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Abstract. We say that a graph G is k-Pfaffian if the generating function of

its perfect matchings can be expressed as a linear combination of Pfaffians of k

matrices corresponding to orientations of G. We prove that 3-Pfaffian graphs

are 1-Pfaffian, 5-Pfaffian graphs are 4-Pfaffian and that a graph is 4-Pfaffian

if and only if it can be drawn on the torus (possibly with crossings) so that

every perfect matching intersects itself an even number of times. We state

conjectures and prove partial results for k > 5.

1. Introduction

All graphs considered in this paper are finite and have no loops or multiple edges.
For a graph G we denote its edge set by E(G). A labeled graph is a graph with
vertex-set {1, 2, . . . , n} for some n. If u and v are vertices in a graph G, then uv

denotes the edge joining u and v and directed from u to v if G is directed. A perfect
matching is a set of edges in a graph that covers each vertex exactly once. We
denote the symmetric difference of sets X and Y by X4Y .

Let G be a labeled graph, let D be an orientation of G and let M = {u1v1,

u2v2, . . . , ukvk} be a perfect matching of D. Define the sign of a perfect matching
M in D, denoted by D(M), to be the sign of the permutation

(
1 2 3 4 . . . 2k − 1 2k

u1 v1 u2 v2 . . . uk vk

)
.

Note that the sign of a perfect matching is well-defined as it does not depend on the
order in which the edges are written. We say that a labeled graph G is k-Pfaffian if
there exist orientations D1, D2, . . . , Dk of G and real numbers α1, α2, . . . , αk, such
that for every perfect matching M of G

k∑

i=1

αiDi(M) = 1.

The following result was mentioned by Kasteleyn [3] and proved by Galluccio
and Loebl [1] and independently by Tesler [8].

Theorem 1.1. Every graph that can be embedded on an orientable surface of genus
g is 4g-Pfaffian.

We say that a graph is Pfaffian if it is 1-Pfaffian. Pfaffian graphs have been
introduced by Kasteleyn [2, 3, 4] and have been extensively studied since.

By a drawing Γ of a graph G on a surface S we mean an immersion of G in
S such that edges are represented by locally homeomorphic images of [0, 1], not
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containing vertices in their interiors. Edges are permitted to intersect, but there
are only finitely many intersections and each intersection is a crossing. For edges
e, f of a drawing Γ let crΓ(e, f) denote the number of times the edges e and f

cross. For a perfect matching M let crΓ(M), or cr(M) if the drawing is understood
from context, denote

∑
crΓ(e, f), where the sum is taken over all unordered pairs

of distinct edges e, f ∈ M .
The following characterization of Pfaffian graphs was given by the author in [5, 6].

Theorem 1.2. A graph G is Pfaffian if and only if there exists a drawing of G in
the plane such that cr(M) is even for every perfect matching M of G.

The main results of this paper are a characterization of 4-Pfaffian graphs, similar
to the above characterization of Pfaffian graphs, and a generalization of Theorem 1.1
to drawings with crossings.

Theorem 1.3. A graph G is 4-Pfaffian if and only if there exists a drawing of G

on the torus such that cr(M) is even for every perfect matching M of G.

Theorem 1.4. Let G be a graph. If there exists a drawing of G on an orientable
surface of genus g such that cr(M) is even for every perfect matching M of G then
G is 4g-Pfaffian.

In the next section we examine sequences of signs of perfect matchings in orien-
tations of a k-Pfaffian graph. We prove that 3-Pfaffian graphs are Pfaffian and that
5-Pfaffian graphs are 4-Pfaffian. Section 3 contains proofs of Theorems 1.3 and 1.4.

2. Admissible sets of sign sequences

Let k > 1 be an integer. We say that a set M of (1,−1)-vectors of length k is
realizable if there exists a labeled graph G that is k-Pfaffian, but not (k−1)-Pfaffian,
orientations D1, D2, . . . , Dk of G and real numbers α1, α2, . . . , αk such that

M = {(D1(M), D2(M), . . . , Dk(M)) |M is a perfect matching of G}
and for every perfect matching M of G

k∑

i=1

αiDi(M) = 1.

We say that G realizes M. For a vector V of length k denote its i-th coordinate
by V (i) and for S ⊆ {1, 2, . . . k} denote

∏
i∈S V (i) by V (S).

We establish some conditions, which every realizable set M has to satisfy. The
validity of the first such condition below follows trivially from the definition.

A1: There exist real non-zero numbers α1, α2, . . . , αk such that

k∑

i=1

αiV (i) = 1

for every V ∈M.

To verify the next condition we first need to prove the following lemma.
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Lemma 2.1. Let G be a labeled graph, let k be an odd integer and let D1, D2, . . . , Dk

be orientations of G. Then there exists an orientation D of G such that for every
perfect matching M of G we have

D(M) = D1(M)D2(M) . . . Dk(M).

Proof. Define the orientation D of G as follows. For every edge uv ∈ E(G), let
uv ∈ E(D) if |{i | 1 ≤ i ≤ k, uv ∈ Di}| is odd and let vu ∈ E(D) otherwise. Denote
by Si the set of edges on which D differs from Di. We have

Di(M) = (−1)|M∩Si|D(M).

It follows that

D1(M)D2(M) . . . Dk(M) = (−1)|M∩S1|+|M∩S2|+...+|M∩Sk|D(M).

It remains to note that by definition of D

|E ∩ S1|+ |E ∩ S2|+ . . . + |E ∩ Sk|
is even for every E ⊆ E(G). ¤

It follows from Lemma 2.1 that every realizable set M satisfies the following
condition.

A2: For every odd S1, S2, . . . , Sk−1 ⊆ {1, 2, . . . k} and real numbers α1, α2, . . . ,

αk−1 there exists V ∈M such that
k−1∑

i=1

αiV (Si) 6= 1.

The following three conditions follow from A1 and A2, yet we find it convenient
to state them separately.

B1: For every odd S ⊆ {1, 2, . . . k} there exist v1, v2 ∈ M such that for
i ∈ {1, 2} we have ∏

j∈S

vi(j) = (−1)i;

B2: for any set of real numbers {βv}v∈M such that
∑

v∈M βvv is a zero vector,
we have

∑
v∈M βv = 0;

B3: every two elements of M differ in at least two coordinates.

Conditions B1 and B3 follow immediately from A2 and A1 respectively, while
conditions B2 and A1 are equivalent by a standard linear algebra argument. We
say that a set V of (1,−1)-vectors of length k is admissible if it satisfies conditions
B1, B2 and B3, and we say that V is strongly admissible if it satisfies conditions A1
and A2. Every realizable set is strongly admissible, and every strongly admissible
set is admissible.

We say that sets V and W of (1,−1)-vectors of length k are equivalent if W can
be obtained from V as follows: for some permutation π of the set {1, 2, . . . , k} and
some S ⊆ {1, 2, . . . , k} apply π to the coordinates of all vectors in V and change
the signs of all coordinates with indices in S for all vectors in V. The above is
clearly an equivalence relation. Trivially, if the sets V and W are equivalent then
V is admissible (strongly admissible, realizable) if and only if W is.
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Lemma 2.2. No set of (1,−1)-vectors of length two is admissible.

Proof. Suppose V is an admissible set of (1,−1)-vectors of length two. Clearly V
is equivalent to a set containing (1, 1) and therefore without loss of generality we
assume (1, 1) ∈ V. By B2 we know that (−1,−1) 6∈ V and therefore by B1 applied
to S = {1} we have (−1, 1) ∈ V in contradiction with B3. ¤

Lemma 2.3. No set of (1,−1)-vectors of length three is admissible.

Proof. Again without loss of generality we assume (1, 1, 1) ∈ V. It implies by B2
that (−1,−1,−1) 6∈ V and by B1 applied to S = {1, 2, 3} and equivalence we may
assume (1, 1,−1) ∈ V in contradiction with B3. ¤

The next theorem follows immediately from Lemmas 2.2 and 2.3 and the obser-
vations above.

Theorem 2.4. Every 3-Pfaffian graph is Pfaffian.

Next we examine (strongly) admissible sets of vectors of length four and five.
Denote the set {(−1, 1, 1, 1), (1,−1, 1, 1), (1, 1,−1, 1),(1, 1, 1,−1)} of all (−1, 1)-
sequences of length 4 with exactly one negative entry by S.

Lemma 2.5. Every admissible set V of (1,−1)-vectors of length four is equivalent
to S.

Proof. For a vector V of length four we denote
∑4

i=1 vi by σ(V ). Without loss of
generality we assume (1, 1, 1, 1) ∈ V. By B2 and B3 we have σ(V ) ∈ {−2, 0, 4} for
every V ∈ V. Let n denote the number of elements V ∈ V with σ(V ) = −2. We
have n ≤ 3 by B2. We claim that n = 0.

Suppose not. If n = 3 without loss of generality we assume (1,−1,−1,−1),
(−1, 1,−1,−1), (−1,−1, 1,−1) ∈ V. By B1 applied to S = {1, 2, 3} we may assume
(−1, 1, 1,−1) ∈ V in contradiction with B3. If n = 2 we assume (1,−1,−1,−1),
(−1, 1,−1,−1) ∈ V and B1 applied to S = {1, 2, 3} and B3 again lead to a con-
tradiction. If n = 1 by equivalence, B1 applied to S = {1, 2, 3} and B3 we may
assume (1,−1,−1,−1), (−1, 1, 1,−1) ∈ V and apply B1 to S = {1, 2, 4} for a
contradiction.

Condition B1 applied to all subsets of {1, 2, 3, 4} of size 3 implies |V| ≥ 4.
By B2 we know that for every V1, V2 ∈ V we have V1 + V2 6= 0. Therefore up
to equivalence V = {(1, 1, 1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (1, 1,−1,−1)} or V =
{(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}. Applying B1 to S = {1}
we have V = {(1, 1, 1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (1, 1,−1,−1)} and is equiva-
lent to S. ¤

Lemma 2.6. No set of (1,−1)-vectors of length five is strongly admissible.

Proof. The only argument we were able to find proceeds by exhaustive case analysis.
We therefore defer the proof of the lemma to the Appendix. ¤

The theorem below immediately follows from Lemma 2.6.
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Theorem 2.7. Every 5-Pfaffian graph is 4-Pfaffian.

We now need to introduce some additional notation. Let V and W be (1,−1)-
vectors of length m and n, respectively. We denote by V ×W the vector of length
mn defined by

(V ×W )((j − 1)n + i) = V (i)W (j)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. For sets of (1,−1)-vectors V and W of length m and
n correspondingly let V ⊗W = {V ×W |V ∈ V,W ∈ W}. Let ⊗nV denote the nth

power of V under this product operation. We use the convention ⊗0V = {(1)}.
Conjecture 2.8. Let G be a labeled graph that is k-Pfaffian, but not (k − 1)-
Pfaffian, for some integer k ≥ 1. Then k = 4g for some non-negative integer g

and there exists a set of (1,−1)-vectors M of length k, realized by G, such that
M⊆ ⊗gS.

Note that the results of this section imply that Conjecture 2.8 holds for k ≤ 5.
Tardos [7] pointed out that there exists a strongly admissible set of (1,−1)-vectors
of length six, namely the set of all vectors with exactly two negative coordinates.
Therefore to prove Conjecture 2.8 one needs to use stronger properties of realizable
sets than strong admissibility.

3. Drawing k-Pfaffian Graphs on surfaces

The following theorem is the main result of this section.

Theorem 3.1. For a labeled graph G and a non-negative integer g the following
are equivalent

(1) There exists a drawing of G on an orientable surface of genus g such that
cr(M) is even for every perfect matching M of G.

(2) There exist orientations D0, D1, . . . , D4g−1 of G such that for every perfect
matching M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

It is convenient to prove Theorem 3.1 in terms of special kinds of planar drawings.
Consider a plane with a fixed collection of g disjoint closed squares Q1, Q2, . . . , Qg.
We say that Q1, Q2, . . . , Qg are singularities and that a drawing of G in the plane
is a g-drawing if the images of all the vertices of G lie outside Q1 ∪ Q2 ∪ . . . ∪ Qg

and the images of the edges of G intersect each Qi in a finite number of straight
line segments which are parallel to the sides of Qi. Figure 1 shows an example of
a g-drawing.

For each singularity Qi fix one of its sides. For e ∈ E(G) let e′ be its image in
Γ. Denote by sΓ(i, e) the number of segments in e′ ∩ Qi parallel to the fixed side
of Qi and by s′Γ(i, e) the number of segments in e′ ∩Qi perpendicular to this side.
For e, f ∈ E(G) let cr′Γ(e, f) denote the number of times the edges e and f cross
outside of singularities, i. e.

cr′Γ(e, f) = crΓ(e, f)−
g∑

i=1

(sΓ(i, e)s′Γ(i, f) + s′Γ(i, e)sΓ(i, f)).
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Figure 1. A 2-drawing of K4

In the notation introduced above we omit index Γ when the drawing is understood
from context. The definitions of g-drawings and of cr′(e, f) are motivated by the
following observation. For every drawing Γ of a graph G on an orientable surface of
genus g there exists a g-drawing Γ′ of a graph G in the plane such that crΓ(e, f) =
cr′Γ′(e, f) for all e, f ∈ E(G) and vice versa.

We say that S ⊆ E(G) is a marking of a g-drawing Γ of G if cr′Γ(M) and
|M ∩ S| have the same parity for every perfect matching M of G, where cr′Γ(M) =∑
{e,f}⊆M cr′Γ(e, f). Let L be a line in the plane and let H be one of the open

half-planes determined by L such that all the singularities lie in H. We say that a
g-drawing Γ of a labeled graph G is standard if the images of the vertices of G lie
on L in order, and the images of the edges of G lie in H ∪ L.

Lemma 3.2. For a labeled graph G and a non-negative integer g the following are
equivalent

(1) There exists a standard g-drawing Γ of G and a marking S of Γ.
(2) There exist orientations D0, D1, . . . , D4g−1 of G such that for every perfect

matching M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

Proof. (1)⇒(2). Let S′ = {e ∈ E(G) | ∑g
i=1 s(i, e)s′(i, e) is odd}. For i ∈

{1, 2, . . . , g} let E(i, 0) = ∅, E(i, 1) = {e ∈ E(G) | s(i, e) is odd}, E(i, 2) = {e ∈
E(G) | s′(i, e) is odd} and let E(i, 3) = E(i, 1)4E(i, 2). For an integer j let ji

denote the i-th digit from the right in a base two representation of j and let j∗ =∑2g
i=1 j2i−1j2i. For an orientation D let χ(D) = {uv ∈ E(D)|u > v}. Note that χ is

a bijection between orientations of G and subsets of E(G). For j ∈ {0, 1, . . . , 4g−1}
let

D′
j = χ−1(S4S′4E(1, j1 + 2j2)4E(2, j3 + 2j4)4 . . .4E(g, j2g−1 + 2j2g)).

Let Dj(M) = D′
j(M) if j∗ is even and let Dj(M) be obtained from D′

j(M) by
switching orientation of all the edges incident to vertex 1 if j∗ is odd. We claim
that D0, D1, . . . , D4g−1 satisfy (2). It is not difficult to verify and is proved in
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Lemma 4.2 in [5] that for an orientation D of G and a perfect matching M of G

(∗) D(M) = (−1)cr(M)+|M∩S(D)|.

Let s(i,M) =
∑

e∈M s(i, e) and s′(i,M) =
∑

e∈M s′(i, e). For j ∈ {0, 1, . . . , 4g− 1}
the identities below hold modulo 2

cr(M) + |M ∩ S(D′
j)| = cr(M) + |M ∩ S|+ |M ∩ S′|+

g∑

i=1

|M ∩ E(i, j2i−1 + 2j2i)| =

= (cr′(M)− cr(M)) + |M ∩ S′|+
∑

i:j2i−1=1

s(i,M) +
∑

i:j2i=1

s′(i,M) =

=
g∑

i=1


 ∑

{e,f}⊆M

(s(i, e)s′(i, f) + s′(i, e)s(i, f)) +
∑

e∈M

s(i, e)s′(i, e)


 +

∑

i:j2i−1=1

s(i,M) +

+
∑

i:j2i=1

s′(i,M) =
g∑

i=1

(s(i,M))(s′(i,M)) +
∑

i:j2i−1=1

s(i,M) +
∑

i:j2i=1

s′(i,M) =

=
g∑

i=1

(s(i,M) + j2i)(s′(i, M) + j2i−1) + j∗.

Therefore

D′
j(M) = (−1)j∗

g∏

i=1

(−1)(s(i,M)+j2i)(s
′(i,M)+j2i−1).

and

Dj(M) =
g∏

i=1

(−1)(s(i,M)+j2i)(s
′(i,M)+j2i−1).

Let v0 = (1, 1,−1, 1), v1 = (1,−1, 1, 1), v2 = (−1, 1, 1, 1), and v3 = (1, 1, 1,−1).
Note that for all k ∈ {0, 1, 2, 3} and j ∈ {1, 2, 3, 4} we have vk(j) = (−1)(j1+k1)(j2+k2).
Let m(i) = r′i + 2ri, where ri and r′i are the remainders modulo 2 of s(i,M) and
s′(i, M) respectively. We claim that

(D0(M), D1(M), . . . , D4g−1(M)) = vm(1) × vm(2) × . . .× vm(g).

Indeed

vm(1) × vm(2) × . . .× vm(g)(j) =
g∏

i=1

vm(i)(j2i−1 + 2j2i) =

=
g∏

i=1

(−1)(r
′
i+j2i−1)(ri+j2i) =

g∏

i=1

(−1)(s
′(i,M)+j2i−1)(s(i,M)+j2i) = Dj(M).

(2)⇒(1). Denote by Aj the set of edges of G in which Dj differs from D0. Let
Γ be a standard drawing of G such that for every e ∈ E(G) such that s(i, e) is
odd if and only if e ∈ A22i−2 and s′(i, e) is odd if and only if e ∈ A22i−1 . Such a
drawing is not difficult to construct. We use the notation introduced in the proof
of (1)⇒(2) implication. Let S = S(D0)4S′. We claim that S is a marking of Γ,
i.e. that cr′(M) + |M ∩ S| is even for every perfect matching M of G. By (∗) this
claim is equivalent to the statement D0(M) = (−1)cr′(M)−cr(M)+|M∩S′| for every
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perfect matching M of G. Repeating part of the argument above we have modulo
2

cr′(M)− cr(M) + |M ∩ S′| =
g∑

i=1

(s(i, M))(s′(i,M)) =
g∑

i=1

|M ∩A22i−1 ||M ∩A22i |.

Note that |M ∩Aj | is even if and only if D0(M)Dj(M) = 1. Let

(D0(M), D1(M), . . . , D4g−1(M)) = w1 × w2 × . . .× wg

for some w1, w2, . . . , wg ∈ S. Then

D0(M)D22i−1(M) = wi(1)wi(2) and D0(M)D22i(M) = wi(1)wi(3).

It follows that |M ∩ A22i−1 ||M ∩ A22i | is odd if and only if wi(1) = −1 as in every
element of S at most one coordinate is negative. Therefore

(−1)cr′(M)−cr(M)+|M∩S′| =
g∏

i=1

wi(1) = D0(M),

verifying the claim. ¤

We say that g-drawings Γ1 and Γ2 are similar if every vertex of G has the same
image in Γ1 and Γ2 and for every edge of G the symmetric difference of its images
in Γ1 and Γ2 is a union of a family of closed simple curves in the plane none of
which intersects a singularity or has a singularity in its interior. In [5] the following
lemma was proved for g = 0 (if g = 0 every two g-drawings of G are similar). The
proof for g > 0 is analogous.

Lemma 3.3. Let Γ1 and Γ2 be similar g-drawings of a labeled graph G. If there
exists a marking of Γ1 then there exists a marking of Γ2.

If there exists a marking of a g-drawing Γ of a labeled graph G then there exists
a g-drawing Γ′of G similar to Γ such that ∅ is a marking of Γ′.

Let L be a line in the plane such that all the singularities lie in one of the open
half planes determined by L. Clearly every g-drawing Γ of G can be transformed
by some homeomorphism of the plane that is identical on the singularities to a
g-drawing Γ′, such that the images of the vertices of G in Γ′ lie on L in order. Such
Γ′ is similar to some standard drawing. This observation and Lemma 3.2 imply
Theorem 3.1.

We are now ready to prove Theorem 1.4

Proof of Theorem 1.4. By Theorem 3.1 there exist orientations D0, D1, . . . , D4g−1

of G such that for every perfect matching M of G

(D0(M), D1(M), . . . , D4g−1(M)) ∈ ⊗gS.

It is easy to verify that the sum of the coordinates of every element of ⊗gS is 2g.
Therefore for every perfect matching M of G

1
2g

4g−1∑

i=0

D(i) = 1,

and G is 4g-Pfaffian. ¤
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Theorems 2.3, 3.1, 1.4 and Lemma 2.5 imply Theorem 1.3. By Theorems 3.1
and 1.4 Conjecture 2.8 implies the following conjecture.

Conjecture 3.4. For a graph G and a non-negative integer g the following are
equivalent

(1) There exists a drawing of G on an orientable surface of genus g such that
cr(M) is even for every perfect matching M of G.

(2) G is 4g-Pfaffian.
(3) G is (4g+1 − 1)-Pfaffian.

Acknowledgment. I would like to thank Robin Thomas for his guidance in this
project and comments on the draft.

Appendix A. Proof of Lemma 2.6

Let V be a strongly admissible set of vectors of length five.
For a vector V of length five let S(V ) = {i | V (i) = 1} and let σ(V ) = |S(V )|.

We assume without loss of generality that (1, 1, 1, 1, 1) ∈ V. By B2 and B3 we
have σ(V ) ∈ {1, 2, 3, 5} for every V ∈ V. Let nk denote the number of elements
V ∈ V with σ(V ) = k. We consider cases depending on n1. Note that by B2, we
have n1 ≤ 4.

Case 1: n1 = 4. We assume without loss of generality that (1,−1,−1,−1,−1),
(−1, 1,−1,−1,−1), (−1,−1, 1,−1,−1), (−1,−1,−1, 1,−1) ∈ V. By A1, we have
V (1) + V (2) + V (3) + V (4) − 3V (5) = 1 for every V ∈ V. Therefore |V| = 5 and
B1 applied to S = {1, 2, 3, 4, 5} yields a contradiction.

Case 2: n1 = 3. We assume that (1,−1,−1,−1,−1), (−1, 1,−1,−1,−1),
(−1,−1, 1,−1,−1) ∈ V. By B1 applied to S = {1, 2, 3, 4, 5} we have n2 > 0 and
therefore (−1,−1,−1, 1, 1) ∈ V by B3. We have 2(1, 1, 1, 1, 1)+(1,−1,−1,−1,−1)+
(−1,−1, 1,−1,−1) + (−1,−1, 1,−1,−1) + (−1,−1,−1, 1, 1) = (0, 0, 0, 0, 0) in con-
tradiction with B2.

Case 3: n1 = 2. We assume that (1,−1,−1,−1,−1), (−1, 1,−1,−1,−1) ∈ V.
By B1 applied to S = {1, 2, 3, 4, 5} and B3 without loss of generality we have
(−1,−1, 1, 1,−1) ∈ V. By B1 applied to S = {1, 2, 3} there exists W ∈ V such
that S(W ) ∩ {1, 2, 3} is even. Suppose first |S(W ) ∩ {1, 2, 3}| = 0 then W =
{−1,−1,−1, 1, 1}. It follows from A1 that V (1)+V (2)−2V (3)+3V (4)−2V (5) =
1 for every V ∈ V. In particular |S(V ) ∩ {1, 2, 4}| is odd for every V ∈ V in
contradiction with B1.

Therefore |S(W ) ∩ {1, 2, 3}| = 2. It follows from B3 that σ(W ) = 3. We
consider all possible choices for W up to the symmetry between the first and second
coordinates.

W=(1,1,-1,1,-1) or W=(1,-1,1,-1,1): From A1 we have V (1) + V (2) +
2V (3)− V (4)− 2V (5) = 1 for every V ∈ V. Again it follows that |S(V ) ∩
{1, 2, 4}| is odd for every V ∈ V.

W=(1,1,-1,-1,1): (-1,-1,1,1,-1) and W contadict B2.
W=(1,-1,1,1,-1): (-1,-1,1,1,-1) and W contadict B3.
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Case 4: n1 = 1. We assume that (1,−1,−1,−1,−1) ∈ V. Note that by cases
1-3 we may assume that for every V ∈ V there exists at most one W ∈ V such
that |S(V )4S(W )| = 4. By B1 applied to S = {1, 2, 3, 4, 5} and B3 we have
(−1, 1, 1,−1,−1) ∈ V up to equivalence. We will proceed by considering subcases
depending on n3, but we would like to make a couple of observations first.

Note that if W ∈ V, σ(W ) = 3 then 1 ∈ S(W ) by the observation above applied
to (1,−1,−1,−1,−1). Also |S(W ) ∩ {2, 3}| = 1 by B2 and B3 applied to W and
(−1, 1, 1,−1,−1). Moreover note that if S is a strongly admissible set and V is
a (1,−1)-vector that lies in the affine space spanned by S then S ∪ V is strongly
admissible.

4.1: n3 ≥ 3. We assume without loss of generality that (1, 1,−1, 1,−1),
(1, 1,−1,−1, 1), (1,−1, 1, 1,−1), (1,−1, 1,−1, 1) ∈ V. Indeed, no other vector
W with σ(W ) = 3 can lie in V by an observation above, and these four vec-
tors are affinely dependent: (1, 1,−1, 1,−1) + (1, 1,−1,−1, 1) − (1,−1, 1, 1,−1) −
(1,−1, 1,−1, 1) = (0, 0, 0, 0, 0). From A1 we have 2V (1) + V (2) + V (3) − V (4) −
V (5) = 2 for every V ∈ V. It follows that |V| = 7. We have

1
2
(V (1) + V ({1, 2, 4})) + V ({1, 2, 5} − V ({1, 2, 3})) = 1

for every V ∈ V in contradiction with A2. Note that the set V is admissible.

4.2: 1 ≤ n3 ≤ 2. We assume without loss of generality that (1,−1, 1,−1, 1) ∈ V.
If (1, 1,−1,−1, 1) ∈ V or (1,−1, 1, 1,−1) ∈ V then we again can conclude that
2V (1) + V (2) + V (3) − V (4) − V (5) = 2 for every V ∈ V for a contradiction.
By B1 applied to S = {1, 2, 4} there must exist W ∈ V with σ(W ) = 2 such
that S(W ) ∩ {1, 2, 4} is even. If S(W ) ∩ {1, 2, 4} = ∅ then W and (1,−1, 1,−1, 1)
contradict B2 and if S(W ) ⊆ {1, 2, 4} then W and (1,−1, 1,−1, 1) contradict B3.

4.3: n3 = 0. Let V ′ = {V ∈ V | σ(V ) = 2}. Note that 1 6∈ S(W ) for every
W ∈ V ′ by B3 applied to W and (1,−1,−1,−1,−1). Also S(W1) ∩ S(W2) 6= ∅ for
every W1,W2 ∈ V ′ by B2 applied to W1,W2, (1,−1,−1,−1,−1) and (1, 1, 1, 1, 1).
It follows that up to renumbering of the coordinates V is a subset of one of the
following sets

V1 = {(1, 1, 1, 1, 1), (1,−1,−1,−1,−1), (−1, 1, 1,−1,−1),

(−1, 1,−1, 1,−1), (−1,−1, 1, 1,−1)}

or

V2 = {(1, 1, 1, 1, 1), (1,−1,−1,−1,−1), (−1, 1, 1,−1,−1),

(−1, 1,−1, 1,−1), (−1, 1,−1,−1, 1)}.

Moreover, V1 and V2 are equivalent. To verify that, consider changing signs of the
last four coordinates of all vectors in V1. Therefore we assume V ⊆ V1. Then

1
2
(V ({1, 2, 3})) + V ({1, 2, 4} − V ({1, 2, 5})− V (1)) = 1

for every V ∈ V in contradiction with A2.
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Case 5: n1 = 0. Note that by the preceding cases we may assume that |S(V ) 4
S(W )| ≤ 3 for all V, W ∈ V. By B1 applied to S = {1, . . . , 5} we assume without
loss of generality that (1, 1,−1,−1,−1) ∈ V. Let V ′ = {V ∈ V | σ(V ) = 2} be de-
fined as before. By the observation above either there exists x ∈ {1, 2, 3, 4, 5} such
that x ∈ W for every W ∈ V ′, or n2 = 3 and there exists S ⊆ {1, 2, 3, 4, 5} such
that |S| = 3 and S(W ) ⊂ S for every W ∈ V ′. Suppose first that the second out-
come holds. Without loss of generality V ′ = {(1, 1,−1,−1,−1), (1,−1, 1,−1,−1),
(−1, 1, 1,−1,−1)}. By A2 there must exist U ∈ V such that U(4) 6= U(5). It
follows however that σ(U) = 3, |S(U) ∩ {1, 2, 3}| = 2 and therefore there exists
W ∈ V ′ such that |S(W )4S(U)| = 1 in contradiction with B3.

We assume now without loss of generality that 1 ∈ W for every W ∈ V ′. By B1
applied to S = {1} there exists U ∈ V such that U(1) = −1 and σ(U) = 3. Without
loss of generality U = {−1, 1, 1, 1,−1}. By observations above |S(W )4S(U)| = 1
for every W ∈ V ′. By B1 applied to S = {2, 3, 4} there exists T ∈ V such that
σ(T ) = 3 and |S(T )∩{2, 3, 4}| = 2. Without loss of generality T = (−1, 1, 1,−1, 1),
as |S(T )4S(U)| ≤ 3. It also follows that n3 = 2. Indeed if Z ∈ V, Z 6= U, T and
σ(Z) = 3 then |S(Z) ∩ {2, 3, 4}| = |S(T ) ∩ {2, 3, 5}| = 2 and therefore S(Z) =
{2, 4, 5} or S(Z) = {1, 2, 3} in contradiction with B2 or B3 respectively. By B1
applied to S = {2} we have (1,−1, 1,−1,−1) ∈ V. In fact it follows that

V = {(1, 1, 1, 1, 1), (1, 1,−1,−1,−1), (1,−1, 1,−1,−1),

(−1, 1, 1, 1,−1), (−1, 1, 1,−1, 1)}.
But then S(V ) ∩ {1, 4, 5} is odd for every V ∈ V in contradiction with B1.
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