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Abstract. The Jacobian of a graph, also known as the Picard Group, Sandpile Group, or Critical
Group, is a discrete analogue of the Jacobian of an algebraic curve. It is known that the order of
the Jacobian of a graph is equal to its number of spanning trees, but the exact structure is known
for only a few classes of graphs. In this paper, we compute the Jacobian for graphs of the form
Kn\E(H) where H is a subgraph of Kn on n − 1 vertices that is either a cycle, or a union of
two disjoint paths. We also offer a combinatorial proof of a result of Christianson and Reiner that
describes the Jacobian for a subclass of threshold graphs.

1. Introduction

1.1. Overview. In this paper, we compute the Jacobian for several explicit classes of graphs as an
application of a more combinatorial way to approach the algrebaic-geometric properties of graphs.
The main new results are the proofs of two structural theorems on classes of graphs discussed by
Lorenzini [9]. The first is that given a complete graph, Kn, with the edge set of a cycle incident
with all but one of the vertices removed, its Jacobian is isomorphic to Zk × Zk if n is even and
isomorphic to Zk × Zk(n−4) if n is odd, where k is such that the order of the group is the number
of spanning trees of the graph. The second is that given a complete graph, Kn, with the edge set
of two disjoint paths incident with all but one of the vertices removed, its Jacobian is cyclic if and
only if the lengths of the paths are relatively prime.

Our interest in the Jacobians of these graphs is motivated by two facts. First, graphs whose
Jacobians are cyclic are of interest because of applications in other fields, see for example [5].
Second, if G is obtained from Kn by deleting strictly fewer than n − 3 edges, then Jac(G) is not
cyclic, as pointed out in [9, Section 5].

The paper is structured as follows. In the first section, we introduce necessary definitions and
prove several small theorems which will be required for the main results. The second section
contains the statement and proof of the new results concerning nearly complete graphs. And the
third and final section provides another application of these combinatorial techniques to present a
simple combinatorial proof of a theorem of Christianson and Reiner.

1.2. Motivation. Determination of the Jacobian of graphs, as well as their use, dates back as
early as 1970 in arithmetic geometry. Here, it is referred to as the group of components, the same
name it takes in early graph theoretic contexts [11]. Lorenzini, for example, studied the group
in 1991 in one such context, motivated by problems in arithmetic geometry [10]. In 1990, Dhar
approached this group in the context of physics, referring to it as the sandpile group [7]. Seven
years later, Bacher et al referred to it alternatively as the Picard group or Jacobian group, in the
context of algebraic curves [1]. Most near our use, however, in 1999, Biggs approached the group
using a different chip-firing game, calling it the critical group [4]. While these papers made use
of the Jacobian of the graph in various ways, perhaps the most immediately relevant has been
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promoted by Biggs in [5]. In this paper, he discusses the uses of the critical group for cryptography,
specifically for public key encryption.

The specific class of graphs discussed here, almost complete graphs, arise in Lorenzini [9]. He
proves the first direction of Theorem 2.8, that in a complete graph with two vertex-disjoint paths,
covering all but one of the vertices deleted, the Jacobian is cyclic if the two path lengths are
relatively prime. He refers to incomplete work and numerical results in the other direction, that it
is not cyclic when the path lengths are not relatively prime. He also suggests the structure of the
Jacobian of a complete graph on n vertices with edges of a cycle of length n− 1 deleted, but leaves
the problem open. We settle it in Theorem 2.1.

This paper makes use almost entirely of the chip-firing game and the tools of harmonic mor-
phisms, both essentially combinatorial, to approach the problem. The advantages to these methods
are that we can provide more transparent and shorter proofs of previous results and that we can
take better advantage of inherent symmetries in the problem. For example, the Jacobian of the
wheel graph when the number of vertices is even was determined by Biggs in 1999 [4], but that
of a complete graph delete a cycle, an almost identical question from our point of view, remained
unknown until this paper. By making use of the explicit symmetries in the graph, we can avoid
graph-specific computations and divine a wider range of information.

The work in threshold graphs is motivated similarly. Christianson et al in 2001 proved Theo-
rem 3.1, but using linear algebra [6], referring to the class of threshold graphs with no bad sequences
as generic threshold graphs and to the Jacobian of G as its critical group. Threshold graphs are
themselves of value since, while they have a large amount of structure, determining their Jacobians
may be useful in determining the Jacobians of more general graphs. Further, as per Christianson
and Reiner, threshold graphs are extremal in a sense, possibly allowing results on threshold graphs
to provide bounds on other types of graphs [6]. The purpose, then, of this aspect of the paper is to
provide another example of a convenient use of the chip-firing game to determine Jacobians, even
if we were not able here to move beyond the already established scope of the literature.

1.3. Notation and terminology. In this paper, we define a graph to be a finite, connected
multigraph with no loop edges. A graph with no multiple edges will be called simple. For a graph
G, V (G) and E(G) denote the vertex and edge set of the graph. A graph is said to be k-connected
if for every X ⊆ V (G) with |X| < k, the graph G\X is connected. Similarly, a graph is said to be
k-edge-connected if for every X ⊆ E(G), |X| < k, G\X is connected.

We define g(G), the genus of G, to be |E(G)| − |V (G)| + 1, the number of independent cycles
of the graph. While this differs from the traditional meaning of genus of a graph (the lowest genus
among surfaces in which the graph can be embedded), it better highlights the analogue to algebraic
notions of genus in the spirit of [2].

The degree of v ∈ V (G), written deg(v) is the number of edges in E(G) incident with v. Similarly,
given A ⊆ V (G), v ∈ A, outdegA(v), the outdegree of v relative to A, is the number of edges in
E(G), e = vw,w /∈ A. If e ∈ E(G), v ∈ V (G), v ∈ e means that v is incident with e.

For other terms, see any introductory text in graph theory, for example [8].

1.4. The chip-firing game. As a mechanism for converting algebraic ideas into combinatorial
ones, we introduce a chip-firing game played on the vertices of the graph, developed by Baker and
Norine [3]. Informally, to each vertex we assign an integer number of points. A move in the game
corresponds to a choice of a vertex and a choice of operation from two: push and absorb. If a vertex
absorbs, it gains deg(v) points and every adjacent vertex loses one point per edge joining the two.
If a vertex pushes, it loses deg(v) points and every adjacent vertex gains one point per edge joining
the two. Define a configuration on G to be an assignment of points to the vertices of G. We say
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that two configurations, C1 and C2 are equivalent if there exists a sequence of moves starting from
configuration C1 and ending with C2.

Formally, as in [3], we take Div(G) to be the free abelian group of the vertices of G. We think
of elements of Div(G) as integer linear combinations of elements of V (G) and write an element
C ∈ Div(G) as

∑
v∈V (G) avv where each av is an integer. We refer to each element of Div(G) as a

divisor of G. For convenience, we refer to the coefficient of a vertex, v, in an element, C, as C(v).
Given a graph G, a divisor, C =

∑
v∈V (G) av(v), and a vertex u, we define pushu(C) = (au −

deg(u))(u) +
∑

v∼u (av + 1)(v) +
∑

v 6∼u),v 6=u av(v) and absorbu(C) to be the inverse operation. A
chip-firing move is the application of one of these operations to a divisor. This then provides an
equivalence relationship between divisors: two divisors C ∼ C ′ if there is a sequence of chip-firing
moves, f , so that f(C) = C ′.

Note several other properties of this game. First, there is no distinction in the order of these
operations. Given a sequence of moves, f , if f(C) = C ′, then any permutation of the moves
applied to C will still result in C ′. As a result, it is reasonable to discuss the notion of a set
pushing or absorbing. Given A ∈ V (G), applying a push operation to A is the same as applying
a push operation to each vertex of A and similarly for absorbing. Since the order of the pushes
or absorptions is irrelevant, these are well-defined operations and will be notated pushA(C) and
absorbA(C) for the push and absorb of a divisor C. With this new notation, we can see that an
absorb from a set A is the same as a push from all vertices except those in A and vice versa. For
a divisor C ∈ Div(G), we define the degree of C to be deg(C) =

∑
v∈V (G)C(v). It is worth noting

that equivalent divisors have the same degree.

1.5. The Jacobian. This equivalence relation leads us to the definition of a natural group associ-
ated with a given graph, the Jacobian. Define Jac(G) to be the set of all divisors of G with degree
0, modulo the equivalence relation defined by the chip-firing game. As shown in [3], this definition
of the Jacobian group of a graph is equivalent to other definitions of the Jacobian throughout the
literature, most traditionally extracted from the Laplacian matrix, and is a discrete analogue of
the Jacobian group for Riemann surfaces. Fixing an ordering on the vertices, {v1, . . . , vn}, we
define the Laplacian matrix associated with G to be the n × n matrix Q = D − A, where D is
the diagonal matrix whose (i, i)th entry is the degree of vi and A is the adjacency matrix of the
graph, whose (i, j)th entry is the number of edges joining vi and vj . Then Lemma 4.3 in [3] gives
that the chip-firing equivalence defined above is identical to the traditional equivalence defining the
Jacobian (the |V (G)|-dimensional integer vectors modulo integer multiples of the graph Laplacian).
This relation immediately gives us both the independence of the order of moves mentioned above
and the fact that that the chip-firing equivalence is, in fact, a true equivalence relationship. Abel’s
Theorem for Graphs [1] relates this group to a number of interesting combinatorial properties of
the graph in question, but for the purpose of this paper, it suffices that the understanding of the
Jacobian of a graph is a useful endeavor without needing to know the particulars.

1.6. v0-reduced form. In studying a particular equivalence class of divisors, it is often useful to
have a canonical element to look at. Given v0 ∈ V (G), we say that a divisor C is in v0-reduced
form if C(v) ≥ 0 for every v 6= v0 and for any set A ⊂ V (G), v0 /∈ A, there is some v 6= v0 such
that pushA(C)(v) < 0.

Theorem 1.1. [3, Proposition 3.1] Given a graph, G, a vertex v0 ∈ V (G), and a divisor of G, C,
there exists a unique v0-reduced divisor equivalent to C.

1.7. Harmonic Morphisms. To augment the chip-firing game which provides a useful mechanism
for the study of algebraic qualities of graphs, it is often useful to study maps between graphs which
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preserve, in a sense, the chip firing properties. To do so, we introduce the notion of a harmonic
morphism [2]:

Definition. A morphism between two graphs, G and G′, is a map φ : V (G)∪E(G)→ V (G′)∪E(G′)
such that φ(V (G)) ⊆ V (G′) and for every edge e with endpoints x and y either φ(e) ∈ E(G′) and
has endpoints φ(x) and φ(y) or φ(e) ∈ V (G′) and φ(e) = φ(x) = φ(y).
A morphism is said to be harmonic if for all x ∈ V (G), y ∈ V (G′) with y = φ(x), the quantity
|{e ∈ E(G)|x ∈ e, φ(e) = e′}| is the same for all e′ ∈ E(G′) such that y is incident with e′.

Our interest in discrete Jacobians arises, in part, from studing the anology between graphs and
Riemann surfaces. In the case of surfaces, it is often important to study not only the surfaces
themselves, but also the holomorphic maps between surfaces. Baker and Norine show in [2] that
these harmonic morphisms between graphs are a natural analogue and we show here that their
properties are useful in examining the Jacobians of graphs. For examples, see [2].

Making use of results from [2] that the number of preimages of an edge of G′ is independent of
the choice of edge, we define deg(φ) to be
|{e ∈ E(G)|φ(e) = e′}| for e′ ∈ E(G′). These results give that this degree is independent of the
choice of e′, so is well-defined and also that φ is surjective if and only if deg(φ) ≥ 0. Given e ∈ E(G)
and φ : V (G)∪E(G)→ V (G′)∪E(G′), e is said to be a vertical edge if φ(e) ∈ V (G′) and a horizontal
edge otherwise. Given v ∈ V (G), we define its vertical multiplicity to be the number of vertical
edges incident with it and its horizontal multiplicity to be the number of horizontal edges incident
with it that map to the same edge.

The relevance of harmonic morphisms for our purpose is for their useful properties in conjunction
with Jacobians. Specifically, if φ : G → G′ is a harmonic morphism, then φ induces an injective
map from Jac(G′) → Jac(G) [2, Theorem 4.13]. Note that this implies that the order of Jac(G′)
divides the order of Jac(G). We can examine this relation in a little more depth: given a divisor C
on G with a harmonic morphism φ, we define ψ : Div(G)→ Div(G′) to be

(1.2) ψ(
∑

v∈V (G)

avv) =
∑

v′∈V (G′)

(
∑

v:φ(v)=v′

av)v′

Note that if C ∼ C ′ in G, then ψ(C) ∼ ψ(C ′) in G′. This follows from noticing that for any vertex
v ∈ V (G), a push transfers from v to the preimages of u′ in G exactly the horizontal multiplicity
of v if φ(v) and u′ are adjacent in G′ or 0 otherwise. The image of the resulting divisor then is
the same as pushing the horizontal multiplicity of v times from φ(v). This gives the desired result,
then, that Jac(G′) is a subgroup of Jac(G).

2. Explicit Determination of Jacobians

2.1. Introduction. In this section, we determine the exact structure of the Jacobian of two classes
of graphs, those that are isomorphic to Kn with the edge sets of two disjoint paths with total length
n − 1 removed and those isomorphic to Kn with the edge set of a cycle of length n − 1 removed.
For the first case, when the lengths of the two paths are relatively prime, the result is known
[9], although it was discovered using powerful algebraic methods. This section provides a purely
combinatorial solution to both problems.

2.2. Deleting a cycle from Kn. We begin by examining the case of deleting the edge set of a
cycle from Kn.
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Theorem 2.1. Let C be a cycle in Kn such that |V (C)| = n− 1. Let G = Kn\E(C) and t be the
number of spanning trees of G. Then the Jacobian of G is isomorphic to Z√t × Z√t if n is even
and isomorphic to Z√

t/(n−4)
× Z√

t(n−4)
if n is odd.

Proof. Note first that there are two natural generators of the Jacobian: Let v be the vertex with
degree n − 1 and u, w be distinct vertices, not adjacent to one another (so adjacent in C). Then
the elements u − v and w − v form generators for the group: Take w − v, push once from w and
absorb once from v. Then we have (2−n)w+(n)v−u−x, where x is the other vertex not adjacent
to u. Adding (n− 2)(w− v) + (u− v) gives v−x, so we can generate x− v. Repeating this process,
we generate every element of the form t− v, so generate the entire group.

To determine the exact orders of the subgroups, look at the generators above. Let X be the set
of elements of Jac(G) generated by u− v and Y be the set of elements generated by w − v. Note
that by symmetry, the orders of u− v and w− v are the same. We are interested, then, in |X ∩Y |,
since we know that | Jac(G)| = |X||Y |

|X∩Y | . Note that if Jac(G) were cyclic, X and Y would be in X ∩Y
since both u− v and w − v have the same order and so would generate the same subgroup.

Take an element generated by u− v, and take the divisor C = au− av. Let the vertices of C be
numbered v1, v2, ..., vn−1 in order with u = v1 and w = v2. We say that a divisor, D, has symmetry
across the line viv if D(vi+j) = D(vi−j) for all j where the index arithmetic is performed modulo
n − 1. Note that the v-reduced form of any element generated by u − v has symmetry across the
line through u and v since the v-reduced form of the element is unique and its reflection about the
line through u and v would also be v-reduced.

So the v-reduced divisor of an element generated by u− v has symmetry across the line through
u and v. Similarly, any v-reduced divisor of an element generated by w − v must have symmetry
across the line between w and v, so any element in the intersection must have both symmetries.
Note that this means that the Jacobian of G is not cyclic since neither X nor Y is in X ∩ Y .

If n− 1 is odd, then the group generated by these two symmetries has two orbits on V (G): {v}
and V (G) − {v}, so the intersection of the two sets is trivial, which gives the desired order of the
Jacobian. If n− 1 is even, the orbits are {v}, A, and B, where, if n = 2m+ 1, A = {v2, v4, ..., v2m}
and B = {v1, v3, ..., v2m−1}.

Note that each vertex in A is adjacent to each vertex in B except for two and vice-versa. So∑
s∈A

(n− 5)s− (n− 5)mv ∼
∑
s∈A

(n−m− 4)s+
∑
s∈B

(m− 2)s−m(2m− 5)v

∼
∑
s∈A

(m− 3)s+
∑
s∈B

(m− 2)s−m(2m− 5)v

∼
∑
s∈B

(s− v)

The first step comes from pushing from each vertex in A and the last from absorbing m− 3 times
from the center, v. Therefore,

∑
x∈A x−mv is a generator for the intersection group, so to complete

the proof, we need to show that its order is exactly n− 4.
Let CA =

∑
x∈A x − mv and let CB =

∑
x∈B x − mv. Then (n − 4)CA ∼ (n − 5)CA + CA ∼

CB +CA ∼ 0 by absorbing from B, so the order of CA is at most n−4. Since the outdegree of each
vertex of A is m− 1, for p ≤ m− 2, pCA is v-reduced. For m− 2 < p < n− 4, pCA ∼ (n− 4− p)CB
and (n − 4 − p)CB is v-reduced since the outdegree of each vertex in B is m − 1. Therefore the
order of CA is exactly n− 4.

Let s be the order of u− v and t be the number of spanning trees of G. Then s2/(n− 4) = t, so
s =

√
(n− 4)t. Consider the subgroup of Jac(G) generated by u + w − 2v. The v-reduced forms
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of the elements of this subgroup must have symmetry about the line between u and w through v.
So the intersection of the subgroup generated by u− v and u+ w − 2v is trivial. Note that u− v
and u+ w − 2v generate the group, so these divisors have the appropriate orders and the give the
required Jacobian for G.

�

Theorem 2.2. (Even portion originally by Biggs)[4]Let G be a wheel graph on n vertices and t be
the number of spanning trees of G. Then the Jacobian of G is isomorphic to Z√t×Z√t if n is even
and isomorphic to Z√

t/(n−4)
× Z√

t(n−4)
if n is odd.

Proof. The same proof as above holds. �

2.3. KN with two paths removed. We turn now to the case of KN with two paths removed:

Definition. Let G = KN and let P1 and P2 be disjoint paths, such that |V (P1)∪ V (P2)| = N − 1.
Then G′ = G\E(P1)∪E(P2) is said to be nearly complete, P1 and P2 are its deleted paths, and the
sole vertex of V (G)\V (P1) ∪ V (P2) is the source.

We introduce an auxiliary function that is often useful.

Definition. Let a,m ∈ Z. Then we define resm(a) to be

resm(a) =

{
a mod m, if a < m mod 2m
−(a+ 1) mod m, if a ≥ m mod 2m

Note that resm(a) is periodic with period 2m, that resm(a) = resm(2m − (a + 1)), and that
resm(a+m) = m− 1− resm(a).

On nearly complete graphs, let a be one end of P1 and b be one end of P2. Let C = b− a. Let
u, v be vertices of G. Define a relation ∼ on V (G) such that u ∼ v if the divisor D = v − u is
equivalent to 0 modulo C (or, equivalently, if there exists n ∈ Z such that nC + D ∼ 0). Then ∼
is clearly an equivalence relation on V (G).

We note several properties of this equivalence relationship.

Claim 1. Let G be a nearly complete graph with deleted paths P and Q, with vertices u0 and v0
on P , u0 adjacent to v0 in P and u0 ∼ v0. Take m to be the number of vertices of P\u0 in the
component containing v0 and n to be the number of vertices of P\v0 in the component containing
u0 and let ui be the vertex at a distance of i from u0 in the component of P\v0 containing u0 and
similarly for vi. If m ≤ n and r < n, then vr ∼ uresm(r).

Proof. Let |V (G)| = N .
We proceed by induction on r. For r = 0, this is true by assumption, since resm(0) = 0 and

v0 ∼ u0.
Assume r > 0 and that the claim is true for all integers strictly less than r. Note that in some

of the following calculaltions, we might result in v−1 or u−1. In those cases, we let v−1 = u0 and
u−1 = v0 and note that resm−1 = 0, so the claim is true for v−1.

Suppose first that resm(r − 1) = m − 1, then take the divisor um−1 − vr−1 (noting that by the
induction hypothesis um−1 ∼ vr−1 and that um−1 is the last vertex on the path). Pushing once
from um−1 and absorbing once from vr−1 gives (3−N)um−1−um−2 + vr−2 + vr + (N − 4)vr−1. We
can reduce this by (4−N)(um−1−vr−1) to get −um−1−um−2+vr−2+vr. Since resm(r−1) = m−1,
either r ≡ m mod 2m or r ≡ m + 1 mod 2m. If r ≡ m mod 2m, then resm(r − 2) = m − 2, in
which case −um−1−um−2 +vr−2 +vr ∼ vr−um−1. So vr ∼ um−1 = uresm(r). On the other hand, If
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r ≡ m+1 mod 2m, then resm(r−2) = m−1 in which case −um−1−um−2 +vr−2 +vr ∼ vr−um−2.
So vr ∼ um−2 = uresm(r).

In the other case, when resm(r − 1) 6= m − 1, let k = resm(r − 1). Take uk − vr−1, absorb
from vr−1 and push from uk to get (4−N)uk − uk+1 − uk−1 + vr + vr−2 + (N − 4)vr−1. Reducing
this by (N − 4)(vr−1 − uk) gives −uk+1 − uk−1 + vr + vr−2. Then either resm(r − 2) = k + 1
and resm(r) = k − 1 in which case this divisor gives us −uk−1 + vr or resm(r − 2) = k − 1 and
resm(r) = k + 1 in which case we get −uk+1 + vr, which completes the proof. �

Corollary 2.3. If G is a nearly complete graph with deleted paths P and Q with vertices x, y, z
consecutive in P and pairwise equivalent, then for any vertex u ∈ V (P ), x ∼ u.

Proof. Let Vd ⊂ V (P ) be the vertices that have distance d to y in P . So V1 = {x, z}. Then we
proceed by induction on d. If d = 2, take u ∈ V2. Without loss of generality, assume u is not
adjacent to x in P (so it is adjacent to z). By Claim 1, u ∼ x, since they are equidistant from the
pair y, z with y ∼ z. Then u ∼ x ∼ y ∼ z, so all are pairwise equivalent.

Now assume d > 2 and assume the claim for all integers strictly less than d. Let u ∈ Vd.
Then there are three vertices, x′, y′, z′ consecutive with z′ adjacent to u, which by the induction
hypothesis are all equivalent to x. Then by the argument in the previous paragraph, x′ ∼ u, so
u ∼ x. �

Claim 2. Let G be a nearly complete graph with deleted paths P and Q, with a0 the first vertex
in P and b0 the first vertex in Q. Let |V (P )| = n, |V (Q)| = m and m ≤ n. Take r < n. Then
ar ∼ bresm(r).

Proof. Let |V (G)| = n+m+ 1 = N .
We prove the claim only for the case where r ≤ m+ 1 and note that if am+1 ∼ bm ∼ am, we can

then apply Claim 1 to complete the proof.
We proceed by induction on r. For r = 0, this is true by assumption, since resm(0) = 0 and

a0 ∼ b0.
Assume m ≥ r > 0 and that the claim is true for all integers strictly less than r. In this case

note that resm(r) = r. Then we have ar−1 ∼ br−1. Take the divisor ar−1 − br−1, push once from
ar−1 and absorb once from br−1 to get (4−N)ar−1 − ar − ar−2 + br + br−2 + (N − 4)br−1. By the
induction hypothesis, we know that ar−2 ∼ br−2, so we can reduce this to get br − ar, so ar ∼ br.

Finally, let r = m + 1. Then resm(r) = m + 1. Take am − bm and push once from am and
absorb once from bm to get (4 − N)am − am−1 − am+1 + bm−1 + (N − 3)bm. Reducing this by
(4−N)(am − bm) and noting that am−1 ∼ bm−1, we get bm − am+1.

We now apply Claim 1 with ui = am−i−1 and vi = am+i. Take ar = vr−m. By Claim 1, ar ∼
uresm(r−m) = am−1−resm(r−m). By the properties of the res function, m−1− resm(r−m) = resm(r),
so we have ar ∼ aresm(r) ∼ bresm(r) which completes the proof. �

Corollary 2.4. Let G be a nearly complete graph with deleted paths P and Q, |V (P )| = n, V (Q) =
m, and n > m. Then there exist u, v ∈ V (P ) with u and v adjacent in P and u ∼ v.

Proof. Let V (P ) = {a0, a1, ..., an−1}. Then by Claim 2, am ∼ bm and am+1 ∼ bm. Since m < n,
am+1 is well-defined, so am ∼ am+1. �

Corollary 2.5. Let G be a nearly complete graph with deleted paths P and Q, with a0 the first
vertex in P and b0 the first vertex in Q. Let |V (P )| = n, |V (Q)| = m and m ≤ n. Assume for
some i, ai ∼ ai+1. Then either m|i or there exists j ≤ i with bj ∼ bj+1.
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Proof. By Claim 2, ai ∼ bresm(i) and ai+1 ∼ bresm(i+1). If m|i, then resm(i) = resm(i+ 1), otherwise
| resm(i)− resm(i+ 1)| = 1, so bresm(i) and bresm(i+1) are adjacent. Since resm(i) ≤ i, this completes
the proof. �

Corollary 2.6. Let G be a nearly complete graph with deleted paths P and Q, with a0 the first
vertex in P and b0 the first vertex in Q. Assume ai ∼ aj for all i, j < |V (P )|. Then Jac(G) is
cyclic.

Proof. By Claim 2, each bk is equivalent to some ar. Since all the ar are pairwise equivalent, all
the bk must be pairwise equivalent as well and also pairwise equivalent with each ar. So, since all
the vertices are equivalent, any divisor must be a multiple of a0 − b0, so G is cyclic. �

To prove the main result, we first need the following lemma:

Lemma 2.7. Given a nearly complete graph G, with deleted paths P and Q and vertices u, v
adjacent in P with u ∼ v, if |V (P )| and |V (Q)| are relatively prime, then Jac(G) is cyclic.

Proof. Let m be the number of vertices of P\u in the component containing v and n the number
of vertices of P\v in the component containing u

We may assume without loss of generality that m ≤ n. We proceed by induction on m.
Let a0 be the first vertex in P and b0 the first vertex in Q with ai and bi the ith vertices in P

and Q respectively.
If m = 1, look at a1 − a0. Pushing from a1 and absorbing from a gives a2 − a0, so a2 and a1

are equivalent. By Corollary 2.3, all the vertices on P are pairwise equivalent, so by Corollary 2.6,
Jac(G) is cyclic.

Assume m > 1 and that the lemma holds for integers strictly less than m.
By Corollary 2.5, we may assume that m does not divide the length of P , since if it did, we

would have an analogous situation in Q and m does not divide the length of Q since the lengths of
Q and P are relatively prime.

By Claim 1 and the peridocity of the res function, P breaks up into subpaths of length 2m with
ai ∼ a2m+i. Since m does not divide the length of P , there are some leftover vertices. If the number
of leftover vertices is greater than m, let x and y be the two middle vertices (the mth and m+ 1st),
so that x ∼ y. Otherwise, let y be the first of these vertices and x be the last of the previous set.
Then x ∼ y. Let |V (P )| = pm + c where c is the number of vertices in the component of G\x
containing y, by our choice of x and y, and with c < m. The value c cannot be 0 since m does
not divide |V (P )|. Then x and y are equivalent vertices a distance c < m from the end, so by the
inductive hypothesis, Jac(G) is cyclic. �

Theorem 2.8. Let G be a nearly complete graph. Then Jac(G) is cyclic if and only if |V (P1)| and
|V (P2)| are relatively prime.

Proof. Let n = |V (P1)| and m = |V (P2)|.
We begin by proving that if |V (P1)| and |V (P2)| are relatively prime then Jac(G) is cyclic. So

assume n and m are relatively prime.
We may assume without loss of generality that n > m. Then by Corollary 2.4, P1 has two

equivalent adjacent vertices. Applying Lemma 2.7 completes the proof.

For the other direction, assume |V (P1)| and |V (P2)| are not relatively prime. Assume for the
sake of contradiction that the Jacobian of G is cyclic. Let v be the source vertex and V (P1) =
{a0, a1, ..., an−1} and V (P2) = {b0, b1, ..., bm−1}.
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Let p = gcd(n,m), n = kp, m = lp. Let f : V (G) − {v} → Z such that f(as) = resp(s) and
f(bs) = resp(s)

Define a graph H on p+ 1 vertices as follows. Holding one vertex back as a source, arrange the
p vertices in a path, for any vertices that would be adjacent on the path, insert k + l − 1 edges
between them and between any other vertices add k + l edges. Then add the source with k + l
edges to each vertex.

Let the p vertices along the path be h0 to hp−1 and define φ : V (G) ∪E(G)→ V (H) ∪E(H) to
take v ∈ V (G) to hf(v), the source of G to the source of H, and any edge between vertices with
different values under f to an edge between the images of those vertices under φ and such that for
any vertex in V (G), no two edges incident with it map to the same edge under φ. Then this map
is a morphism since every edge is mapped appropriately, and is harmonic since for every x ∈ V (G)
and e′ incident with φ(x), there is exactly one e incident with x such that φ(e) = e′. Note that the
Jacobian of H is cyclic, since the element s− h0 where s is the source is a generator (pushing once
from h0 and absorbing from s gives s− h1 and repeating generates the rest of the elements).

Since Jac(G) and Jac(H) are both cyclic, the kernel of any surjective group homomorphism from

Jac(G) to Jac(H) is exactly those elements x such that x
| Jac(G)|
| Jac(H)| = 1, since the kernel is a cyclic

subgroup of G of that order. Therefore, the kernel of the map is independent of our choice of map.
Specifically, a0 − b0 maps to 0 under φ, so is in the kernel of φ.

Note that not both of k and l are even since they are relatively prime. Let k be odd. Then define
f ′(as) = p− 1− resp(s) and f ′(bs) = resp(s) and let φ′ be the map between G and H induced by
f ′. Then φ′(a0 − b0) = hp−1 − h0 6∼ 0, so a0 − b0 is not in the kernel of φ′ which is a contradiction,
so Jac(G) must not be cyclic. �

3. Threshold Graphs

3.1. Threshold Graph.

Definition. A threshold graph is any graph constructed via the following process. Starting with
the empty graph, at every stage we add a vertex to the graph and mark it as either heavy or light.
If v is heavy, we add edges from v to every other vertex and if v is light, we add no edges.

For convenience, we define the convention that for u, v ∈ V (G), u is to the right of v if u was
added before v and to the left if u was added after v. Similarly, for the ease of discussion, we
number the vertices as they are added into the graph, so that v1 is the first vertex added and vn is
the final vertex.

3.2. Jacobians on Threshold Graphs. To explicitly characterize the Jacobians of threshold
graphs, we require first an auxiliary function. For v ∈ V (G), let φ(v) be deg(v) if v is a light
vertex or deg(v) + 1 if v is a heavy vertex. Order the vertices, excluding the first and last, as above
by when they were added to the graph and add an edge between any two vertices vk and vk+1 if
φ(u) and φ(v) are unequal and not relatively prime. Note that this generates a collection of disjoint
paths. To each path we assign the value Nk to be the product of φ(v) for all v in the path. Then we
define the group A(G) to be ⊕ZNk

. Christianson and Reiner’s conjecture [6] proposes that for all
threshold graphs, A(G) ∼= Jac(G). For example, consider the graph obtained from K4 by removing
the edge sets of a path on 2 vertices and a path on 1 vertex (so K4 delete an edge). Note that this
is the same as the threshold graph built by taking two light vertices and then two heavy vertices.

By Theorem 2.8, the Jacobian of this graph is isomorphic to Z8, rather than Z4×Z2. Since 2 and
4, the numbers obtained from φ, are unequal and not relatively prime, the conjectured Jacobian is
also Z8.
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Define a bad sequence of vertices to be consecutive vertices that are heavy-light-heavy or light-
heavy-light. Like Christianson, in the case of a graph with no bad sequences, we can prove that
A(G) = Jac(G), but Christianson and Reiner’s conjecture, that this statement is true for all
threshold graphs remains open.

Theorem 3.1. (Originally in Christianson and Reiner)[6] For a connected threshold graph G with
no bad sequence, A(G) ∼= Jac(G).

Proof. We procede by induction on n = |V (G)| and let the vertices of G be labeled v1, . . . , vn in
order that they appear in the construction of the threshold graph. The vertex vn is heavy as G
is connected. If vn−1 is light then the theorem trivially holds by induction as deleting it changes
neither A(G) nor Jac(G). Thus we assume that vn−1 is also heavy.

We provide the generators and then prove that they generate the Jacobian and that their orders
match with those conjectured. We define φ(v) as above and let P1, ..., Pm be the subpaths specified
in the conjecture. Let pi be the vertex of Pi added last and let qi be the vertex of G added
immediately before the first vertex of Pi. Then if |V (Pi)| = 1 and one of pi and qi is light and the
other is heavy, then let Ci = φ(qi)pi − φ(qi)qi. Otherwise, let Ci = pi − qi. Note that since there
are no bad sequences in G, the longest such path has at most 2 vertices.

We prove that the Ci are generators of Jac(G). We prove first that the order of Ci is the product
of φ(v) for v ∈ V (Pi).

If |V (Pi)| = 1 and both pi and qi are heavy, then Ci = pi − qi. Taking φ(pi)Ci and pushing
out once from pi and absorbing once from qi gives exactly 0. Taking kCi with k < φ(pi) − 1 is
qi-reduced, and if k = φ(pi) − 1, pushing once from pi gives a qi-reduced element that is nonzero.
Similarly, if |V (Pi)| = 1 and both pi and qi are light, then Ci = pi − qi. Taking φ(pi)Ci and
pushing out once from pi and absorbing once from qi gives exactly 0. Again, kCi with k < φ(pi) is
qi-reduced and nonzero.

Next, if |V (Pi)| = 1 and pi is heavy and qi is light, then Ci = φ(qi)pi − φ(qi)qi. Let qi = vs, pi =
vs+1 and D =

∑
t<s vt. Then taking φ(pi)Ci and pushing out φ(qi) times from pi gives φ(qi)D.

Pushing out from D and absorbing φ(qi) times from qi gives exactly 0. Taking kCi with k < φ(pi)
gives (possibly after pushing out from pi some number of times) a qi-reduced divisor. Note that a
similar argument holds if |V (Pi)| = 1 and pi is light and qi is heavy.

Finally, if |V (Pi)| = 2, then one of pi and qi is heavy and the other light. Then Ci = pi − qi. If
qi = vs, pi = vs+2, then the order of Ci is, by symmetry, exactly the same as the order of pi − vs+1

which we determined in the previous paragraph was φ(qi)φ(pi), so Ci has the appropriate order.
All that remains to be shown is that these divisors generate Jac(G).

Claim 3. For t ≤ m, let the last vertex added in Pt be vk. Then C1, ...Ct generate all degree zero
divisors on v1, ..., vk.

Proof. For t = 1, if |V (P1)| = 1, then C1 = v2−v1, which satisfies the claim. Otherwise, C1 = v3−v1,
in which case, taking φ(v3)C1, pushing once from v3 and absorbing once from v1 gives either v2−v1
or v1 − v2 (depending on whether v3 was light or heavy).

Assume t > 0 and assume the claim is true for integers strictly less than t. If |V (P1)| = 1, then
by induction we can generate any zero degree divisor on v1, ..., vk−1. If vk and vk−1 are both heavy
or both light, then Ct = vk − vk−1, so C1, ...Ct clearly generate all degree zero divisors on v1, ..., vk.

If |V (P1)| = 1 and one of vk and vk−1 is light and the other heavy, then Ct = φ(vk−1)vk −
φ(vk−1)vk−1. Without Ct, we can generate any divisor with degree zero on v1, ..., vk with the
coefficient of vk a multiple of φ(vk), since taking the zero divisor, absorbing from vk and then
pushing from vk−1 gives a divisor with φ(vk) as the coefficient of vk and the coefficient of vr, r > k
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is 0. Since φ(vk) and φ(vk−1) are relatively prime, by applying the Euclidean algorithm, there is
some combination of C1, . . . Ct that generates zero degree divisors with arbitrary coefficients for vk.
Since by induction, we can generate arbitrary zero degree divisors on v1, ..., vk−1, we can add these
together to generate any degree zero divisors on v1, ..., vk.

If |V (P1)| = 2, then Ct = vk − vk−2. So we can easily generate all degree zero divisors on
v1, ..., vk−2, vk. Taking φ(vk)Ct, pushing once from vk and absorbing once from vk−2 gives a divisor
with coefficient 1 or −1 (depending on whether vk is light or heavy) and coefficient 0 for vr, r > k.
Adding this divisor to the ones we can already generate allows us to generate any degree zero
divisor. �

By the claim, then, C1, ..., Cm generate all degree zero divisors on v1, . . . , vn−1. Pushing once
from vn−1 gives a divisor with coefficient 1 on vn, so we can, in fact, generate all degree zero divisors
on G with C1, ..., Cm.

By [4], we know the total order of the Jacobian, so these must be exactly the generators, so we
have the required explicit characterization of the Jacobian. �
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