
ON TWO QUESTIONS ABOUT CIRCULAR
CHOOSABILITY

SERGUEI NORINE

Abstract. We answer two questions of Zhu on circular choos-
ability of graphs. We show that the circular list chromatic number
of an even cycle is equal to 2 and give an example of a graph for
which the infimum in the definition of the circular list chromatic
number is not attained.

1. Introduction

We follow the definitions from [7]. Let G = (V (G), E(G)) be a

graph and let p and q be positive integers (following [2] we relax the

requirement p ≥ 2q). A (p, q)-coloring of G is a function c : V (G) →
{0, 1, . . . , p − 1}, such that for every edge uv ∈ E(G) we have q ≤
|c(u) − c(v)| ≤ p − q. The circular chromatic number χc(G) of G is

defined as

χc(G) = inf{p

q
| G admits a (p, q)-coloring}.

The circular chromatic number is a refinement of the chromatic num-

ber (χ(G) − 1 < χc(G) ≤ χ(G) for any graph G [4, 6]) and as such

might reflect more structural properties of the graph than the chro-

matic number. It has been extensively studied in recent years, see [8]

for a survey of the subject. The circular choosability, considered in this

paper, is a natural circular version of the list-chromatic number. We

proceed with the definitions.

Let t ≥ 1 be a real number. A t-(p, q)-list assignment L is a mapping

which assigns to each v ∈ V (G) a set L(v) ⊆ {0, 1, . . . , p − 1}, such

that |L(v)| ≥ tq. An L-(p, q)-coloring of G is a (p, q)-coloring f of G

such that for every v ∈ V (G) we have f(v) ∈ L(v). We say that G

is circular t-(p, q)-choosable if for every t-(p, q)-list assignment L there

exists an L-(p, q)-coloring of G. We say that G is circular t-choosable if
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it is circular t-(p, q)-choosable for any positive integers p and q. Finally,

the circular list chromatic number of G (or the circular choosability of

G) is defined as

χc,l(G) = inf{t ≥ 1 : G is circular t-choosable}.

The concept of circular choosability has been recently introduced by

Mohar [3] and Zhu [7] and many basic questions about it are still open.

In this paper we answer two such questions.

In Section 2 we show that the circular choosability for even cycles

χc,l(C2k) is equal to 2, answering a question of Zhu [8] and verifying a

conjecture of Havet, Kang, Müller and Sereni [2]. The circular choos-

ability for odd cycles was computed by Zhu in [7], where he shows that

χc,l(C2k+1) = 2 + 1
k
.

In Section 3 we compute the circular choosability for the complete

bipartite graph K2,4. We show that χc,l(K2,4) = 2, while K2,4 is not

circular 2-choosable. This gives a negative answer to a question of

Zhu [7], whether the infimum in the definition of circular choosability

is always attained. By contrast, the infimum in the definition of circular

chromatic number is always attained for a finite graph [4, 6].

The following important questions about circular choosability posed

by Zhu [7] remain open.

(1) Is χc,l(G) always a rational number for a finite graph G? It is

not known if there exists an algorithm that given a graph G

and a rational number r tests whether χc,l(G) ≤ r.

(2) Does there exist a constant α such that χc,l(G) ≤ αχl(G) for any

finite graph G, where χl(G) denotes the list-chromatic number

of a graph G? If it exists what is the smallest such α? In [5] a

similar problem for a closely related concept of Tr-choosability

is considered. By analogy with a conjecture stated in [5] one

might expect χc,l(G) ≤ 2χl(G) for any graph G. By [7, Theorem

14] this bound, if correct, would be best possible.

We refer the reader to [2, 8] for a more comprehensive list of known

results and open problems about circular choosability.

2. The circular list chromatic number of an even cycle

In this section we make use of the combinatorial Nullstellensatz,

which we restate here for convenience.
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Theorem 2.1. [1, Theorem 1.2] Let F be an arbitrary field, and let

f = f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree

deg(f) of f is
∑n

j=1 tj, where each tj is a non-negative integer, and

suppose the coefficient of
∏n

j=1 x
tj
j in f is non-zero. Then if S1, . . . , Sn

are subsets of F with |Sj| > tj, there are s1 ∈ S1, . . . , sn ∈ Sn so that

f(s1, . . . , sn) 6= 0.

Theorem 2.2. Every even cycle has circular choosability 2.

Proof. For every graph with G with at least one edge, one trivially has

χc,l(G) ≥ 2. It remains to show that for any positive integers p, q and

n and a 2-(p, q)-list assignment L there exists an L-(p, q)-coloring of

the even cycle C2n with 2n vertices. Let v1 = v2n+1, v2, . . . , v2n be the

vertices of C2n, in order. Let i denote a complex square root of −1.

Consider the polynomial f ∈ C[x1, x2, . . . , x2n]:

f(x1, x2, . . . , x2n) =
2n∏

j=1

q−1∏

k=−q+1

(xj − e2πik/pxj+1) ,

where x2n+1 = x1, by convention. Then deg(f) = 2n(2q − 1). We

consider the coefficient of
∏2n

j=1 x2q−1
j in f . It is equal to

∑2q−1
l=0 a2n

l ,

where al is the coefficient of x2q−1−l
j xl

j+1 in
∏q−1

k=−q+1(xj − e2πik/pxj+1).

Clearly,

al =
∑

J⊆{−q+1,...,q−1}
|J |=l

∏
s∈J

(−e2πis/p).

In particular, for every 0 ≤ l ≤ 2q−1 the number al is equal to its own

complex conjugate and therefore al is real. Further note that a0 = 1.

It follows that the coefficient in question is a positive real number.

Let φ : {0, 1, . . . , p − 1} → C be defined by φ(k) = e2πik/p, and let

Sj = φ(L(vj)) for 1 ≤ j ≤ 2n. Then φ is an injection and |Sj| > 2q−1.

By Theorem 2.1 there exist s1 ∈ S1, s2 ∈ S2 . . . , s2n ∈ S2n such that

f(s1, . . . , s2n) 6= 0. Define c(vj) = φ−1(sj) for j ∈ {1, 2, . . . , 2n}. We

claim that c is a valid L-(p, q)-coloring of C2n. By definition c(vj) ∈
φ−1(φ(L(vj))) = L(vj) for every 1 ≤ j ≤ 2n. Moreover, q ≤ |c(vj) −
c(vj+1)| ≤ p−q, as sj−e2πik/psj+1 6= 0 for all k, such that 0 ≤ |k| ≤ q−1

or p− q + 1 ≤ |k| ≤ p− 1. Thus the claim holds. ¤
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3. Circular choosability of K2,4

As noted in [7] if a graph G is not k-list-colorable for an integer k

then it is not circular k-choosable. Therefore the complete bipartite

graph K2,4 is not circular 2-choosable, as χl(K2,4) = 3. In this section

we show that K2,4 is circular t-choosable for every t > 2. It follows

that χc,l(K2,4) = 2, thereby providing a negative answer to a question of

Zhu, whether the infimum in the definition of the circular list-chromatic

number is always attained.

Let Rp = {0, 1, 2, . . . , p − 1} considered with the natural circular

order and metric on it. For x, y ∈ Rp denote by d(x → y) the remainder

of y − x modulo p and by d(x, y) the distance between x and y, i.e.

min(d(x → y), d(y → x)). For x, y ∈ Rp and a positive integer q denote

by Bq(x) the interval {z ∈ Rp | d(x, z) < q}, and denote Bq(x) ∪Bq(y)

by Bq(x, y). We omit the index q when it is clear from context. We

proceed by proving two technical lemmas.

Lemma 3.1. Let x1, y1, x2, y2 ∈ Rp (not necessarily distinct) appear in

Rp in circular order. Suppose that p ≥ 4q−3 and d(y1 → x2)+d(y2 →
x1) ≥ 2q − 1. Then

|Bq(x1, y1) ∩Bq(x2, y2)| ≤ 2q − 1.

Proof. Note that B(x1) ∩ B(x2) ⊆ B(y1) ∪ B(y2). Therefore, we have

B(x1)∩B(x2) ⊆ (B(y1)∩B(x1)∩B(x2))∪ (B(y2)∩B(x1)∩B(x2)) and

hence B(x1) ∩ B(x2) ⊆ (B(y1) ∩ B(x2)) ∪ (B(x1) ∩ B(y2)). Similarly

B(y1) ∩B(y2) ⊆ (B(y1) ∩B(x2)) ∪ (B(x1) ∩B(y2)). It follows that

B(x1, y1) ∩B(x2, y2) ⊆ (B(y1) ∩B(x2)) ∪ (B(x1) ∩B(y2)).

For any x, y ∈ Rp the set B(x)∩B(y) is an interval in Rp, as otherwise

B(x)∪B(y) must cover Rp, while we have p = |Rp| > |B(x)|+ |B(y)|−
2 = 4q − 4. It follows, in particular, that

|B(x) ∩B(y)| = max(2q − 1− d(x, y), 0).
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If d(y1 → x2) = d(y1, x2) and d(y2 → x1) = d(y2, x1) then by the

above we have

|(B(y1) ∩B(x2)) ∪ (B(x1) ∩B(y2))|
≤ |(B(y1) ∩B(x2))|+ |(B(x1) ∩B(y2))|
≤ max(2q − 1, 4q − 2− d(y1 → x2)− d(y2 → x1))

= 2q − 1.

If, on the other hand, the above condition does not hold, then without

loss of generality, we assume d(x2, y1) = d(x2 → y1). In this case, we

have B(y1) ∩B(x2) ⊆ B(x1) ∩B(y2) and

|(B(y1) ∩B(x2)) ∪ (B(x1) ∩B(y2))| ≤ |B(x1) ∩B(y2)| ≤ 2q − 1.

¤

By [x, y] we denote the interval of Rp with ends x and y, formally

defined as follows

[x, y] = {z ∈ Rp | d(x → z) ≤ d(x → y)}.
Note that this notation is asymmetric, i.e. if x 6= y then [x, y] 6= [y, x].

Lemma 3.2. Let x1, x2, ..., xq+1, y1, y2, ..., yq+1 ∈ Rp be distinct and

appear in circular order. Suppose that d(xi, yi) ≥ 2q + 1 for every i

such that 1 ≤ i ≤ q + 1. Then

|
q+1⋂
i=1

Bq(xi, yi)| ≤ 2q − 2.

Proof. We prove the lemma by induction on q. The base case q = 1 is

trivial.

For the induction step, consider x1, x2, ..., xq+1, y1, y2, ..., yq+1 ∈ Rp

satisfying the conditions of the lemma with |⋂q+1
i=1 Bq(xi, yi)| maximal

and subject to that with d(x1 → xq+1) + d(y1 → yq+1) minimal. Let

Z = {x1, x2, ..., xq+1, y1, y2, ..., yq+1}. We claim that

Claim 1. there exists j such that 1 ≤ j ≤ q + 1 and

{xj + 1, yj + 1} ∩ Z = ∅.

Proof. Suppose not. Let us choose k minimal so that

|{xk + 1, yk + 1} ∩ Z| < 2.
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Then k < q + 1, as otherwise Z is contained in an interval of length

2q + 2 and in particular d(x1, y1) = q + 1 < 2q + 1. Without loss of

generality we assume yk + 1 = yk+1. Let x′i = xi + 1 for 1 ≤ i ≤ k and

let x′i = xi for k + 1 ≤ i ≤ q + 1. We have

d(x′1 → x′q+1) + d(y1 → yq+1) < d(x1 → xq+1) + d(y1 → yq+1).

For i ≤ k, we have

d(x′i → yi) = d(x′i → (yk+1 − k − 1 + i))

= d((x′i − i + k + 1) → yk+1) ≥ d(xk+1 → yk+1),

and therefore

d(x′i, yi) = min(d(x′i → yi), d(yi → x′i))

≥ min(d(xk+1 → yk+1), d(yi → xi) + 1)) ≥ 2q + 1.

It remains to show that |⋂k+1
i=1 B(x′i, yi)| ≥ |⋂k+1

i=1 B(xi, yi)| to verify

that the set {x′1, x′2, ..., x′q+1, y1, y2, ..., yq+1} gives a contradiction with

the choice of Z and therefore to prove the claim. Note that

q+1⋂
i=1

B(xi, yi)−
q+1⋂
i=1

B(x′i, yi) ⊆
k⋃

i=1

(B(xi)−B(x′i))

= {xi − q + 1 : i = 1, 2, . . . , k}.
For any 1 ≤ i ≤ k we have

d(yi+1 → (xi − q + 1)) = d((yi + 1) → (xi − q + 1))

= d(yi → xi)− q ≥ q + 1.

It follows that xi − q + 1 6∈ B(xi+1, yi+1) and consequently

{xi − q + 1 : i = 1, 2, . . . , k} ∩ (

q+1⋂
i=1

B(xi, yi)) = ∅.

Therefore
⋂q+1

i=1 B(x′i, yi) ⊇
⋂q+1

i=1 B(xi, yi) and the claim holds. ¤

Denote by I(a, b) the set of all intervals in Ra of cardinality b. Then

by considering the bijection x ↔ Bq(x) between Rp and I(p, 2q − 1)

one can see that

|
q+1⋂
i=1

B(xi, yi)| = |{I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1}|.

Consider now a bijective map τ : Rp−{xj, xj+1, yj, yj+1} → Rp−4 that

preserves the circular order. Note that τ(Z) satisfies the conditions of



ON TWO QUESTIONS ABOUT CIRCULAR CHOOSABILITY 7

the lemma with q replaced by q − 1 and therefore by the induction

hypothesis and the observation above we have

|{I ∈ I(p− 4, 2q − 3) | |I ∩ τ(Z)| = q}| ≤ 2q − 4.

Note that τ maps elements of {I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1} to

elements of I(p−4, 2q−2)∪I(p−4, 2q−3) and is injective. Furthermore,

if I ∈ I(p, 2q− 1) and |I ∩Z| = q + 1 then |τ(I)∩ τ(Z)| = q. We have

|{I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1}|
≤ |{I ∈ I(p− 4, 2q − 3) | |I ∩ τ(Z)| = q}|

+|{I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1, |τ(I)| = 2q − 2}|
≤ 2q − 4

+|{I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1, |τ(I)| = 2q − 2}|.
We finish the proof of the lemma by showing that

|{I ∈ I(p, 2q − 1) | |I ∩ Z| = q + 1, |τ(I)| = 2q − 2}| ≤ 2.

The set {I ∈ I(p, 2q − 1) | |τ(I)| = 2q − 2} consists of four intervals,

namely [xj − 2q − 2, xj], [xj + 1, xj + 2q − 1], [yj − 2q − 2, yj] and [yj +

1, yj +2q−1]. The intervals [xj +1, xj +2q−1] and [yj +1, yj +2q−1]

contain neither xj nor yj and therefore each of them contains less than

q elements of Z. The required inequality follows. ¤

Theorem 3.3. For every t > 2 the graph K2,4 is circular t-choosable.

Proof. Let {u1, u2}, {v1, v2, v3, v4} be the parts of K2,4. Let L be a t-

(p, q)-list assignment for some t > 2 and positive integers p and q. Note

that |L(w)| ≥ 2q + 1 for every w ∈ V (K2,4).

For x1 ∈ L(u1), x2 ∈ L(u2) we may assume that there exists i ∈
{1, 2, 3, 4} such that L(vi) ⊆ Bq(x1, x2), as otherwise there exists an

L-(p, q)-coloring c of K2,4, defined as follows. Let c(uj) = xj for j ∈
{1, 2} and choose c(vi) ∈ L(vi) − Bq(x1, x2) for all i ∈ {1, 2, 3, 4}. Let

f(x1, x2) = f(x2, x1) one index i such that L(vi) ⊆ Bq(x1, x2).

In particular, it follows that L(u1)∩L(u2) = ∅ and p ≥ 4q+2. We say

that an interval [x, y] in Rp is clean if for some {i, j} = {1, 2} we have

x, y ∈ L(ui) and [x, y]∩L(uj) = ∅. Let [x0, y0], [x1, y1], . . . , [x2k−1, y2k−1]

for some k ≥ 1 be all the maximal clean intervals in Rp. Then these

intervals are disjoint and we assume without loss of generality that

x0, y0, x1, y1, . . ., x2k−1, y2k−1 appear in Rp in the clockwise order, and
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that xi, yi ∈ L(uj) for i ∈ {0, 1, . . . , 2k − 1} and j ∈ {1, 2} if and only

if i equals to j modulo 2.

Let x2k = x0. Note that for distinct i, j ∈ {0, 1, . . . , 2k − 1} one

has [xi+1, yj] ∪ [xj+1, yi] ⊇ L(u1) ∪ L(u2) and therefore d(xi+1 → yj) +

d(xj+1 → yi) ≥ |L(u1)| + |L(u2)| − 2 ≥ 4q. Therefore B(yi, xi+1) ∩
B(yj, xj+1) < 2q + 1 by Lemma 3.1 and consequently f(yi, xi+1) 6=
f(yj, xj+1). It follows by the pigeon-hole principle that k ≤ 2. We

consider the cases k = 2 and k = 1 separately.

Suppose first that k = 2. Without loss of generality we assume

|[x0, y0] ∩ L(u2)| ≥ q + 1 and |[x1, y1] ∩ L(u1)| ≥ q + 1. Therefore

there exist z1 ∈ [x1, y1] ∩ L(u1) such that [x1, z1] ∩ L(u1) = q + 1 and

z2 ∈ [x0, y0] ∩ L(u2) such that [z2, y0] ∩ L(u2) = q + 1. It follows that

d(x1 → z1)+d(z2 → y0) ≥ 2q and from Lemma 3.1 we have f(y0, x1) 6=
f(z1, z2). Additionally, it is easy to see that d(z1 → yi)+d(xi+1 → z2) ≥
2q for every i ∈ {1, 2, 3}, as [z1, yi]∪ [xi+1, z2] contains q+1 elements of

L(u1) and q +1 elements of L(u2). Therefore f(yi, xi+1) 6= f(z1, z2) for

every i ∈ {1, 2, 3} and combining this with the result in the previous

paragraph we obtain a contradiction.

It remains to consider the case k = 1. Assume for convenience

and without loss of generality that f(y0, x1) = 3 and f(y1, x0) = 4.

Let x1 = s1, s2, . . . , s|L(u1)| = y1 be all the elements of L(u1) num-

bered in the clockwise order and let x0 = t1, t2, . . . , t|L(u2)| = y0 be

all the elements of L(u2) numbered in the clockwise order. Note that

d(si, ti) ≥ 2q+1. For every i ∈ {1, 2, . . . 2q+1} we have [x1, si]∪[ti, y0] ⊇
{s1, . . . si, ti, ti+1 . . . , t2q+1} and therefore d(x1 → si)+d(ti → y0) ≥ 2q.

Similarly, d(si → y1) + d(x0 → ti) ≥ 2q.

Thus another application of Lemma 3.1 shows that f(si, ti) ∈ {1, 2}
for every i ∈ {1, 2, . . . 2q +1}. Therefore there exists Z ⊆ {1, 2, . . . 2q +

1} and j ∈ {1, 2} such that |Z| ≥ q + 1 and L(vj) ⊆ B(si, ti) for every

i ∈ Z. However, by Lemma 3.2 we have |⋂i∈Z B(si, ti)| ≤ 2q − 2 and

consequently L(vj) 6⊆
⋂

i∈Z B(si, ti). This contradiction finishes the

proof. ¤
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[2] F. Havet, R. Kang, T. Muller, and J.-S. Sereni. Circular choosability. Submitted
for publication, 2006.

[3] B. Mohar. Choosability for the circular chromatic number. http://www.fmf.
uni-lj.si/~mohar/Problems/P0201ChoosabilityCircular.html, 2003.

[4] A. Vince. Star chromatic number. J. Graph Theory, 12(4):551–559, 1988.
[5] R. J. Waters. Some new bounds on tr-choosability. Submitted for publication.
[6] X. Zhu. Circular chromatic number: a survey. Discrete Math., 229(1-3):371–410,

2001. Combinatorics, graph theory, algorithms and applications.
[7] X. Zhu. Circular choosability of graphs. J. Graph Theory, 48(3):210–218, 2005.
[8] X. Zhu. Recent developments in circular colouring of graphs. In M. Klazar,

J. Kratochvil, J. Matousek, R. Thomas, and P. Valtr, editors, Topics in Discrete
Mathematics, pages 497–550. Springer, 2006.

School of Mathematics, Georgia Institute of Technology, Atlanta,

Georgia 30332-0160, USA

Current address: Department of Mathematics, Princeton University, Princeton,
NJ 08540-1000.

E-mail address: snorin@math.princeton.edu


