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Joachim (Jim) Lambek (1922-2014) is well-known as a mathematician, particularly for his work
on ring theory and algebra, and for his work on category theory, especially for deductive systems
and for categorical proof theory in general. He is also well-known for his work in mathematical
linguistics, particularly for his analysis of categorial grammar, the syntactic calculus, and pre-
groups. All this is referred to in other papers in this volume. What may be less well known is
that he also had a professional interest in theoretical physics. He was particularly interested in
the use of the language of quaternions as a tool to explain fundamental aspects of special rela-
tivity, for example. In fact the first version of his 1950 Ph.D. thesis included a section on this
topic (though he removed that section upon learning that his results had been already proven
by A.W. Conway in 1948). He visited this topic several times in his mathematical career, for
instance, in a Mathematical Intelligencer article “If Hamilton had prevailed: quaternions in
physics” (1995), and more recently in a series of articles, referenced in his paper in this volume.

Jim’s work in mathematics, logic, and linguistics may be inferred from references to it in
other papers in this volume—it seems fitting that this posthumous paper of his should illustrate
one of the many other sides of his scholarly interests.

Prologue

Pre-Socratic Greek philosophers were engaged in two intensive debates: Are material objects
continuous or discrete, and what is the nature of time? The claim that matter consists of
infinitely divisible substances was first made by Thales, who postulated a single basic substance:
water. In time, three other substances were added, notably by Empedocles, and even nowadays
people accept four states of matter: liquid, solid, gas and energy. The claim that all matter is
made up of indivisible units seems to be implicit in the Pythagorean assertion that all things
are numbers, but is ultimately replaced by the atomic theory of Democritus and Epicurus.
The nature of time was debated by Heraclitus and Parmenides. The former emphasized the
importance of time and change in his memorable slogans, while the latter insisted in his famous
poem that time was not all that different from space. If I understand him correctly, he claimed
that the one-dimensional flow of time is a human illusion not shared by the gods. His pupil
Zeno seems to have pointed out that assuming time to be either discrete or continuous leads to
contradictions.
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Mathematicians too were wondering whether positive reals (which they called geometric
quantities) or positive integers are more fundamental. The Pythagoreans at first assumed
the latter and only reluctantly admitted the irrationality of the square root of 2. At Plato’s
Academy two ways of defining positive reals in terms of positive integers were proposed, which
are now known as Dedekind reals and Cauchy reals respectively. The former were introduced
by Eudoxus and the latter by Theaetatus, who made use of continued fractions. Surprisingly,
the ancient Greeks avoided zero and negative numbers, which were only introduced a thousand
years later in India.

Modern physicists have definitely decided that the fundamental particles of nature are indi-
visible objects called fermions and bosons, but the matter of time is still being disputed. In [11]
I suggested that all fundamental particles of spin 1

2
or 1 could be represented by four-vectors

with entries 0, 1 and −1. More recently [12], I observed that six-vectors with the same entries
are more suitable if one wishes to distinguish between right-handed and left-handed particles.
However, position in space-time is nowadays assumed to be subject to a probability distribution,
best expressed as the norm of a quaternion, the Dirac spinor.

For reasons to be discussed below, I have also come to the conclusion that time has more
than one dimension. Mathematical elegance would require three dimensions of time, but these
may be reduced to two if one insists that Dirac’s first-order equation is equivalent to the
second-order Klein-Gordon equation. This may be proved as in [10], but better with the help
of category theory as below. In [13] I suggested that one should consider a finite additive
category with three objects (called a ring with three objects by Barry Mitchell), whose arrows
described four-vectors, six-vectors and Dirac spinors of four-dimensional relativistic quantum
mechanics. In the present article, the category is generalized to six-dimensional space-time and
the six-dimensional classification of fundamental particles is exploited to present a proof of the
probability density.

Six-dimensional Lorentz category

Present day theoretical physics relies on the representation of groups and Lie algebras. My
personal preference is to make use of the regular representations of the algebra of quaternions
instead.

The application of quaternions to Special Relativity has a long history and goes back to
Conway [1] and Silberstein [16,17] a century ago. The original idea was to use biquaternions,
i.e. quaternions with complex components. Thus, location in space-time was represented by
the Hermitian biquaternion (one in which the quaternion and complex conjugates coincide):

(i) x0 + ii1x1 + ii2x2 + ii3x3

or, equivalently, by
(ii) ix0 + i1x1 + i2x2 + i3x3

following Minkowski’s suggestion that time be conceived as imaginary space.
When mathematicians turned their attention to Dirac’s equation, they thought it convenient

to replace i1, i2 and i3 by their left regular matrix representations and i by the right regular
matrix representation of one of them, say i1. This idea was pursued by Lanczos [14], Conway
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[2] and Gürsey [7]. If we also admit the right regular representations of i2 and i3, we are led by
(i) to think of a 10-dimensional space-time and by (ii) of a 6-dimensional one. It is the latter
approach I will pursue here, thus admitting two additional dimensions of time rather than six
additional ones of space.

The assumption that time has three dimensions was developed by me for special relativity in
[10] and for general relativity in [6] by Gillen. My original motivation for the extra dimensions
was based on mathematical elegance. In retrospect, the additional dimensions of time make it
easier to understand how Schrödinger’s cat can be alive and dead “simultaneously”, provided
this adverb is interpreted to mean “at the same distance from the origin of temporal three-
space”.

With any quaternion x we associate two regular representations

L(x)[ψ] = [xψ], R(x)[ψ] = [ψx],

where [ψ] is the column vector consisting of the coefficients of the quaternion ψ. Evidently

L(xy) = L(x)L(y), R(xy) = R(y)R(x), L(x)R(y) = R(y)L(x).

The two representations are related by the diagonal matrix Γ with entries (1,−1,−1,−1):

ΓL(x)Γ = −R(x), ΓR(y)Γ = −L(y),

hence
Γ(L(x) +R(y))Γ = −(L(y) +R(x)).

Any quaternion may be written as a0 + a, where a0 is a scalar and

a = i1a1 + i2a2 + i3a3

is called a three-vector. It is easily seen that

L(a) +R(b)

is a skew symmetric matrix and that every skew-symmetric 4 × 4 real matrix has this form.
See [10].

It is our intention to represent space-time by the skew matrix

X = L(x) +R(t),

where the vector t now replaces the usual scalar t, and to treat other basic physical entities in
the same manner.

Thus we have the kinetic energy-momentum

P = L(p) +R(m),

where p is the usual momentum vector and m is the three-dimensional analogue of the usual
energy = matter = 4π frequency.

The skew matrix replacing the old four-potential

Φ = L(A) +R(φ)
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is composed of Maxwell’s vector potential and the vector analogue of the usual scalar potential.
This allows us to describe the potential energy-momentum −eΦ of the electron with charge −e,
the minus sign being due to a choice made by Benjamin Franklin.

The charge-current density is described by

J = L(J) +R(ρ),

where J is the usual current density and ρ replaces the usual charge density.
To the above skew matrices we must add the partial differentiation operator

D = L(∇x)−R(∇t),

where

∇x = i1
∂

∂x1
+ i2

∂

∂x2
+ i3

∂

∂x3
, ∇t = i1

∂

∂t1
+ i2

∂

∂t2
+ i3

∂

∂t3
,

the minus sign being due to the contravariance of differentiation.
In addition to the basic physical entities discussed so far, others may be represented by

conjugation and composition of the above skew matrices, the conjugate of A = L(a) + R(b)
being A∗ = L(a) − R(b). Thus every physical entity can be represented by a 4 × 4 matrix,
but this should be accompanied by a Lorentz transformation, itself expressed with the help of
a 4× 4 matrix Q of determinant 1.

To start with, we have the basic entities transforming as follows:

X 7→ QXQT , space-time,
P 7→ QPQT , kinetic energy-momentum,
Φ 7→ QΦQT , six-potential,
J 7→ QJQT , charge-current density,

where QT is the transposed matrix of Q. Note that the condition detQ = 1 excludes Q = Γ,
but it does not distinguish between transformations expressed by Q and −Q.

According to tradition, a Lorentz transformation is supposed to preserve the expression

X �X = x ◦ x− t ◦ t = −XX∗,

where x ◦x is the usual Heaviside scalar product and X �X is its extension to six dimensions.
The condition that detQ = 1 ensures that X 7→ QXQT preserves the determinant of X,

hence the square of X �X. But, if we also wish to preserve the sign of X �X, we can achieve
this by postulating

(iii) X∗ 7→ Q#X∗Q−1

where Q# is the matrix of cofactors of Q, so that

QT = (Q−1)# = Q−#.

In fact, (iii) is a necessary and sufficient condition for X �X to be Lorentz invariant. See [10].
We are now in a position to introduce the Lorentz category as an additive category (also

called a ring by Barry Mitchell) with three objects 1,# and 0, where

## = 1, u# = 0 = #u, 1u = u = u1
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for all objects u. The arrows A : u→ v are matrices A such that

A 7→ QuAQ−v,

where Q−v = (Qv)−1. If B : v → w is another such arrow, so is the matrix product AB : u→ w,
where we have reversed the conventional order of composition of arrows.

In particular, the basic entities X,P,Φ, J and D all describe arrows 1→ #, whereas X∗, P ∗

etc are arrows # → 1. This had been done under the assumption that there was only one
dimension of time in [13], where the usual four-vectors, six-vectors and Dirac spinors were
represented by arrows 1 → #, # → # and 1 → 0 respectively. The same category had been
employed in [13], where the basic entities turned out to be Hermitian biquaternions, but here
they are skew-symmetric 4× 4 matrices.

Most (if not all) physical entities in pre-quantum physics live already in a ring with two
objects, 1 and #, called a Morita context, but an understanding of the Dirac equation requires
a third object 0 to admit the so-called Dirac spinors 1→ 0, see below.

To get an idea of how useful calculations are carried out in the Lorentz category, consider
skew matrices A,B,C : 1 → #. Then AB∗ : 1 → 1 and AB∗C : 1 → #; but these arrows can
be decomposed. Thus

AB∗ = 1
2
(AB∗ +BA∗) + 1

2
(AB∗ −BA∗),

where the first summand is the trace or scalar part of AB∗:

1
2
(AB∗ +BA∗) = −A�B : 1→ 1.

Moreover
AB∗C = 1

2
(AB∗C + CB∗A) + 1

2
(AB∗C − CB∗A),

where the first summand is the skew part of AB∗C, which may be calculated as follows:

skew(AB∗C) = −A(B � C) +B(C � A)− C(A�B).

This happens to be useful in discussing the Maxwell-Lorentz treatment of the electron, which
may be summarized by the equation

d(P − eΦ) = 0,

expressing the conservation of the total energy-momentum, where Φ may be subject to a gauge
transformation. See [10].

Maxwell had defined the electro-magnetic field F acting on the charged particle in four
dimensions as the vector part of D∗Φ. In six dimensions this becomes the symmetric part:

F = 1
2
(
−→
D∗Φ− Φ

←
D∗).

It is supposed to be caused by J according to Maxwell’s equation DF = J , where J satisfies
the equation of continuity D � J = 0. On the other hand, the force of the field on an electron
as described by Lorentz becomes

dP

ds
= skew

(
−edX

ds
F

)
=

d

ds
(eΦ),
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where (ds)2 = dXdX∗.
The relativistic treatment of quantum mechanics begins with the so-called Klein-Gordon

equation, already known to Schrödinger:

DD∗[ψ] = −µ2[ψ],

where µ = PP ∗ : 1 → 1 is the rest-mass of a particle and [ψ] : 1 → 0 is a Dirac spinor. If
µ 6= 0, this is equivalent to two first order equations:

D∗[ψ1] = µ[ψ2], D[ψ2] = −µ[ψ1].

Penrose [15] might call [ψ1] the zig and [ψ2] the zag. However, Dirac would combine them into
a single first order equation.

Assuming that one time coordinate, say t3, is redundant in a certain frame of reference, we
may take K = R(i3) in this coordinate system and verify that

X∗ = −K−1XK−1

for K : 1→ #, and similarly for P ∗, D∗ etc. Now let

[ψ] = [ψ1]−K[ψ2],

then we may calculate
(iv) D∗[ψ] = −µK∗[ψ]

and take this to be the six-dimensional Dirac equation.

An explicit solution of (iv) is given by

[ψ] = exp(η(X � P )) [ψ0],

where
η = µ−1KP ∗ = −µ−1PK∗

satisfies
η2 = −1.

On the other hand, (iv) may be written in purely quaternionic form:

−→∇xψ + ψ
←
∇t + µ(kψ − ψk′) = 0,

provided
K = L(k) +R(k′).

Multiplying (iv) by the row vector [ψ]T on the left, we obtain

[ψ]T
−→
D∗[ψ] = −µ[ψ]TK∗[ψ].

Here the right side is skew symmetric, hence so must be the left side, so that

[ψ]T
↔
D∗[ψ] = [ψ]T

−→
D [ψ] + [ψ]T

←
D[ψ] = 0.
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Multiplying this by a constant skew-symmetric matrix S on the left and assuming that S : 0→ 0
is Lorentz invariant, we infer that

(v) trace(
→
D∗[ψ]S[ψ]T ) = trace([ψ]T

↔
D∗[ψ]S) = 0.

Write JS = [ψ]S[ψ]T , check that JS : 1 → 0 → 0 → # and note that (v) then asserts that
D�JS = 0, which resembles Maxwell’s equation of continuity and suggests a comparison of JS
with the electric charge-current density. A proof of this when time has only one dimensions is
found in [18].

It remains to identify S. I will speculate that S is the quaternionic version of the six-vector
characterization of fundamental particles of spin 1 and 1/2 that I have discussed in [12]:

S = L(s1i1 + s2i2 + s1i3) +R(s′1i1 + s′2i2 + s′3i3)
∼ (S1, S2, S3; s

′
1, s
′
2, s
′
3)

where the Sα and S ′β are all equal to 0, 1 or −1. Addition of these six-vectors or their skew-
symmetric analogues helps to justify Feynman diagrams for fundamental particles. For example,

U = L(i1 + i3) +R(i1) ∼ (1, 0, 1;−1, 0, 0)

characterizes a first generation left-handed blue up-quark and

W = L(−i1 − i2 − i3) +R(−i1 − i2 − i3) ∼ (−1,−1,−1;−1,−1,−1)

characterizes a weak vector boson W−. Adding these two expressions, we obtain

D = U +W = L(−i2) +R(−i2 − i3) ∼ (0,−1, 0;−0,−1,−1),

which characterizes a first generation right-handed blue down-quark.
The equation SD = SU + SW serves to justify the Feynman diagram

D //

W
��?

??
??

??
??

??
U

��
��
��
��
�

??

W
��
��
��
��
�

U

��?
??

??
??

??

D //

and allows us to infer the equation JD = JU + JW . This seems reasonable, but fails to bring
the coupling constant into the picture.

The two extra dimensions of time had been introduced for the sake of mathematical elegance
and I have not settled on their physical meaning. For a while I had hoped that they might help
to incorporate the direction of the spin axis, but did not succeed to make this idea work.
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