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ABSTRACT

Deep neural networks are vulnerable to small changes in the input that lead to
misclassification, called adversarial images. We present an efficient approach to
generating sparse adversarial images, i.e. small with respect to the cardinality
function `0, without using gradient information. The lack of gradient oracle is
of interest in the case of adversarial attacks: in a practical setting, one can easily
query the model to determine whether the image is misclassified or not but rarely
will the full network structure be provided. Our method, ProxWalk, is inspired by
Metropolis-Adjusted Langevin dynamics; a method for modeling random walks,
and the proximal variant. We present results on MNIST, Fashion-MNIST, CI-
FAR10, and CIFAR100 datasets, and demonstrate that our decision-based attack
is on par with modern sparse white-box attacks.

1 INTRODUCTION

Deep neural networks are vulnerable to adversarial inputs: small perturbations in the input space
that cause misclassification Szegedy et al. (2014). This vulnerability is a potentially grave security
risk in real-world applications (e.g. tampering with stop signs for self-driving cars [cite]). As a
result, researchers are simultaneously developping defensive measures to these attacks, referred
to as robustness. Often, robustness methods are catered for a specific attack, and do not achieve
global robustness. For example, the current gold-standard for adversarial robustness in the `∞ norm
Madry et al. (2017), does not translate to sparse perturbations Schott et al. (2018); Pooladian et al.
(2019). Adversarial attacks can be categorized in the following ways: how much of the network the
attacker has access to, either full network knowledge or only model outputs; and the dissimilarity
metric used to determine how small the perturbation is.

The capacity of an attacker to generate an adversary is greatly limited by how much knowledge of
the network they have. If the model structure and trained weights are available, an attacker can use
gradient information to get sufficiently close to the decision boundary, or ascent the loss landscape
to find an adversary. These are known as white-box attacks, and are heavily studied in the current
literature Carlini & Wagner (2016); Kurakin et al. (2016); Modas et al. (2018); Moosavi-Dezfooli
et al. (2015). When only model output is available the attacks are called black-box. The output of a
model is typically a vector in Rc (the model probabilities are often “projected” onto the probability
simplex, called the model scores), where c denotes the number of classes. When using model
scores , zeroth order optimization methods can be considered for generating adversarial examples
Ilyas et al. (2018a;b); Chen et al. (2017). A further limitation is attacking when only knowing the
model decision; this is typically a more expensive endeavor Chen & Jordan (2019); Brendel et al.
(2017).

Adversarial images are often measured by a dissimilarity metric (with respect to their original im-
age). Often, these metrics are the `p norms, with p ∈ {1, 2,∞}, and the `0 counting “norm”, which
measures true sparsity of the perturbation. Due to algorithmic simplicity, the first adversarial attacks
were based on `∞ and `2 norms, leveraging the dual problem to find an efficient adversary Goodfel-
low et al. (2014). Iterative versions followed Kurakin et al. (2016). Perturbations generated for the
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`2 or `∞ norm case can potentially require all pixels to be altered while being imperceptible to the
human eye. In some settings, `0 perturbations are a more “realistic” threat model, as it answers the
question: if an adversary is allowed to perturb at most, say, 1% of the total number of pixels, which
pixels would be selected?

CONTRIBUTIONS

This paper introduces ProxWalk, a decision-based (i.e. black box) adversarial attack method,
catered for generating adversarial perturbations that also minimize the `0 constraint problem. Our
method is an adaptation of a random-walk approach for finding samples of target distributions, called
Metropolis-Adjusted Langevin Algorithm, and the proximal variant. ProxWalk requires few model
queries to generate an adversarial example on benchmark datasets, and is on par with modern white-
box attacks in `0. Our algorithm will be made publicly available on Github, which can be used to
efficiently determine a networks robustness to sparse perturbations on small/medium sized datasets.

2 BACKGROUND MATERIAL

2.1 FORMULATION OF ADVERSARIAL ATTACKS

An image-label pair is defined by (x, y) ∈ X × ∆c, where X is the image space and ∆c is the
unit-simplex for c labels (the label belongs on one of the vertices). A trained model is defined by
f : X → ∆c, with misclassification region

Mf := {u ∈ X | C(f(u)) 6= y},

where C(f(·)) is the classification function for the trained network. Formally, an adversarial pertur-
bation with respect to a metric m(·;x) is the minimizer of the following constrained optimization
problem:

min
u∈X

m(u;x) subject to u ∈Mf . (1)

The hard-constraint of the decision boundary makes the exact problem hard, but several relaxed
versions of this problem have been proposed Carlini & Wagner (2016); Pooladian et al. (2019);
Finlay et al. (2019). A common surrogate for solving this problem is to maximize a loss function
subject to a constraint on the perturbation to the clean image;

min
u∈X
L(u) subject to m(u;x) ≤ ε,

where ε is an arbitrary threshold. This last formulation has lead to attacks such as the Iterative Fast
Gradient Method, where the `2 and `∞ norms are the constraints Kurakin et al. (2016); Madry et al.
(2017); Goodfellow et al. (2014). Other white-box attacks target the model logits, and can evade
gradient obfuscation Athalye et al. (2018); Carlini & Wagner (2016).

Decision-based black-box attacks solve (1), and often require more intelligent ways of moving the
adversarial image in the right direction, as there is no gradient information of the model. Boundary
Attack Brendel et al. (2017) uses rejection sampling to get arbitrary close to the decision boundary;
this comes at the cost of an intractable number of model queries. HopSkipJump attack Chen &
Jordan (2019), use sampling methods to generate gradient approximations that can move along the
decision boundary; the former attack is targeted to the `2 norm but the latter is applicable to either
the `2 or `∞ norm.

2.2 PROXIMAL OPERATORS

Proximal operators are often used in non-smooth minimization problems, and have recently been
of interest in the deep learning community in a variety of settings Bai et al. (2018); Pooladian
et al. (2019). We denote the class of proper, convex and lower semicontinuous functions by Γ0.
Examples of such functions are `p norms with p ∈ [1,∞], and indicator functions on closed, convex
sets C ⊆ Rn; we indicate the latter by δC .
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Consider a function f : Rn → R that is in Γ0, and fix x ∈ Rn and λ > 0. The Moreau envelope of
f with parameter λ at x is defined as

eλf(x) := min
u∈Rn

f(u) +
1

2λ
‖x− u‖22,

and the associated proximal operator is defined as the minimizer of eλf(x), denoted Pλf(x) Rock-
afellar & Wets (2009); Beck (2017). The Moreau envelope of a function is a smooth lower bound of
f , which is obtained by computing the proximal operator. In fact, f is not necessarily required to be
convex, as illustrated in Figure 1, using a piece-wise quadratic function that is weakly convex.
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Figure 1: The primary function (in red) is a piecewise (non-differentiable) quadratic, but the Moreau
(in blue) is a smooth, lower-bound approximation.

In some cases, the proximal operator of f can be computed computed analytically, for example, in
the case of the centered `0 function:

Pµ‖· − x‖0(z) = x+H√2µ(z − x);

where Hα(s) = s1{|s|>α}(s) is the hard-thresholding operator (1A(·) is the 0-1 indicator function
for the set A), and acts component-wise in the case of vector arguments. The derivations for this
proximal operator, and many others, can be found in Beck (2017). A useful property of the Moreau
envelope is the following characterization of the gradient Rockafellar & Wets (2009):
Proposition 2.1. Let f : Rn → R and f ∈ Γ0. For λ > 0, eλf(x) is differentiable, with

∇eλf(x) =
1

λ
(x− Pλf(x)).

Furthermore, the gradient is λ−1 Lipschitz continuous.

3 OUR METHOD: PROXWALK

ProxWalk is heavily based on the Metropolis-Adjusted Langevin Algorithm (MALA) Robert &
Casella (2005); more specifically, the proximal variant, Proximal-MALA (P-MALA), introduced
recently in Pereyra (2016). We discuss the relevant details for adopting the P-MALA algorithm in
the following section.

3.1 PROXIMAL METROPOLIS-ADJUSTED LANGEVIN ALGORITHM

Let f : Rn → R with f ∈ Γ0, and lim‖x‖→∞ f(x) = +∞. In the P-MALA framework, the
minimization of f is re-written as finding elements of the distribution function with density

π(x) ∝ exp{−f(x)}.
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The aforementioned conditions on f allow this to be a meaningful probability density function.
Consequently, for any λ > 0, the λ-Moreau approximation of π(x) is

πλ(x) ∝ exp{−eλf(x)}.

For a d-dimensional random variable, the discretized MALA update step is written as

X(k+1) = X(k) +
τ

2
∇ log(π(X(k))) +

√
τξ(k),

where {ξ(k)}Kk=1 ∼ N(0, Id). This update is derived from the Euler-Maruyama discretization of the
stochastic overdamped Langevin equation; which is discussed in more detail in Robert & Casella
(2005); Pereyra (2016); Roberts & Rosenthal (1998). In the P-MALA setting, we optimize over the
λ-Moreau approximation instead. Using Proposition 2.1, we have the following update rule for the
iterates:

X(k+1) = X(k) +
τ

2
∇ log(πλ(X(k))) +

√
τξ(k)

= X(k) − τ

2
∇eλf(X(k)) +

√
τξ(k)

= X(k) − τ

2

(
1

λ
(X(k) − Pλf(X(k)))

)
+
√
τξ(k)

=
(

1− τ

2λ

)
X(k) +

τ

2λ
Pλf(X(k)) +

√
τξ(k),

In the special case where τ = 2λ, we recover the Proximal (Unadjusted) Langevin Algorithm,

X(k+1) = Pλf(X(k)) +
√

2λξ(k).

This amounts to a proximal-point algorithm Beck (2017), with added noise at each step. For the
Proximal Metropolis-Adjusted Langevin algorithm (P-MALA), we let Y denote a proposed state of
the algorithm; it is accepted with probability

α := min

{
1,

π(Y )q(X(k)|Y )

π(X(k))q(Y |X(k))

}
, (2)

where q(a | b) ∝ exp
{
−(4τ)−1‖a− Pλf(b)‖22

}
is a transition density. The Metropolis-Hastings

adjustment is necessary for convergence of the algorithm, empirically and theoretically Roberts &
Tweedie (1996); Pereyra (2016).

3.2 OUR ALGORITHM

We attempt to solve the problem in (1), where our perturbations are to be as sparse as possible i.e.
small with respect to `0. We letMf denote the misclassified region with respect to our trained model
f . In the P-MALA framework, the minimization problem of (1) is equivalent to finding elements
from the density function of the form

π(u) ∝ exp{−ϕ(u)− δMf
(u)}, (3)

where ϕ(u) := ‖u − x‖0. The constraint over the setMf is necessary in the accept-reject step so
as to guarantee that we always propose adversarial candidates. We note thatMf is neither a closed
and/or a convex set, hence the optimization procedure is not trivial in the black-box setting.

The update step (2) can be used for a wide class of image-based problems, such as denoising, where
Gaussian noise is a suitable assumption. To implement this into the adversarial attack setting, we
require a change in noise model, namely we want our random walk to be sparse in the first place.
To ensure this, one can use a hard-thresholding operator, or keep the κ largest components. We use
the following operator operator, T (ξ; τ) := τsign(ξ)1{|ξ|>τ}(ξ), where ξ ∼ N (0, Id). Note that
we incorporate the step-size into the operator, and perturb the pixel entirely. Finally, we move the
random perturbation before the proximal update, which gives the following general update rule

X(k+1) =
(

1− τ

2λ

)
X(k) +

τ

2λ
Pλf(X(k) + T (ξ(k); τ)). (4)
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Our algorithm begins by initially perturbing the image with uniform noise until misclassified. We
generate a proposed iterate via (4), using the same accept-reject ratio as P-MALA. We incorporate
δMf

(hence model query) when computing the ratio, where a correctly classified image would
result in immediate rejection, and repeat.

Algorithm 1 ProxWalk

Input: image-label pair (x, y), trained model f , transformation T , k = 0
Hyperparameters: kmax ∈ N, and λ, τ > 0.
Initialize x(0) to be misclassified
for k = 0, 1, 2, . . . , kmax do . Total number of model queries

Sample ξ ∼ N(0, Id)
Set v(k) = (2λ)−1

(
Pλϕ(x(k) + T (ξ; τ))− x(k)

)
Propose y∗ = Project

(
x(k) + v(k);X

)
Sample u ∼ U(0, 1)
Compute log(π(y∗)) using (3), and log(α), where α is given by (2)
if log(u) < log(α) then

x(k+1) = y∗

else
x(k+1) = x(k)

end if
end for
Return x(kmax)

4 EXPERIMENTS

We compare against gradient-based and gradient-free methods for the `0 norm case: ProxLogBar-
rier, SparseFool and Jacobian Saliency Map Attack (JSMA) will act as a baselines for gradient-based
algorithms; Pointwise will be our benchmark for decision-based attacks. ProxLogBarrier uses the
proximal gradient method to solve a regularized form of (1), and is applicable to a wide class of
dissimilarity metrics Pooladian et al. (2019). SparseFool solves an `1 approximate problem via
linearizing near the decision boundary Modas et al. (2018); though ultimately it aims to minimize
the number of perturbed pixels. JSMA perturbs pixels based on their saliency score, which is further
described in Papernot et al. (2015). Pointwise is a binary-search like algorithm, that passes through
all the pixels, starting from an initial perturbed image. We initialized ProxWalk and Pointwise with
the same uniform noise, and do not include these model evaluations when comparing model queries.

We use the LeNet architecture for MNIST and Fashion-MNIST; achieving ∼99.50% and
∼91.50%, respectively. For both CIFAR10 and CIFAR100 datasets, we use a ResNeXt archi-
tecture1; achieving accuracies of ∼94.50% and ∼91.50% (Top5 percent), respectively. For all
datasets, we report the median number of pixels pertubed, and the percent error at two thresholds.
On MNIST and Fashion-MNIST, we report the percent error at 10 and 30 pixels perturbed, which
corresponds to roughly 1.2% and 3.8%, respectively. On CIFAR10 and CIFAR100, the thresholds
used are 30 pixels and 80 pixels, corresponding to roughly 0.97%, and 2.6%, respectively. In the
case of CIFAR100, we consider the problem of Top5 misclassification. We attack 1000 randomly
chosen images from the MNIST, Fashion-MNIST, and CIFAR10 datasets; we only attack 500
images for CIFAR100.

ALGORITHM HYPERPARAMETERS

Like any random-walk based algorithm, we performed a hyperparameter search. On MNIST we use
τ = 0.2, λ = 0.1, Fashion-MNIST, τ = 0.25, λ = 0.1. For both CIFAR10 and CIFAR100, we fix
τ = 1.0, λ = 0.5. This roughly corresponds to ensuring that τ = 2λ, which gives the following

1We use a ResNeXt34 (2x32) on CIFAR10, and a ResNeXt34 (4x32) for CIFAR100.
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approximate step size,

X(k+1) ' Pλϕ(X(k) + T (ξ; τ)).

This can also be interpreted as a proximal gradient approach, where T (ξ; τ) represents the gradient
approaching the decision boundary.

4.1 RESULTS

Tables 1 and 2 show the median distance of ProxWalk against a blackbox attack, and three
white-box attacks. We report our attack at 1K, 2.5K and 5K model queries, and leave the others
at default implementations according according to the FoolBox repository for SparseFool, JSMA,
Pointwise (note that Pointwise at default has significantly more more queries than ours) and the
Github repository for ProxLogBarrier.

For MNIST and Fashion-MNIST, ProxLogBarrier surpasses all other attacks considered by a
wide margin. However, in just 1K model queries, ProxWalk finds a stable distribution of adversaries
that is smaller than SparseFool, JMSA, and Pointwise. On Fashion-MNIST, our performance
improves as a function of model queries, and eventually we are on-par or better than gradient based
attacks. At 5K model queries, the median percent pixels perturbed (MPPP) on MNIST is roughly
1.6%, and 2.2% on Fashion-MNIST. On CIFAR10 and CIFAR100, we observe similar behaviour
except we are closer to ProxLogBarrier than before, and significantly better than SparseFool and
JSMA across the considered thresholds. The MPPP for CIFAR10 is under half a percent, and
similarly for CIFAR100 — this is much lower than what we have found for SparseFool and JSMA,
and lower than what SparseFool reports in their paper (which is not reflected in our tables).

We highlight that our parameter choices appear to have a “global” effect on the datasets/network.
That is, for a parameter pair (λ, τ), with the exception of Fashion-MNIST, the algorithm was able to
find more sparse perturbations than two out of three gradient based attacks within just 1000 model
queries.

Table 1: Attack results for MNIST and Fashion-MNIST

MNIST Fashion-MNIST
% error at median

distance
% error at median

distanceε = 10 ε = 30 ε = 10 ε = 30

ProxWalk (1K) 34.10 77.6 14 31.20 45.00 76.5
ProxWalk (2.5K) 38.20 81.9 13 32.90 52.10 25
ProxWalk (5K) 39.80 85.10 13 32.80 57.10 18
Pointwise (Default) 2.70 23.80 42 12.50 28.60 47

ProxLogBarrier 80.30 97.89 6 60.69 87.50 7
SparseFool 8.90 63.08 26 30.70 76.60 19
JSMA 7.10 32.80 44 25.70 52.70 26
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(a) `0 attacks on MNIST (b) `0 attacks on Fashion-MNIST

Figure 2: Sample of adversarial images, using at most 5K model queries.

Table 2: Attack results for CIFAR10 and CIFAR100, using a ResNeXt34 architecture

CIFAR10 CIFAR100
% error at median

distance
% error at median

distanceε = 30 ε = 80 ε = 30 ε = 80

ProxWalk (1K) 56.5 76.4 17.0 54.8 76.6 18.0
ProxWalk (2.5K) 60.6 79.4 16.0 58.8 78.0 16.5
ProxWalk (5K) 64.6 80.9 14.0 63.0 79.0 15.0
Pointwise (No cap) 16.6 67.3 64.0 21.0 64.4 64.5

ProxLogBarrier 72.0 87.90 12 65.40 86.40 16
JSMA 27.70 42.80 113 38.40 69.40 44

5 DISCUSSION

We have presented a novel approach to adversarial image generation in the case of sparse pertur-
bations without incorporating gradient information. Our algorithm is based on existing literature
in (proximal) Metropolis-adjusted Langevin algorithms, where the adaptation is motivated and
intuitive. The effectiveness of our attack was demonstrated on several datasets, compared against
publicly available algorithms that are catered for the sparse perturbation problem. With respect
to this collection of attacks, ProxWalk is second only to ProxLogBarrier (which uses gradient
information).

ProxWalk requires very few model queries to reach a sufficiently low median number of per-
turbed pixels. We also remark the similarity in the chosen hyper-parameters across like-datasets.
We believe this is either a reflection of the network used (a standard LeNet for both gray-scale
datasets, and ResNeXt-based networks on the RGB datasets), or a reflection of the distribution
of adversarial images. In either case, it is remarkable that a parameter pair is able to find sparse
adversarial perturbations that are smaller than current gradient-based attacks (with respect to the
median).
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Figure 3: Adversarial images for CIFAR10 generated in at most 5K model queries via ProxWalk
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