
The Lorentz category in special relativity.

Joachim Lambek

McGill University, Montreal
July 2009.

Abstract

Physical entities may be represented by quaternions with complex components. Con-
ceiving these as arrows in an additive category with two objects, one may encode the
information how they transform under a Lorentz transformation, and handle Maxwell’s
equations and the related Lorentz force. To cope with the Dirac equation we introduce
regular matrix representations of the quaternion units and a third object into the category.

1. Introduction.
Special relativity saw the light of day in 1905. Only six years later, two authors indepen-

dently realized that it could be presented elegantly in terms of biquaternions, that is quaternions
with complex components. (See Conway [1911, 1912] and Silberstein [1912].)

The idea was to represent physical quantities and operators as biquaternions, together with
instructions on how to transform them when the coordinate system was changed by a Lorentz
transformation, that is a linear transformation which leaves the norm of the biquaternion

x = x0 + i(i1x1 + i2x2 + i3x3)

invariant.
A Lorentz transformation takes the form

x 7→ qxq∗†

where q is a biquaternion of norm qq† = q†q = 1, q† being the quaternion conjugate of q. But
it turns out that any biquaternion a of physical significance may be transformed as

a 7→ qXaqY †,

where X and Y are superscripts 1 or ∗, q1 = q and q∗ is the complex conjugate of q. (Later we
shall also admit the superscript 0 such that q0 = 1, to deal with Dirac spinors.)

Today we may think of the superscripts as objects of an additive category, called a ring
with two objects by Barry Mitchell, and known as a Morita context in ring theory, and the
biquaternions as morphisms. Thus a : X → Y is to mean that a 7→ qXaqY † when the coordinate
system is changed. In particular

X
a−→Y

b−→Z

means that
ab 7→ qXaqY †qY bqZ† = qXabqZ†.
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Note that a : X → Y implies a∗ : ∗X → ∗Y , since

(qXaqY †)∗ = q∗Xa∗q∗Y †,

but a† : Y → X, since
(qXaqY †)† = qY a†qX†.

(Later we will introduce a third object 0 to help representing spinors.)

2. Some Hermitian biquaternions in physics.
Of special interest are Hermitian biquaternions a for which a∗ = a†, i.e. a∗† = a, in other

words
a = a0 + i(i1a1 + i2a2 + i3a3),

when a0, a1, a2 and a3 are real and i1, i2 and i3 such that

i21 = i22 = i23 = i1i2i3 = −1

are the basic quaternion units.
In particular, the following Hermitian biquaternions played a rôle in the early development:

space-time:
x = x0 + i(i1x1 + i2x2 + i3x3) = t + ix,

where x0 = t represents time and x position in 3-space;

energy-momentum:
p = p0 + i(i1p1 + i2p2 + i3p3) = ε + ip,

where p0 = ε represents energy and p momentum;

four-potential:
A = A(x) = ϕ + i(i1A1 + i2A2 + i3A3) = ϕ + iA,

where eϕ represents the potential energy and eA the potential momentum, e being the electric
charge of a moving particle;

partial differentiation:

D =
∂

∂x0

− i

(
i1

∂

∂x1

+ i2
∂

∂x2

+ i3
∂

∂x3

)
=

∂

∂t
− i∇.

All of these are to be thought of as arrows 1 → ∗, thus transforming like x 7→ qxq∗†, hence
possessing an invariant norm. For example, the Hermitian differential dx has norm

ds2 = dxdx† = dx†dx,

where s is called the interval, and the energy-momentum p has norm

m2 = pp† = p†p,

where m is known as the rest-mass.
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When m 6= 0 one requires that also ds 6= 0 and writes

p = m
dx

ds
= m

dt

ds

(
1 + i

dx

dt

)

= m(1− v2)−
1
2 (1 + iv),

where

v = i1
dx1

dt
+ i2

dx2

dt
+ i3

dx3

dt

is the classical velocity vector of norm v2. (We have chosen units so that the velocity of light
and the dielectric constant are 1 and Planck’s constant is 2π.)

In the absence of an external force, one postulates conservation of energy-momentum
dp

ds
= 0. In the presence of an electro-magnetic force, the so-called Lorentz force, one would

expect
d

ds
(p + eA) = 0,

A being the electro-magnetic four-potential, hence eA the energy-momentum.
It used to be assumed that there is no way of measuring A, but that A = ϕ + iA is only

known by the vector part of D∗A:

V (D∗A) = −(B + iE),

where B and E are the magnetic and electric fields respectively. But this is the same as the
vector part of D∗(A − Dθ), where θ = θ(x) is a scalar, since D∗Dθ is a scalar. Thus, the
measurable effect of A appeared to be invariant under the gauge transformation

A 7→ Aθ = A−Dθ.

This was traditionally exploited by assuming that the scalar part D ¯ A = 0. We will refrain
from making this assumption here. The gauge transformation also does not affect Maxwell’s
equation, which asserts that

D(B + iE) = DD∗A = −J,

where J denotes the charge-current density.

3. Working with Hermitian biquaternions.
Recalling that a : X → Y implies a∗ : X∗ → Y ∗ and a† : Y → X, we infer that it implies

a∗† : Y ∗ → X∗. In particular, if a : 1 → ∗, then

a∗† : 1 = ∗∗ → ∗,
hence also

H(a) =
1

2
(a + a∗†), a−H(a) =

1

2
(a− a∗†) : 1 → ∗.

We call H(a) the Hermitian part of a and a−H(a) = −iH(ia) the skew-Hermitian part.
On the other hand, if a : 1 → 1 the a† : 1 → 1, hence also

S(a) =
1

2
(a + a†), V (a) =

1

2
(a− a†) : 1 → 1.
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We call these the scalar and vector parts of a respectively.
From the Hermitian biquaternions a, b : 1 → ∗ we can construct the composite

1
a−→ ∗ b†−→ 1,

which we will write as
ab† : 1 → 1,

the order of multiplication being opposite from the usual categorical convention.
If a = a0 + ia and b = b0 + ib, we have

ab† = a0b0 − a ◦ b + a× b + i(ab0 − a0b),

where the scalar part
a¯ b = S(ab†) = a0b0 − a ◦ b

and the vector part
ab− a¯ b = V (ab†) = a× b + i(ab0 − a0b)

both represent arrows 1 → 1. Note that a¯ b = b¯ a, but V (ab†) = −V (ba†).
If a, b, c are three Hermitian biquaternions ∗ → 1, we have

∗ a−→ 1
b∗−→ ∗ c−→ 1,

so that
ab∗c : ∗ → 1.

A routine calculation shows that its Hermitian part

(1) H(ab∗c) = a(b¯ c)− b(c¯ a) + c(a¯ b).

This identity first appears in Gürsey [1955]. We will apply it in case a = e
dx

ds
, b = D and

c = A.

4. Conservation of energy-momentum.
From (1) we obtain

(2) −H

(
e
dx

ds
D∗A

)
+ e

dx

ds
(D ¯ A)−D

(
e
dx

ds
¯ A

)
+ e

(
dx

ds
¯D

)
A = 0.

Here the first two terms combine to

− H

(
e
dx

ds
(D∗A−D ¯ A)

)

= H

(
e
dx

ds
(B + iE)

)

= e
dx

ds
◦ E + ie

(
dx

ds
×B +

dt

ds
E

)

= e
dt

ds
(v ◦ E + i(v ×B + E)) .
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We recognize e(v ×B + E) as the classical Lorentz force
dp

dt
, so we must interpret e(v ◦ E) as

the classical Lorentz power
dε

dt
, and the whole expression as a relativistic version of the Lorentz

force
dp

ds
.

Thus (2) asserts that

d

ds
(p + eA) =

dp

ds
+

deA

ds
= D

(
A¯ e

dx

ds

)
,

where p+ eA is the kinetic plus potential energy-momentum. At first sight, the right hand side
appears puzzling, but it seems to be related to the quantum-mechanical Bohm-Aharonov effect.
(See Ryder [1996]). Anyway, if we write

A¯ dx

ds
=

dθ

ds
, Aθ = A−Dθ,

we have
d

ds
(p + eAθ) = 0

and we may as well redefine the 4-potential as Aθ, thus establishing that the total energy
momentum is conserved.

There is no point in repeating this process, since

dx

ds
¯ Aθ =

dx

ds
¯ A− dx

ds
¯Dθ

=
dx

ds
¯ A− dθ

ds
= 0.

Hence we may as well assume that A = Aθ in the first place, i.e. ẋ¯ A = 0, i.e. the potential
is “orthogonal” to the current in Minkowski space.

In summary of the above argument, Maxwell’s equations show how the electro-magnetic
field depends on the charge-current density and may be derived from a four-potential, which is
determined only up to a gauge transformation. The path of a charged particle is influenced by
the Lorentz force due to this field. Aided by a suitable gauge transformation, we may assume
that the underlying four-potential is orthogonal to the path of the given particle in Minkowski
space. When multiplied by the charge, the four-potential then gives rise to the potential energy-
momentum of the charged particle, and the relativistic Lorentz force may be accounted for by
the conservation of its total (kinetic plus potential) energy-momentum. Physicists must be
familiar with this observation, though I have not seen it mentioned in any of the texts I have
consulted.

5. Dirac spinors.
In vacuum, the photon, or any particle of mass zero, satisfies the equation DD∗A = 0. This

has been generalized to
DD∗A + m2A = 0
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for particles of mass m 6= 0, the so-called Klein-Gordon equation. This second order differential
equation may be replaced by two first order equations, provided m 6= 0:

(3) D∗A = mA′, DA′ = −mA.

For bosons of spin 1,
A : 1 → ∗, A′ : ∗ → ∗

but for fermions of spin
1

2
we postulate

A : 1 → 0, A′ : ∗ → 0

and then A and A′ are called spinors. We have now introduced a third object 0 into our
category.

The two equations of (3) may be combined into one:

D∗Ψ = −mjΨ,

the so-called Dirac equation, where

Ψ = A + jA′ : 1 → 0

provided
j2 = −1, ji = −ij.

This looks odd when i is the usual complex number, but becomes realistic if left multiplication
by i and j is replaced by right multiplication with the basic quaternions i1 and i2 respectively.

(Note that q0 = 1, hence the set {0, ∗, 1} behaves like Z mod 3 under multiplication. The
arrow Ψ : 1 → 0 represents the fact that Ψ 7→ qΨ under a Lorentz transformation.)

More precisely, we identify the quaternion units iα (α = 0 to 3) with their left regular matrix
representation and write jα for the corresponding right representation.

The Dirac equation then takes the form

(D∗ + mj2)Ψ = 0,

where D∗ =
∂

∂t
+ j1∇. (There is no need for introducing the ad hoc Pauli matrices.)

Since the Klein-Gordon equation has the explicit solution

A = cos(x¯ p)Ψ0,

Ψ0 being a constant matrix, our procedure yields a solution to the Dirac equation:

Ψ = (cos(x¯ p) + η sin(x¯ p))Ψ0,

where
−η = j2dx†/ds = (dx/ds)j2.

Taking advantage of the fact that η2 = −1, we may write this more elegantly thus:

Ψ = exp(η(x¯ p))Ψ0.
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In the Dirac equation, Ψ may be multiplied by any constant matrix on the right, in particular
by a column vector [c], where c is a quaternion with real components cα, and [c] is the transposed
of the row vector (c0, c1, c2, c3), rendering Ψ[c] into a column vector itself, say of the form [ψ], ψ
being a real quaternion. Then

iα[ψ] = [iαψ], jα[ψ] = [ψiα],

hence the Dirac equation with Ψ = [ψ] takes the quaternionic form

∂ψ

dt
+∇ψi1 + mψi2 = 0.

We have taken jα to be the right regular representation of iα, but we might as well have
taken it to be that of riαr†, where r is any quaternion of norm 1. Then the above equation
takes the form

∂ψ

∂t
r +∇ψri1 + mψri2 = 0,

which amounts to replacing ψ by ψr.
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