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Abstract. We characterize Pfaffian graphs in terms of their drawings

in the plane. We generalize the techniques used in the proof of this

characterization, and prove a theorem about the numbers of crossings

in T -joins in different drawings of a fixed graph. As a corollary we

give a new proof of a theorem of Kleitman on the parity of crossings in

drawings of K2j+1 and K2j+1,2k+1.

1. Introduction

All graphs considered in this paper are finite and have no loops or multiple
edges. For a graph G we denote its vertex set by V (G) and its edge set by
E(G). If u and v are vertices in a graph G, then uv denotes the edge joining
u and v. A perfect matching is a set of edges in a graph that covers each
vertex exactly once. For sets X and Y we denote their symmetric difference
by X4Y .

In a directed graph we denote by uv an edge directed from u to v. A
labeled graph (resp. digraph) is a graph (resp. digraph) with vertex set
{1, 2, . . . , n} for some n. Let D be a labeled directed graph and let M =
{u1v1, u2v2, . . . , unvn} be a perfect matching of D. Define sgnD(M), the
sign of M , to be the sign of the permutation

(
1 2 3 4 . . . 2n− 1 2n

u1 v1 u2 v2 . . . un vn

)
.

Note that the sign of a perfect matching is well-defined as it does not depend
on the order in which the edges of M are listed. We say that an orientation
D of a labeled graph G is Pfaffian if the signs of all perfect matchings in
D are positive. It is well-known and easy to verify that the existence of a
Pfaffian orientation does not depend on the numbering of V (G). Thus we
say that a graph with an arbitrary vertex-set is Pfaffian if it is isomorphic
to a labeled graph that admits a Pfaffian orientation. Pfaffian orientations
have been introduced by Kasteleyn [5, 6, 7], who demonstrated that one can
enumerate perfect matchings in a Pfaffian graph in polynomial time, and
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has received considerable attention since then. We refer to [16] for a recent
survey.

In [7] Kasteleyn proved the following theorem.

Theorem 1.1. Every planar graph is Pfaffian.

In this paper we characterize Pfaffian graphs in terms of their drawings in
the plane. By a drawing Γ of a graph G we mean an immersion of G in the
plane such that edges are represented by homeomorphic images of [0, 1], not
containing vertices in their interiors. Edges are permitted to intersect, but
there are only finitely many intersections and each intersection is a crossing.
For edges e, f of a graph G drawn in the plane let cr(e, f) denote the number
of times the edges e and f cross. For a set J ⊆ E(G) let cr(J,Γ), or cr(J) if
the drawing is understood from context, denote

∑
cr(e, f), where the sum

is taken over all unordered pairs of distinct edges e, f ∈ J .

Theorem 1.2. A graph G is Pfaffian if and only if there exists a drawing
of G in the plane such that cr(M) is even for every perfect matching M of
G.

The “if” part of this theorem was known to Kasteleyn [7] and was proved
by Tesler [15]; however our proof of this part is different.

We prove Theorem 1.2 in Section 2. A preliminary version of the results
in that section has previously appeared in [12]. In the following sections we
generalize the techniques used in the proof of Theorem 1.2. In Section 3
we prove a technical theorem about the numbers of crossings in T -joins in
different drawings of a fixed graph, generalizing one of the lemmas from
Section 2. In Section 4 we apply the results of Section 3 to give a new proof
of a result of Kleitman on the parity of the number of crossings in a graph.
A well-known theorem of Hanani and Tutte follows as a corollary.

2. Drawing Pfaffian graphs

In this section we derive Theorem 1.2 from a more general result. To
state it we need a definition. Let Γ be a drawing of a graph G in the plane.
We say that S ⊆ E(G) is a marking of Γ if cr(M) and |M ∩ S| have the
same parity for every perfect matching M of G.

Theorem 2.1. For a graph G the following are equivalent:
(a) G is Pfaffian;
(b) some drawing of G in the plane has a marking;
(c) every drawing of G in the plane has a marking;
(d) there exists a drawing of G in the plane such that cr(M) is even for
every perfect matching M of G.
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We say that Γ is a standard drawing of a labeled graph G if the vertices
of Γ are arranged on a circle in order and every edge of Γ is drawn as a
straight line.

Theorem 2.1 immediately follows from the next two lemmas.

Lemma 2.2. There exists a one-to-one correspondence between Pfaffian
orientations of a labeled graph G and markings of its standard drawing Γ.

Proof. Let D be an orientation of G. Let M = {u1v1, u2v2, . . . , ukvk} be a
perfect matching of D. The sign of M is the sign of the permutation

P =

(
1 2 3 4 . . . 2k − 1 2k

u1 v1 u2 v2 . . . uk vk

)
.

Let i(P ) denote the number of inversions in P . We have

sgnD(M) = sgn(P ) = (−1)i(P ) =
∏

1≤i<j≤2k

sgn(P (j)− P (i)) =

=
∏

1≤i<j≤k

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi))×

×
∏

1≤i≤k

sgn(vi − ui).(1)

In Γ edges uivi and ujvj cross if and only if, in the circle containing the
vertices of Γ, each of the two arcs with ends ui and vi contains one of the
vertices uj and vj , in other words if and only if

sgn((uj − ui)(vj − ui)(uj − vi)(vj − vi)) = −1.

Define SD = {uv ∈ E(D)|u > v}. From (1) we deduce that

sgn(M) = (−1)cr(M) × (−1)|M∩SD|.

Therefore M has a positive sign if and only if cr(M) and |M ∩SD| have the
same parity. It follows that D is a Pfaffian orientation of G if and only if
SD is a marking of the standard drawing of G. ¤

Lemma 2.3. Let Γ1 and Γ2 be two drawings of a labeled graph G in the
plane. Then Γ1 has a marking if and only if Γ2 has one. If some drawing
of a labeled graph G in the plane has a marking then there exists another
drawing of G in the plane that has an empty set as a marking.

Proof. One can derive the lemma from a more general Theorem 3.1, and
we will do so in in Section 3. In fact, Theorem 3.1 can be considered as a
generalization of this lemma.

Here we would like to present a simple, albeit informal, argument. We
may assume without loss of generality that the vertices of G are represented
by the same points in the plane in both Γ1 and Γ2. We transform the
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(a) (b)

(c)

Figure 1. Changing the drawing.

drawing Γ1 into the drawing Γ2 by smoothly changing the images of edges,
one edge at a time. We consider changes in the number of crossings between
edges. One can classify events that cause these changes into three types
(see Figure 1). We show that none of these events affects the existence of a
marking.

In the event of type (a) and (b) the parity of the number of crossings
between any two non-adjacent edges remains unchanged. In the event of
type (c) the image of an edge e passes through an image of a vertex v, such
that e is not incident to v. The number of crossings in any perfect matching
containing e changes by one. Therefore one can replace a marking S of a
drawing prior to this event by a marking S4{e} of a drawing after the event.

The argument above also shows how to obtain a drawing with an empty
set as a marking from a drawing with an arbitrary marking. One has to
transform every edge belonging to the marking so that this edge passes
through a single vertex in the course of transformation. ¤

3. A theorem about drawings of T -joins

A pair (G,T ) consisting of a graph G and a set T ⊆ V (G) of even car-
dinality is called a graft. A T -join is a subset J ⊆ E(G) such that every
vertex v ∈ V (G) is incident with an odd number of edges in J if and only if
v ∈ T .

T -joins were first introduced in relation to the Chinese Postman problem,
which can be reformulated as follows: find the minimum set of edges in a
graph whose doubling results in an Eulerian graph. Note that such set of
edges is a T -join, where T is the set of all vertices of odd degree. Perfect
matching are other example of a T -join, where T = V (G). Since their
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introduction T -joins have been extensively studied (see for example [14],
sections 6.5 and 6.6 of [10], [3], section 2 of [2]).

We say that an unordered pair {e, f} of adjacent edges in G is an angle.
We denote the set of all edges and angles in a graph G by Æ(G). If J ⊆ E(G)
we say that e ∈ E(G) lies in J if e ∈ J , and we say that an angle {e, f} lies
in J if e, f ∈ J . For J ⊆ E(G) and S ⊆ Æ(G) we denote by J u S the set
of elements of S which lie in J .

The following theorem is the main result of this section. While the the-
orem itself is rather technical, it has a number of interesting applications.
Throughout this section all integer identities are modulo 2.

Theorem 3.1. Let (G, T ) be a graft and let Γ1 and Γ2 be two drawings of
G in the plane. Then there exists S = S(T, Γ1, Γ2) ⊆ Æ(G) such that for
every T -join J ⊆ E(G) the following identity holds modulo 2

(2) cr(J,Γ1) = cr(J,Γ2) + |J u S|.

Proof. For any n and any two sequences (a1, a2, .., an) and (b1, b2, .., bn) of
pairwise distinct points in the plane, there clearly exists a homeomorphism
of the plane that takes ai to bi for all 1 ≤ i ≤ n. See for example [11,
Chapter 13, Theorem 7] for a more general result. Therefore without loss
of generality we assume that the vertices of G are represented by the same
points in the plane in both Γ1 and Γ2.

We say that the drawings Γ1 and Γ2 are adjacent if they differ only in
the position of a single edge e = u1u2. We start by proving Theorem 3.1 for
adjacent drawings.

Let e1 and e2 denote the images of e in Γ1 and Γ2 correspondingly. By
changing these images within the regions of Γ1 \ e1 we can assume that e1

and e2 have finitely many intersections and each intersection is a crossing.
Define C = e1 ∪ e2. The closed curve C separates its complement into two
sets P1 and P2 with the property that every simple curve with ends a ∈ Pi

and b ∈ Pj crosses C an even number of times if and only if i = j.
For x ∈ (V (G)∪E(G))\{e} we will not distinguish between x and its rep-

resentation in Γ1 and Γ2. Define Fi to be the set of all edges f ∈ E(G) \ {e}
such that f is adjacent to uj for some j ∈ {1, 2} and f ∩ U ⊆ Pi ∪ {uj} for
some open set U 3 uj in the plane. Define

S = {{e, f}|f ∈ F1}

if |T ∩ P1| is even, and

S = {{e, f}|f ∈ F1} ∪ {e}

if |T ∩ P1| is odd.
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If e 6∈ J then cr(J,Γ1) = cr(J,Γ2) and (2) trivially holds, so we assume
e ∈ J . We have

cr(J,Γ1) + cr(J,Γ2) = 2
∑

{f,g}⊆J\{e}
cr(f, g) +

∑

f∈J\{e}
(cr(f, e1) + cr(f, e2))

=
∑

f∈J\{e}
cr(f, C)

Therefore it suffices to prove that

|J u S| =
∑

f∈J\{e}
cr(f, C),

or equivalently that

(3) |J ∩ F1|+ |T ∩ P1| =
∑

f∈J\{e}
cr(f, C).

From the definition of T -join we can deduce that for any X ⊆ V (G)

|T ∩X| = |{uv ∈ J |u ∈ X, v 6∈ X}|.
In particular

|T ∩ P1| = |{uv ∈ J |u ∈ P1, v 6∈ P1}| = |{uv ∈ J |u ∈ P1, v ∈ P2}|+
+|{uv ∈ J |u ∈ P1, v ∈ {u1, u2}}|.(4)

Let J1 = {uv ∈ J ∩F2|u ∈ P1} and J2 = {uv ∈ J ∩F1|u ∈ P2}. Note that

(J ∩ F1)4{uv ∈ J |u ∈ P1, v ∈ {u1, u2}} = J1 ∪ J2,

as
J ∩ F1 = {uv ∈ J ∩ F1|u ∈ P1} ∪ J2,

{uv ∈ J |u ∈ P1, v ∈ {u1, u2}} = {uv ∈ J ∩ F1|u ∈ P1} ∪ J1,

and J1, J2 and {uv ∈ J ∩ F1|u ∈ P1} are disjoint. Therefore

(5) |J ∩ F1|+ |{uv ∈ J |u ∈ P1, v ∈ {u1, u2}}| = |J1 ∪ J2|.
Let J3 = {uv ∈ J |u ∈ P1, v ∈ P2}. The sets J1, J2 and J3 are pairwise
disjoint. From (4) and (5) we have

(6) |J ∩ F1|+ |T ∩ P1| = |J1 ∪ J2 ∪ J3|.
But J1 ∪ J2 ∪ J3 is exactly the set of those edges f ∈ J \ {e} which cross
C an odd number of times. Therefore (3) follows from (6) and the proof of
Theorem 3.1 for adjacent drawings is complete.

For two arbitrary drawings Γ1 and Γ2 of G there always exist an integer
n and a sequence of drawings Γ1 = Γ′1, Γ

′
2, . . . ,Γ

′
n = Γ2 of G such that Γ′i

is adjacent to Γ′i+1 for all i ∈ {1, 2, . . . , n − 1}. We have proved that there
exist sets Si ⊆ Æ(G) for all i ∈ {1, 2, . . . , n− 1} such that

(7) cr(J,Γ′i) = cr(J,Γ′i+1) + |J u Si|
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for all T -joins J . Let S = S14S24 . . .4Sn−1. Summing up (7) over all
i ∈ {1, 2, . . . , n−1} we get (2), thereby completing the proof of Theorem 3.1
for arbitrary drawings. ¤

We now derive Lemma 2.3 from Theorem 3.1.

Proof of Lemma 2.3. Perfect matchings are T -joins in the graft (G,V (G)).
Therefore by Theorem 3.1 there exists S ⊆ Æ(G) such that for every perfect
matching M of G we have

cr(M, Γ1) = cr(M, Γ2) + |M u S|.
Let S′ = S ∩ E(G). As no perfect matching contains an angle we have

cr(M, Γ1) = cr(M, Γ2) + |M ∩ S′|
for every perfect matching M of G. Let S1 be a marking of Γ1. Then

cr(M, Γ2) = cr(M, Γ1)− |M ∩ S′| = |M ∩ S1| − |M ∩ S′| = |M ∩ (S′4S1)|
for every perfect matching M of G. Therefore S′4S1 is a marking of Γ2.

It remains to show that if some drawing of a labeled graph G in the plane
has a marking then there exists another drawing of G in the plane that has
an empty set as a marking. Consider a drawing of G in the plane with a
marking S. Suppose there exists e ∈ S. We change the way e is drawn,
so that the closed curve C which is composed from the old and the new
drawing of e separates one vertex of G from the rest. From the proof of
Theorem 3.1 it follows that S \ {e} is a marking in the new drawing. By
repeating the procedure we produce a drawing of G such that the empty set
is a marking. ¤

4. Parity of the number of crossings

In this section we demonstrate an application of Theorem 3.1 to the theory
of crossing numbers. We say that a set J of T -joins in a graft (G, T ) is nice
if every x ∈ Æ(G) lies in an even number of elements of J .

Lemma 4.1. Let J be a nice set of T -joins in a graft (G,T ). Then the
parity of

(8)
∑

J∈J
cr(J,Γ)

is independent of the choice of a drawing Γ of G in the plane.

Proof. By Theorem 3.1 it suffices to prove that
∑

J∈J
|J u S|
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is even for any S ⊆ Æ(G). This is true by the definition of a nice set of
T -joins. ¤

We derive the next theorem from Lemma 4.1.

Theorem 4.2 (Kleitman [8]). Let G = K2j+1 or G = K2j+1,2k+1 for some
positive integers j and k. Then the parity of the total number of crossings
of non-adjacent edges is independent of the choice of a drawing of G in the
plane.

Proof. By Lemma 4.1 it suffices to find T ⊆ V (G) and a nice set J of T -joins
such that

|{J ∈ J |{e, f} ⊆ J}|
is odd for every two non-adjacent edges e, f of G. (By the definition of a
nice set, |{J ∈ J |{e, f} ⊆ J}| is even for every angle {e, f}.)

For G = K2j+1,2k+1 we choose T = ∅ and we choose J to be the set
of all cycles of length 4 in G. Every edge belongs to 4jk elements of J ,
every angle belongs to either 2j or 2k of such elements, and every pair of
non-adjacent edges belongs to a unique element of J .

For G = K2j+1 the construction is slightly more complicated. Choose
v ∈ V (G) and let T = V (G)\{v}. Let J1 be the set of all perfect matchings
of G \ {v}. For distinct vertices u1, u2 ∈ T let

Ju1u2 = {vw|w ∈ T \ {u1, u2}} ∪ {u1u2}
and let J2 = {Ju1u2 |{u1, u2} ⊆ T, u1 6= u2}. Let J3 = {vw|w ∈ T}. Finally,
if j is odd let J = J1 ∪ J2 and if j is even let J = J1 ∪ J2 ∪ {J3}.

Again J is as required. The number of perfect matchings in every com-
plete graph on an even number of vertices is odd. Therefore every edge
not incident to v belongs to an odd number of elements of J1, to a unique
element of J2 and does not belong to J3. Every edge incident to v belongs
to no element of J1, to (j − 1)(2j − 1) elements of J2 and belongs to J3.
The only angles belonging to elements of J consist of two edges incident
to v and each such angle belongs to J3 and to (j − 1)(2j − 3) elements of
J2. It follows that J is nice. It remains to consider pairs of non-adjacent
edges e, f ∈ E(G). If neither e nor f is incident to v them {e, f} belongs to
an odd number of elements of J1 and to no other element of J . If on the
other hand e is incident to v then {e, f} belongs to a single element of J2

and belongs to no other element of J . ¤

Kuratowki’s theorem states that every non-planar graph has a subgraph
isomorphic to a subdivision of K5 or K3,3. One can therefore easily de-
duce the following well-known theorem from Theorem 4.2 and Kuratowski’s
theorem. This observation most likely is not new.
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Theorem 4.3 (Hanani [4],Tutte [17]). Let Γ be a drawing of a non-planar
graph G in the plane. Then there exist distinct non-adjacent edges e, f ∈
E(G) such that cr(e, f) is odd.

Further applications of Theorem 3.1 are considered in [13] .
Finally, let us note that parities of crossings have been studied in other

contexts [1, 9, 17]. It might be interesting to analyze similarities and differ-
ences between methods employed in these papers and here.
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