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Abstract. We consider the question of characterizing Pfaffian graphs.

We exhibit an infinite family of non-Pfaffian graphs minimal with respect

to the matching minor relation. This is in sharp contrast with bipartite

case, as Little [7] proved that every bipartite non-Pfaffian graph contains

a matching minor isomorphic to K3,3. We relax the notion of matching

minor and conjecture that there are only finitely many (perhaps as few

as two) non-Pfaffian graphs minimal with respect to this notion.

We define Pfaffian factor-critical graphs and study them in the second

part of the paper. They seem to be of interest as the number of near

perfect matchings in a Pfaffian factor-critical graph can be computed

in polynomial time. We give a polynomial time recognition algorithm

for this class of graphs and characterize minimally non-Pfaffian factor-

critical graphs.

1. Introduction

All graphs in this paper are finite and simple, and cycles and paths have

no repeated vertices. A subgraph H of a graph G is central if G \ V (H) (we

use \ for deletion and − for set theoretic difference) has perfect matching.

An even cycle C in a directed graph D is called oddly (resp. evenly) oriented

if for either choice of direction of traversal around C, the number of edges of

C directed in the direction of traversal is odd (resp. even). An orientation

D of a graph G with an even number of vertices is called Pfaffian if every

central cycle C of G is oddly oriented in D. A graph G with an even

number of vertices is said to be Pfaffian if it admits a Pfaffian orientation.

The significance of this notion stems from the fact that if a graph G is

Pfaffian, then the number of perfect matchings of G, and, more generally, the

generating function of perfect matchings, can be computed in polynomial

time. This was discovered by Kasteleyn [4, 5, 6] and Fisher [3] and has

received considerable attention since then. We refer to [16] for a recent

survey.

In this paper we address the question of characterizing Pfaffian graphs.

The following theorem of Little [7] gives an elegant characterization of bi-

partite Pfaffian graphs. Let H be a graph, and let v be a vertex of H of

degree two. By bicontracting v we mean contracting both edges incident
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Figure 1. (a) Cubeplex, (b) Twinplex.

with v and deleting the resulting loops and parallel edges. A graph G is a

matching minor of a graph H if G can be obtained from a central subgraph

of H by repeatedly bicontracting vertices of degree two. It is fairly easy to

see that a matching minor of a Pfaffian graph is Pfaffian.

Theorem 1.1. A bipartite graph admits a Pfaffian orientation if and only

if it has no matching minor isomorphic to K3,3.

Does there exist an analogue of Theorem 1.1 for general graphs? In [2]

Fischer and Little extend Theorem 1.1 to characterize near-bipartite Pfaffian

graphs. A graph in which every edge belongs to a perfect matching is said

to be matching-covered. A matching-covered non-bipartite graph G is near-

bipartite if there exist e, f ∈ E(G) such that G \ {e, f} is matching-covered

and bipartite. A graph H is said to be a weak matching minor of a graph G

if H can be obtained from a matching minor of G by a sequence of odd cycle

contractions. (When contracting odd cycles the resulting loops and parallel

edges are deleted.) It is shown in [8] that the property of being Pfaffian

is closed under taking weak matching minors. Cubeplex and twinplex are

particular graphs on 12 vertices (see Figure 1).



MINIMALLY NON-PFAFFIAN GRAPHS 3

Theorem 1.2. A near-bipartite graph is Pfaffian if and only if it has no

matching minor isomorphic to K3,3, cubeplex or twinplex.

Let us say that a graph G is minimally non-Pfaffian if it is not Pfaffian,

but every proper weak matching minor of G is Pfaffian. Thus K3,3, twin-

plex and cubeplex are minimally non-Pfaffian, and by Theorem 1.2 they are

the only minimally non-Pfaffian near-bipartite graphs. The Petersen graph

is also minimally non-Pfaffian. Little (private communication) made the

plausibly-looking conjecture that the graphs listed in Theorem 1.2 and the

Petersen graph are the only minimally non-Pfaffian graphs; in other words,

that Theorem 1.2 holds for all graphs as long as the Petersen graph is added

to the list of excluded weak matching minors. Unfortunately, that is not

true. In Section 3 we exhibit an infinite family of minimally non-Pfaffian

graphs.

The structure of the family suggests several reduction operations that

preserve the Pfaffian property. We describe these operations in Sections 2

and 4, and use them in Section 4 to formulate a modified conjecture that

includes only two obstacles rather than infinitely many.

We then turn to factor-critical graphs. A graph G is factor-critical if G\v

has a perfect matching for every vertex v ∈ V (G). For u 6∈ V (G) we define

Gu to be the graph obtained from G by adding a vertex u joined by an edge

to every vertex of G. We say that a graph G with |V (G)| odd is Pfaffian if

Gu is Pfaffian. We say that a matching of G is near-perfect if it covers all

but one vertex of G. Similarly as for graphs with Pfaffian orientations, if a

factor-critical graph is Pfaffian, then the number of near-perfect matchings

in G can be enumerated in polynomial time. In Section 5 we design a

polynomial-time algorithm to test if a factor-critical graph is Pfaffian, and

in Section 6 we prove an analogue of Theorem 1.1 for factor-critical graphs.

2. New operations that preserve the Pfaffian property of the

graph

In Section 3 we will exhibit a family of non-Pfaffian graphs such that no

element of this family can be reduced to a smaller non-Pfaffian graph by

edge deletion, bicontraction or contraction of an odd cycle. This motivates

a search for other reduction operations that preserve the Pfaffian property.

In this section we define such an operation, namely “compression”. Further

variants of this operation will be defined in Section 4. We also define “flip”

and “closure” operations. These operations can not be considered as reduc-

tion operations, but they will be used in the proofs in Sections 3 and 4. We

start the section with a definition and two preliminary lemmas.
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The following alternative definition of Pfaffian orientations will be useful

in our analysis of the above operations. Let D be an orientation of a graph

G. We say that two perfect matchings have the same sign in D if their

symmetric difference contains an even number of evenly oriented cycles.

Clearly, an orientation of the graph is Pfaffian if and only if every two

perfect matchings have the same sign in it. Having the same sign is an

equivalence relation [9], and we will refer to an equivalence class of a perfect

matching as its sign.

Lemma 2.1. Let G be a graph, let D be a Pfaffian orientation of G, let

u, v ∈ V (G) be not adjacent, let C be a cycle in G+uv and let uv ∈ E(C). If

every perfect matching M of G+uv, such that uv ∈ M , can be transformed to

a perfect matching M ′ of G+uv such that C is M ′-alternating by repeatedly

taking symmetric difference of M with M -alternating circuits of G that are

oddly oriented in D then G + uv is Pfaffian.

Proof. Let D′ be an orientation of G + uv obtained from D by orienting uv

in such a way that C is oddly oriented. We claim that D ′ is Pfaffian. It

suffices to show that every perfect matching M of G +uv has the same sign

as some perfect matching of G. Let a perfect matching M ′ of G such that C

is M ′-alternating be constructed from M as in the statement of the lemma.

Then M ′ and M have the same sign in D′ as taking symmetric difference of

a perfect matching with an oddly oriented circuit does not change its sign.

Finally M ′ has the same sign as a perfect matching M4C of G. �

Lemma 2.2. Let G be a connected Pfaffian graph, and let T be a spanning

tree of G. Then an arbitrary orientation of T extends to a Pfaffian orienta-

tion of G. Furthermore, if e ∈ E(G) joins two vertices at even distance in

T then an arbitrary orientation of T + e extends to a Pfaffian orientation

of G.

Proof. An orientation obtained from a Pfaffian orientation by reversing di-

rection of all edges in a cut is Pfaffian. This observation immediately implies

the first statement of the lemma. An orientation obtained from a Pfaffian

orientation by reversing direction of every edge is also Pfaffian. To show

that the second statement holds, let us color the vertices of the graph in two

colors, so that the coloring of T is proper. Given such a coloring, we reverse

the direction of every edge in the graph and then we reverse the direction of

all the edges in the cut separating the color classes. In the resulting graph,

the orientation of every edge in T remains unchanged, while the direction

of e is reversed. Therefore the second statement of the lemma follows from

the first. �
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Figure 2. Compression of H.

Consider a graph G containing a central subgraph H such that

V (H) = {u1, u2, u3, u4, v1, v2, v3, v4, w1, w2},

E(H) = {u1u2, u2u3, u3u4} ∪
4⋃

i=1

{uivi, viw1, viw2},

and the degree in G of each of the vertices u2, u3, v1, v2, v3, v4 is three. We

form a graph G′ from G as follows: delete the vertices u2, u3, v2, v3 from G,

and add an edge u1u4 (see Figure 2). We say that G′ is obtained from G

by a compression (of H). In Section 4 we will define two similar operations,

which will be referred to as compressions of types two and three.

Lemma 2.3. Let G be a Pfaffian graph and let G′ be obtained from G by

compression of a subgraph H of G. Then G′ is Pfaffian.

Proof. Let the vertices of H be labeled as in the definition above. We claim

that the graph G+u1u4 is Pfaffian. Let C = u1v1w1v3u3u4u1. For a perfect

matching M of G + u1u4 such that u1u4 ∈ M we have either v1w1 ∈ M ,

in which case C is M -alternating, or v1w2 ∈ M , in which case v4w1 ∈ M

and M can be transformed to a perfect matching M4C1,4 of G + u1u4

containing u1u4 and v1w1, where Ci,j is the edge-set of the cycle viw1vjw2vi

for 1 ≤ i < j ≤ 4. To derive our claim from Lemma 2.1 it suffices to show

that C1,4 is oddly oriented in any Pfaffian orientation of G. Note that

C1,44C1,24C2,34C3,4 = ∅.

Therefore the parity of the number of oddly oriented circuits among C1,4,

C1,2, C2,3 and C3,4 is independent of the choice of orientation and is even.

Finally note that C1,2, C2,3 and C3,4 are central in H and therefore in G and

as such are oddly oriented in any Pfaffian orientation of G. �
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We would like to prove a converse of Lemma 2.3. This result, in particular,

will be used in the following section.

Lemma 2.4. Let a Pfaffian graph G′ be obtained from a graph G by com-

pression of a subgraph H of G. Then G is Pfaffian.

Proof. Label the vertices of H as in the definition of compression. Consider

a Pfaffian orientation D of G′. By Lemma 2.2 we may assume that w1v1,

w1v4, v4w2, v1u1, v4u4, u1u4 ∈ E(D). Since the cycle v1w2v4w1 is central

in G′ it follows that w2v1 ∈ E(D). We extend D to an orientation D ′ of G

as follows: w1v2, w1v3, w2v3, v2w2, v2u2, v3u3, u1u2, u3u2, u3u4 ∈ E(D′).

We claim that D′ is a Pfaffian orientation of G+ = G + u1u4. It suffices to

prove that every perfect matching M of G+ has the same sign in D′ as some

perfect matching of G+ containing u2v2 and u3v3.

Suppose first that u2v2 ∈ M . Then we can assume that wiv3 ∈ M for

some i ∈ {1, 2}. We have v1u1, u3u4 ∈ M and by taking the symmetric

difference of M with the oddly oriented cycle u1v1wiv3u3u4u1 we get a per-

fect matching M ′ that contains u2v2 and u3v3 and has the same sign as M ,

as desired. The case when u3v3 ∈ M is symmetric. In the only remaining

case u2u3, u1v1, u4v4 ∈ M and v2wi, v3wj ∈ M for some {i, j} = {1, 2}.

We consider the symmetric difference of M with the oddly oriented cycle

u1v1wiv2u2u3v3wjv4u4u1 to verify the claim for M . �

We now define the second of our operations. Suppose a graph G contains

a central subgraph H such that

V (H) = {u1, u2, v1, v2, w1, w2},

E(H) = {u1u2, u1v1, u2v2, v1w1, v1w2, v2w1, v2w2},

and the degree in G of the vertices v1 and v2 is three. Then we say that H is a

fin. We form a graph G′ from G as follows: delete the edges v1w2, v2w1, u1u2

from G, and add the edges v1u2, v2u1 and w1w2 (see Figure 3). We say that

G′ is obtained from G by a flip (of the fin H). Note that in this case G can

be obtained from G′ by a flip of a fin on the same vertex set as H.

Lemma 2.5. Let G be a Pfaffian graph and let G′ be obtained from G by a

flip of a fin H. Then G′ is Pfaffian.

Proof. Let the vertices of H be labeled as in the definition of a flip. By

Lemma 2.1 the graph G∗ = G + w1w2 is Pfaffian (consider the cycle C =

w1v1u1u2v2w2w1). Let D be a Pfaffian orientation of G∗. By Lemma 2.2

we can assume that w1v1, w1v2, v1w2, w2v2, w1w2, u1v1, u2v2, u1u2 ∈

E(D). It follows that w1w2 ∈ E(D), because the cycle w1w2v2u2u1v1w1 is

central, and that v1w2 ∈ E(D), because the cycle w1v2w2v1w1 is central.
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Figure 3. A flip.

Let an orientation D′ of G∗ + v2u1 + u2v1 be obtained from D by setting

v2u1, u2v1 ∈ D′. We claim that D′ restricted to G′ is a Pfaffian orientation.

It suffices to show that any perfect matching M of G′ has the same sign as

some perfect matching of G∗ in D′.

Suppose that u1v2 ∈ M . Then either v1u2 ∈ M or v1w1 ∈ M . In the first

case M and M4C have the same sign where C = u1v1u2v2, while in the

second case M and M4C ′ have the same sign where C ′ = u1v1w1v2. The

case u2v1 ∈ M is analogous. �

Let G be a graph and let u, v ∈ V (G). We say that G + uv is a closure

of G if every central cycle C in G \ {u, v} is central in G.

Lemma 2.6. A closure of a Pfaffian graph is Pfaffian.

Proof. The symmetric difference of any two perfect matchings M1,M2 of

G + uv such that uv ∈ M1 ∩M2 is a union of cycles that are oddly oriented

in any Pfaffian orientation of G. Therefore a Pfaffian orientation of G + uv

can be obtained from a Pfaffian orientation of G by orienting uv in such

a way that some perfect matching of G + uv containing uv has positive

sign. �

3. A family of minimally non-Pfaffian graphs

Let k ≥ 1 be an intege, let C2k+1 be the cycle of length 2k+1 with vertices

labeled 1, 2, . . . , 2k + 1, in order, and let M be a matching in C, possibly

empty. The graph G(k,M) is defined as follows. Let

V (G(k,M)) = {u1, u2, . . . , u2k+1, v1, v2, . . . , v2k+1, w1, w2}

and let G(k,M) have the following edges, where the indices are considered

modulo 2k + 1:
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• uivi for every 1 ≤ i ≤ 2k + 1,

• uiui+1, vi+1w1 and viw2 if {i, i + 1} 6∈ M ,

• uivi+1 and viui+1 if {i, i + 1} ∈ M .

The vertices u1, u2, . . . , u2k+1, v1, v2, . . . v2k+1 have degree three in G(k,M),

while w1 and w2 have degree 2k + 1 − |M |. The cubeplex graph shown

on Figure 1 is isomorphic to the graph G(2, {{1, 2}, {3, 4}}), and is, up to

an isomorphism, the unique cubic graph in the family described above, as

well as the unique such near-bipartite graph. We will prove that the graph

G(k,M) is minimally non-Pfaffian for k ≥ 2.

We will use the following lemma in our analysis. It follows from [9, The-

orem 8.3.7].

Lemma 3.1. A graph G is non-Pfaffian if and only if there exist an orien-

tation D of G and central cycles C1, C2, . . . , Ck of G for some k ≥ 1 such

that 4k
i=1Ci = ∅ and odd number of cycles in the family C1, C2, . . . , Ck are

evenly oriented in D.

Theorem 3.2. The graph G(1, ∅) is non-Pfaffian. The graph G(k,M) is

non-Pfaffian for every integer k ≥ 2 and every matching M of C2k+1.

Proof. The proof is by induction on M . We start by considering M = ∅. The

graph G(k, ∅) can be reduced by a sequence of compressions to the graph

G(1, ∅) obtained from K3,3 by replacing one of its vertices by a triangle.

Therefore, G(k, ∅) for k ≥ 1 is non-Pfaffian by Lemma 2.4.

Suppose now M 6= ∅. Denote G(k,M) by G for brevity. Choose i so that

{i, i+1} ∈ M . The graph G+w1w2 can be obtained from G(k,M − {i, i+1})

by flipping the fin induced on {ui, ui+1, vi, vi+1, w1, w2}. Therefore by the

induction hypothesis and Lemma 2.5 the graph G + w1w2 is non-Pfaffian.

Moreover, G + w1w2 is a closure of G. It now follows from Lemma 2.6 that

G is non-Pfaffian. �

Theorem 3.3. The graph G(k,M) is minimally non-Pfaffian for every k ≥

2 and every matching M of C2k+1.

Proof. By Theorem 3.2 it suffices to prove that every graph obtained from

G(k,M) by deleting an edge or contracting an odd cycle is Pfaffian.

We start by proving by induction on |M | that G(k,M) \ e is Pfaffian

for every e ∈ E(G(k,M)). We consider the base case M = ∅ first. For

1 ≤ i ≤ 2k + 1 let M2i−1 be the perfect matching of G(k, ∅) consisting

of edges uiui+1, viw1, vi+1w2 and ujvj for all 1 ≤ j ≤ 2k + 1 such that

j 6∈ {i, i + 1}. For 1 ≤ i ≤ 2k + 1 let the perfect matching M2i be obtained

from M2i−1 by replacing edges viw1 edges vi+1w2 with viw2, vi+1w1. The set

{M1,M2, . . . ,M4k+2} is the set of all perfect matchings of G(k, ∅). For every
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1 ≤ i < 4k + 2 there exists e ∈ E(G(k, ∅)) such that e ∈ Mi ∩ Mi+1, and e

does not lie in any other perfect matching of G. It follows that 4i∈SMS 6= ∅

for every proper non-empty subset S of {1, . . . , 4k+2}. Thus, by Lemma 3.1,

we have that G(k, ∅) \ e is Pfaffian for every e ∈ E(G(k, ∅)).

For the induction step denote G(k,M) by G for brevity and suppose first

that there exists {i, i + 1} ∈ M such that

e 6∈ {uivi, uivi+1, ui+1vi, ui+1vi+1, viw1, vi+1w2}.

If the graph G \ e \ {ui, vi, ui+1, vi+1, w1, w2} has a perfect matching then

(G \ e) + w1w2 can be obtained by a flip from G(k,M − {i, i + 1}) \ e.

Therefore G \ e is Pfaffian by the induction hypothesis and Lemma 2.5. If,

on the other hand, G \ e \ {ui , vi, ui+1, vi+1, w1, w2} has no perfect matching

then e = ujvj for some j unsaturated by M . The graph G \ ujvj has an

independent set W = {v1, . . . , v2k+1, uj} with |W | = 2k + 2 = |V (G)|/2.

Choose f = ulul+1 ∈ E(G) such that j 6∈ {l, l + 1}. Then f has no end in

W and therefore f lies in no perfect matching of G \ ujvj. It follows that

G \ ujvj is Pfaffian if G \ {ujvj, f} is Pfaffian, and we have already shown

that G \ f is Pfaffian.

It remains to consider the case when the choice of i made above is impos-

sible. In this case |M | = 1. Without loss of generality we assume M = {1, 2}

and e ∈ {u1v2, v1w1}. If e = u1v2 then the edge v1u2 lies in a unique perfect

matching of G \ e and it suffices to show that G \ {e, v1u2} is Pfaffian. But

it is Pfaffian because it is a proper subgraph of G(k, ∅). Finally, if e = v1w1

then the edge u2u3 lies in a unique perfect matching of G\ e. It follows that

G \ e is Pfaffian because we have shown above that G \ u2u3 is Pfaffian.

We have proven that G(k,M) \ e is Pfaffian for every k ≥ 2 and every

e ∈ E(G(k,M)). It remains to show that every graph G′ obtained from

G(k,M) by contracting an odd cycle C is Pfaffian. By the above we may

assume that C is induced and no vertex in G(k,M)\V (C) has more than one

neighbor in V (C). Otherwise, G′ can be obtained from a proper subgraph

of G(k,M) by contracting C, and hence is Pfaffian.

Suppose first that w1, w2 6∈ V (C). Then u1, . . . , u2k+1 ∈ V (C) as the

graph G(k,M) \ {w1, w2, uj} is bipartite for every 1 ≤ j ≤ 2k + 1. For

every {i, i + 1} ∈ M exactly one of the vertices vi and vi+1 lies in C, while

the other has two neighbors in V (C). It follows that M = ∅, and hence

V (C) = {u1, u2, . . . , u2k+1}. It follows that G′ is isomorphic to K3,2k+1, and

hence is Pfaffian, because it has no perfect matching.

Therefore we may assume that {w1, w2} ∩ V (C) 6= ∅ and without loss of

generality we assume w1v1, v1u1 ∈ E(C). If u1v2 ∈ E(C) then u2 has two

neighbors v1, v2 ∈ V (C) and thus v2u2 ∈ E(C), contradicting the assump-

tion that C is induced. Therefore without loss of generality we may assume
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that u1u2 ∈ E(C). The vertex v2 has two neighbors w1, u2 ∈ V (C) and

consequently C = w1v1u1u2v2w1. The vertex w2 has at most one neighbor

in C and therefore {2, 3} ∈ M . Note that a graph isomorphic to G′ may be

obtained by contraction of C in the Pfaffian graph G(k,M − {2, 3}) \w2v2.

Therefore G′ is Pfaffian. �

Conjecture 3.4. Every minimally non-Pfaffian graph is isomorphic to K3,3,

twinplex, the Petersen graph, or the graph G(k,M) for some integer k ≥ 2

and some matching M of C2k+1.

4. Revised conjecture

We would like to restate Conjecture 3.4 in a way that involves two ob-

structions, rather than infinitely many. To do this we need to expand our

set of reduction operations. As mentioned in the proof of Theorem 3.2 the

graph G(k, ∅) can be reduced to K3,3 by a sequence of compressions and an

odd cycle contraction, and the graph G(k,M) can be reduced to G(k, ∅) by

a sequence of flips and closures. The flip and closure operations, however,

do not seem to be natural reduction operations, and so in this section we

introduce two additional operations that produce smaller Pfaffian graphs

from larger Pfaffian graphs. The operations will be referred to as compres-

sions of type two and three, and we will refer to the compression operation

defined in Section 2 as compression of type one. Compressions of types one,

two and three can be used to reduce any graph in the family G(k,M) to the

graph G(1, ∅).

Consider a graph G containing a central subgraph H such that

V (H) = {u1, u2, u3, u4, v1, v2, v3, v4, w1, w2},

E(H) = ({u1u2, u3u4, v2u3, u2v3} ∪
4⋃

i=1

{uivi, viw1, viw2}) − {v3w1, v2w2},

the degree in G of each of the vertices u2, u3, v1, v2, v3, v4 is three (see Fig-

ure 4a), and the cycle v2u2v3u3v2 is central in G. We form a graph G′ from

G as follows: delete the vertices u2, u3, v2, v3 from G, and add the edge u1u4.

We say that G′ is obtained from G by a compression of type two (of H).

Lemma 4.1. Let G be a Pfaffian graph and let G′ be obtained from G by a

compression of type two of a subgraph H of G. Then G′ is Pfaffian.

Proof. The first part of the proof parallels the proof of Lemma 2.3. Assume

that the vertices of H are labeled as in the definition of a compression

of type two. We claim that the graph G + w1w2 is Pfaffian. Let C =

w1v1u1u2v3w2w1. For a perfect matching M of G +w1w2 such that w1w2 ∈

M we have v1u1 ∈ M and either u2v3 ∈ M , in which case C is M -alternating,
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Figure 4. Subgraphs compressed by compressions of type

two (a), and type three (b).

or u2v2 ∈ M , in which case v2u3 ∈ M and M can be transformed to a

perfect matching M4C ′ where C ′ = v2u2v3u3. Our claim follows now from

Lemma 2.1 as C ′ is central in G by definition of compression of type two,

and as such is oddly oriented in any Pfaffian orientation of G. The graph

G′ can be obtained from the graph G + w1w2 by flipping the fin induced

on the vertex set {w1, w2, v2, v3, u2, u3}, and a compression of type one of

the resulting subgraph induced on V (H). Therefore the lemma follows from

Lemmas 2.3 and 2.5. �

We now introduce our last reduction operation. Consider a graph G

containing a central subgraph H such that

V (H) = {u1, u2, u3, u4, v1, v2, v3, v4, w1, w2},

E(H) = {u1v2, u3v4, v2u1, u2u3, v1w1, v3w1, v2w2, v4w2} ∪
4⋃

i=1

{uivi},

the degree in G of each of the vertices u2, u3, v1, v2, v3, v4 is three (see Fig-

ure 4b), and the cycles v1u1v2u2v1 and v3u3v4u4v3 are central in G. We

form a graph G′ from G as follows: delete the vertices u2, u3, v2, v3 from G,

and add the edges u1u4, w1v4 and v1w2. We say that G′ is obtained from G

by a compression of type three (of H).

Lemma 4.2. Let G be a Pfaffian graph and let G′ be obtained from G by

compression of type three of a subgraph H of G. Then G′ is Pfaffian.

Proof. We assume that the vertices of H be labeled as in the definition. of

a compression of type three. As in Lemma 4.1 our first goal is to prove

that the graph G + w1w2 is Pfaffian. Consider a perfect matching M of
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G + w1w2. By taking symmetric differences with central cycles v1u1v2u2v1

and v3u3v4u4v3, if necessary, we obtain a perfect matching M ′ from M such

that viui ∈ M for all 1 ≤ i ≤ 4. The cycle w1v1u1v2u2u3v3u4v4w2w1 is

M ′-alternating. Therefore G + w1w2 is Pfaffian by Lemma 2.1. Obtain

a graph G′′ from G + w1w2 by flipping the fin induced on the vertex set

{w1, w2, v1, v2, u1, u2}. By Lemma 2.5 the graph G′′ is Pfaffian and by the

argument similar to the above (using the cycle w1w2v4u4v3u2v2) the graph

G′′ + w1w2 is also Pfaffian. The graph G′ can be obtained from the graph

G′′+w1w2 by flipping the fin induced on the vertex-set {w1, w2, v3, v4, u3, u4}

and compression of type one of the resulting subgraph induced on V (H),

and thus the lemma follows from Lemmas 2.3 and 2.5. �

Consider the graph G(k,M) for some integer k ≥ 2. If M contains two

edges that are at distance one in C2k+1, then compression of type three

reduces G(k,M) to the graph G(k − 1,M ′) for some matching M ′ of C2k−1,

where |M ′| = |M | − 2. If M is non-empty, but does not contain two such

edges then compression of type two may be used to reduce G(k,M) to the

graph G(k − 1,M ′) for some matching M ′ of C2k−1, where |M ′| = |M | − 1.

Finally, the graph G(k, ∅) for k ≥ 2 can be reduced to the graph G(k − 1, ∅)

by compression of type one. Thus every graph G(k,M) can be reduced to

the non-Pfaffian graph G(1, ∅) by a sequence of compressions of types one,

two and three. A graph isomorphic to K3,3 can be obtained from the graph

G(1, ∅) by contracting a triangle. The only minimally non-Pfaffian graphs

that we know that do not belong to the family G(k,M) are twinplex and

the Petersen graph. Moreover, every graph obtained from twinplex by an

edge addition or replacement of one of its vertices by a triangle contains a

graph isomorphic to K3,3 as a matching minor.

Thus we feel tempted to state the following conjecture.

Conjecture 4.3. A connected graph G is Pfaffian if and only if G is not

isomorphic to twinplex and G can not be reduced to K3,3 or the Petersen

graph by a sequence of edge deletions, bicontractions, contractions of odd

cycles and compressions of type one, two and three.

We have convinced ourselves that Conjecture 4.3 is equivalent to Con-

jecture 3.4, but the proof of the equivalence is uninteresting, and we omit

it. Although we do have some evidence in support of Conjecture 4.3, the

compression operations are motivated by the structure of the family from

Section 3, and as such seem artificial. A weaker, but perhaps more natural

conjecture would state that there exists some finite set of “nice” reduction

rules so that every non-Pfaffian graph can be reduced to a graph in some
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finite collection of non-Pfaffian graphs via repeated application of these re-

duction rules. Let us state this weaker conjecture precisely.

Let H,H ′ be graphs with |E(H ′)| < |E(H)|, let V be a (possibly empty)

collection of subsets of V (H), and let f : W → V (H ′) be a map for some

W ⊆ V (H) . Then we say that R = (H,H ′,V,W, f) is a rule. Let G be a

graph let φ be an isomorphism between H and a subgraph of G such that no

vertex in φ(V (H) − W ) is incident to an edge in E(G) − φ(E(H)), and for

every V ∈ V the subgraph of G induced on φ(V ) is central in G. We obtain

G′ from G by deleting the vertices in φ(V (H) − W ) and edges in φ(E(H)),

adding a disjoint copy of H ′ to the resulting graph, and for every w ∈ W

identifying the vertices φ(w) and f(w). Then we say that the graph G′ is

obtained from the graph G by a reduction using rule R.

Let us give a simple example. Let H be a path on three vertices, let V

be empty, and let W consist of the ends of the path H. Let H ′ be a graph

with one vertex and let f map W to this vertex. Let Rb = (H,H ′,V,W, f).

Then bicontraction can be considered as a reduction using rule Rb.

We say that the rule R is valid if every graph that can be obtained

from a Pfaffian graph by a reduction using rule R is Pfaffian. It might be

preferable to define the validity of a rule intrinsically, but at this point it

does not seem to be worth the effort. Note that edge deletion, bicontraction,

and compressions of type one, two and three can be considered as reductions

using valid rules. Thus Conjecture 4.3 implies

Conjecture 4.4. There exists a finite collection of valid rules such that

every non-Pfaffian graph can be reduced to a graph isomorphic to K3,3 by

repeated reductions using rules from this collection.

5. Pfaffian factor-critical graphs

In this section we study Pfaffian factor-critical graphs. In particular, we

present a polynomial time recognition algorithm for such graphs. We start

by introducing the tools that we will use in our proofs.

An ear-decomposition of G is a sequence (C,P1, . . . , Pk), where C is a

central cycle in G and Pi is an odd path that has both ends in and is

otherwise disjoint from C ∪P1 ∪ . . .∪Pi−1 for every i ∈ {1, . . . , k} . We use

the following structure theorem of Lovász and Plummer [9].

Theorem 5.1. Let G be a 2-connected factor-critical graph. Then for some

integer k ≥ 0 there exists an ear decomposition (C,P1, . . . , Pk) of G. More-

over, Gi = C∪P1∪. . .∪Pi−1 is a central 2-connected factor-critical subgraph

of G for every i ∈ {1, . . . , k}.

We will also need two lemmas, the first of which is by Pulleyblank [14].
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Lemma 5.2. A graph is factor-critical if and only if it is connected and

each of its blocks is factor-critical.

Lemma 5.3. Let G be a factor-critical graph, B be a block of G and H be

a subgraph of B. Then H is central in G if and only if H is central in B.

In particular B is central in G.

Proof. Let C be a component of G \ V (B). Then C is a component of G \ v

for some v ∈ V (B). Therefore C has a perfect matching. If H is central

in B then a perfect matching of G \ V (H) can be obtained by taking union

of perfect matching of B \ V (H) with perfect matchings of components of

G \ V (B).

Let now H be a subgraph of B that is central in G and let M be a perfect

matching of G\V (H). Since each component of G\V (B) is even we deduce

that no edge of M has exactly one end in V (B). Thus M ∩E(B) is a perfect

matching of B ∩ V (H). �

Our first characterization of Pfaffian factor-critical graphs follows.

Lemma 5.4. A factor-critical graph G is Pfaffian if and only if there exists

an orientation of G in which every central path of length 2 is directed.

Proof. Assume first that G is Pfaffian. Thus Gu is Pfaffian and so by

Lemma 2.2 it has a Pfaffian orientation D such that all the edges incident

with u are directed away from u. We claim that the restriction of D to G is

as desired. Indeed if v0v1v2 is a central path in G, then it is directed as the

cycle uv0v1v2u is central in Gu and therefore must be oddly oriented.

Now assume that G has an orientation D ′ such that every central path

of length two is directed, and let D be the orientation of Gu obtained by

directing all the edges incident with u away from u. We will prove that D

is a Pfaffian orientation of Gu.

Let C = v0v1v2 . . . v2l+1v0 be a central cycle in Gu and let M be a per-

fect matching in Gu \ V (C). Suppose first that u = v0 ∈ V (C). Then

for every i ∈ {1, 2, . . . , l} the path v2i−1v2iv2i+1 is central in G and hence

is directed in D. It follows that C is oddly oriented. Now suppose that

u 6∈ V (C) and let vu ∈ M . Let M ′ be a perfect matching of G \ v0.

The component of G[M ∪ M ′] containing v is an M -alternating path P =

vu1u2 . . . u2s−1u2svi for some integers s and i and some u1, . . . , u2s ∈ V (G).

Note that some subset of M is a perfect matching of G\V (P ∪C). It follows

that the paths u2svivi+1, vi+1vi+2vi+3, . . . , vi−3vi−2vi−1, vi−1viu2s are central

in G and therefore directed (indices of vertices of C are taken modulo 2l+2).

Again it follows that C is oddly oriented. As every central circuit of Gu is

oddly oriented, D is Pfaffian. �
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For a factor-critical graph G and a vertex v ∈ V (G) we define an auxiliary

graph G(v) with vertex set N(v) = {v′ ∈ V (G) | v′v ∈ E(G)} and let

v1v2 ∈ E(G(v)) if and only if v1vv2 is a central path in G.

Lemma 5.5. Let G be a 2-connected factor-critical graph. Then for every

v ∈ V (G) the graph G(v) is connected.

Proof. The proof is by induction on the number of ears in an ear decompo-

sition (Theorem 5.1) of the graph G. The base case is trivial.

Let now (C,P1, . . . , Pk) be an ear decomposition of G and let G′ = C ∪

P1 ∪ . . . ∪ Pk−1. By the induction hypothesis G′(v) is connected for every

v ∈ V (G′). Therefore G(v) is connected for every v ∈ V (G) − V (Pk). Let

Pk = v0v1 . . . v2l+1 for some integer l ≥ 0. Note that vivi+1vi+2 is central in

G for every i ∈ {0, . . . 2l− 1}. Indeed, if i is even then a perfect matching of

G′ \v0 (which exists by Theorem 5.1) can be extended to a perfect matching

of G \ {vi, vi+1, vi+2} and if i is odd then so can a perfect matching of

G′ \ v2l+1. Therefore G(vi) is connected for every i ∈ {1, . . . 2l}.

The graph G(v0) is obtained from G′(v0) by the addition of the vertex v1

and some edges. Therefore to show that G(v0) is connected it is sufficient

to show that for some w ∈ N(v0) the path wv0v1 is central in G. Let M be

a perfect matching of G \ v0 and M ′ be a perfect matching of G \ v1. There

exists a component P of G[M ∪ M ′] such that P is an even path with one

end in v0 and the other end in v1. Let wv0 ∈ E(P ). Then P \ {w, v0, v1}

has a perfect matching and a subset of M is a perfect matching of G \V (P )

and therefore wv0v1 is central in G. Similarly, G(v2l+1) is connected. �

Theorem 5.6. A factor-critical graph G is Pfaffian if and only if for every

v ∈ V (G) the graph G(v) is bipartite.

Proof. Let v ∈ V (G) and let D be an orientation of G. For a vertex w ∈

V (G(v)) we say that w is black if vw ∈ D and that w is white otherwise.

If for some w1w2 ∈ E(G(v)) the vertices w1 and w2 have the same color

then w1vw2 is a central path in G which is not directed. It follows that it

is necessary for G(v) to be bipartite for every v ∈ V (G) for an orientation

from Lemma 5.4 to exist.

We claim that the above condition is also sufficient. We prove our claim

for 2-connected factor-critical graphs first. As in Lemma 5.5 we apply in-

duction on the number of ears in an ear decomposition of graph G. The

base case is immediate as odd cycles are Pfaffian.

Let now (C,P1, . . . , Pk) be an ear decomposition of G, let G′ = C ∪ P1 ∪

. . . ∪ Pk−1 and let Pk = v0v1 . . . v2l+1. By the induction hypothesis and

Lemma 5.4 there exists an orientation D of G′ such that every central path

of length two is directed. By Lemma 5.5 there exists w ∈ N(v0) such that
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wv1 ∈ E(G(v0)). Extend D to an orientation D′ of G by orienting the edges

of Pk in such a way that wv0v1 . . . v2l+1 is a directed path. We claim that

every central path of length two is directed in D ′.

Suppose for some v, v′, v′′ the path v′vv′′ is central in G, but not directed in

D′. It follows that v ∈ V (G′). Suppose first v 6∈ {v0, v2l+1}. By Lemma 5.5

there exists a path between v′ and v′′ in G′(v) and by the choice of D this

path has to be even. It follows that G(v) is not bipartite as v ′v′′ ∈ G(v),

in contradiction with our assumption. Note that by construction the same

argument applies to v = v0 (if v = v0 and say v′′ = v1, then we apply the

above argument to the pair w, v′ instead).

It remains to consider v = v2l+1. Since v′vw is central there exists a

perfect matching M of G\{v, v′, v′′}. Let M ′ be a perfect matching of G\v

and let P be a path with edges in M ∪M ′ and ends in v′ and v′′. Let C be

the cycle with E(C) = E(P )∪{vv′, vv′′}. There must exist a subpath t′tt′′ of

C such that t 6= v and t′tt′′ is not directed. Note that C is central in G and

therefore so is t′tt′′. But we have already proved that for every t ∈ V (G),

t 6= v2l+1 every central path of length two with the middle vertex in t is

directed. This concludes the proof for 2-connected factor-critical graphs.

By Lemma 5.2 every block B of G is factor-critical and therefore we

proved that there exists an orientation of B in which every length 2 central

path is directed. Let D be an orientation of G constructed by combining

such orientations for all blocks. It follows from Lemma 5.3 that every length

2 central path in G is directed. �

Theorem 5.6 provides a polynomial time recognition algorithm to decide

whether a factor-critical graph is Pfaffian. Furthermore, the proof of The-

orem 5.6 can be converted to an algorithm to find a Pfaffian orientation of

Gu when it exists. Alternatively, one can use the algorithm of Vazirani and

Yannakakis [17] that determines Pfaffian orientation of a Pfaffian graph in

polynomial time.

6. Minimally non-Pfaffian factor-critical graphs

In this section we characterize minimally non-Pfaffian factor-critical graphs.

We will need a lemma about intersection of M -alternating paths from [12].

A path P is said to be M -alternating, if every internal vertex of P is incident

with an edge of E(P )∩M . We have to precede the statement of the lemma

with a technical definition. Let G be a graph, let M be a matching in G,

and let P and Q be two M -alternating paths in G. For the purpose of this

definition let a segment be a maximal subpath of P ∩ Q, and let an arc be

a maximal subpath of Q with no internal vertex or edge in P . We say that
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Figure 5. Three cases of transversal intersection.

P and Q intersect transversally if either they are vertex-disjoint, or there

exist vertices q0, q1, . . . , q7 ∈ V (Q) such that

(1) q0, q1, . . . , q7 occur on Q in the order listed, and q0 and q7 are the

ends of Q,

(2) q2, q1, q3, q4, q6, q5 all belong to P and occur on P in the order listed,

(3) if q0 ∈ V (P ), then q0 = q1 = q2 = q3, and otherwise Q[q0, q1] is an

arc,

(4) if q7 ∈ V (P ), then q7 = q6 = q5 = q4, and otherwise Q[q6, q7] is an

arc,

(5) Q[q3, q4] is a segment,

(6) either q1 = q2 = q3, or q1, q2, q3 are pairwise distinct, Q[q1, q2] is a

segment, Q[q2, q3] is an arc and q2 is not an end of P , and

(7) either q4 = q5 = q6, or q4, q5, q6 are pairwise distinct, Q[q5, q6] is a

segment, Q[q4, q5] is an arc and q5 is not an end of P .

The definition above is symmetric in P and Q. There are four cases of

transversal intersection depending on the number of components of P ∩ Q;

the three cases when P and Q intersect are depicted in Figure 5. We are

now ready to state the lemma from [12].

Lemma 6.1. Let M be a matching in a graph G and let P1 and P2 be two

M -alternating paths, where Pi has ends si and ti. Assume that s1, s2, t1

and t2 have degree at most two in P1 ∪P2. Then there exist a matching M ′

saturating the same set of vertices as M and two M ′-alternating paths Q1

and Q2 such that M4M ′ ⊆ E(P1) ∪ E(P2), Qi has ends si and ti and Q1

and Q2 intersect transversally.

Let G be a graph, let k ≥ 3 be an odd integer, and let v, w1, w2, . . . wk ∈

V (G) be distinct. Let P1, P2, . . . , Pk, Q1, . . . , Qk be internally disjoint paths

in G such that the following conditions are satisfied
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• for 1 ≤ i ≤ k the path Pi is even and has ends v and wi,

• for 1 ≤ i ≤ k the path Qi is odd and has ends wi and wi+1, where

wk+1 = w1 by convention, and

• G = P1 ∪ . . . ∪ Pk ∪ Q1 ∪ . . . ∪ Qk.

Then we say that G is a k-flower, v is the hub of G and the vertices of G

adjacent to v are the spokes of G. If a graph H is obtained from a 3-flower G

by contracting the unique odd cycle not containing the hub, then we say that

H is a pseudoflower. The hub and the spokes of H are the images of the hub

and the spokes of G under this contraction. We will show that k-flowers and

pseudoflowers are non-Pfaffian, and that every non-Pfaffian factor-critical

graph contains a k-flower or a pseudoflower as a central subgraph.

Lemma 6.2. For every odd integer k ≥ 3 every k-flower G is non-Pfaffian.

Every pseudoflower G is non-Pfaffian.

Proof. Let v be the hub of G, and let H be obtained from Gu by deleting

all edges uw, where w is not a spoke. If G is a pseudoflower, then H has

a matching minor isomorphic to K3,3, and if G is a (2t + 1)-flower, then

H is isomorphic to G(t, 0). Thus G is not Pfaffian by Theorem 1.1 and

Theorem 3.2. �

It is not hard to see that if one deletes an edge from a flower or a pseud-

oflower then the resulting graph is Pfaffian.

Theorem 6.3. Let G be a factor-critical graph, let v ∈ V (G) and let C be

an induced odd cycle in G(v) with |C| = k. Then there exists a k-flower or

a pseudoflower F such that F is a central subgraph of G, v is the hub of F

and V (C) is the set of spokes of F .

Proof. Let C = v1v2 . . . vkv1.

We start by considering the case k = 3. Let Mi be a perfect matching of

G \ {v, vj , vk}, where {i, j, k} = {1, 2, 3}. Note that M24M3 is the union

of cycles and a path with ends v2 and v3. Denote this path by P1. Let

P2 be defined analogously. By Lemma 6.1 applied to M3, P1 and P2 we

may assume that P1 and P2 intersect transversally. Then the graph F =

G[E(P1 ∪P2)∪ {vv1, vv2, vv3}] is a 3-flower (if P1 ∪P2 induces a cycle) or a

pseudoflower (if P1 ∩ P2 is a path). Moreover, F is central as M3 induces a

perfect matching in G \ V (F ).

Now assume k > 3. We need another technical definition similar to the

one of k-flower. For i ∈ {2, . . . , l − 1} let Pi be an even path with ends v

and wi, and for i = {2, . . . , l − 2} let Qi be an odd path with ends wi and

wi+1. Let P1 be an odd path with ends v and w2 and let Pl be an odd path

with ends v and wl−1. If the paths P1, P2, . . . Pl, Q1, . . . , Ql−1 are pairwise
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internally vertex-disjoint, vvi ∈ E(Pi) for all i = {1, . . . , l} and the graph

B = G[E(P1 ∪P2 ∪ . . . Pl ∪Q2 ∪ . . .∪Ql−2)] is a central subgraph of G then

we say that B is an l-blossom.

Claim 1. For every integer 4 ≤ l ≤ k − 1 there exists an l-blossom B.

Proof. By induction on l.

We start with the base case l = 4. For i ∈ {1, 2, 3} let Mi be a perfect

matching of G \ {v, vi, vi+1}. For i ∈ {1, 3} let Ri be the unique MiM2-

alternating path; then R1 has ends v1 and v3, while R3 has ends v2 and

v4. By Lemma 5.4 applied to M2, R1 and R3 we may assume that R1 and

R3 intersect transversally. We distinguish between the types of transversal

intersection as follows:

(1) R1 and R3 are disjoint,

(2) R1 ∪ R3 is connected and acyclic,

(3) R1 ∪ R3 is connected and contains exactly one cycle,

(4) R1 ∪ R3 is connected and contains exactly two cycles.

Let B = G[E(R1 ∪ R3) ∪ {vv1, vv2, vv3, vv4}]. Note that B is central in

G as M2 induces a perfect matching of G \ V (B). Since C is induced,

G \ {v, vi, vj} has no perfect matching whenever 1 ≤ i, j ≤ 4 and |i− j| > 1.

Thus B\{v, vi, vj} has no perfect matching for those values of i, j. It follows

that (2) holds and that B is a 4-blossom.

For the induction step, let 5 ≤ l ≤ k − 1 and let B be an (l − 1)-blossom

with notation as above. We proceed to construct an l-blossom. Let M

be a perfect matching of G \ V (B) and let Ml be a perfect matching of

G \ {v, vl−1, vl}. Let R be the unique MlM -alternating path with one end

in vl and the other end w ∈ V (B) − {vl−1, v}. We claim that w ∈ V (Pl−1)

as otherwise C is not induced. If w ∈ V (Pi) for some 1 ≤ i < l − 1 then

either vivl ∈ E(G(v)) or vi+1vl ∈ E(G(v)); other cases are analogous. Let

Pl = R,wl−1 = w, replace Pl−1 by Pl−1[v, w] and let Ql−1 = Pl−1[w,wl−2].

Note that Pl−1 is even and Ql−1 is odd as otherwise B ∪ R \ {v, vl−2, vl}

has a perfect matching and vl−2vl ∈ E(G(v)). Therefore G[E(B ∪ R)] is an

l-blossom. �

It now remains to construct a k-flower from a (k−1)-blossom B. Let M be

a perfect matching of G\V (B). Let B ′ = B \ (V (P1)−{w2}), let MB′ ⊇ M

be a perfect matching of G \ V (B ′) and let M ′ be a perfect matching of

G \ {v, vk−1, vk}. Let R′ be the M ′MB′ -alternating path with ends vk and

w′ ∈ V (B′). By the argument from Claim 1 we have w′ ∈ V (Pk−1) and

Pk−1[v, w′] is an odd path. Suppose now that P1∩R′ 6= ∅. Let w ∈ V (P1∩R′)

be chosen to minimize R′[w,w′]. By examining B∪R′[w,w′] we can conclude
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that vk−1v1 ∈ E(G(v)), or vk−1v2 ∈ E(G(v)), or vk−2v1 ∈ E(G(v)), in

contradiction with the choice of C.

Similarly let B ′′ = B \ (V (Pk−1) − {wk−2}), let MB′′ ⊇ M be a perfect

matching of G−V (B ′′) and let M ′′ be a perfect matching of G−{v, v1, vk}.

Then there exists M ′′MB′′ -alternating path R′′ with ends vk and w′′ ∈

V (P1),such that P1[v, w′′] is odd and R′′ is otherwise disjoint from B. Note

that R′ and R′′ are both M -alternating and we can apply Lemma 5.4 to M ,

R′ and R′′. It is easy to see that R′ ∪ R′′ is acyclic by the choice of C and

therefore B ∪ R′ ∪ R′′ constitutes a k-flower. �

Note that the proof of Lemma 5.4 is algorithmic and so are the proofs in

this section, therefore in a non-Pfaffian factor-critical graph it is possible to

find a k-flower or a pseudoflower in polynomial time.

7. Concluding remarks

A cut in a graph G is a set δ(S) of all edges joining vertices of S to vertices

of V (G)−S for some non-empty S ( V (G). We say that a cut is trivial if S

or V (G)−S contains only one vertex. We say that an odd cut C in a graph

G is tight if every perfect matching of G contains exactly one edge in it.

The tight cut decomposition procedure of Kotzig, and Lovász and Plum-

mer [9] can be used to reduce most of the problems regarding perfect match-

ings to matching covered graphs with no non-trivial tight cuts. In particular,

it suffices to characterize Pfaffian graphs with no tight cut. There are two

such classes of graphs. A brick is a 3-connected bicritical graph, where a

graph G is bicritical if G\{u, v} has a perfect matching for every two distinct

vertices u, v ∈ V (G). A brace is a connected bipartite graph such that every

matching of size at most two is contained in a perfect matching. Edmonds,

Lovász and Pulleyblank [1] and Lovász [10] proved that a matching-covered

graph has no non-trivial tight cuts if and only if it is either a brick or a

brace.

Pfaffian bipartite graphs are well understood. Therefore it suffices to

characterize Pfaffian bricks. While the problem of enumerating near-perfect

matchings provides an independent motivation for our study of Pfaffian

factor-critical graphs, one can consider this study as an attempt to approach

and gain intuition about the substantially more difficult problem of charac-

terizing Pfaffian bricks. Clearly, a graph G is 2-connected and factor-critical

if and only if Gu is a brick. A vertex u of a graph G is said to be univer-

sal if uv ∈ E(G) for every v ∈ V (G) − {u}. One can consider the results

of Sections 5 and 6 as characterizations of Pfaffian bricks with a universal

vertex.
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Already in this special case minimally non-Pfaffian graphs constitute an

infinite family (in fact, Lemma 6.2 offers a glimpse at the relation between

this family and family considered in Section 3). The exact description of

this family is obtained in Section 6. This fact seems to offer hope that such

a description, while much harder to obtain, might be possible for general

Pfaffian bricks.

A completely different approach to characterizing Pfaffian graphs is by

means of a structural theorem. For bipartite graphs such a theorem was

obtained independently by McCuaig [11], and Robertson, Seymour and

Thomas [15]. No such theorem is known for general non-bipartite graphs,

but we hope to shed some light on this question in a forthcoming paper [13].

We finish the paper by further specializing our area of interest. First,

we give a precise structural description of Pfaffian bricks with two universal

vertices.

Theorem 7.1. Let G be a brick and let u1, u2 ∈ V (G) be universal. Then

G is Pfaffian if and only if G′ = G \ {u1, u2} is bipartite and has a unique

perfect matching.

Proof. Let M be a perfect matching of G′; it exists as G is bicritical. Suppose

G′ contains an odd cycle. For an odd cycle C in G′ let Mc be the set of edges

of M that are incident to a vertex of C. Choose C with |Mc| minimal. Then

no edge of M forms a chord of C. Let V (Mc) − V (C) = {v1, v2, . . . v2k+1}.

Let F = C∪Mc∪ (
⋃2k+1

i=1 u1vi). Then F is a (2k+1)-flower and is central in

G\u2 unless k = 0, in which case G[{u1}∪V (Mc)∪V (C)] contains a spanning

pseudoflower. It follows from Lemma 6.2 that if G′ is non-bipartite then G

is non-Pfaffian. If G′ contains a central cycle then let v1, v2 be two vertices

even distance apart in C. Then C +u1v1 +u1v2 is a central pseudoflower in

G \ u2 and it again follows that G is non-Pfaffian.

It remains to show that if G′ is bipartite and has a unique perfect matching

M then G is Pfaffian. Let (A,B) be a bipartition of G′. We construct the

Pfaffian orientation D of G as follows: direct the edges of M from A to B,

direct all other edges of G′ from B to A, direct all edges from u1 and u2 to

A, from B to u1 and u2, and direct the edge u1u2 from u1 to u2.

Let M ′ = M ∪{u1u2}, it suffices to prove that every M ′-alternating cycle

C is oddly oriented in D. Note that u1u2 ∈ E(C), as otherwise C is a central

cycle in G′. If an edge e of C incident to u1, but not to u2, has an end in A

then all the edges of C except u1u2 are oriented in the same direction along

C, and therefore C is oddly oriented. The case when e has an end in B is

similar. �



22 SERGUEI NORINE AND ROBIN THOMAS

Finally, let us give a characterization of Pfaffian graphs in a certain class

that includes G(k, ∅) for every k. Let H be a graph, let V be a set of

vertices disjoint from V (H) and let f : V → V (H) be one-to-one. Define

G(H) as follows: V (G(H)) = V (H) ∪ V ∪ {w1, w2}, E(G(H)) = E(H) ∪

(
⋃

v∈V {vf(v), vw1, vw2}).

Lemma 7.2. The graph G(H) is Pfaffian if and only if the graph H is

bipartite.

Proof. If H ′ is a subgraph of H then G(H ′) is isomorphic to a central sub-

graph of G(H). If H is not bipartite then G(H) has G(C2k+1) ' G(k, ∅)

as a subgraph and is therefore non-Pfaffian. If H is bipartite then H is

a subgraph of a graph G+(H) obtained from G(H)[V (H) ∪ V ] by adding

two universal vertices. The graph G(H)[V (H) ∪ V ] is bipartite and has a

unique prefect matching. Therefore by Theorem 7.1 G+(H) is Pfaffian and

therefore so is G(H). �
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