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Compact monoidal categories
from Linguistics to Physics.

J. Lambek, McGill University, Montreal.

This is largely an expository paper, revisiting some ideas about compact 2-categories,
in which each 1-cell has both a left and a right adjoint. In the special case with only
one 0-cell (where the 1-cells are usually called “objects”) we obtain a compact strictly
monoidal category. Assuming furthermore that the 2-cells describe a partial order, we
obtain a compact partially ordered monoid, which has been called a pregroup. Indeed, a
pregroup in which the left and right adjoints coincide is just a partially ordered group (=
pogroup).

A brief exposition of recent joint work with Anne Preller [2007] will be given here,investigating
free compact strictly monoidal categories, which may be said to describe computations in
pregroups. Free pregroups lend themselves to the study of grammar in natural languages
such as English. While one would not expect to find a connection between linguistics and
physics, applications of (free) compact symmetric monoidal categories to physics have
been made by Abramsky and Coecke and by Selinger.

Compact symmetric monoidal categories had already been studied by Kelly and Laplaza
[1980], who called them “compact closed” and by Barr [1979 etc], who called them “com-
pact star-autonomous”. I had intended to show that Feynman diagrams for quantum
electro-dynamics (QED) could be described by certain compact Barr-autonomous cate-
gories, but was disappointed to find that these reduced to a rather degenerate case, that
of partially ordered groups (= pogroups). Still, I will reluctantly present an extension of
this idea from QED to the Standard Model. Finally, I will briefly review the transition
from 2-categories to the bicategories of Bénabou [1967], using methods of Bourbaki [1948]
and Gentzen (see Kleene [1952]), which may also be of interest in physics.

1. Compact 2-categories and pregroups.
A 2-category has 0-cells, 1-cells and 2-cells. A typical 2-category (Cat) is that of all

small categories with

0-cells = small categories,
1-cells = functors,
2-cells = natural transformations.

We recall that 2-cells have, in addition to the vertical composition (represented by a small
circle)

t : F → G u : G→ H

u ◦ t : F → H
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also a horizontal composition (represented by juxtaposition)

s : H → K t : F → G

st : HF → KG

defined by the diagonal of the commutative square:

KF KG
Kt

//

HF

KF

sF

��

HF HG
Ht // HG

KG

sG

��

HF

KG

st
HH

HH
HH

H

$$H
HH

HH
HH

The equations in a 2-category are described formally in MacLane’s “Categories for the
working mathematician”, but should be familiar from Cat.

The notion of adjoint functor is known in Cat, but exactly the same definition works
in any 2-category. Thus (F,U, η, ε) defines an adjoint pair if η : 1→ FU and ε : UF → 1
are 2-cells such that the following triangular equations hold:

(1.1) F
ηF−→FUF

Fε−→F = F
1F−→F

(1.2) U
Uη−→UFU

εU−→U = U
1U−→U

Special cases of 2-categories are
strictly monoidal categories: with only one 0-cell;
partially ordered categories: with only one 2-cell

between any two 1-cells, satisfying the anti-symmetry law;
partially ordered monoids: both of the above.

A 2-category is said to be compact if every 1-cell G has both a left adjoint G` and a
right adjoint Gr. We describe the two adjoint pairs thus:

(G,GrηG, εG), (G`, G, ηG
`

, εG`).

Of special interest are compact partially ordered monoids, which I have called pre-
groups. In any pregroup we have

GGr → 1→ GrG, G`G→ 1→ GG`

and the triangular equations hold automatically, since the arrow denotes a partial order.
If G` = Gr for all 1-cells G, the pregroup is just a partially ordered group, more precisely
a partially ordered monoid in which each element has an inverse.

Pregroups that are not partially ordered groups are not easy to come by. My favourite
example is the monoid of all unbounded order-preserving mappings Z → Z, with multi-
plication and order defined as follows:

(fg) (z) = f(g(z)),
f → g ⇔ f(z) ≤ g(z)
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for all z ∈ Z. Adjoints are defined thus:

g`(z) = inf{y ∈ Z|x ≤ g(y)},
gr(z) = sup{y ∈ Z|g(y) ≤ z}.

To see that this is not a group, consider g(x) = gx, then

gr(x) = [x/2], g`(x) = [(x+ 1)/2].

The following equations hold for the elements of any pregroup, or even for the arrows
(1-cells) in any compact partially ordered category:

1` = 1 = 1r, ar` = a = a`r, (ab)` = b`a`, (ab)r = brar.

Moreover, adjoints are unique and

a→ b⇒ b` → a` ⇒ a`` → b`` ⇒ · · · ,
a→ b⇒ br → ar ⇒ arr → brr ⇒ · · · .

2. Pregroups for grammar.
Pregroups freely generated by a partially ordered set have recently found an application

to the grammar of natural languages. To illustrate this with a tiny fragment of English
grammar, consider the poset of basic types:

q1 = yes-or-no question in present tense,

q = yes-or-no question in any tense,

q = question (including Wh-question),

i = infinitive of intransitive verb,

π3 = third person singular subject,

π2 = second person singular or any plural subject,

o = direct object,

p = plural noun phrase,

with basic arrows (inequalities)

q1 → q→ q, p→ π2, p→ o.

Here are three sample questions with their associated types (elements of the free pregroup):

does he go with her ?
(q1i

`π`3)π3
6

i (ir
6
i

6

o`)o
6

→ q1

whom does he go with − ?
(qo``q`)(q1

6
i`π`3)π3

6
i (ir

6
i

6

o`

6

) → q
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with whom does he go ?
(qo```q`)(q

6
o``

6

q`)(q1
6

i`π`3)π3
6

i
6

→ q

where q`q1 → q`q→ 1.
The underlinks in a similar enterprise were first introduced by Zellig Harris [1966].

They may be viewed as degenerate proofnets. The dash at the end of the second ques-
tion represents what Chomsky calls a trace, inserted here to facilitate comparison with
mainstream linguistics.

The reader may wonder why the above calculations involve only contractions a`a→ 1
and aar → 1 and no expansions 1→ aa` or 1→ ara. The reason is the following

Switching Lemma. Without loss of generality, one may assume that, in any calculation
in a freely generated pregroup, all contractions precede all expansions.

This implies, of course, that, when the right hand side is a simple type (obtained from
a basic type by adjunctions), no expansions are needed. The proof of the lemma [L1999]
depends on the triangular equations.

Note that, already in the first sample question above, the contraction i`i → 1 was
postponed in order to ensure that the question does not end after go. Here the post-
ponement was obligatory, but often it is optional,allowing different interpretations. For
example, consider

old men and women
(pp`)p

6
(pr

6

pp`)p
6

→ p

versus
old men and women

(pp`)p (pr
6

p
6

p`)p
6

→ p

In the first noun phrase only the men are described as being old, in the second both men
and women are.

This suggests that we should think of the arrow not just as a partial order, but as a
derivation. In other words, we should replace the pregroup by a compact strictly monoidal
category, or even by a compact 2-category.

3. Free compact 2-categories.
Free compact 2-categories were studied by Preller and Lambek [2007]. To convey our

main ideas, let me sketch briefly here how to construct the compact 2-category with one
0-cell freely generated by a given basic category.

basic 1-cells are objects of the basic category;

simple 1-cells have the form A(z), where A is a basic 1-cell and z ∈ Z;

1-cells are strings of simple ones, the empty string to be denoted by 1;

composition of 1-cells is concatenation of strings;

adjoints of 1-cells are formed by reversing the order and decreasing the superscript by
one unit for left adjoints, increasing it by 1 for right adjoints, but the empty string is its
own left and right adjoint.
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A description of 2-cells will be given presently. For this we need to introduce

(3.1) simple arrows of the form f (z) : A(z) → B(z), where

either z is even and f : A→ B is basic

or z is odd and f : B → A is basic,

(3.2) contractions A(z)A(z+1) → 1 and expansions 1→ A(z+1)A(z).

For example, if f 0 = f : A→ B is an arrow in the basic category, we obtain f r : Br → Ar

as follows:
Br → ArABr → ArBBr → Ar.

This assumes that we have already introduced contractions εB : BBr → 1 and expansions
ηA : 1→ ArA when A and B are basic 1-cells. We may then also define

ε(Ar) = (ηA)r, η(Br) = (εB)r.

Repeating this process, we obtain f rr : Arr → Brr as well as ε(Brr) and η(Arr), etc. This
will account for positive z, but negative z may be treated similarly.

The triangular equations for basic 1-cells must be postulated. But then we can infer
them also for simple 1-cells, provided we postulate that adjunction acts contravariently
on both horizontal and vertical composition. For example,

ε(Ar)A
r ◦ Arη(Ar) = (ηA)rAr ◦ Ar(εA)r

= (AηA)r ◦ (εAA)r

= (εAA ◦ AηA)r

= (1A)r

= 1(Ar).

2-cells from one 1-cell to another are obtained by performing a sequence of “deduc-
tions” with the help of simple arrows, contractions and expansions, as follows:

ΓA(z)∆→ ΓB(z)∆,
ΓA(z)A(z+1)∆→ Γ∆,
Γ∆→ ΓA(z+1)A(z)∆,

where Γ and ∆ are strings of 1-cells. However, these 2-cells are subject to the triangular
equations discussed earlier. To obtain a canonical representation of 2-cells, it will be
convenient to introduce generalized contractions and expansions, which already abort
certain simple arrows.

(3.3) Generalized contractions have the form εf , where f : A→ B is a simple arrow and
εf is the diagonal of the commutative square

BBr 1
εB ‘εf

//

ABr

BBr

fBr

��

ABr AAr
Afr // AAr

1

εA

��

ABr

1

εf
HHH

HHH
HH

$$H
HHH

HHH
H
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and generalized expansions have the form ηg, where g : C → B is a simple arrow and ηg
is the diagonal of the commutative square

BrB CrB
grB

//

1

BrB

ηB

��

1 CrC
ηC // CrC

CrB

Crg

��

1

CrB

ηg
HH

HH
HH

H

$$H
HH

HH
HH

The Switching Lemma mentioned earlier for free pregroups can be sharpened to hold also
for free compact 2-categories with one 0-cell.

Categorical Switching Lemma.
Without loss of generality one may assume that a 2-cell consists of generalized con-

tractions followed by simple arrows followed by generalized expansions.
Here is an indication of a crucial step in the proof: Suppose a generalized expansion

immediately precedes a generalized contraction, as in

A
Aηg−→ABrC

εfC−→C

where f : A→ B and g : B → C are simple errors, then the compound arrow

(εfC) ◦ (Aηg) = g ◦ f

may be replaced by the simple arrow g ◦ f : A→ c.
To see this look at the following commutative diagram:

and note that the compound arrow on the top is εfC and the compound arrow on the
left is Aηg .
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To check the commutativity of the above squares, pretend you are in Cat, then apply
the naturality of f, εB and fBrB.

We have thus proved the generalized triangle equality

(εfC) ◦ (Aηg) = g ◦ f

and can show similarly that

(Arεg) ◦ (ηfC
r) = f r ◦ gr.

We may then represent 2-cells by geometric diagrams called transition systems by
Preller and Lambek [2007]. For example, given simple arrows

f : A→ F, g : C → 0, L : B → E, i : G→ H, j : I → J,

we obtain a 2-cell

ABCDrEr → FGrHIrJ

as a vertical composition as follows:

(FGrHηj) ◦ (Fηi) ◦ (fεh) ◦ (ABεgE
r),

which is represented horizontally thus:

When describing a transition system between two 1-cells Γ and ∆, we must ensure
that any simple 1-cell of Γ or ∆ is at an endpoint of exactly one simple arrow, underlink
or overlink, and that these don’t cross.

The Switching Lemma ensures that the composition of two transition systems is again
a transition system, by a process we called “combing”, but which others have called
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“yanking”. For example:

For more details see [loc.cit.], where it is also shown that the free compact 2-category thus
constructed has the expected universal property.

Buszkowski [2002] had shown that the original Switching Lemma for free pregroups is
essentially a cut-elimination theorem for compact bilinear logic. Our categorical version
shows that the composition of 2-cells in free compact 2-categories (with one 0-cell) can
be performed without mentioning vertical composition, except that of basic arrows, from
which other simple arrows are easily constructed. I believe that this is the true rôle of
cut-elimination also in other categorical contexts. (The restriction that there is only one
0-cell was made for expository purposes and may of course be removed.)

4. In search of a compact Feynman category.

From now on let us assume that we are in a compact 2-category with one 0-cell, also
known as a compact strictly monoidal category. Let U = F r be the right adjoint of F ,
hence U = F ` the left adjoint of U . The triangular equation (1.1) may be represented
geometrically as an equation between diagrams:

It is tempting to give a physical interpretation to this in quantum electro-dynamics
(QED):

F = e− = electron,

U = e+ = positron,
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I = γ = photon.

It does not seem profitable to distinguish between right and left adjoints here, so we will
assume from now on that G` = Gr for any 1-cell G.

The equation G` = Gr will hold automatically if the 2-category is symmetric, that is,
if composition of 1-cells is commutative, as we shall assume from now on. This requires,
in particular, that any two composable 1-cells must have the same source and target,
as is ensured by our assumption that there is only one 0-cell. Our compact 2-category
thus becomes what Kelly and Laplaza [1980] call a compact closed category (closure being
a consequence of compactness, as defined here) and what Barr calls a compact star -
autonomous category (the star being the common symbol for the superscripts ` and r),
although here the tensor product is assumed to be associative on the nose. The second
triangular equation (1.2) is now a consequence of the first (1.1).

Diagrams such as (4.1) were introduced by Feynman as an aid to calculating proba-
bilities. For example, the probability of what happens at any vertex of (4.1) is given by
the (idealized) charge of the electron.

The equal sign in (4.1) must be taken with a grain of salt. What actually happens is
that the electron goes from point x to point y in space-time in many different ways. Each
of the ways has associated with it a certain complex number, its amplitude, depending
on the energy-momentum 4-vector. These amplitudes must be added up and the square
of the absolute value of their sum is interpreted as the probability for an electron to go
from x to y. Hence the equal sign really holds between equivalence classes of alternative
motions.

The easiest way to ensure the equality in (4.1) is to let the arrow stand for a partial
order. Then we would also predict

in line with what physicists call “vacuum polarization”. Disappointingly, this will imply
that our compact 2-category degenerates into a partially ordered group, in which adjoints
are just inverses.

5. A progroup for QED.
I had hoped to describe an interesting freely generated compact monoidal category for

application to quantum electro-dynamics. But, after all the i-s were dotted and all the t-s
were crossed, I realized that all I had was a partially ordered group. I will now describe
a provisional version of this progroup, provisional because I have not taken into account
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the spin of the electron and the polarization of light. These had also been downplayed, if
not ignored, by Feynman [1985], whose beautiful exposition I am relying on.

We take as 1-cells all finite multisets (to be explained presently) of fundamental 1-
cells. There are pairs (x, a), where x = (x0, x1, x2, x3) ∈ R4 is a point in space-time
and a = (a0, a1, a2, a3) ∈ {−1, 0,+1}4 represents a fundamental particle. For expository
purposes we will write (x, a) = xa, thus suggesting the x0 = 1 does not depend on x.

A multiset is a string, liable to arbitrary permutations of its elements. The composition
of 1-cells, usually called “tensor product” in monoidal categories, is obtained by combining
two multisets into one. The empty multiset is the unity element 1. (Conceivably, these
multisets should be replaced by sets, but this should only be done after the spin of the
electron has been taken into account.)

2-cells, that is arrows between multisets, are “made up” from the following:

motions: xa → ya,

contractions: xayb → xa+b,
expansions: xa+b → xaxb.

The last two are subject to the condition that

ai = 0 or bi = 0 or ai + bi = 0

for all i ∈ {0, 1, 2, 3}. We recall that the arrow represents a partial order (not a pre-order)
so that ↔ means equality.

We will leave the complete interpretation of the quadruple a until later. For the
moment let us only mention that

e = (1,−1,−1,−1) represents the electron e−,

−e = (1, 1, 1, 1) represents the positron e+,

0 = (0, 0, 0, 0) represents the photon γ.

Hence the contraction

xex0 → xe

describes an electron at x absorbing a photon. If the arrow is reversed, the expansion
describes emission of a photon. The contraction

x`x−e → x0 = 1

describes the annihilation of an electron-positron pair. If the arrow is reversed, the ex-
pansion describes pair creation. This should suffice for QED.

What is meant by saying that 2-cells are “made up” from motions, contractions and
expansions? Without giving a tedious formal definition, let me illustrate this by a calcu-
lation:

ue → ve → v0v` → w0ve → wew−eve → wex−exe

→ wex0 → yey0 → ye → ze
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which is furthermore illustrated by the Feynman diagram, the lefthand side of (4.1):

As another illustration, consider two motions xa → ya and ua → va. They generate a
2-cell xaua → yava. But, since yava = vaya, this 2-cell is also generated by the motions
xa → va and ua → ya. According to our interpretation, this should imply that the
amplitudes of the two processes are to be added before calculating the probability of the
transition xaua → yava. This is indeed the case, as Feynman pointed out.

Although I had expected to find an interesting compact closed category, all we ended
up with was a partially ordered group with x0 = y0 = 1 and inverse (xa)−1 = x−a. It is
not the free pogroup generated by the xa, since we have additional equalities xaxb = xa+b,
when one of ai, bi or ai + bi is 0 for each i.

We might have obtained a more interesting Feynman 2-category (with one 0-cell),
had we not assumed that the 2-cells describe a partial order, but that all “ways” of
going from one point in space-time to another count as 2-cells. However, the resulting
strictly monoidal category would not be compact and would not be relevant for the present
discussion. I have not investigated what happens if we assume that the symmetry is not
exact or if it is replaced by braiding, as in Joyal-Street [1986].

Already the ancient philosopher Parmenides believed that the flow of time is an illu-
sion, not shared by the gods. It is therefore of some interest to show formally that xa → ya

implies (and is implied by) y−a → x−a, meaning that any particle may be viewed as the
corresponding anti-particle moving backwards in time. Assuming xa → ya, we calculate

y−a → y−ay0 → y−ax0 → y−axax−a

→ y−ayay−a → y0x−a → x0x−a → x−a.

To avoid an overabundance of 2-cells, we will not allow xa → yb unless a = b and we will
postulate

(5.1) xa = ya if and only if x = y or a = 0.

The above treatment ignores the Pauli exclusion principle, which asserts that two
identical electrons (with the same spin direction) cannot occupy the same position in
space-time. We could have overcome this objection had we replaced “multisets” by “sets”
in our definition of 1-cells. But this would not do either, since two identical photons or
two electrons with opposite spin can be at the same place.
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6. From QED to the Standard Model.

Had we only been interested in QED and weak interactions, we could have taken a to
be a pair (a0, a1) with a1 representing the electric charge, if the charge of the electron is
taken as −1. The minus sign here results from an arbitrary choice by Benjamin Franklin
as to what constitutes positive versus negative charge. We have chosen a = (a0, a1, a2, a3)
to account also for strong interactions, with

a1 + a2 + a3 = 3× electric charge.

Other “colourless” particles in which a1 = a2 = a3 are the following:

neutrino ν = (1, 0, 0, 0),

anti-neutrino ν = (−1, 0, 0, 0),

and the weak vector bosons

W+ = (0, 1, 1, 1),
W− = (0,−1,−1,−1),

and Z0 = (0, 0, 0, 0)

unfortunately sharing the same quadruple with the photon.

To account for the strong forces, one requires some new fermions, called “quarks”, and
some new bosons called “gluons”, for which a1, a2 and a3 are no longer equal. Thus we
have the

(red) up-quark u = (1, 0, 1, 1)

and the

(red) down-quark d = (1,−1, 0, 0)

with two “colour” variants, depending on the position of the 0 and the −1 respectively,
as well as the corresponding anti-particles −u and −d. There are six gluons to allow for
changes of colour, e.g. (0, 1,−1, 0) permits

(1, 0, 1, 1) + (0, 1,−1, 0)→ (1, 1, 0, 1),

combining with a red up-quark to yield, say, a blue one. Allegedly, there are also two so-
called “diagonal” gluons, which have not bee described here. Altogether, our quadruples
represent 25 known fundamental particles and anti-particles: 4 leptons, 12 quarks, 3 weak
vector bosons (not distinguishing Z0 from γ) and 6 gluons.
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Let us illustrate this with just one Feynman diagram:

Showing how an up-quark decomposes into a down-quark of the same colour and a positive
weak vector boson, which then combines with an electron to form a neutrino. We calculate

x(1,0,1,1)t(1,−1,−1,−1) → y(1,0,1,1)t(1,−1,−1,−1)

→ x′(1,−1,0,0)z(0,1,1,1)t(1,−1,−1,−1)

→ x′(1,−1,0,0)t′(1,0,0,0).

We have used a0 to represent the fermion number:

a0 = 1 for fermions,
a0 = −1 for anti-fermions,
a0 = 0 for bosons.

Actually, only the number of leptons and the number of quarks are preserved separately
in known physical interactions. Having adopted the fermion number instead, we allow
in principle that quarks can be transformed into leptons with the help of some not yet
discovered bosons, e.g.

(1,−1, 0, 0) + (0, 1, 0, 0)→ (1, 0, 0, 0).

As Feynman points out, this might predict the instability of the proton, which has not
yet been verified experimentally.

Our representation of fundamental fermions was inspired by the more concrete repre-
sentation proposed by Harari [1979] and Shupe [1979], but that of bosons departs from
theirs. Here is a rather odd observation, depending on Benjamin Franklin’s arbitrary
choice: out of a possible 34 = 81 quadruples with components −1, 0 and +1, the num-
ber of +1s and the number of −1s in the quadruples occurring above are both odd or
zero. This would still be the case if we admitted six additional bosons, variants of the
hypothetical (0, 1, 0, 0) mentioned above, making a total of 31. However, we have not
accounted for the diagonal gluons and the conjectured graviton and Higgs particle. If our
“odd” observation is taken seriously, there would still be six other potential elementary
particles, represented by variants of (1,−1, 1, 1), bringing the total up to 37.

I am indebted to Derek Wise for bringing to my attention a recent article by S.O.
Bilson Thompson [2006], which also offers an abstract development of the Harari-Shupe



14

model. Rather than invoking a fermion number, he represents a fermion by a braided triple
of “helons”, namely twists of a ribbon through ±2π or 0, and he distinguishes fermions
from their anti-particles by associating them with braids and anti-braids respectively, thus
bringing in the braid group B3. His ideas are further developed in a joint article with F.
Markopoulou and L. Smolin [2006]. If braiding is not used to distinguish electrons from
positrons, could it be invoked to distinguish spin-up from spin-down?

7. From 2-categories to bicategories.
Bicategories were introduced by Jean Bénabou [1967]. They are like 2-categories,

except that composition of 1-cells, usually called “tensor product”, is associated only up
to coherent isomorphism. Bicategories with a single 0-cell are better known as monoidal
categories. Symmetric monoidal categories, albeit with an additional operation “dagger”,
play a rôle in the categorical approach to quantum mechanics by Abramsky, Coecke and
Selinger. I would like to take a closer look at bicategories, if only to remind people that
the usual coherence and other properties need not be postulated, but can be proved if the
right definition is adopted. I will follow [L1989 and 2004].

A typical bicategory is that of bimodules:

0-cells = rings R, S, · · ·,
1-cells = bimodules RAS, SBT , · · ·,
2-cells = bimodule homomorphisms (= linear mappings).

Composition of 1-cells is the usual tensor product

(RAS, SBT ) 7→ R(A⊗B)T .

Its many properties can all be deduced from Bourbaki’s [1948] definition, which pre-
scribes a bilinear mapping mAB : AB → A ⊗ B with the universal property: given any
bilinear mapping f : AB → C, this is a unique linear mapping f § : A⊗B → C such that
f §mAB = f .

Given elements a ∈ A and b ∈ B and abbreviating

mABab = (a, b),

we may write the above equation as

f §(a, b) = fab.

From this the usual properties of the tensor product are easily deduced.
For example, if f : A→ A′ and g : B → B′, we may define f ⊗ g : A⊗ B → A′ ⊗ B′

by putting f ⊗ g = h§, where h : AB → A′ ⊗B′ is given by

hab = (fa, gb),

hence
(f ⊗ g)(a, b) = (fa, gb).
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To show that ⊗ is a bifunctor, we require e.g. that

(f ′ ⊗ g′)(f ⊗ g) = f ′f ⊗ g′g,

when f ′ : A′ → A′′ and g′ : B′ → B′′. We prove this by calculating

(f ′ ⊗ g′)(f ⊗ g)(a, b) = (f ′ ⊗ g′)(fa, gb)
= (f ′fa, g′gb)
= (f ′f ⊗ g′g)(a, b).

The associative arrow αABC : (A⊗B)⊗C → A⊗ (B ⊗C) is defined by the equation

αABC((a, b), c) = (a, (b, c)).

It is easily checked that α is a natural transformation. Similarly one defines α−1ABC :
A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C and checks that αα−1 = 1 and α−1α = 1 (omitting
subscripts). Mac Lane’s famous pentagonal coherence condition asserts the commutativity
of the following diagram:

This is proved by pointing out that there is a unique arrow f : (((A ⊗ B) ⊗ C) ⊗D) →
A⊗ (B ⊗ (C ⊗D)) such that

f(((a, b), c), d) = (a, (b, (c, d))).

The identity 1-cell IS : S → S for the tensor product is of course the bimodule SSS
obtained from the ring S.

Passing from the concrete bicategory of bimodules to arbitrary bicategories, we need
to treat multilinear maps abstractly. This was done with the help of multicategories (see
e.g. [L1989]), called “operads” by some people.

A multicategory, as viewed most recently [L2004], es essentially a 2-category, except
that 1-cells are freely generated from basic 1-cells and 2-cells are restricted to intuitionistic
Gentzen sequents (see e.g. Kleene [1952]), which are composed by cuts [ibid]:

given basic 1-cellsR
A←−S, S B←−T, T C←−U ,....., we form (compound) 1-cellsR

AB←−T, R ABC←−U ,

etc. We must also admit the empty 1-cells R
∅R←−R, S ∅S←−S, etc.
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The only 2-cells we retain are of the form Γ → G, where Γ is any 1-cell and G is a
basic one. A cut has the form

f : Λ→ A g : ΓA∆→ B

g〈f〉 : ΓΛ∆→ B

where
g〈f〉 = g ◦ Γf∆.

The equation holding in a multicategory are all inherited from those of the encompassing
2-category, even though we have discarded all 2-cells except those whose targets are basic
1-cells.

A tensor product of 1-cells can be introduced by a 2-cell mAB : AB → A⊗B together
with a rule

f : ΓAB∆→ C

f § : Γ(A⊗B)∆→ C
,

which associates to any f : ΓAB∆→ C a unique f § : Γ(A⊗B)∆→ C such that

f §〈mAB〉 = f.

The uniqueness may also be expressed equationally by saying that, for any g : Γ(A ⊗
B)∆→ C,

(g〈mAB〉)§ = g.

With any 0-cell R there is associated an identity 1-cell IR, introduced by the 2-cell

iR : ∅R → IR

and a rule
f : Γ∆→ C

f# : ΓIR∆→ C
,

which associates to any f : Γ∆→ C a unique f# : ΓIR∆→ C such that

f#〈i〉 = f.

The uniqueness amounts to the equation

(g〈iR〉)# = g

for any g : ΓIR∆→ C.
The arguments we employed for bimodules carry over to any multicategory, provided

we replace elements a ∈ A by indeterminate arrows a : Λ → A, or better by variables of
type A. This can be done formally by invoking the internal language of a multicategory,
see [L1989] for details of this approach.

8. Other operators in bilinear logic.
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It may be of interest to point out that other operations occurring in bilinear (= non-
commutative linear) logic can be introduced in the same way (see e.g. [L1993]). For
example, the operation “over” whose dual operation “under” is represented by a lollipop
by Girard (see e.g. Troelstra [1992]), is introduced as follows:

eDA : (D/A)A→ D,

the rule
f : ΓA→ D

f ∗ : Γ→ D/A
,

which associates to every 1-cell f : ΓA→ D a unique 1-cell f ∗ : Γ→ D/A such that

eDA〈f ∗〉 = f.

The uniqueness can be expressed by the equation

(eDA〈g〉)∗ = g

for any g : Γ→ D/A.
The logical conjunction (= categorical direct product) can be introduced by two 1-cells

pAB : A ∧B → A, qAB : A ∧B → B

and the rule
f : Λ→ A g : Λ→ B

〈f, g〉 : Λ→ A ∧B
,

which associates to any pair of 1-cells f : λ → A and g : Λ → B a unique 1-cell
〈f, g〉 : Λ→ A ∧B such that

pAB〈f, g〉 = f, qAB〈f, g〉 = g,

The uniqueness can be expressed by the equation

〈pAB, qAB〉 = 1A∧B.

For a discussion of these and other operations see e.g. [L1993]. It was then assumed
that there is only one 0-cell, but the arguments carry over to the general case.

Adjoints of 1-cells can be defined in any bicategory. Thus (F,U, η, ε) is an adjoint pair
if

F : R→ S, U : S → R, η : IS → F ⊗ U, ε : U ⊗ F → IR

such that
U

∼−→U ⊗ IS
1U⊗η−→ U ⊗ (F ⊗ U)

α−→(U ⊗ F )⊗ U
ε−→ IR ⊗ U

∼−→U = U
1U−→U

and a similar equation holds for F .
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A bicategory is said to be compact if every 1-cell has both a left and a right adjoint. To
exhibit a concrete example of a compact bicategory, I find myself turning to the exercises
in [L1966]. It is shown there that a right module AS has a left adjoint SA

`
if and only

if it is finitely generated and projective. The left module SA
` is again finitely generated

and may be identified with SS/AS. If S is a division ring, all one-sided S-modules are
automatically projective. Similar considerations apply to left modules RA and their right
adjoints ArR = RA\RR. We infer that the following concrete bicategory is compact:

0-cells = division rings,

1-cells = bimodules finitely generated on both sides,

2-cells = bimodule homomorphisms.

A compact monoidal category of possible interest in Physics is the category of all H−
H-bimodules finitely generated on both sides, when H is the division ring of quaternions.
A special object of this monoidal category is the ring of all 4× 4 real matrices, which is
known to be isomorphic to H⊗Hop.

9. Postscript.
After writing this paper, I became aware of the article by Joyal and Street [1991].

They carried out something resembling what I have been trying to do in Section 3, but for
monoidal categories which are not strictly monoidal. They also constructed free monoidal,
symmetric monoidal and braided monoidal categories. They had in mind an (as yet un-
published) application to Feynman diagrams. Their work involves many technical details
and definitions, which I admit not having had the patience to absorb.
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W. Buszkowski, Cut elimination for the Lambek calculus of adjoints, in: V.M. Abruski et
al. (eds), Papers in formal linguistics and logic. Bulzoni, Rome 2002.

B. Coecke, The logic of entanglement, Manuscript 2004.

K. Dos̆en, Cut elimination in categories, Kluwer, Dordrecht 1999.
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