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Abstract. This is a survey of some of the applications of quaternions to physics in the
20th century. In the first half century, an elegant presentation of Maxwell’s equations and
special relativity was achieved with the help of biquaternions, that is, quaternions with complex
coefficients. However, a quaternionic derivation of Dirac’s celebrated equation of the electron
depended on the observation that all 4× 4 real matrices can be generated by quaternions and
their duals.

On examine quelques applications des quaternions à la physique du vingtième siècle. Le premier
moitié du siècle avait vu une présentation élégantes des equations de Maxwell et de la relativité
specialle par les quaternions avec des coefficients complexes. Cependant, une dérivation de
l’équation célèbre de Dirac dépendait sur l’observation que toutes les matrices 4 × 4 réelles
peuvent être generées par les representations regulières des quaternions.

1. Prologue.
This is an expository article attempting to acquaint algebraically inclined readers with some

basic notions of modern physics, making use of Hamilton’s quaternions rather than the more
sophisticated spinor calculus. While quaternions play almost no rôle in mainstream physics,
they afford a quick entry into the world of special relativity and allow one to formulate the
Maxwell-Lorentz theory of electro-magnetism and the Dirac equation of the electron with a
minimum of mathematical prerequisites. Marginally, quaternions even give us a glimpse of the
Feynman diagrams appearing in the standard model.

As everyone knows, quaternions were invented (discovered?) by William Rowan Hamilton.
Carl Friedrich Gauss is said to have anticipated them, but did not publish. Simon Altmann
makes claims for a prior discovery by Benjamin Olinde Rodrigues, a French mathematician,
banker and utopian socialist.1) I have glanced at the article by Rodrigues and am impressed by
his technical grasp of rotations, but could not spot any explicit mention of a division algebra.

Quaternions offered an early promise for applications to physics, but met a challenge when
the Michelson-Morley experiment suggested the invariance of x20−x21−x22−x23, and not that of
x20 + x21 + x22 + x23, the norm of a quaternion. The early attempt to overcome this problem led
people to look at “biquaternions”, quaternions with complex coefficients. This worked neatly
for Maxwell’s equation and special relativity, but not for Dirac’s equation, which required that
the imaginary square root of −1 be replaced by a suitable matrix which anticommutes with the
basic quaternion units.

Even as the quaternion approach was improved, physics evolved into quantum electro-
dynamics and the standard model. Still, quaternions proved useful to some extent for classifying
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the fundamental particles of the standard model and to describe Feynman diagrams. They also
led Stephen Adler to study the dynamics of particles in a quaternionic Hilbert space, a subject
I will not go into here.

2. Biquaternions and the grammar of special relativity.
The algebra H of quaternions is finitely generated over the field of real numbers by the basic

units i0, i1, i2 and i3, where

i0 = 1, i21 = i22 = i23 = i1i2i3 = −1.

(Other equations, such as i1i2 = i3, easily follow.)
With any quaternion

a = a0 + i1 a1 + i2a2 + i3a3

one associates its conjugate
a† = a0 − i1a1 − i2a2 − i3a3

and its norm
N(a) = aa† = a†a = a20 + a21 + a22 + a23;

and any non zero quaternion has an inverse

a−1 = a†/N(a).

It is sometimes convenient to consider the scalar and vector parts of the quaternion a
separately, namely a0 and

a = i1a1 + i2a2 + i3a3,

which is indeed what Oliver Heaviside did when introducing his vector calculus. We note that

(ab)† = b†a†, N(ab) = N(a)N(b).

Disappointingly, the norm of a quaternion is the sum of four squares, but special relativity
suggests that the quadratic form

a20 − a21 − a22 − a23
should play a more prominent rôle.

The language of quaternions had evoked strong reactions among physicists. For example,
Thomson (aka Kevin), Heaviside and Minkowski were violently opposed to them, while Maxwell,
Dirac and Adler were (or are) strongly in favour. Maxwell died too young to formulate his own
equations in the language of quaternions. This was first done in 1912, independently by Conway
and Silberstein.

Originally, they worked with biquaternions, that is quaternions with complex coefficients.
However, in retrospect, it is clear that the only rôle played by the imaginary number i was
that i2 = −1 and that iiα = iαi for α = 1, 2 and 3. We will see later that the same rôle can
be played by a real matrix, for example by the right representation of the basic quaternion
i1. For historical reasons, I will retain the imaginary number i in this section. (Also, this
decision will allow us to postpone the puzzling question of missing dimensions until later.) For
a biquaternion a, we must distinguish the quaternion conjugate a† from the complex conjugate
a∗.
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One represents a point in space-time (better: time-space) by a Hermitian biquaternion

x = x0 + ix (x0 = t)

for which x∗ = x†, that is x∗† = x, so that

N(x) = t2 − x ◦ x = x20 − x21 − x22 − x23,

as suggested by special relativity. Here ◦ denotes the Heaviside scalar product.
I have picked units so that the speed of light c = 1, Planck’s constant h = 2π and the

dielectric constant in vacuum = 1. Note that frequently the zero component of a Hermitian
biquaternion has retained another name (here x0 = t) for historical reasons. Note also that

(ab)∗ = a∗b∗, (ab)† = b†a†

for biquaternions.
A Lorentz transformation is to preserve the norm of x = t+ ix and has the form

x 7→ qxq∗†,

with
q = u+ iv (u, v ∈ H)

satisfying qq† = 1, that is
uu† − vv† = 1, uv† + vu† = 0.

It is a rotation if q∗ = q, that is v = 0, and a boost if q∗ = q†, that is u = u0 and v0 = 0.

LEMMA 2.1. Every Lorentz transformation consists of a rotation followed by a boost.

Proof: If
µ2 = uu† = 1 + vv† ≥ 1,

let
r = uµ−1, s = µ− iuv†µ−1,

then
sr = (µ− iuv†µ−1)uµ−1 = u+ iv.

Before turning to the intended physical application, let me say something about the grammar
of the biquaternion language adapted to special relativity. Every significant physical quantity
(or operator) is represented by a biquaternion together with an instruction how it is transformed
under a co-ordinate transformation. In particular, many such quantities are represented by
Hermitian biquaternions and transform like x 7→ qxq∗†. When multiplying two such Hermitian
biquaternions a and b, we obtain

ab = qaq∗†q
6
bq∗†

and we are stuck with q∗†q in the middle. On the other hand, there is no problem with

ab∗ 7→ qaq∗†q∗b∗q† = qab∗q†,

even though it transforms differently.
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In fact, so do its scalar and vector parts

S(ab∗) =
1

2
(ab∗ + ba∗) = a0b0 − a ◦ b

and

V (ab∗) =
1

2
(ab∗ − ba∗) = a× b + i(ab0 − a0b),

the latter being a “skew-Hermitian” biquaternion.
It will be convenient to introduce the scalar product of two Hermitian biquaternions:

a� b = a0b0 − a ◦ b = b� a.

This plays a rôle in the following useful
LEMMA 2.2. If a, b and c are Hermitian biquaternions, the Hermitian part of ab†c is

a(b� c)− b(c� a) + c(a� b).

Proof: A simple calculation shows that the vector part of abc is −a(b ◦ c) +b(c ◦a)− c(a ◦b).
Now

ab†c = a0b0c0 + i(a0b0c + b0c0a− c0a0b)
+a0bc− ab0c + abc0 + iabc

From this we select the real scalar

a0b0c0 − a0(b ◦ c) + b0(c ◦ a)− c0(a ◦ b)

and the imaginary vector

i{a0b0c + b0c0a− c0a0b− a(b ◦ c) + b(c ◦ a)− c(a ◦ b)}.

Together these yield
a(b� c)− b(c� a) + c(a� b)

as was to be proved.2)

3. Special relativity and Maxwell’s equations.
A physical quantity of interest is the kinetic energy-momentum biquaternion

p = p0 + ip0v, p0 = E

where

v =
dx1
dt
i1 +

dx2
dt
i2 +

dx3
dt
i3

is the classical velocity vector and E is the (kinetic) energy. If the rest-mass m 6= 0, we may
put

p = m
dx

ds
, p0 = m

dt

ds
= m(1− v2)−

1
2

where v is the absolute value of v and

ds2 = N(dx) = dt2 − dx21 − dx22 − dx23.
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Both p and dx/ds transform like x 7→ qxq∗†. According to Section 2, the product xp∗ transforms
as xp∗ 7→ qxp∗q† and so do its scalar and vector parts

1

2
(xp∗ ± px∗).

The latter is the relativistic angular momentum

x× p + i(xE − tp),

where x× p is usually called the “angular momentum”.

In the absence of an external force,
dp

ds
= 0, hence

d

ds
(xp∗) =

dx

ds
p∗ =

dx

ds

(
dx

ds

)∗
m = m

and so
d

ds
(x� p) = m and

d

ds
V (xp∗) = 0.

The second equation asserts that

d

ds
(x× p) = 0 and

d

ds
(xE − tp) = 0,

showing that the usual angular momentum is conserved, as well as the quantity xE − tp.
(According to Penrose [loc.cit. p433], the latter conservation expresses the uniform motion of
the center of mass.)

The differential operator

D =
∂

∂t
− i∇, ∇ =

∂

∂x1
i1 +

∂

∂x2
i2 +

∂

∂x3
i3,

is also a Hermitian biquaternion which transforms like x, namely D 7→ qDq∗†.
Maxwell’s equations are usually presented in the Heaviside notation as follows:

∇ ◦B = 0, −∇ ◦ E + ρ = 0,

∂B

∂t
+∇× E = 0,

∂E

∂t
−∇×B + J = 0.

Combining the magnetic field B and the electric field E into a single biquaternion

F = B + iE 7→ q∗Fq∗†

and the charge density ρ with the current density J into the charge-current density

J = ρ+ iJ 7→ qJq∗†

we may combine the four Maxwell equations into one:

DF + J = 0.



6

It follows that
D∗DF = −D∗J.

Here the scalar part of the left side is zero, hence so must be that of the right side. Thus we
obtain the equation of continuity

∂ρ

∂t
+∇ ◦ J = 0.

The charge-current of an electrically charged particle is represented by the Hermitian biquater-
nion

e
dx

ds
= e

dt

ds
(1 + iv),

where e is the charge. Multiplying this by F = B + iE and putting

dt

ds
= γ = (1− v2)−1/2,

we obtain

e
dx

ds
F = eγ(1 + iv)(B + iE).

The Hermitian part of this is

H

(
e
dx

ds
F

)
= eγ(v ◦ E + i(E + v ×B),

where e(E + v ◦ B) is usually called the Lorentz force. We thus have a relativistic version of
the Lorentz force and are led to require that

dp

ds
= H

(
e
dx

ds
F

)
.

(We may think of ev ◦ E as the Lorentz power.)
As is well-known, Maxwell’s equations imply the existence of a four-potential

A = φ+ iA

such that
∂A

∂t
+∇φ = −E, ∇×A = B.

In other words, the vector part

(3.1) V (D∗A) = −F.

However, A is not determined by this: we might equally well replace A by A′ = A−DΘ, where
Θ = Θ(x) and hence D∗DΘ are scalars. We will leave the choice of an appropriate Θ until
later.

It is customary to require that

S(D∗A) = D � A =
∂φ

∂t
+∇ ◦A = 0
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so that (3.1) simplifies to
D∗A = −F

but we will have no need for this simplification.
A particle with electric charge e in an electro-magnetic field is said to have potential energy

eφ. But special relativity requires that this be accompanied by a potential momentum eA,
giving rise to relativistic Hermitian biquaternion

eA = eφ+ ieA

representing the potential energy-momentum.
We should therefore expect the conservation of the total energy-momentum:

d

ds
(p+ eA) = 0.

It turns out that this is indeed the case, but only after A has been replaced by A−DΘ for an
appropriate scalar field Θ.

Let us apply Lemma 2.2 to the triple product (eẋ)D∗A, where

eẋ = e
dx

ds
= charge-current,

D∗ =
∂

∂t
+ i∇ = conjugate partial differential operator,

A = φ+ iA = four-potential.

By Lemma 2.2, the Hermitian part

H(eẋD∗A) = eẋ(D � A)−D(A� eẋ) + A(eẋ�D).

Now
H(eẋD∗A)− eẋ(D � A) = H(eẋV (D∗A)) = −H(eẋF )

is the negative of the relativistic Lorentz force dp/ds and

(eẋ�D)A =
d

ds
(eA)

hence
d

ds
(p+ eA) = D(A� eẋ).

Having expected the right side to be zero, I was puzzled by the term A� eẋ. This seems to be
related to the quantum mechanical Bohm-Aharonov effect.3)

Putting
dx

ds
� A =

dΘ

ds
, we have

D(A� eẋ) = D

(
e
dΘ

ds

)
=

d

ds
(eDΘ)

and so
d

ds
(p+ e(A−DΘ)) = 0,
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which suggests that we replace the original four-potential A by A′ = A−DΘ.
Repeating the same process for A′ instead of A, we calculate

eẋ� A′ = eẋ� A− eẋ�DΘ = 0.

To ensure that A = A′, we may postulate

eẋ� A = 0,

in place of the usual assumption that D�A = 0, thus restricting the potential to its component
orthogonal to the current in Minkowski space, and then we indeed have conservation of the total
energy momentum:

d

ds
(p+ eA) = 0.

4. Quaternions and coquaternions.
Let us return to the division ring H of real quaternions. There are two so-called regular

representations of H by linear transformations of the four-dimensional real vector space R4.
The left representation L(a) of the quaternion a sends the column vector [x], made up from the
coefficients of x, onto the column vector [ax], while the right representation R(a) sends [x] onto
[xa]. Thus

L(a)[x] = [ax], R(a)[x] = [xa].

It is easily seen that L preserves and R reverses composition:

L(aa′) = L(a)L(a′), R(aa′) = R(a′)R(a),

and that

L(a)R(b) = R(b)L(a),

as follows from the associative law

a(xb) = (ax)b.

For example,

L(i1)[x] = [i1x] = [−x1 + i1x0 − i2x3 + i3x2],

hence

L(i1) =


0−1 0 0
1 0 0 0
0 0 0−1
0 0 1 0

 = −e01 + e10 − e23 + e32.

Here eαβ denotes the matrix with 1 in the intersection of column α and row β and 0 everywhere
else, while α and β vary from 0 to 3.

It will be convenient to identify the quaternion a with the matrix L(a). Then we have

i1 = e01 − e10 − e23 + e32,

and i2 and i3 are obtained by cyclic permutation of the subscripts 1, 2 and 3.
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Utilizing the diagonal matrix

4 = diag (1,−1,−1,−1),

we see that

4[x] = [x†],

hence
R(a)[x] = [xa] = [(a†x†)†]

=4[a†x†] = 4L(a†)[x†]
=4L(a†)4[x],

so that

R(a) = 4L(a†)4.

It will also be convenient to write

jα = R(iα),

then

j0 = 1, j21 = j22 = j23 = j3j2j1 = −1.

We will say that

b0 + b1j1 + b2j2 + b3j3

is a coquaternion. The coquaternions form a division algebra Hop. (Of course, Hop ' H by
conjugation.) One easily calculates

j1 = e01 − e10 − e23 + e32,
i1j1 = e00 − e11 + e22 + e33,
i2j3 = e01 + e10 − e23 − e32,
i3j2 =−e01 − e10 − e23 − e32,

and obtains other such equations by cyclic permutation of 1, 2 and 3.
Adding and subtracting the equations which express the iαjβ in terms of the eγδ, we obtain

e00 = 1
4
(i0j0 − i1j1 − i2j2 − i3j3),

e01 = 1
4
(i0j1 + i1j0 + i2j3 − i3j2),

e11 = 1
4
(i0j0 − i1j1 + i2j2 + i3j3),

e23 = 1
4
(−i0j1 + i1j0 − i2j3 − i3j2).

We note that eαβ = eTβα is the transposed matrix of eβα and that

iTα = i†α = −iα when α 6= 0,
jTβ = j∗β = −jβ when β 6= 0.

Recall that ∗ denotes the complex conjugate. Other equations are obtained by cyclic permuta-
tion of the subscripts 1, 2 and 3. Here and later, we denote the coquaternion conjugate by an
asterisk.



10

It readily follows that every 4× 4 real matrix can be written uniquely as

A =
3∑

α,β=0

jαiβaαβ

=A0 + j1A1 + j2A2 + j3A3,

when the Aα are quaternions, and

A = A′0 + i1A
′
1 + i2A

′
2 + i3A

′
3,

when the A′β are coquaternions. Thus, given a quaternion x, we have

A[x] = [
∑

iβaαβxiα].

The matrix A is

diagonal iff A =
∑

jαiαaαα,

symmetric iff aαβ = 0 when α = 0 and β = 0 or both 6= 0,
skew-symmetric iff aαβ = 0 unless α = 0 and β = 0 or both 6= 0.

Note that the transposed matrix AT is given by

AT = A∗† =A†0 − j1A
†
1 − j2A

†
2 − j3A

†
3

=A′∗0 − i1A′∗1 − i2A′∗2 − i3A′∗3 .

To put the above observations into a wider algebraic context: if H is the division algebra
of quaternions, any H − H-bimodule may be viewed as a left Hop ⊗ H-module. In view of
the well-known fact that Hop ⊗ H is isomorphic to the ring of all 4 × 4 real matrices, any
linear transformation of a four-dimensional real vector space can be expressed with the help of
pre- and post-multiplication of quaternions by quaternions. This observation has been made
repeatedly by linear algebraists as well as by physicists. It is a special case of a well-known
theorem about central simple algebras (see e.g. Jacobson [1980]).

5. Quaternions and the Dirac equation.
So far, we have looked at the application of quaternions to special relativity. Among appli-

cations to quantum mechanics, I will single out the celebrated Dirac equation for the electron.
Dirac himself originally derived this using what is now seen as an argument involving Clifford
algebras, but he repeatedly expressed the hope that this could also be done with the help of
quaternions, though not with biquaternions.

The reason why biquaternions no longer suffice is that we require entities which anticommute
with what we called i. We are then led to replace the imaginary number i by a suitable
coquaternion, for example by j1 = R(i1) or, more generally, by R(ri1r

†), where r is a real
quaternion of norm 1. This involves a paradigm shift from biquaternions to 4×4 real matrices.
What we had called Hermitian biquaternions now become symmetric matrices

x = x0 + j1i1x1 + j1i2x2 + j1i3x3.

This raises a question: what happens to the missing six special dimensions generated by j2iα
and j3iα with α = 1, 2 or 3? Curiously, had we represented position in space-time by the
skew-symmetric matrix

j1x0 + i1x1 + i2x2 + i3x3
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instead, we would be looking for two missing time dimensions generated by j2 and j3 instead.
The second order wave equation

DD∗Ψ = −m2Ψ,

where Ψ = Ψ(x), is known as the Klein-Gordon equation, although Schrödinger was certainly
familiar with it before turning to his non-relativistic formulation. Here

DD∗ =
∂

∂t2
−∇ ◦ ∇

and m is the rest-mass of the electron (or any fermion for that matter), a scalar constant. For
the moment, Ψ = Ψ(x) is any (smooth) real matrix function of x.

PROPOSITION 5.1. The second order Klein-Gordon equation is equivalent to the first
order Dirac equation

D∗Ψ = −j2mΨ

provided m is invertible.

Proof. To derive the Klein-Gordon equation from the Dirac equation we need only observe that
Dj2 = j2D

∗, since j2 anticommutes with j1. To go in the other direction, suppose Ψ = Ψ′ is a
solution of the Klein-Gordon equation. Putting

D∗Ψ′ = mΨ′′,

we obtain

DΨ′′ = −mΨ′.

Now letting

Ψ = Ψ′ + j2Ψ
′′

and recalling that j2 anticommutes with j1, one readily obtains the Dirac equation.
The Dirac equation for the free electron is usually written thus:

i

(
γ0
∂

∂t
− γ1

∂

∂x1
− γ2

∂

∂x2
− γ3

∂

∂x3

)
Ψ ≡ mΨ,

when the iγα are specially constructed complex matrices due to Pauli. I prefer the real matrices
jα = R(iα), which seem more natural.

The above derivation yields an explicit solution of the Dirac equation if we begin with the
obvious solution

Ψ′ = cos(x� p)Ψ0

of the Klein-Gordon equation, Ψ0 being a constant matrix. For then we have

Ψ′′ =
1

m
D† cos(x� p)Ψ0 = − 1

m
p† sin(x� p)Ψ0,

hence

Ψ = (cos(x� p) + η sin(x� p))Ψ0
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where η = −ẋj2. Exploiting the fact that

η2 = (ẋj2)(j2ẋ
†) = −ẋẋ† = −1,

we may write this more elegantly as

Ψ = exp(η(x� p))Ψ0.

Our argument applies to any particle of non-zero rest-mass, and this nowadays includes the

neutrino. But how does Ψ behave under a Lorentz transformation? For fermions of spin
1

2
,

Dirac insisted that Ψ was a spinor. In our language this would mean that

Ψ 7→ qΨ.

The real matrix Ψ may be multiplied by any constant column vector [c] on the right, giving
rise to the column vector Ψ[c] = [ψc], where ψc is a real quaternion. Hence the Dirac equation
may be written (

∂

∂t
+ j1∇

)
[ψc] = −j2[mψc],

that is, [
∂

∂t
ψc +∇ψci1

]
= [−mψci2]

that is,

(5.2)
∂

∂t
ψc +∇ψci1 = −mψci2,

involving quaternions only. If we replace the iα on the right by riαr
†, r being a quaternion of

norm 1, we obtain
∂

∂t
ψcr +∇ψcri1 = −mψcri2.

This amounts to replacing ψc by ψcr = ψcr. (I don’t know whether any physical significance
can be attached to the choice of r.)

6. Epilogue.
Having been introduced to quaternions by my teacher Gordon Pall in an undergraduate

number theory course 65 years ago, I found the book by Silberstein [1924] in the library,
which offered me a handle for grasping the theory of special relativity and tempted me to
approach the Dirac equation. However, Dirac himself discouraged me, since I was still attached
to biquaternions. At the same time, I learned from Arthur Conway how to get around this
problem, but his impressive paper [1948] persuaded me that he had already done all I was
planning to do. (His paper even went beyond what is being presented here: in a final section it
derives the hydrogen line spectrum and its fine structure.) I had met both Dirac and Conway
at a summer school in Vancouver in 1949, and it may have been the former’s criticism and the
latter’s achievement that persuaded me to abandon physics for mathematics.

I confess I have not made a thorough study of the literature. The references below list only
those publications that have come my way in one way or another and include a number of
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popular expositions, in particular the marvellous semi-popular discussion by Feynman [1985].
Adler [1995] has a more extensive list of references, but with only a small intersection with
mine. I apologize to those authors whose contributions I have missed.

As far as I can tell, the main results on the application of quaternions presented here are
due to A.W. Conway [1948] and F. Gürsey [1955,1958] ignoring the even earlier contributions
by Cornelius Lanczos [1929], which came to my attention only quite recently. See the insightful
critical discussion by A. Gsponer and J.-P. Hurni [1998], which puts the Lanczos work into its
historical context and offers some interesting further speculation.

I doubt whether physicists will find anything new in the above exposition, but teachers
of physics may be interested in the description of the Lorentz force4) in Section 3 as d

ds
(eA),

provided the four-potential A has been subjected to a gauge transformation ensuring that A is
orthogonal to ẋ, and to the explicit solution of the Dirac equation in Section 5, which I have
not found in any of the texts I consulted.

Endnotes

1) Some authors have speculated about the middle name “Olinde”, apparently unaware that
this was the name of a former Dutch colony, now the old town of Recife in Brazil, which may
throw some light on the history of the Rodrigues family, perhaps on the maternal side.

2) A search of the literature reveals that this identity first appears in Gürsey [1955].

3) I am tempted to conjecture that it serves to eliminate the force which a moving particle
exerts on itself.

4) I take this opportunity to point out that the description of the Lorentz force in my 1995
article is wrong and that the complex matrices there have been replaced by real matrices here.
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Appendix

This is an exposition of the algebra of biquaternions that I wrote to help me understand better
what Jim was doing. I was especially interested to understand the function of the two involutions
whose composite was matrix transposition. I have not tried to coordinate my notation with
his.

The real algebra H ⊗Hop ∼= H ⊗H ∼= Mat4(R) (from the theory of the Brauer group) can
be described as follows. We define 2× 2 matrices r, s,q which, together with the 2× 2 identity
we will denote by 1, allows us to define the tensor product using 2× 2 block matrices 1, r, s,q
as blocks.

The building blocks are the 2× 2 matrices

1 =

(
1 0
0 1

)
(identity),

r =

(
1 0
0 −1

)
(rotation around the x-axis),

s =

(
0 1
1 0

)
(rotation around the line x = y), and

q =

(
0 −1
1 0

)
(quarter turn counter-clockwise).

We denote by · the dot product of n× n matrices as vectors in n2 dimensional real space.

0.1. Proposition. We have that

r2 = 1 s2 = 1 q2 =−1
rs=−q = −sr qr= s = −rq sq= r = −qs

1 · 1 = r · r = s · s = q · q = 2

1 · r = 1 · s = 1 · r = 1 · q = r · s = r · q = s · q = 0

These can be shown by direct computation.
We let (using block matrices, so these are 4× 4)

i1 =

(
1 0
0 1

)
i2 =

(
q 0
0 q

)
i3 =

(
0 −r
r 0

)
i4 =

(
0 −s
s 0

)
j1 =

(
1 0
0 1

)
j2 =

(
q 0
0 −q

)
j3 =

(
0 −1
1 0

)
j4 =

(
0 q
q 0

)
In the following, the integer variables x and y range over [1, 4].
The matrices ix represent the left regular representation of H on itself and the matrices jx

represent the right regular representation. As a result the ix are isomophic to H, while the jx
represent Hop and for all x, y, ix commutes with jy. Now let axy = ixjy.
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0.2. Proposition. We have

a11 =

(
1 0
0 1

)
a12 =

(
q 0
0 −q

)
a13 =

(
0 −1
1 0

)
a14 =

(
0 q
q 0

)
a21 =

(
q 0
0 q

)
a22 =

(
−1 0
0 1

)
a23 =

(
0 −q
q 0

)
a24 =

(
0 −1
−1 0

)
a31 =

(
0 −r
r 0

)
a32 =

(
0 −s
−s 0

)
a33 =

(
−r 0
0 −r

)
a34 =

(
s 0
0 −s

)
a41 =

(
0 −s
s 0

)
a42 =

(
0 r
r 0

)
a43 =

(
−s 0
0 −s

)
a44 =

(
−r 0
0 r

)
0.3. Proposition. axy · auv = 4δxuδyv; hence the matrices axy/2 are an orthomormal basis for
Mat4(R).

Now define two operators ] and [ on this space as the unique linear extension of the function
defined on the basis by

a]xy =

{
axy if x = 1
−axy if x = 2, 3, 4

a[xy =

{
axy if y = 1
−axy if y = 2, 3, 4

What this amounts to applying quaternionic conjugation to the ix for ] and to the jy for [.

0.4. Proposition. For any matrix b, (b])[ = (b[)] = bt, the transpose of b.

This is not hard to prove by showing it is true for each axy and using the fact that all three
operators are linear.

So we conclude that there are two involutory operations on Mat4(R) whose composition
is transpose. Is there any other dimension in which this happens? The above cannot be
duplicated in other dimensions because, among other reasons, the fact that the right and left
regular representations makes the orthogonality relations impossible.

Here is a formula for the operation, but it is sufficiently complicated, unlike the claims
above, to preclude hand computation. Since the axy/2 form an orthonormal basis, it is the case
that for any b ∈ Mat4(R)

b =
1

4

4,4∑
i=1,j=1

(axy · b)axy

and then

b] =
1

4

4,4∑
i=1,j=1

(axy · b)a]xy

b[ =
1

4

4,4∑
i=1,j=1

(axy · b)a[xy

Someone with computer mojo than us can perhaps find an explicit formula for these opera-
tions. Standard linear algebra packages do not implement dot product of matrices as far as we
know.
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We note that these formulas, although derived from considerations of H ⊗ Hop, are well
defined over any field of characteristic different from 2 and even any commutative ring that is
2-divisible.

We further note that a12, a13, a14, a21, a31, a41 are all skew symmetric and, since the space of
4× 4 skew symmetric matrices is 6-dimensional, these 6 matrices are a basis for that space.

Example: Let e41 be the matrix with a 1 in the first column, fourth row. Then we can
calculate that e41 = a14 + a23 − a(32) + a41, whence e]41 = a14 − a23 + a32 − a41. Also et41 =
−a14 + a23 − a32 − a41, whence e[14 = a14 − a23 + a32 − a41 which is exactly the same. You can
calculate that

e]41 = et[41 = 1/2


0 0 0 −1
0 0 1 0
0 −1 0 0
−1 0 0 0


We do one more computation: let e11 be the matrix with a 1 in the first column first row. Then
we can calculate that e11 = a11 + a22 − a33 − a44, whence e]11 = a11 + a22 + a33 + a44, which
works out to

e]11 = e[11 = 1/2


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


With 14 more computations of this sort, we could write explicit formulas for ] and [. This does
not appear to be simple to program since matrix algebra programs do not generally implement
dot product of matrices.

Is there any dimension n other than 4 for which there is a non-identity automorphism ] and
an antiautomorphism [ of the matrix ring Matn(R) which commute and whose composite is
transpose?

e23 = −a14 − a23 − a32 + a41

e]23 = 1/2


0 0 0 1
0 0 −1 0
0 −1 0 0
−1 0 0 0


e12 = a12 + a21 + a34 − a43

e]12 = 1/2


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


My best guess: First for ett, let the other three indices be u, v, w, then e]tt = ett[ = −ett +

euu + evv + eww. For etu with t < u, let the four indices be denoted t, u, v, w with v < w. Then
e∗tu = −etu − evw + ewv − eut. Finally, for etu with t > u, let the four indices be t, u, v, w with
v > w and use the same formula.

To put it in other terms, e]tu is the sum of four terms, three with a - sign. The one + sign
is the evw that is on the opposite side of the diagonal. The computation of etu[ differs only in
the + sign is on the same side of the diagonal.
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0.5. A partial explanation of why the composite is an anti-automorphism.

0.6. Proposition. Suppose we have an algebra A, two subalgebras B and C of A, and two
linear automorhisms σ and τ of A with the following properties for b ∈ B and c ∈ C:

• A = BC;

• bc = cb;

• σ|B and τ |C are anti-automorphisms of the algebra structures.;

• σ(bc) = σ(b)c and τ(bc) = bτ(c)

Then στ is an anti-automorphism of the algebra structure.

The proof is trivial. To apply it here, let A be the matrix algebra, B the subalgebra
generated by ix, x = 1, 2, 3, 4 and C be the subalgebra generated by jy, y = 1, 2, 3, 4. Of course,
σ = ] and τ = [
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