω(((p⇒ t) ∧ (q ⇒ t))⇒ t) ,

∃x∈Aϕ(x) as ∀ttΩ(∀x∈A(ϕ(x)⇒ t)⇒ t) ,

¬p as ∀t∈Ω(p⇒ t) ,

⊥ as ∀t∈Ωt .

In such a language, one must also specify the set of theorems, as is usually done with
the help of a deduction symbol `. One writes a deduction as follows:

p1, p2, · · · , pn `X pn+1 ,
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where the pi are terms of type Ω, also called formulas, and X is a set of variables containing
all the variables occurring freely in the pi. This is supposed to mean that pn+1 is deducible
from p1, p2, · · · , pn and this meaning is laid down by a set of axioms and rules of inference,
which we shall not spell out here. They contain no surprises; the reader interested in the
details is referred to Lambek and Scott [1986]. In case n = 0 and X is empty, we just
write ` p1 and call p1 a theorem.

Any formal language L satisfying these conditions on types, terms and theorems is
called a type theory. For pure intuitionistic type theory L0 we require that types, terms
and theorems are freely generated. This means: (a) there are no types or terms other
than those prescribed as above and there are no non-trivial identifications between types
or terms, so that, in particular, the types form what Russell calls a hierarchy; (b) there are
no theorems other than those which follow from the axioms and rules of inference required
for intuitionistic arithmetic, so that the set of theorems is recursively enumerable.

Pure classical type theory L1 is defined likewise, except that classical type theories also
require the axiom:

∀t∈Ω(¬¬t⇒ t)

or, equivalently,
∀t∈Ω(t ∨ ¬t),

the axiom of the excluded third.
Type theories form a category if one introduces suitable arrows L → L′ between them,

called translations, which we shall not spell out here. Then L0 becomes an initial object
in this category and L1 an initial object in the subcategory of classical type theories.

Moderate intuitionists, who agree to a formalized language at all, may accept L0 as
the language of mathematics. Classical mathematicians may conceivably accept L1 in this
capacity, but they are more likely to insist on at least one further axiom scheme, the rule
of choice, really a collection of axioms, one for each type.

Now let us return to our question: what is the world of mathematics? An extremist
adherent of the formalist school might claim that there is no such world, whereas other
mathematicians may maintain that there are many such worlds. But, according to Plato,
there should be a distinguished world, of which others are imperfect copies. The way
Leibniz might put it, this distinguished world should be “the best of all possible worlds”.

Most mathematicians would agree that the world of mathematics is the category of
sets; but the same doubt attaches to the definite article here. For example, does the
category of sets contain the union, or direct limit, of the sets N,P(N),P(P(N)), · · ·?
Does it satisfy the continuum hypothesis, which asserts that there is no set larger than N
yet smaller than P(N)?

Bill Lawvere has given an axiomatic description of those categories which resemble
our idea of the category of sets, they are called (elementary) toposes and generalize the
toposes introduced by Grothendieck into algebraic geometry. (Some of Lawvere’s work
was in collaboration with Myles Tierney.)

Without becoming too technical, let us say here that a topos is a kind of category
in which one can imitate the following properties expected of the category of sets: there



4

should be a terminal object 1 corresponding to the one-element set{∗}; one should be
able to form the cartesian product A×B of two objects and the exponential object CB of
functions from B to C; there should be an object of truth-values Ω with a distinguished
element > and a one-to-one correspondence between subobjects B of A and their char-
acteristic functions χB : A→ Ω such that, for any element a of A, a belongs to B if and
only if χB(a) = >. Finally, there should be an object of natural numbers N , equipped
with an element 0 ∈ N and a function S : N → N allowing definition by recursion: for
each element a of A and each function h : A → A, one may construct a unique function
f : N → A such that f(n) = hn(a) for all ordinary natural numbers n.

As Lawvere observed, all these properties can be expressed in the language of category
theory, without mentioning elements. For example, > is then seen as an arrow 1 → Ω
and 0 as an arrow 1→ N .

Let us now look at the relation between toposes and type theories.
With each topos T there is associated a type theory L(T ), its internal language: the

types are the objects of T , the closed terms of type A are the arrows 1→ A in T and the
theorems are arrows p : 1 → Ω which are equal to > in T . Instead of saying that ` p in
L(T ) we also say that p is true in T .

Categorists were somewhat surprised when it turned out that, in general, L(T ) is not
classical but intuitionistic. In particular, there is no reason why there should be exactly
two truth-values, that is, arrows 1 → Ω. Of course, we cannot expect L(T ) to be pure
(see above); it will inherit constraints from T .

Conversely, with each type theory (language) L there is associated a topos >(L), the
topos generated by L, also called the Tarski-Lindenbaum category of L. Its objects are
names of sets modulo synonymity, that is, terms α of type P(A) for some type A, such
that α is identified with α′ of the same type if ` α = α′. Its arrows are names of binary
relations which can be proved to be functions; thus an arrow α → β, where β is of type
P(B), say, is a closed term ρ of type P(B × A) such that

` ∀x∈A(x ∈ α⇒ ∃!y∈B(y ∈ β ∧ (x, y) ∈ ρ),

where ∃! denotes unique existence. Again, ρ should be identified with ρ′ : α → β if
` ρ = ρ′.

Toposes themselves are the objects of a category, whose arrows T → T ′ are functors
preserving the logical structure, they are called logical morphisms. As was shown by
Lambek and Scott [1986], given any type theory L and any topos T , there is a one-to-
one correspondence between translations L → L(T ) and logical morphisms T (L) → T ,
making L and T what categorists call a pair of adjoint functors between the category of
type theories and the category of toposes.

By an interpretation of L in T is meant a translation L → L(T ) or, equivalently, a
logical morphism T (L)→ T . It turns out that the translation L → LT (L), corresponding
to the identity functor T (L) → T (L), is what logicians call a conservative extension,
meaning that no closed formula of L becomes a theorem of LT (L) unless it already was a
theorem of L. On the other hand, TL(T )→ T , corresponding to the identity translation
L(T )→ L(T ), is what categorists call an equivalence of categories.
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We also note that LT (L) has more types and terms, even if not more theorems, than
L: any term of type P(A) in L becomes a type in LT (L) and, whenever ` ∃!x∈Aϕ(x) in
L, there will be a term a in LT (L) such that ` ϕ̂(a) in LT (L), where ϕ̂ is the image of
ϕ under the interpretation L → LT (L). Thus we have a categorical version of Russell’s
theory of description: we may think of a as denoting the unique x such that ϕ̂(x).

It is easily seen that, if p and q are closed formulas of L = L(T ), then

(i) p ∧ q is true in T if and only if p is true in T and q is true in T .

(ii) Of course, we also know that > is true in T .
We are therefore justified in saying that the logical symbols > and ∧ in the language

L(T ) mean exactly what they are supposed to mean, namely true and and.
Unfortunately, other logical symbols do not, in general, have the expected meaning;

we say that a topos is local if the symbols ⊥,∨ and ∃ do:

(iii) ⊥ is not true in T ;

(iv) p ∨ q is true in T if and only if p is true in T or q is true in T ;

(v) ∃x∈Aϕ(x) is true in T if and only if ϕ(a) is true in T for some term a of type A in
L(T ).

An example of a local topos is the so-called free topos T (L0), the topos generated by
pure intuitionistic type theory. This is not at all obvious and for a proof the reader is
referred to Lambek and Scott [1986]. The suggestion was made there, and defended by
Couture and Lambek [1991] and Lambek [1994], that the free topos is a suitable candidate
for the world of mathematics acceptable to members of different philosophical schools, who
do not insist on the principle of the excluded middle and who are willing to compromise:
(a) to moderate Platonists, because it is an initial object in the category of all toposes; (b)
to moderate formalists or even nominalists, because it may be constructed from words, as
in the general construction of >(L) above; (c) to moderate intuitionists, because L0 is an
intuitionistic type theory and properties (iv) and (v) embody constructivist principles.

Needless to say, such a compromise will be rejected by extreme Platonists, who may
believe that mathematical entities are thoughts in the mind of a demiurge, by extreme
nominalists, who may believe that only words are real, but that equivalence classes of
synonymous words are not, and by extreme intuitionists, who may believe that infinite
sets do not exist or that truth varies with historical time.1

Another nice property of the free topos is that all numerals in its internal language
are standard, that is, all closed terms of type N have the form Sn0 for some ordinary
natural number n. Thus numerals too have the expected meaning. Unfortunately, the
logical symbols ¬,⇒ and ∀ do not, as follows from Gödel’s incompleteness theorem (see
below).

A topos T is called Boolean if its internal language is classical, that is, if the principle
of the excluded third holds in T , equivalently, if ∀t∈Ω(¬¬t⇒ t) is true in T . In a Boolean

1See also the Concluding Remarks and Footnote 4.
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local topos all logical symbols have the expected meaning. Thus, in addition to (i) to (v),
a Boolean local topos also satisfies:

(vi) ¬p is true in T if and only if p is not true in T ;

(vii) p⇒ q is true in T if and only if, if p is true in T , then q is true in T ;

(viii) ∀x∈Aϕ(x) is true in T if and only if ϕ(a) is true in T for all terms a of type A in
L(T ).

In view of (v) and (viii), the substitutional interpretation of quantifiers, discussed by
Russell and Kripke [1976], holds for the internal language of a Boolean local topos.

Note that any non-trivial well-pointed topos is a Boolean local topos, see McLarty
[1992]. Here non-trivial means that the terminal object is not initial and well-pointed
means that it is a generator, in the sense that two arrows f, g : A → B will be equal if
fa = ga for all a : 1 → A. Actually, non-trivial is equivalent to (iii) and well-pointed to
(viii).

It had been suggested earlier that the free topos T (L0) may be a suitable candidate for
the world of mathematics, acceptable to moderate intuitionists, formalists and Platonists
alike, provided only that the last two are willing to forget the principle of the excluded
third. Unfortunately, most mathematicians refuse to do so and insist on working with
classical logic.

To a classical mathematician, a world of mathematics should presumably be a Boolean
local topos and the world of mathematics a distinguished one. In view of Gödel’s com-
pleteness theorem (see below), applied to pure classical type theory L1, there exist plenty
of Boolean local toposes. Unfortunately, the free Boolean topos, namely the topos T (L1)
generated by L1, is not local, in view of Gödel’s incompleteness theorem: if g is Gödel’s
undecidable statement, then g∨¬g is true in T (L1) but neither g nor ¬g are. Thus, since
the usual proof of the completeness theorem is non-constructive, it becomes desirable to
exhibit a Boolean local topos or to show that none can be constructed.

Before stating Gödel’s theorems in a categorical context, we must define the notion
of a model for type theory or higher order logic. At first sight it might seem that we
should regard as a model of L an interpretation of L in any topos T whatsoever. Since
L → LT (L) is a conservative extension, this single interpretation would suffice to decide
provability in L by looking at truth in T (L), making the completeness theorem quite
trivial. However, models had previously been defined for classical type theories by Leon
Henkin more narrowly (see Hintikka [1969]), and his definition was extended in Lambek
and Scott [1986] to intuitionistic type theories: a model of L is an interpretation of L
in a local topos. Henkin models then are essentially Boolean local toposes. Gödel’s
completeness theorem now asserts less trivially:

A closed formula in a type theory L is a theorem if and only if it becomes true in every
model of L.

To state Gödel’s incompleteness theorem, we need another definition. A topos T (and
a model L → L(T )) is said to be ω-complete if the truth of ϕ(Sn0) for all ordinary natural
numbers n implies the truth of ∀x∈Nϕ(x). For a Boolean local topos, ω-completeness is
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equivalent to the statement that all numerals are standard. The incompleteness theorem
now asserts:

Assuming that L is consistent, meaning that not all closed formulas are theorems,
and that the set of theorems is recursively enumerable, then it does not suffice to look at
ω-complete models only.

Gödel exhibited a formula ϕ(x), where x is a free variable of type N , such that ϕ(Sn0)
is a theorem for all ordinary natural numbers n, hence ∀x∈Nϕ(x) is true in any ω-complete
model, yet is not a theorem of L. Gödel was a Platonist, believing in a real world
of mathematics which he assumes to be ω-complete, and he claimed to have shown the
existence of true statements (i.e. true in the real world) which are not provable. But what
is the real world if not a distinguished local topos? When it comes to pure intuitionistic
type theory L0, such a model can be constructed, namely the free topos.2) But what about
a distinguished model of pure classical type theory L1?

Let us now return to the question of whether a Boolean local topos can be constructed.
If this were the case, we would have a classical model L1 → L(T ) and this would enable
us to define truth in the language L1 to mean truth in the topos T . Conversely, if we
could define truth in L1, by adjoining the set θ of all true formulas as axioms, we would
obtain a new language L1/θ and we would be able to construct the Boolean (though not
yet local) topos T (L1/θ). Thus, the problem of constructing a Boolean local topos is
related to the problem of defining truth in L1.

What is truth? This question was raised by one Pontius Pilatus two thousand years ago
and answered only recently by Alfred Tarski [1956]. He showed that truth in languages
such as L1 cannot be defined, provided the word ‘defined’ is formally interpreted in a
certain way. If Tarski’s notion of ‘defined’ correctly captures the informal notion of this
word corresponding to our informal notion of ‘constructed’, then indeed we may conclude
that a distinguished local topos cannot be constructed and that it makes no sense for a
classical mathematician to speak of the category of sets or the world of mathematics.

Without a distinguished model, we are thus led to consider the totality of all possible
worlds, or all models of L1, simultaneously. But first let us make an algebraic analogy.

It had been noticed by Peter Freyd that for a topos to be local could be expressed
algebraically thus: its terminal object is not initial and it is an indecomposable projec-
tive. Gödel’s completeness theorem may also be expressed algebraically: every topos is
contained (up to isomorphism) in a product of local toposes. A similar theorem holds in
commutative algebra: every commutative ring is contained in a product of local rings. It is
not a complete accident that the word ‘local’ appears in both contexts. The choice of this
word in connections with toposes seems to have originated with Alexander Grothendieck,
who also found that the assertion about rings can be sharpened as follows:

Every commutative ring is the ring of continuous sections of a sheaf of local rings.

As Bill Lawvere [1975] might put it less formally:

Every commutative ring is a continuously variable local ring.

One would like to prove a similar theorem for toposes. In fact, a completely analogous
result holds for toposes which obey the rule of choice (see Lambek and Scott [1986]) and
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even for arbitrary toposes (Awodey [2000]): 2

Every topos is equivalent to the topos of continuous sections of a sheaf of local toposes.
It is tempting to abandon the search for a distinguished Boolean local topos and be

satisfied with the sheaf of Boolean local toposes instead. But, if we ask in which world
this sheaf lives, we are back at square 1.

Concluding remarks.
I have tried to show that one cannot construct a distinguished world of mathematics

to satisfy a classical mathematician, who thus would reject a Platonic world and might
accept a sheaf of possible worlds instead.

On the other hand, it has been suggested by Lambek [1994] that there is a constructible
candidate for such a Platonic world, namely the free topos, that ought to please moderate
Platonists, formalists and intuitionists, even if not logicists. However, I doubt whether
most Platonists, formalists and intuitionists would accept this proposal, which, for this
reason, was called ‘constructive nominalism’ in Couture and Lambek [1991] to distinguish
it from the views advocated by the traditional schools.

Followers of the first two schools would certainly reject it, if only because they are
committed to the principle of the excluded third. Platonists will have other objections,
perhaps of a quasi-mystical nature, and formalists might not be happy with the necessity
of introducing equivalence classes of formal expressions.

Intuitionists appear to be divided.3 Many follow Brouwer in rejecting Cantorian sets
altogether, replacing them by spreads (see Van Dalen [1999]), hence would not even accept
pure intuitionistic type theory L0. Others are inclined to accept L0 and are pleased with
the free topos T (L0) for exhibiting a number of intuitionistic principles, e.g. that any
true existential statement can be witnessed by a concrete example. On the other hand,
some intuitionists see a problem with the notion of truth, here identified with provability.

Gödel, in proving his incompleteness theorems produced a non-provable formula of the
form ∀x∈Nϕ(x), even though all instances ϕ(Sn0) are provable. According to the so-called
Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic, there is no reason for
∀x∈Nϕ(x) to be true unless the truths of all instances ϕ(Sn0) have been established in a
uniform manner; for example, the proofs of ϕ(Sn0) might increase in length as n increases.
However, some intuitionists would insist that truth is language-independent and that the
truth of ∀x∈Nϕ(x) has been established by Gödel metamathematically by showing that
each ϕ(Sn0) is true. These intuitionists are committed to ω-completeness and would

2I had conceived such a result and presented it at the Brouwer conference in Amsterdam, giving rise
to a joint article with Iecke Moerdijk [1982], who had pointed out that I had used an awkward topology.
We there used the word “local” in presence of the disjunction property only, but the existence property
held automatically for toposes with the rule of choice (see also Lambek and Scott [1986]). I later [1989]
used “local” in the present sense, but had to adjoin a sufficiently large set of so-called Henkin constants.
Awodey [2000] managed to avoid these constants, but used “completely local” for what is here called
“local”.

3I have been told that present day intuitionists even in Holland are divided. Those in Amsterdam and
Utrecht might accept the proposal compromise, while those in Nijmegon, though not extremists, would
be inclined to reject it.
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reject the free topos for not being ω-complete.
Let me point out, however, that the free topos is ω∗-complete in the following sense:

if ∃x∈Nϕ(x) is true, then so is ϕ(Sn0) for some n ∈ N.
This principle is equivalent to ω-completeness classically, but not intuitionistically.

One should note that for L0 substitutional interpretation holds for existential, but not for
universal quantifiers!

Now what about logicists who are not committed to the principle of the excluded third?
Their first objection might be that the language L0, as formulated above, does not start
with logical symbols as given, but treats them as defined. This objection can easily be
overcome by formulating L0 differently, beginning with the logical symbols representing
truth, conjunction, implication and universal quantification, as well as the symbol of
membership. There remains the objection that the natural numbers are not definable in
either presentation, but must be postulated à la Peano or, equivalently, derived from a
so-called axiom of infinity. To overcome this objection we would have to replace L0 by
a more powerful language, such as Quine’s New Foundations or polymorphic type theory,
which allows quantification over variable types. But then we have no ready-made models
like Lawvere’s elementary toposes. One would have to adjoin formal products of variable
objects to a topos.

Finally, let me address the question: what rôle should category theory play in the foun-
dations of mathematics? I recall that, at the 1963 meeting devoted to Logic, Methodology
and Philosophy of Science in Jerusalem, Bill Lawvere proposed basing mathematics on
categories rather than sets. Alfred Tarski, who was in the audience, objected: what is a
category if not a set of objects and a set of arrows? Lawvere replied: set theory deals
with the binary relation of membership, category theory with the ternary relation of
composition. Apparently, Tarski was satisfied with the answer.

In my above account, I have presented the language of mathematics in traditional
non-categorical terms, but its models as certain categories, namely local toposes. Some
categoraphobes have asked whether they are to be excluded from understanding the foun-
dations of mathematics. I apologize to them for describing the models as categories; after
all, Leon Henkin managed to describe the models of classical type theory without men-
tioning categories and the same could be done for intuitionistic type theory. However, the
categorical description is so much more concise and allows one to say in one page what
otherwise might take ten.
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