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Pregroups and natural language processing

J. Lambek, McGill University, Montreal

A pregroup is a partially ordered monoid endowed with two unary operations called left and

right adjunction. Pregroups were recently introduced to help with natural language processing,

as we illustrate here by looking at small fragments of three modern European languages. As it

turns out, the apparently new algebraic concept of a pregroup had been around for some time

in recreational mathematics, although not under this name.0)

Mathematical Linguistics.
The Pythagoreans, if not the master himself (about 570 BC), had divided mathematics

into four disciplines: arithmetic, geometry, music and astronomy. About a thousand
years later, Boëthius (450-524 AD) proposed the same quadrivium (= four ways) as a
prerequisite for the study of philosophy. Except for a lapse during the dark ages, this
quadrivium constituted the advanced undergraduate curriculum at European universities
for another thousand years. However, three more elementary subjects were required for
preparation, the so-called trivium: logic, grammar and rhetoric, making up altogether
seven liberal arts. Of the trivial subjects, logic was accepted as a branch of mathematics
in the nineteenth century (Boole, Peirce, Schroeder, · · ·), and finally grammar too was
admitted, though reluctantly, in the twentieth. It should not come as a surprise that,
over the years, several mathematicians have made contributions to the study of language.
For example, Eratosthenes and Wallis published works on grammar1), and Grassman is
perhaps even more famous for his contributions to philology than to mathematics.

Today there are a number of different approaches to grammar, most prominently that
by Noam Chomsky, whose system of generative-transformational grammar has evolved
considerably over the years. Mathematicians interested in the subject have largely favoured
another approach, which is intended to complement the linguists’ insight with a compu-
tational component. Originally called “categorial grammar”, it was pioneered by Aj-
dukiewicz (who had been influenced by Husserl and Lesniewski) and later expanded by
Bar-Hillel.2) I myself proposed a system of propositional logic without structural rules,
which I called “syntactic calculus”. Roughly at the same time Haskell Curry developed
what I prefer to call a “semantic calculus”, essentially positive intuitionistic propositional
logic. According to the so-called “Curry-Howard isomorphism”, its proof theory is equiva-
lent to the lambda calculus or combinatory logic (more recently also to Lawvere’s cartesian
closed categories).

A more sophisticated version of the syntactic calculus (or rather a non-associative
variant of it), with additional modalities to license associativity and commutativity when
needed, was developed by Michael Moortgat, his disciples and collaborators (see e.g. [24]).
On the other hand, the proof theory of Curry’s semantic calculus gave rise to Montague se-
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mantics, and its combinatory presentation was exploited for linguistic purposes by Keenan
and Steedman.

The idea behind the various approaches to syntax is this: assign to each word in the
dictionary one or more types (originally called “categories”, not to be confused with the
categories of Eilenberg and MacLane). These types are terms of a logical system or,
equivalently, elements of a freely generated algebraic one. Looking at the string of types
associated with a string of words, one should be able to check whether the string of words
is a grammatical sentence.

Which algebraic or logical system should be employed for studying grammar? My
own view has changed over the years and I now favour “pregroups”, a generalization of
partially ordered groups, for the algebraic version. The corresponding logical system has
been called “compact bilinear logic”. In order not to interrupt the flow of the narrative,
I invite the reader interested in the history of the pregroup approach to look at the last
section.

Pregroups.
A pregroup is a partially ordered monoid (= semigroup with unity element) in which

each element a has a left adjoint a` and a right adjoint ar such that

a`a→ 1→ aa`, aar → 1→ ara.

Here the arrow is used to denote the partial order. (The reader familiar with category
theory will recognize that both the arrow and the notion of adjoint are borrowed from
there.)

Of course, every partially ordered group is a pregroup in which a` = ar is the inverse of
a and, conversely, the condition a` = ar ensures that the underlying monoid of a pregroup
is a group. Let me mention only one example of a pregroup which is not a group: the
monoid of unbounded order-preserving mappings Z → Z under composition. We shall
return to this and a related example of a “left pregroup” in the penultimate section.

Before discussing the intended applications to linguistics, let us look at some mathe-
matical properties of pregroups. For example, adjoints are unique, so we might call a` the
left adjoint of a. Indeed, suppose a∗ is another left adjoint of a, so that

a∗a→ 1→ aa∗,

then

a∗ = a∗1→ a∗(aa`) = (a∗a)a` → 1a` = a`.

Thus a∗ → a`, and similarly a` → a∗. Here are some elementary properties of pregroups,
the proofs of which will be left to the reader:

1` = 1, (ab)` = b`a`, if a→ b then b` → a`,
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and similarly for right adjoints. Moreover

(a`)r = a = (ar)`.

Free Pregroups.
The linguistic application I have in mind leans primarily on pregroups freely generated

by partially ordered sets. We begin with a partially ordered set (= poset) of basic types,
which may differ from one language to another, and which is meant to express certain
elementary grammatical concepts and their features. From the basic types one forms
simple types by repeated adjunction. Thus, a simple type has one of the following forms:

· · · a``, a`, a, ar, arr, · · ·

where a is a basic type. Finally, we define a (compound) type to be a string of simple
types. The types form a monoid under concatenation (1 being the empty string), which
is easily seen to be partially ordered, provided we stipulate that, for any simple type x,

x→ y implies y` → x`,

hence
x→ y implies x`` → y``,

and similarly for right adjoints. The partial order may be extended to compound types
by stipulating that

x→ x′ and y → y′ imply xy → x′y′.

Moreover, the partially ordered monoid of types is seen to be a pregroup, with adjunctions
defined inductively thus:

1` = 1 = 1r, (xy)` = y`x`, (xy)r = yrxr.

The resulting pregroup is the free pregroup generated by the given poset of basic types.
(In the technical language of category theory, this means that we have constructed a
functor left adjoint to the so-called “forgetful functor” from pregroups to posets.)

Contractions suffice.
What makes free pregroups particularly amenable for computation is the following

observation.

Lemma. When showing that
x1 · · ·xm → y1 · · · yn
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for simple types xi and yj, one may assume without loss of generality that all contractions
a`a→ 1 and aar → 1 precede all expansions 1→ aa` and 1→ ara.

This was proved in [15], where pregroups were first introduced (under this name) to
facilitate language processing.3) The following argument will give an idea of the proof. A
calculation in which an expansion immediately precedes a contraction may look like this:
Suppose a→ b and b→ c, then

a = a1→ abrb→ abrc→ bbrc→ 1c = c.

This calculation can be replaced by simply citing the transitivity of the partial order:

a→ b→ c,

using neither expansions nor contractions.
Why is this lemma useful to grammarians? Among other things, they are interested

in checking whether a given string of words is a grammatically well-formed sentence. To
do this, one may look at the corresponding string of simple types, say x1 · · ·xm, and check
whether it reduces to a simple, or even basic, type y, for example the type of a declarative
sentence or question. To check whether

x1 · · ·xm → y

when y is simple, one may assume that all contractions precede all expansions. But, if the
right-hand-side is simple, there will be no expansions at all! Thus, for sentence verification,
we may confine attention to contractions only. This is not to say that expansions are
useless; they play a role in proving the mathematical properties of pregroups discussed in
Section 2.

Some basic types.
In what follows, we will study the pregroup of types freely generated by a poset of

basic types for some very small fragments of three modern European languages. The
following common set of basic types will work in all three examples.

πj = jth personal subject pronoun, where j = 1, · · · , 6 denotes the three persons
singular followed by the three persons plural.

Actually, in modern English, the original second person singular has disappeared and
has been replaced by the second person plural. Moreover, there is no morphological
distinction between the three plural verb forms, hence in English we may put π2 = π4 =
π5 = π6.

sk = declarative sentence in the kth simple tense (k = 1, 2, · · ·).
Here k = 1 and k = 2 stand for the present and past indicative respectively. English

and German also have two subjunctives, but express the future as a compound tense.
Literary French has altogether seven simple tenses, but two of these are in the process of
disappearing.
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qk = yes-or-no questions in the kth simple tense,

o = direct object,

p2 = past participle of intransitive verb,

i = infinitive of intransitive verb.

Both of the last mentioned types may also apply to complete verb phrases. It is convenient
to introduce also the types:

π = subject when the person is irrelevant,

q = yes-or-no question when the tense is irrelevant,

q = question (including yes-or=no questions and wh-questions)

and to postulate
πj → π, qk → q→ q.

A small fragment of English.
We begin by assigning some types to a few English words:

he has type π3 (= third person subject),

her has type o (= direct object),

sees has type πr
3s1o

`

to indicate that we require a third person subject on the left and a direct object on the
right. (This idea may have been anticipated in a chemical analogy by Charles Sanders
Peirce [27], who would have said that sees resembles a molecule with two unsaturated
chemical bonds.)

Now look at the sentence
he sees her

π3 (πr
3s1o

`) o→ s1

We calculate in two steps:

π3(π
r
3s1o

`) = (π3π
r
3)s1o

` → 1s1o
` = s1o

`,
(s1o

`)o = s1(o
`o)→ s11 = s1.

It is convenient to indicate contractions by underlinks4). Similarly we have

I saw her,
π1 (πrs2o

`) o→ s2

where the first underlink represents the generalized contraction

π1π
r → ππr → 1.

In our next example, we make use of two further type assignments:
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has has type πr
3s1p

`
2,

seen has type p2o
`.

The former requires one complement on each side, the latter only a single complement on
the right, to give

he has seen her
π3 (πr

3s1p
`
2)(p2o

`)o→ s1.

Note in contrast
I have seen her

π1 (πr
1s1p

`
2)(p2o

`)o→ s1

you had seen her
π2 (πrs2p

`
2)(p2o

`)o→ s2
.

Unfortunately, has must be assigned a different type in direct questions, namely

has : q1p
`
2π

`
3

to obtain
has he seen her ?

(q1p
`
2π

`
3)π3(p2o

`)o→ q1

Not wishing to overload the mental dictionary with multiple type listing, one may adopt
certain metarules. In the present case, such a metarule would convert the type πr

jskx
`

into qkx
`π`

j. In English, this metarule is restricted to auxiliary verbs, here with x = p2;
but, in German, it applies to all verbs.

I will assign the following type to the object question word

whom : qô``q` ,

where ô→ o. The reader will notice that, following the late Inspector Morse, I distinguish
between whom and the subject question word who, which must be assigned a different
type.5) Thus we have

whom has he seen − ?
(qô``q`) (q1p

`
2π

`
3) π3 (p2o

`)

since q`q1 → q`q → 1 and ô``o` → ô``ô` → 1, the latter in view of the contravariant
adjunction. The dash here represents what Chomsky used to call a trace. It turns out
that double adjoints will always appear in the presence of traces.

It may be of interest to see how the last calculation may be performed step by step
when the four words are heard in succession. Here are four stages of the calculation:
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whom: qô``q`

(whom) has: (qô``q`) (q1p
`
2π

`
3)→ qô``p`

2π
`
3

(whom has) he: (qô``p`
2π

`
3) π3 → qô``p`

2

(whom has he) seen: (qô``p`
2) (p2o

`)→ q

When hearing the question, one must hold successively 3, 6, 4, 5, 3, 5, 1 simple types
in temporary storage. It is tempting to identify these simple types with Miller’s chunks
of information. In an influential paper [23], Miller had suggested that humans can hold a
maximum of seven (plus or minus two) chunks of information in their short-term memory.

The auxiliary verb be may be employed for constructing passives in English. In par-
ticular, its past participle then has the following type:

been : p2ô
``p`

2.

Notice another double adjoint anticipating a Chomskyan trace in the following example:

she had been seen −
π3 (πrs2p

`
2) (p2ô

``p2) (p2o
`)→ s2

Apparently, most Americans, including some prominent linguists, use who in place of
whom, except when whom is governed by a preposition, as in

with whom have I seen her ?
(qô```q`)(qô``q`)(q1p

`
2π

`
1)π1 (p2o

`)o → q
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Note that this analysis requires the type assignment

with: qô```q`,

so far the only example of a triple left adjoint. However, people who normally avoid whom
would probably avoid this construction and replace it by

whom have I seen her with − ?

which we will not analyze here further (see [20]).

A very short glance at French.
In this section, which Francophobes may wish to skip, we will show how double left

adjoints can help to analyze clitic (i.e. unstressed) pronouns in French. To start with,
consider the clitic pronoun

le : io``i
`
.

Here we have introduced a new basic type i, strictly larger than i, and postulate

i 6→ i→ i .

The purpose of the bar will be made clear later.
We begin with some sample sentences:

je veux dormir
π1 (πr

1s1ī
`) i → s1

je veux voir Jean
π1 (πr

1s1ī
`) (io`) o → s1

The name Jean here appears as a direct object, but it could also be the subject of a
sentence. Had we assigned the type n to names, we should have postulated

n→ o, n→ π3 .

We are now able to handle

je veux le voir −
π1 (πr

1s1ī
`) (io``i

`
) (io`) → s1

.

To explain the purpose of the bar, we introduce another clitic pronoun

lui : iω``i`
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where
ω = indirect object

is a new basic type. We assign two types to the verb donner, namely

donner : iω`o`, io`ω`

to justify the sentences

je veux donner (un livre) (à Jean)
π1 (πr

1s1ī
`) (iω`o`) o ω → s1

and
je veux donner (à Jean) (un livre)
π1 (πr

1s1ī
`) (io`ω`) ω o → s1 .

Now consider
je veux le donner (à Jean)
π1 (πr

1s1ī
`) (̄io``̄i`) (io`ω`) ω → s1

je veux lui donner (un livre)
π1 (πr

1s1ī
`) (̄iω``i`) (iω`o`) o → s1

je veux le lui donner
π1 (πr

1s1ī
`) (̄io``̄i`) (̄iω``i`) (iω`o`) → s1

but
∗ je veux lui le donner

π1 (πr
1s1ī

`) (̄iω``i`) (̄i
6

o``̄i`) (io`ω`) 6→ s1

Note that linguists usually put an asterisk on the left of an incorrect sentence. For a fuller
treatment of French, the interested reader may wish to consult [1].

German àla Mark Twain.
Not wishing to assume that readers of this article are familiar with German, I will

avail myself of a trick due to Mark Twain [29]. He employed it to illustrate the vagaries of
German by using English words with German word order. It is our contention that this
strange word order will be triggered by the types assigned to the verbs. Here are some
examples:

you see him
π2 (πr

2s1o
`) o → s1

see you him ?
(q1o

`π`
2) π2 o → q1
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The metarule for forming questions, which applies to English auxiliary verbs, applies to
all verbs in German.

I have him seen
π1 (πr

1s1p
`
2) o (orp2) → s1

I can him see
π1 (πr

1s1i
`) o (ori) → s1

he can seen become
π3 (πr

3s1i
`) (orp2) (pr

2o
rri) → s1

can he seen become ?
(q1i

`π`
3) π3 (orp2) (pr

2o
rri) → q1

Here the English become is used to translate the German passive auxiliary. The above
analysis follows [16] in its use of double right adjoints. However, a different approach [22]
shows that double right adjoints can be avoided in this context, by assigning a second type
to the past participles of transitive verbs. Say, with the help of an appropriate metarule
we obtain

seen : p2ô
`,

where ô is a new basic type, strictly smaller than o, that is, such that

o 6→ ô→ o.

The hat here guards against the following, which is correct in English, but not in German:

∗ I have seen him
π1 (πr

1s1p
`
2) (p2ô

`) o
6

6→ s1
.

Note that ô`o→ 1 would imply

o = 1o→ ôô`o→ ô1 = ô.

By assigning the following revised type to the passive auxiliary

become : ôrpr
2i

we can re-analyze
he can seen become
π3 (πr

3s1i
`) (p2ô

`) (ôpr
2i) → s1

without using double right adjoints.
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Some limitations to our approach.
Other languages for which a preliminary pregroup analysis has been applied are Italian

[7], Polish [12], Japanese [6] and Arabic [2]. Work on Latin and Turkish is in progress.
However, evidence for double adjoints has so far only been uncovered in modern European
languages.

We have been working with the free pregroup generated by partially ordered sets.
Thus we admit postulates of the form α→ β only when α and β are basic types. As long
as this restriction is borne in mind, Lemma 4.1 offers a decision procedure for sentence
verification. However, it is doubtful whether all linguistic phenomena can be handled
successfully using free pregroups only. As Buszkowski [4] formally proved, grammars
based on free pregroups are context-free. It is known [26] that certain languages, most
familiarly Dutch, are not context-free. The usual proof of this relies on the well-known
argument in formal language theory that the intersection of two context-free languages
need not be context-free. This suggests that one should incorporate the intersection
symbol into the pregroup, that is, to work with free lattice pregroups. As far as I know,
such a project has not yet been attempted.6)

Even in English, there are some problems with our approach. Consider the noun
phrase

people whom I know −
p (prpô``s`) π1 (πr

1s1o
`) → p1 .

Here I have used the types

p = plural noun phrase,

s = declarative sentence when the tense is irrelevant

and the postulate
sk → s.

The relative pronoun, in this context

whom : prpô``s` ,

will have to be assigned different types when the relative pronoun modifies singular nouns
or when it occurs in a non-restrictive relative clause. A problem arises when the word
whom is omitted, as in the perfectly acceptable noun phrase

people ∅ I know.

One does not like to attach the type prpô``s` to the empty string ∅, nor does one want to
accept a solution involving pregroups which are not freely generated, e.g. by postulating

pô``s` → p.

The solution I now tend to favour is to adopt a metarule which states that any plural
noun of type p also has type pô``s`. Putting this in another way, we might say that all
nouns (not just plural ones) have optional invisible endings of type ô``s`.
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Omitting relative pronouns may lead to sentences which are hard to analyze. For
example, consider the two sentences

police whom police control control police,

police control police whom police control.

Omitting the relative pronoun whom and replacing the verb control by the synonymous
verb police, we transform both sentences into

police police police police police .

Let me end this section with a problem for readers who like puzzles: Show that the string
police2n+3 (where n ∈ N) can be parsed as a grammatical sentence in precisely n! distinct
ways.

Some mathematical examples.
When I introduced pregroups for linguistic purposes at a conference in 1998, I did not

immediately realize that they were not quite as new as I thought. In fact, I had exploited
the pregroup of unbounded order-preserving mappings Z → Z myself in [14]. In the
following discussion, let me talk about left pregroups, that is, partially ordered monoids in
which each element has a left adjoint, but not necessarily a right adjoint. A left pregroup
is easily seen to be a partially ordered group if and only if a`` = a for each element a.
An example of a left pregroup which is not a group is the monoid of order-preserving
unbounded mappings N → N. In fact, this example occurs implicitly in a paper [21]
written in collaboration with my late friend Leo Moser, although we were then innocent
of the present terminology and its categorical connection. We did however study the
following examples, among others, which I would like to present here with streamlined
arguments in modern terminology. (Similar results hold for pregroups, see [14] and [18].)

Consider the monoid of unbounded order-preserving functions f : N→ N, the binary
operation being composition:

(gf)(x) = g(f(x)).

Define the partial order elementwise:

f → g iff ∀x∈Nf(x) ≤ g(x)

and construct the left adjoint thus:

(∗) f `(x) ≤ y iff x ≤ f(y),

that is
f `(x) = inf{y ∈ N|x ≤ f(y)}.
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Some “universal” algebraists will recognize the pair (f `, f) as a Galois connection (see
e.g. [14] and [18]). It is easily seen that f ` is indeed the left adjoint of f in the sense of
Section 1. Indeed, putting x = f(y), we see that (f `f)(x) ≤ x and, putting y = f `(x), we
see that x ≤ ff `(x). To show that this left pregroup is not a group, take f(x) = [x/2],
then f `(x) = 2x and

f ``(x) = [(x+ 1)/2],

which is 6= f(x) in general.

Example 1. A left adjoint of interest in number theory is offered by the function

π(x) = the number of primes ≤ x.

Then π`(0) = 0 and, for x ≥ 1,

π`(x) = p(x) = the xth prime.

Put p(0) = π`(0) = 0 and look at the following table:

x p(x) p(x) + x π(x) π(x) + x+ 1
0 0 0 0 1
1 2 3 0 2
2 3 5 1 4
3 5 8 2 6
4 7 11 2 7
5 11 16 3 9
· · · · · · · · · · · · · · ·

Inspection of this table leads to the curious observation first made in [21]: the sets

{p(x) + x|x ∈ N}, {π(x) + x+ 1|x ∈ N}

are complementary subsets of N. Well, the numbers 10 and 12 to 15 seem to be missing,
so they should appear in the last column further down, as the reader will easily verify.

A deep property of prime numbers? Not at all. As was shown in [21], we have the
following general result:7)

Proposition. For any unbounded order-preserving function f : N→ N, the sets

(∗∗) {f `(x) + x|x ∈ N}, {f(x) + x+ 1|x ∈ N}

are complementary: every natural number belongs to one and only one of the two sets.
Since I won’t expect the reader to look up an old issue of the American Mathematical

Monthly, here is a recapitulation of the proof, which is quite easy, though a little tricky.
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Proof: It follows from (∗) that

f `(x) + x ≤ x+ y iff x+ y ≤ f(y) + y,

hence f `(x) + x 6= f(y) + y+ 1, and so the two sets under consideration have no elements
in common.

Now consider natural numbers x and y such that x+ y = n, that is,

0 ≤ x ≤ n, y = n− x.

Then
f `(x) + x ≤ n iff f(y) + y + 1 > n,

hence the two sets

{f `(x) + x|0 ≤ x ≤ n}, {f(y) + y + 1|0 ≤ y ≤ n}

together have exactly n+ 1 elements between 0 and n.
Since n is arbitrary, it follows that the two subsets (∗∗) of N are complementary.

Example 2. Here is another illustration of Proposition 2.1. Let f(x) = {
√
x+ 1} be the

closest integer to the square-root of x+ 1. Then f `(x) = x2− x, and so x+ 1 + {
√
x+ 1}

enumerates the natural numbers which are not perfect squares.

Example 3. An even earlier example preceded Proposition 10.2 and had, in fact, inspired
it. Let f(x) = [ρx] be the greatest integer ≤ ρx, ρ being an irrational number. Then
f `(x) = [ρ−1x] and so

{[(ρ−1 + 1)x]|x ∈ N}, {[(ρ+ 1)(x+ 1)]|x ∈ N}

are complementary subsets of N. Discarding x = 0 in the first of these sets and replacing
x+ 1 by x in the second, we find that

{[(ρ−1 + 1)x]|x ≥ 1}, {[(ρ+ 1)x]|x ≥ 1}

are complementary sets of positive integers. This ancient result by Beatty first appeared
as a problem in the American Mathematical Monthly [3].

Example 4. A special case of Beatty’s problem involves the golden ratio τ satisfying
τ 2 = τ + 1. Then

{[τ 2x]|x ≥ 1}, {[τx]|x ≥ 1}
are complementary sets of positive integers. These play a rôle in describing the winning
strategy of Wythoff’s game [25].

Related mathematical and logical systems.
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The ordered algebraic system studied here is that of a pregroup. Many years ago [13],
I had suggested another system8), that of a residuated monoid, that is, a partially ordered
monoid with two binary operations / (over) and \ (under) satisfying

ab→ c iff a→ c/b iff b→ a\c.

A residuated monoid with lattice operations becomes a Grishin algebra if we add a
so-called dualizing element 0 such that

(0/a)\0 = a = 0/(a\0).

Then one can define a De Morgan dual + to the operation here denoted by juxtaposition:

a+ b = ((0/b)(0/a))\0

or, equivalently.
a+ b = 0/((b\0) (a\0)).

A pregroup may then be viewed as a Grishin algebra in which

0 = 1, a+ b = ab,

as is easily seen by defining
a` = 0/a, ar = a\0.

On the other hand, a residuated monoid may also be turned into a semi-Heyting
algebra, by introducing the postulates9)

a→ 1, a→ aa, ab→ ab.

For logicians, free residuated monoids, Grishin algebras, pregroups and semi-Heyting
algebras correspond to the following logical systems respectively:

syntactic calculus,

classical bilinear logic,

compact bilinear logic,

positive intuitionistic propositional calculus.

I have been asked what led me to pregroup grammars and why I prefer them to the
earlier syntactic calculus [13] and its recent offshoots [24]. It was Claudia Casadio who
had the pioneering idea of introducing non-commutative linear logic (= classical bilinear
logic) for linguistic purposes (see the discussion in [8]). This system employed, in addition
to a tensor product, also its De Morgan dual. Once one realizes that there is no need for
two binary operations in grammatical applications, one is led to compact bilinear logic,
which identifies the two.

The original syntactic calculus and its more recent descendants display grammatical
derivations as page filling proof trees. On the other hand, computations in pregroup
grammars are one-dimensional and can be carried out in real time, without overburdening
the short-term memory, hence my present preference for the latter system.
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ENDNOTES

0) This expository article is an expanded version of [18,19]. The underlying re-
search for linguistic applications had been supported by the Social Sciences and
Humanities Research Council of Canada.

1) While the study of grammar may not have the best reputation nowadays, there
was a time, in the middle ages, when it was supposed to endow a person with
magical power, called “glamour”, a word derived from “grammar”.

2) When I first submitted [13], I had written “categorical” in place of “categorial”,
but the referee [Bar-Hillel] kindly suggested that “my typist had made a mistake”.

3) Buszkowski [5] has shown that this lemma is essentially a cut elimination theorem
for a certain logical system, here called compact bilinear logic.

4) Such linkages go back to Zellig Harris [10], as I learned from A.K. Joshi.

5) The reader may wonder why I did not take ô = o, but the explanation would take
us too far afield.

6) Lattice pregroups are pregroups endowed with a binary operation meet (∧) such
that x→ a ∧ b if and only if x→ a and x→ b.

7) In [21], we had not realized the importance of adjoints or Galois connections, so we
considered f ` to be a kind of “inverse” of f . Moreover, we removed the restriction
of unboundedness by adjoining an infinite element to N. A very readable account
of this result and its applications will be found in [11].

8) Originally I had considered a residuated semigroup, but later decided to add a
unity element.

9) These are the algebraic versions of Gentzen’s three structural rules: weakening,
contraction and interchange. In this algebraic version the last may be derived from
the other two: ab→ abab→ ba.



AUTHOR

Joachim Lambek
Department of Mathematics and Statistics
McGill University
Montreal, QC, Canada H3A 2K6
e-mail: lambek@math.mcgill.ca

The author has been on the staff of McGill University since 1946. He has dabbled in
several branches of mathematics over the years. He has written a book on Ring Theory
and co-authored books on Higher Order Categorical Logic and the History and Philosophy
of Mathematics. He has carried out a detailed investigation of the number two. He has
contributed to the enumeration of non-squares. The present article forms part of an
ongoing study of non-linear logic and its application to linguistics. Still unrealized is his
ambition to replace Montague by Capulet semantics.


