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Abstract

We show that any cubic bridgeless graph with m edges contains two perfect match-
ings that cover at least 3m/5 and three perfect matchings that cover at least 27m/35
of its edges.
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1 Introduction

A well-known conjecture of Berge and Fulkerson states that every bridgeless
cubic graph contains a family of six perfect matchings covering each edge
exactly twice:

Conjecture 1.1 Every cubic bridgeless graph G contains six perfect match-
ing M1, . . . ,M6 such that each edge of G is contained in precisely two of the
matchings.

Conjecture 1.1 is attributed to Berge in [4], but it first appeared published
in [3]. Cycle Double Conjecture is also closely related to this conjecture. Note
also that Conjecture 1.1 trivially holds for cubic graphs G that are 3-edge-
colorable.

The following weaker version of Conjecture 1.1 due to Berge is also open:

Conjecture 1.2 Every cubic bridgeless graph G contains five perfect match-
ings M1, . . . ,M5 such that each edge of G is contained in at least one of the
matchings.

We remark that even if the number 5 in Conjecture 1.2 is replaced by any
larger constant (independent of G), the statement is not known to be true. In
this paper, we investigate the maximum possible size of the union of a given
number of perfect matchings in a cubic bridgeless graph. More precisely, we
study, for k ∈ {2, 3}, the numbers

mk = inf
G

max
M1,...,Mk

|
⋃

i Mi|
|E(G)|

,

where the infimum is taken over all bridgeless cubic graphs G, and M1, . . . ,Mk

range over all perfect matchings of G. Note that Conjecture 1.2 asserts that
m5 = 1.

We determine the precise value of m2 and provide a non-trivial lower bound
on m3. Let us begin by considering the upper bounds. The Petersen graph
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P10 has 15 edges and 6 distinct perfect matchings. It can be checked that any
two perfect matchings of P10 have precisely one edge in common and that the
intersection of any three perfect matchings is empty. Simple counting then
shows that m2 ≤ 3/5 and m3 ≤ 4/5.

Our contribution can be summarized as follows:

Theorem 1.3 The value of m2 is 3/5, and 0.771 ≈ 27/35 ≤ m3 ≤ 4/5.

Our main tool is the Perfect Matching Polytope Theorem of Edmonds [2]
which we review in Section 2. Throughout the text, we use standard terminol-
ogy and notation of graph theory as it can be found, e.g., in [1]. Supplemen-
tary information on Conjecture 1.1 can be found in [6], and a more detailed
introduction to the theory of matching polytopes can be found in a recent
monograph by Schrijver [5].

2 The perfect matching polytope

Let G = (V, E) be a graph which may contain multiple edges. A cut in G is
any set C ⊆ E such that G \ C has more components than G does, and C is
inclusion-wise minimal with this property. A k-cut (where k is an integer) is
a cut comprised of k edges. For a set X ⊆ V , we set ∂X to be the set of edges
with precisely one end in X. Note that ∂∅ = ∂V = ∅.

Let w be a vector in RE. The entry of w corresponding to e ∈ E is denoted
by w(e), and for A ⊆ E, we define the weight w(A) of A as

∑
e∈A w(e). The

vector w is said to be a fractional perfect matching of G if it satisfies the
following:

(i) 0 ≤ w(e) ≤ 1 for each e ∈ E,

(ii) w(∂{v}) = 1 for each vertex v ∈ V , and

(iii) w(∂X) ≥ 1 for each X ⊆ V of odd cardinality.

P (G) denotes the set of all fractional perfect matchings of G.

If M is a perfect matching, then the characteristic vector χM ∈ RE of M
is contained in P (G). Furthermore, if w1, . . . , wn ∈ P (G), then any convex
combination

∑n
i=1 αiwi of w1, . . . , wn (where α1, . . . , αn ≥ 0 are positive reals

summing up to 1) also belongs to P (G). It follows that P (G) contains the
convex hull of all the vectors χM where M is a perfect matching of G. The
Perfect Matching Polytope Theorem asserts that the converse inclusion also
holds:

Theorem 2.1 (Edmonds [2]) For any graph G, the set P (G) coincides with



the convex hull of the characteristic vectors of perfect matchings of G.

Naturally, P (G) is called the perfect matching polytope of a graph G. An-
other fact that will be useful in our considerations is the following:

Lemma 2.2 If w is a fractional perfect matching in a graph G = (V, E) and
c ∈ RE, then G has a perfect matching M such that

c · χM ≥ c · w,

where · denotes the scalar product. Moreover, there exists such a perfect match-
ing M that contains exactly one edge of each cut C with w(C) = 1.

3 Sketch of proof of Theorem 1.3

In this section, we sketch the proof of Theorem 1.3. By our discussion in
Section 1, it suffices to show that m2 ≥ 3/5 and m3 ≥ 4/5:

Proof. [Proof of Theorem 1.3] Fix a cubic bridgeless graph G. Define w1 ∈ RE

to have the value 1/3 on all edges e ∈ E. It is easy to verify that w1 is a
fractional perfect matching of G. Moreover, w1(C) = 1 for each 3-cut C of G.
Hence, by Lemma 2.2, there is a perfect matching M1 intersecting each 3-cut
in a single edge (the existence of M1 can be also shown by induction on the
size of G).

We now use M1 to define the following vector w2 ∈ RE:

w2(e) =

 1/5 if e ∈ M1,

2/5 otherwise.

Again, it can be verified that w2 is a fractional perfect matching of G (it is
important that M1 contains exactly one edge of each 3-cut of G). For each
e ∈ E, set c2(e) = 1−χM1(e). By Lemma 2.2, there exists a perfect matching
M2 such that

c2 · χM2 ≥ c2 · w2 =
2

5
· 2

3
|E| = 4

15
|E| .

Since c2 · χM2 is just |M2 \M1|, it follows that

|M1 ∪M2| = (
1

3
+

4

15
) · |E| = 3

5
|E| .

We conclude that m2 = 3/5.



It remains to establish a lower bound on m3. It can be shown, using
Lemma 2.2 that if M1 contains a 5-cut C, then |C ∩M2| = 1. Therefore, the
following vector w3 ∈ RE is a fractional perfect matching of G:

w3(e) =


1/7 if e ∈ M1 ∩M2,

2/7 if e ∈ (M1 ∪M2) \ (M1 ∩M2),

3/7 otherwise.

Similarly as above, we can argue that G contains a perfect matching M3 such
that

|M3 \ (M1 ∪M2)| ≥
3

7
· |E \ (M1 ∪M2)| .

Consequently,

|M1 ∪M2 ∪M3|= |M1 ∪M2|+ |M3 \ (M1 ∪M2)|

≥ 3

5
|E|+ 3

7
· 2

5
|E| = 27

35
|E| .

We infer that m3 ≥ 27/35. 2
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