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Abstract. We consider an old problem of Linial and Wilf to determine the structure of graphs
which allow the maximum number of q-colorings among graphs with n vertices and m edges. We
show that if r divides q then for all sufficiently large n the Turán graph Tr(n) has more q-colorings
than any other graph with the same number of vertices and edges. This partially confirms a
conjecture of Lazebnik. Our proof builds on methods of Loh, Pikhurko and Sudakov, which reduce
the problem to a quadratic program.

1. Introduction

Let PG(q) denote the number of proper q-colorings of a graph G. Birkhoff [2] was the first to
consider this graph parameter. He has shown that PG(q) is a polynomial in q. This polynomial,
called the chromatic polynomial of G, has been extensively investigated over the past century. In
particular, Linial [5] and Wilf [1, 7] have independently posed the problem of describing graphs
which for fixed q maximize PG(q) over the family of all graphs with n vertices and m edges. This
problem for q = 2 has been solved by Lazebnik [3], but remains largely open in general. We refer
the reader [6] for a more detailed discussion of the problem background.

In a recent breakthrough paper Loh, Pikhurko and Sudakov [6] have developed a new approach
which allowed them to solve the problem asymptotically for many non-trivial ranges of parameters
by reducing it to an optimization problem. In particular, they solved the original problem for q = 3
and a wide range of parameters m and n. They remark that “the remaining challenge is to find
analytic arguments which solve the optimization problem for general q”. In this note we present
one such argument. We relax the optimization problem to a certain fractional version and solve
some natural instances of this relaxation.

Our main result partially confirms the following conjecture of Lazebnik. Let Tr(n) denote the
Turán graph that is the complete r-partite graph on n vertices with partition sizes as close to
being equal as possible. Lazebnik (see [4]) conjectured that for integers k ≥ 1, r ≥ 2, n = rk and
m =

(
r
2

)
k2 the Turán graph Tr(n) has more q-colorings than any other graph with the n vertices

and m edges. This conjecture has been confirmed for r = 2 and q = 3 in [4], and for r = q − 1 and
large n in [6]. We confirm this conjecture for r dividing q and large n.

Theorem 1.1. Fix positive integers q > r ≥ 2 such that r divides q. For all sufficiently large n
the Turan graph Tr(n) has more q-colorings than any other graph with the same number of vertices
and edges.

The remainder of the paper is organized as follows. In Section 2 we introduce results from [6]
which reduce the asymptotic version of the original problem to a quadratic program. In Section 3
we solve relevant instances of this program, proving an approximate version of Theorem 1.1 and
the following general bound on PG(q).
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Theorem 1.2. For any positive integer q ≥ 2 and a positive real ε the following holds for all
sufficiently large n. Let G be a graph on n vertices with m edges then

PG(q) ≤ q(1+ε) n

(
1− 2m

n2

)n

Finally, in Section 4 we derive Theorem 1.1 from the approximate version.

2. The optimization problem

In this section we present definitions and results from [6]. For the remainder of the paper we
think of a positive integer q as being fixed. Let [q] := {1, 2, . . . , q}.

It is shown in [6], that the asymptotic version of our original problem reduces to a quadratic
program, which we will now define. For a vector α = (αA)A6=∅,A⊆[q], define

OBJ(α) :=
∑
A6=∅

αA log |A|; v(α) :=
∑
A6=∅

αA, E(α) :=
∑
A∩B

αAαB.

Logarithms above and in the rest of the paper are natural. Fix a positive real parameter γ. Let
the feasible set of vectors FEAS(γ) be defined by α ≥ 0, v(α) = 1,E(α) ≥ γ. Let

OPT(γ) := max
α∈FEAS(γ)

OBJ(α).

As noted in [6], such a maximum exists by compactness. We say that α solves OPT(γ) if α ∈
FEAS(γ) and OBJ(α) = OPT(γ).

Given a vector α ∈ FEAS(γ) for some γ we construct a graph Gα(n) on n vertices as follows.
Partition the vertex set of Gα(n) into clusters VA such that |VA| differs from αAn by less than 1,
and for every pair A,B ⊆ [q] with A ∩ B = ∅ join every vertex in VA to every vertex of VB by an
edge.

We are now ready to state theorems from [6].

Theorem 2.1. For any ε > 0 the following holds for all sufficiently large n. For every n-vertex
graph G with m ≤ |E(Tq(n))| edges, we have

PG(q) ≤ e(OPT(m/n2)+ε)n.

Given two graphs on the same number of vertices their edit distance is the minimum number of
edges that need to be added or deleted from one graph to obtain a graph isomorphic to the other.
We say that two graphs are d-close if their edit distance is at most d.

Theorem 2.2. For any ε, κ > 0 the following holds for all sufficiently large n. Let G be an n-
vertex graph with m ≤ κn2 edges, which has at least as many q-colorings as any other graph with
the same number of vertices and edges. Then G is εn2-close to a graph Gα(n) for some α which
solves OPT(γ) for some |γ −m/n2| < ε and γ ≤ κ.

Another auxiliary result from [6] will be used in Section 4.

Proposition 2.3. The number of edges in any Gα(n) differs from E(α)n2 by less than 2qn. Also,
for any other vector ν, the edit-distance between Gα(n) and Gν(n) is at most ||α − ν||1n2 + 2qn,
where || · ||1 is the L1-norm.



TURÁN GRAPHS AND THE NUMBER OF COLORINGS. 3

3. Asymptotic result

For a vector α = (αA)A6=∅,A⊆[q] define the support of α as a collection of sets A such that αA 6= 0.
We say that α is a balanced partition vector if the support of α is a partition of [q] and all sets in
the support have the same size.

Lemma 3.1. For every 0 ≤ γ ≤ q−1
2q we have OPT(γ) ≤ log(q(1 − 2γ)) with the equality holding

if and only if γ = r−1
2r for some integer r dividing γ. Moreover, if the equality holds for γ and α

solves OPT(γ) then E(α) = γ and α is a balanced partition vector.

Proof. It is easy to verify that if γ = r−1
2r for some integer r dividing γ and α is a balanced

partition vector corresponding to a partition of [q] into r equal parts then α ∈ FEAS(γ) and
OBJ(α) = log(q(1− 2γ)). It remains to verify the only if part of the lemma statement.

Let S denote the set of vectors w = (w1, w2, . . . , wq) such that wi ≥ 0 for every i ∈ [q] and∑q
i=1 wi = 1. For a vector α = (αA)A6=∅,A⊆[q] and a vector w ∈ S define

f(α,w) :=
∑
A

αA log

(∑
i∈A

wi

)
.

We say that (α,w) is a weighted balanced partition vector if the sets in the support of α are pairwise
disjoint, the value

∑
i∈A wi is the same for every A in the support of α, and every i ∈ [q], such

that wi > 0, belongs to some set in the support of α. As OBJ(α) = f(α,w0) + log q, where
w0 := (1/q, 1/q, . . . , 1/q), the lemma is implied by the following more general claim.

Claim 3.2. Let α ∈ FEAS(γ) and w ∈ S be such that
∑

i∈A wi > 0 for all A in the support of α.
Then f(α,w) ≤ log(1− 2γ). Further, if the equality holds then E(α) = γ and (α,w) is a weighted
balanced partition vector.

Suppose that for fixed α the vector w ∈ S is chosen to maximize f(α,w). Without loss of
generality, we ignore zero-valued wi and assume that wi > 0 for every i. By the choice of w the
value

∂f

∂wk
=
∑

A⊆[q]
k∈A

αA∑
i∈A wi

is the same for every k ∈ [q]. Consider a random variable X on 2[q]−{∅} such that Pr[X = A] = αA

for every A ⊆ [q], A 6= ∅. Consider further a random variable Y on [q], dependent on X, such that
for every k ∈ [q] we have

Pr[Y = k |X = A] =

{
wkP

i∈A wi
if k ∈ A,

0 if k 6∈ A.

Then,

Pr[Y = k] =
∑

A⊆[q],
A6=∅

Pr[Y = k |X = A] Pr[X = A] = wk

∑
A⊆[q]
k∈A

αA∑
i∈A wi

for k ∈ [q]. It follows from the choice of w that the value w−1
k Pr[Y = k] is the same for every k.

We conclude that Pr[Y = k] = wk. For given A we have

(3.3)
∑

B∩A=∅

αB = Pr[X ∩A = ∅] ≤ Pr[Y 6∈ A] =
∑
i6∈A

wi.
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Therefore

(3.4) 2γ ≤
∑
A

αA

( ∑
B∩A=∅

αB

)
≤
∑
A

αA

∑
i6∈A

wi

 ,

and ∑
A

∑
i∈A

αAwi ≤ 1− 2γ.

Finally, by concavity of log we have

(3.5) f(α,w) =
∑
A

αA log

(∑
i∈A

wi

)
≤ log

(∑
A

∑
i∈A

αAwi

)
≤ log (1− 2γ) .

If f(α,w) = log(1− 2γ) then equality holds in (3.3) for every A with αA 6= 0, in (3.4) and (3.5).
Therefore, from (3.3) we have A ∩ B = ∅ for all A,B in the support of α, A 6= B. From (3.4) we
deduce E(α) = γ. Further, every k ∈ [q] with wk > 0 belongs to some set in the support of α, as∑

A3k

αk ≥ Pr[Y = k] = wk > 0.

Finally, the equality in (3.5) implies that
∑

i∈A wi is the same for all A in the support of α.
Thus (α,w) is a weighted balanced partition vector. This finishes the proof of the claim and the
lemma. �

Proof of Theorem 1.2. If m > |E(Tq(n))| then PG(q) = 0 by Turán’s theorem. Otherwise, the
theorem follows immediately by substituting the bound on OPT(m/n2) from Lemma 3.1 into the
bound on PG(q) from Theorem 2.1. �

4. Exact result

In this section we prove Theorem 1.1. In addition to the tools and results presented earlier we
will use the following general bound on PG(q) from [3].

Theorem 4.1. Let G be a graph on n vertices and m edges and let k ≥ 2 be an integer. Then

PG(k) ≤
(

1− 1
k

)d(√1+8m−1)/2e
kn ≤

(
1− 1

k

)√m

kn.

The following lemma is the main result of this section. It ensures that Theorem 1.1 holds locally.
Together with the asymptotic and stability results of the previous section it allows us to deduce
that Theorem 1.1 holds in general. Although the proof of the lemma is technical and relatively
long, it represents a fairly standard stability argument, similar to the ones employed in [6]. While
it seems that solving optimization problem from Section 2 for general q requires new ideas, once the
solution is known refinement of the asymptotic results into precise solution of the original problem
is likely to be possible using existing techniques.

Lemma 4.2. There exists δ = δ(q) such that the following holds for sufficiently large n. Let
2 ≤ r < q be an integer dividing q. Let G be an n-vertex graph such that |E(G)| ≥ |E(Tr(n))| and
G is δn2-close to Tr(n). Then G has at most as many q-colorings as Tr(n) with the equality holding
if and only if G is isomorphic to Tr(n).
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Proof. Throughout the proof we will be making a series of claims which hold for positive δ, suffi-
ciently small as a function of q, and for n, sufficiently large as a function of q and δ. The eventual
choice of δ and n will be implicitly made so that all of these claims are valid.

Let the graph G be as in the lemma statement. Suppose that G has at least as many q-colorings
as Tr(n). Given a partition A = (A1, A2, . . . , Ar) of V (G) denote by EA(G) the set of edges of G
joining vertices in different parts of A. By the choice of G, there exists a partition A of V (G) into
r parts such that |EA(G)| ≥ |E(Tr(n))| − δn2. Assume that A is chosen to maximize |EA(G)|. Let
δ′ := n−1 maxi ||Ai| − n

r |. It is easy to verify that

|EA(G)| ≤
(

r

2

)(n

r

)2
− (δ′n)2

r4
≤ |E(Tr(n))| − (δ′n)2

r4
+ o(n2)

The above inequality allows us to assume that ||Ai| − n
r | ≤ δn for all i ∈ [r], by modifying the

choice of δ.
Let ε := δ1/3. We say that a vertex v ∈ V (G) is regular if dA,i(v) ≥ (1− ε)|Ai| for every i such

that v 6∈ Ai, and irregular, otherwise. Let Z denote the set of irregular vertices of G and let TA
denote the complete multipartite graph with parts determined by A. Then, as G is δn2-close to
Tr(n), we have

δn2 ≥ |E(TA) \ EA(G)| ≥ ε
(n

r
− δn

)
|Z|,

and |Z| ≤ ε−1δ(1
r − δ)n ≤

√
δn for sufficiently small δ.

Let f : V (G) → [q] be a q-coloring of G. For i ∈ [r], let Rf (i) := {c ∈ [q] | |f−1(c)∩Ai| > ε|Ai|},
that is Ri is the set of colors which occur relatively frequently in Ai. Clearly, for every c ∈ Rf (i) we
have f−1(c) ⊆ Ai ∪ Z. For sufficiently small δ we have |Z| < ε|Ai| for every i ∈ [q], and therefore
Rf (i) ∩ Rf (j) = ∅ for i 6= j. Let Rf := (Rf (1), . . . , Rf (r)). Given a vector R = (R1, R2, . . . , Rr),
such that components of R are disjoint subsets of [q], we will bound the number PG(R) of colorings
f of G such that Rf = R.

Let k := q/r. Suppose first that |Ri| 6= k for some i ∈ [r]. Then

PG(R) ≤ q|Z|

(
r∏

i=1

|Ri||Ai|

)(
r∏

i=1

2qε|Ai|
(

|Ai|
bε|Ai|c

)q
)

≤ q
√

δn

(
r∏

i=1

|Ri|

)n/r+δn( r∏
i=1

(
2e

ε

)qε|Ai|
)

≤ kn

(
1− 1

k2

)n/r

exp
(
(
√

δ log q + δr log k + ε log(2eε−1)q)n
)

<
kn−1

rq
,

for δ sufficiently small. In the first line of the above sequence of inequalities we estimate PG(R)
by allowing vertices of Z to be colored arbitrarily, by allowing |Ri| choices of colors for vertices in
Ai, and, finally, by accounting for possible choices of at most ε|Ai| vertices in Ai which could be
colored in any color, not necessarily a color in Ri. In the second line we use bounds on |Z| and
|Ai|, as well as an upper bound on the binomial coefficient. In the third line, we use that by the
choice of R we have

∏r
i=1 |Ri| ≤ (k2 − 1)kr−2. Finally, the last inequality holds for δ sufficiently

small as the second term in the third line is of the form ecn for some c depending only on q, while
the coefficient of n in the exponent in the last term goes to zero as δ approaches zero. It follows
that

∑
R PG(R) ≤ kn−1, where summation is taken over all R such that |Ri| 6= k for some i ∈ [r].
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It remains to bound PG(R) when R corresponds to a partition of [q] into r parts each of size k.
Remember that for such R, for every coloring f with Rf = R and every i ∈ [r], all the vertices
in Ri − Z receive colors from Rf (i). Suppose first that there exists a vertex v ∈ V (G) such that
dA,i(v) ≥ δ2/5|Ai| for every i ∈ [q]. If Rf = R and f(v) ∈ Rf (i) then all the neighbors of v in
Ai − Z receive one of k − 1 colors in Rf (i)− f(v). It follows that

PG(R) ≤ rkn

(
k − 1

k

)δ2/5(1−δ)n/r

qδ1/2n <
kn

rq
,

for sufficiently small δ. Combining this with the preceding calculations we obtain PG(q) < kn,
which is less than the number of q-colorings of Tr(n), a contradiction. Therefore a vertex v as
above does not exist. It follows from the choice of A that for every i ∈ [r] the subgraph G[Ai] of G

induced by Ai has maximum degree at most δ2/5n. Let ei denote the number of edges of G with
both ends in Ai − Z. As |E(G)| ≥ |E(TA)|, we have

r∑
i=1

(ei + δ2/5n|Z ∩Ai|) ≥
r∑

i=1

|E(G[Ai])| ≥ ε(1− δ)
n

r
|Z|.

It follows that
∑r

i=1 ei ≥ δ2/5|Z|n, for sufficiently small δ. Using Theorem 4.1 we obtain

PG(R) ≤ q|Z|kn
r∏

i=1

(
1− 1

k

)√ei

≤ kn exp
(

log q|Z| − (log k − log(k − 1))
√

δ2/5|Z|n/r

)
(4.3)

≤ kn exp
(
(log q − δ−1/20r−1/2(log k − log(k − 1)))|Z|

)
.

If Z 6= ∅ then PG(R) once again becomes negligible compared to kn, as δ approaches zero. It follows
that Z = ∅. Let t denote the number of ordered partitions of [q] into r parts of size k. Then the
number of colorings of Tr(n) is at least tkn. If

∑r
i=1 ei 6= 0 then the first inequality of (4.3) together

with our bound on the number of colorings corresponding to unbalanced partitions of [q] implies
PG(q) ≤ tkn−1(k−1)+kn−1 < tkn. It follows that G is a subgraph of TA. As |E(G)| ≥ |E(Tr(n))|,
we conclude that G is isomorphic to Tr(n), as desired. �

Proof of Theorem 1.1. Suppose for a contradiction that there exists an increasing sequence of
positive integers {ni}∞i=1 and a sequence of graphs {Gi}∞i=1, such that |V (Gi)| = ni, |E(Gi)| =
|E(Tr(ni))|, Gi is not isomorphic to Tr(ni) and has at least as many q-colorings as any other graph
with the same number of vertices and edges. We apply Theorem 2.2 for κ = r−1

r and a sequence of
positive real {εi}∞i=1 with limi→∞ εi = 0. By possibly restricting {ni} to a subsequence, we obtain
a sequence {αi}∞i=1 such that Gi is εin

2
i -close to Gαi(ni), αi solves OPT(γi) for some γi ≤ κ, and

limi→∞ γi = κ. By further restricting our sequence we assume that {αi} converges in L1-norm to
a vector α with E(α) = γ.

By Lemma 3.1 and monotonicity of OBJ(γ), we have log(q(1−2κ)) ≤ OPT(γi) ≤ log(q(1−2γi)).
Therefore

log(q(1− 2 E(α))−OBJ(α) = lim
i→∞

(log(q(1− 2 E(αi))−OBJ(αi)) = 0.

By Lemma 3.1, α is a balanced partition vector, and so Gα(n) = Tr(n) for every n. By Proposi-
tion 2.3, Gαi(ni) is δn2

i /2-close to Tr(ni) for sufficiently large i. Consequently, Gi is δn2
i -close to

Tr(ni) for sufficiently large i. This contradicts Lemma 4.2, finishing the proof of the theorem. �
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