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Chapter I
§0 Introduction

‘In this chapter we will analyse the 2-categorical
structure of the proof theory of the intuitionistic lower
predicate calculus (LPC). We could treat ordinary first
order logic, either classical or intuitionistic, in this
way, but instead ve will discuss a modification of the
usual logic which will be of more use in Chapter II, as
follows.

It is by now well known (at least among "categorical
logicians") that the normal treatment of logic must be
modified if we wish to apply it to structures with domains
not necessarily non-empty. (Sée, for example, Ouellet 331,
Joval [18], Coste {111, Boileau [05], Lawvere {261, Fourman
[131, etc.) The usual modification is along lines rather
like the following: instead of considering sequents (or
entailments): ¢ —> 6', we consider sequents (entailments)

vat lovel U": ¢ —> ¢', where U is a sequence (or set) of
U

types, so that the free variables of ¢ and ¢' correspond to
tvpes occurring in U. fThen the rules of inference and the
axioms are modified accordingly, bearing in mind that a tvpe

need not be non-empty in an interpretation. This is very

informal, so perhaps an example is in order. Suppose ¢(x) is

a formula with the free variable x of type X. Then we do not
want to be able to derive VY x¢ —> I x¢ at the level of
sentences ("at level 1"), for this would be false if X was

empty. On the other hand, Vx¢ —> ¢ and ¢ —> I x¢ should

hold at level X; modus ponens then only yields Vx¢ —> Dxb
at level X, which is unobjectionable (or at least less
objectionable), as it is vacuous when X is empty.

In many, (if not most) text-books on logic, the notation
¢(x,y,...,z) is used to mean that the free variables of ¢
occur among X,;VjseserZe In fact, we can restrict this to mean
the free variables of ¢ are exactly X,Y¢ease2 Without any
change in practice if we introduce projections as terms. SO,
for example, if Xx doesn't really occur in ¢, then ¢ can be
replaced by ¢(ﬂ(x,y,...,z», for m the projection term
ﬂ(x,y,...,z)=(y,...,z). (0f course, x does appear in ¢(m), if
only vacuously.) Conversely, we can use this process of
substituting a projection term to add durny free variables,
(i.e., ones that don't really appear.) All this becomes much
simpler formally if we use the pair operation <= -> to
enable us to consider all terms and formulae as having (at
most) one free variable. (So 6 (x,y) becomnes o (<x,¥>) 0 also

written ¢ (X,y) . )

These considerations come together when we consider an

entailment of the following form:
Elx,x") A B, x) > Biny ") £%)

where E is a formula with two free variables each of type X.
In such an expression we are actually considering b as a

formula in three free variables, although'we 6mit the third,
second, and first in each successive appearance of ‘B iBo Ak
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.

, and T3 are the three evident projections XxXxX + XxZ,



(*) is merely shorthand for:
E(nlz(x,x',x“)) A E(n23(x,x',x')) _— E(wl3(x,x',x"))

However, having said all this, for the purposes of this
chapter, these modifications can be iqnofed, and the reader
may suppose we are dealing with first order logic as

presented in Prawitz 357 or [361], without going too far

astray.

§1 LPC

1.0 We suppose our language L to have:

sort symbols X,Y,%s..-

free variables of each BOTL X X' seseYesevr@rnss

pound variables of each sort E,E'seecsNpeccslurses

sorted function symbols £,9se--

sorted predicate symbols P,Qpeee

For logical connectives ve Citka 8,5, 5,400 B i, g

We wish to be able to suppose that our function and

predicate symbols are unaryy, and we want terms and formulae

to be labelled with the sorts of their free variables,and

terms to have a sort themselves. TFurthermorey we want to be

able to add durny free variables

To this end, we introduce the metamathematical notion of

“"type" — a type is a finite sequence of sorts, and will

generally be written using product notation,

is a type.) Also, "s free variable of tvpe XxY" will be

understood to mean a sequence <x,y> of free variables of sorts

X, Y respectively. (similarly for bound variables.)

Note that every function and predicate symbol is typed—a

function has a type giving the sorts of its arguments, and a

type which is the sort. of its value; a predicate has the type

as discussed in the introduction.

(e.g. X,Y sorts => ¥xX

of the sorts of its arguments. Also, with this metamathematical

notion we can think of a function (respectively predicate)

symbol as having precisely one argument - namely an argument

of the appropriate type,

(wvhich might be the empty type 1 =4¢<

o0



We now add new function symbols to L to form L':
(i) if X is a sort, Y a type in which X appears, then for

each occurrence of X in Y, we have a new symbol WY (or

X

simply nX) with argument of type ¥, value of sort X.
(Unfortunately, the notation doesn't distinguish between
various occurrences of X, contrary to our intention, but
never mind!)
(ii) if ¥ is a type, we've the new symbol ﬂ{ (oxr simply'!Y)
with argument of type ¥, value of type 1, the empty sequence.

We use L to define terms in the usual manner, except that
we note that any term is typed: we say a term t has domain Y
if Y is the type giving the sorts of the free variables
occurring in t, and codomain X if X is the sort of (the value
of) t, and use the notation t: Y - X. Also, the new symbols
of L'\L are terms with evident domains and codomains = we do
not include these in. the inductive definition of terms, but
will include them in that of formulae, to enable us to add
dummy free variables of the evident sorts. We will write
nixx , say, also as wixy(x,y) to indicate the free variables

we suppose it to have. Of course, its value is of sort X.

So, for example, if x is a free variable of sort X, then
X is a term with domain and codomain X. Although intuitively
Wixy(x,y) is just x, this térm has domain given by the sequence
XxY -(using product notation.) (See the appendix for a more
precise formulation of the structure imposed on the set of
terms. Aithough irrelevant to the logic, this structure will

be used when we come to do some category theory later in

Chapter II.)

We define formulae in almost the usual way, except that
we note that each formula will be typed (with the type giving
the sorts of its free variables), and ve require that ¢, o
have the same type if ¢v¢', oad', ¢2¢' are to be wffs. (The
following are synonymous: "¢ has tvpe X%, ¢ is . over X";

“the free variables of ¢ have sorts as given by the type X".

So "sentence" = "formula over 1".)

1.1. The deduction rules and axioms are based on the standard
natural deduction formulation of intuitionistic logic, as
given, e.g., in Prawitz [353,[36]. Explicitly, LPC has the

following rules:

(AT) ¢ o' : (AE)L no! (AE)R oadt
ong" ¢ ¢
(6] [¢']
(VI)L é (vI)R ¢ (VE) ¢vo - A 6
ove! Vo' Y
[é] : :
(>I) _9* (sE) ¢¢' 6
600" ¢!
(V1) ¢ (x) (VE) VEO(E)
Ve (E) et
[o(x)]
(31 _e(e) R DL e
g (&) ¢’
(¢ § TOEETT 20 iy oy
i 9
X

(In (}), (respectively (1)) ¢ is an atomic formula over X,
different from Ty, (respectively lx), vhere Ty, (respectively

lY) is T (respectively 1) with a dummy free variable x of




type X. Also in the above, [ ] 'indicate a discharged .
assumption.)

“There are the following réstrictions on these rules:
In the rules (VE), (3I) the premises and conclusion must
be formulae over the same type (i.e. with the same free
variables.) In the rule (VI), x must not occur in any
assumption on which ¢(x) depends, except possibly as a
dummy free variable, in which case the duﬁmy occurrences of
X may be discharged.
In the rule (3 E), x must not occur in 3J&¢, in ¢', or in
any assumption other than ¢ on which the upper occurrence
of ¢' depends, except possibly as a dummy variable in the
upper occurrence of ¢%, and thé assumptions on which that
occurrence depends, in which case the dummy occurrences of

x may be discharged.

Remarks: Note that there are some "hidden" restrictions,
due to our formation rules for wff's; e.g.we can only apply
modus ponens (sE) if ¢ and ¢' have the same free variables
(for otherwise ¢o¢' isn't a wff.) The point of these
"homogeneity" restrictions is to prevent us from "accidehtly‘
introducing a type, about which we may know nothing. (For
instance, it may not be non-empty.) The similar restrictions
on the (VE), (3I) rules have been mentioned briefly in the
introduction - e.g. in the (VE) case, without some
restriction, the premise can hold vacuously, and yet the
conclusion makes a positive assertion which need not hold.
That such restrictions are not needed for the (VI), (3E)

rules is seen by thinking of them as follows:
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(VI): If we can deduce ¢(x) without referring to X, then we
can easily deduce VE¢; (i.e. "we could deduce ¢ (§) for any
(other) £.")

(3 E): If wve can deduce ¢' from ¢(x), using x only in ¢, then
we can deduce ¢' from JE¢; (i.e."we could deduce ¢' from

the knowledge that there was some ¢ for which ¢&.")

These do not depend on the (interpretaion of the) type X being
non-enpty.

Note that for any derivation of our svstem, assumptions
and conclusions are formulae over the same type (i.e. with
the same free variables.) We generally follow Pravitz'
notation in [ 361, when discussing derivations, (with obvious
changes in typographical conventions.) Also we adopt the
convention that T (or its variants Tx) is not considered an

assumption: so e.g. T I ¢ is ecquivalent to F b.

A word about notation: we will frequently write formulae
without explicit mention of dummy free variables that nust be
present, if the formation and deduction rules are to be
satisfied (as we have already done above). It must be checked
each time we do' this that the necessary dummy variables can in
fact be added, to make sense of what we've written, in the
' context of the given rules. We will say a derivation (P): I+~
is over X if the formulae in Tu{¢} are over X. (So every
derivation is over some type X.) Finally, we denote by (id)
the "rule" % (rewriting ¢ a second time),'which should be

understood as béing merely the top occurrence of ¢o. 1850, e.9.

%%g' EIE; and $%$'§%§; are both just (VI)L-)
v A" .
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i We will be interested in a number of operations on
derivations in LPC. These fall into three main groups:
reductions, expansions, anq pefmutations. For the most
part they are taken directly from Prawitz [35] or [36];
as I wish to think of them as 2-cells, they will be written

haemmamwsmimmﬂemmMSmdm®MM&

Reductions
Po .Pl -
(A Red)L o U iy o
oy !
¢
3 Po P1 p
(A Red)R o v A 1
P18 2 o
w
Po 141 Y] .
(v Red)L o) Pl P2 g ?
e i g gl
0 0
R e iy -
(v Red)R 5') Pl P2 o
6 2
6
[¢]
Pl ;
(> Red) el Po o
651 : [d]
= Pl
Y Y

16

P (x)
(V Red) ¢ (x) P(t)
YRMIEL e siE)
¢ (t)
Bttt [o(x)] il 40
(3 Red) o (€) ?q(x) o (t)
JE6 (E) ) VI
v v
¢ & '
(! Red) p = (!) (¢ the sole assumption
o i of P)
X' X
tx i
(1 Red) P PR S (LK the sole assumntion
¢ ¢ sy Al

Astrictly, (2 Red) and (1 Red)apply only when ¢ is atomic and diff

from Ty, (respectively Lx). If ¢ is Ty (respectively Lx)
these reductions will be understood to be the identity
derivation. Also, if ¢ is not atomic, the reductiqns will

be to the appropriate derived rule.)

Expansions

P
(A Exp) P RS oA Al
oAy 0 \
: : oA -
P
o Lol Wl
(v Exp) [oévil ovy vy
Baoi, W Ry culgcn¥y
5] VY 6 6
6

(provided the RHS is a derivation)

nt
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(> Exp) p P
ooy ==> 931{3 [Q]
s i
LELY
Al I)
(VExp) VE¢$E) =5 VE$(E) (x not free in P or in VY&¢)
¢ (x)
VE$ (E)
" [o(x)]
2 [3E6(E)]
(Exp) (JE6(E)] =—> "o it
Py ‘ &0 (E) ]
6

8
(provided the RHS is a derivation)

1.3 Pernutations

(v Exp) and (3 Exp), in the forms above, are more general
than the versions in Prawitz [36 ]; he gives these operations
only in the case Pl is the identity derivation, (so 6 is ¢$vy,

respectively JE¢(£) .) A consequence of these more general

forms is the following operations:

(61 [y] Lo [v]
(v Perm) P Q R 9 B
ovy 8 8
[e3 el
B ===> P 8 S
S v
¥ L e g
&
: [¢ék)1 o(x)]
(3 Perm) 2 Q
3eo(e) 6 =
[el s P [
s Aeo(E) ¥
i Y

(for each: provided the RHS is a derivation)
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(Prawitz' VE reduction and 3 E reductions are special cases

of these.)

A proof of this claim: (for 3 ; v is similar.)

w(x)]@ @ wxn@
P Q o] Q
- 1 ¢ A S | Y e (R
) = [61l
s P s
Y 350 (E) e 8
G
[o(x)]
Q
by (3Exp): Py is 3Jeo O
{61
]
¥
[¢(x)]®
Q
[61
P S
=> Je¢(E) i ® by (3 Red) applied to
A
Lo (x)]
¢ (x) Q
ET 9
6

Remark: This proof tacitly uses the definition of composition

of 2-cells for the 2-category LPC, in 824

If we wished, we could suppose (v Exp) and (3 Exp) in the
form given by Prawitz; then we would have to suppose (v Perm)
and (3 Perm) as given above, from which we can derive the

forms of (v Exp), ( 3 Exp) given above. (It will be seen why

vE reduction, JE reduction are not enough - note, for the
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moment, that these special cases do not give the more
general cases. This can be seen by considering the followihg

derivations, both in normal form:

2 (37
- 1IN
-7 2 (vI) and (3E¢) vy (vI) )
(3 Ed) vy

Proof of claim: given Prawitz' v expansion and (v Perm)

we can derive (v Exp):

o [s1 [wl
:
i ho W L LA by Prawitz' v expansion
ovy => Lovy]
41 1
6 6
[o] [yl
Covyd [ovil
Po Pl Pl by (v Perm).
=> ¢vy () 8

Remark: Again we have tacitly used the definition of

composition of 2-cells in LPC,

Remark: There is no need for permutation operations for
the other logical symbols, because of the nature of the
rules of natural deduction. (And so one might be tempted
to treat (v Perm) and (3 Perm) as equivalences - an idea we

shall return to again later.) For instance, the analégous

(A Perm) would be

20

¥s o poig
rel [61 re1 rel
QR===>QR
0 Vs, e Wi 900, T
AP oAy

This, of course, is the identity operation.

It is more or less a matter of personal taste which
operations one chooses as basic and which are derived. TFor
the rest of this chapter we shall be treating all the above

operations as pasic, (with the evident relationships as

given in the proofs of the claims.)

o




§2 LPC as a 2=-category.

It will be evident by now that we may think of LPC as
a 2-category: the objects are férmulae, the morphisms are
derivations (with at most one assumption; a derivation
with no assumptions is regarded as a morphism from T), and
the 2-cells are operations on derivations, as given in §1l.
This construction may be carried out for any theory T in
LPC, of course. (In this context, a theory is viewed as
having not only (non-logical) rules of inference, but also

(non-logical) operations on derivations.)

(In fact, LPC has the structure of a fibred 2-category,
simjlar to the construction of Chapter II. The base categorv
is comprised of types and terms, as it is there, and the
fibres are the 2-cate§ories as'given above, reséricting the
formulae to those over the given type. However, this

structure will not be used in this chapter.)

Composition of morphisms is defined in the obvious way;

(it may be described as "concatenation of trees":)

. 8

given P and Q , QP is the derivation [y] - that is,
v 0 Q
0

"write out Q, and replace each top occurrence of y by P."

Identity morphisms have already been defined (in §1.1):

the. identity for ¢ is % (or just ¢). (This explains the

convention that % is to mean only the top occurrence of ¢, so

that this really is an identity for the above composition.)

Composition of 2-cells is defined in the evident way,
as composition of operations:

givenP:Q,R=¢P\!‘c SlT‘Q)l—e,and

2-cells (operations) a :P =>Q, b 0 =R, ¢ 8 =T,

then b.a : P = R is the operation b.a ("first perform

then b"), and ca:SP = TQ is the operation defined

a,
piece-wise:
b 0 0 ¢
¢ : 4 p 0 Q
[yl = [p] => [¥] (or equivalently [g] = [3] = [gl
S 4 T i T b
A <P ‘ Ta i 0 Sa 9 c) 6

(This definition makes sense because all the operations we
have considered (and will allow to be considered) have operated
only on a part of a derivation: they have allowed us to leave
unchanged the top of a derivation, and (tacitly) the bottom
of a derivation. This is jllustrated in the proofs in §1.34)
Identity 2-cells are just the identity operations.
It is easy to verify that these definitions do indeed
define a 2-category: the proof of the interchange law for
horizontal and vertical composition of 2-cells is implicit

in the definition given above.

Convention: 'As far as possible in this chapter we shall

follow the convention that identity morphisms will be

written 1( and identity 2-cells as id(.). Also, generally

)
objects of A and B will be written A,B,C,.cee morphisms f£,g,h...,
and 2-cells a,b,c,..., the 2-category they belong to being

understood from the context.




§3 Structure of connectives and quantifiers: Concrete

adjointness.

3.0 We now come to the main point of this chapter: what is
the structure of the connectives and quantifiers? The form
of the deduction rules suggests they satisfv adjointness
properties more or less analagous to the categorical notions
of product, coproduct, exponentiation, image, and dual (or
universal) image, and in fact this analogy is given mnore
credence by the operations we have mentioned in §1, which
suggest such structure as units and co-units for some
adjunctions. However, it is reasonably clear that strict
adjointness cannot be expected, so we rnust see just how the
notion has heen weakened.

There are two main ways adjointness may be expressed:

(i) in terms of hom-sets ("concrete", in Butler's terminology
[051,[071), and (ii) in terms of units and co-units ("formal",
in the same terminology); these give rise to two methods of
weakening the adjointness, by replacing various equalities

of morphisms with "comparison 2-cells". We shall look mainly

" at the first method, with a fow words about the second later.

3.1 The general context will be the following:

We are given 2-categories A and B and a pair of lax
2-functors F: A » B and G: B + A. (We intend a lax F - G.)
We shall see later in what ways the word "lax" is to be
understood, but in the case of these 2-functors, it will
alvays be the case that it is to mean the following:

F and G are functions from objects to objects, morphismms

to morphisms, and 2-cells to 2-cells. Thev are strictly

24

functorial at the level of 2-cells: °

F(ba) = F(b)F(a), G(b'a') = G(b')G(a'), (similarly for

vertical composition)

F(idf) = ide, G(idq) = ing.

[] 5 B ety AN
For any morphisms A —g—> B —§—> C of By Al ¥V g

of B, there are 2-cells

G . 5 (] = G( lfl)
W55y iomagr (5) eem BUERYvo T SUIME Jon 07
i G i
Foo1g, = Py, ages gy = 6ly0.

We shall discuss coherence conditions for y and 1 later.

3.2 There are lax 2-natural transformations

i s (e, =) wos (=, G) and Xis vy ) > (Psy ~is

i.e.
That is, for objects A of A, B of B, there are functors (i.e »

morphisms in Cat):

: 3B) +Hom,, (FA,B)

Kp gt HomB(FA,B)+HomA(A,GB) and AA’”.HomA(A,CB)» ﬂﬁ B
’ - -

together with other conditions to be discussed later. (We

intend that k and A be adjoint: for v and 3, k- A; for A

and V ’ A { » U“for tunatelal will fit poorl‘ into this

We shall look at v and A fairly closely; 3 and V can be

treated similarly as will be evident from considering the

deduction rules and operations. We shall then see that there

are two different notions of weak adjoint suitayle for v, 3

on the one hand and for A N oﬁ the other, as expressed by

the two relations k — A and A 4 K.

then, to find that > behaves somewhat as a mutant.

It will not be surprising,
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3.3 For the cases v and A, we have the following dictionary:

B .
‘K 1 1pe x 1w LPC
B : LPC LPC x LPC
F: y diagonal
G : diagonal A

That is, for v, given formulae ¢, V¥, Fv(¢,w) = ¢v§ and
G'(¢) = (¢,0). For a, F'(¢) = (6,0) and G"(6,¥) = ¢Ay.

| i b [%g [wl
Given derivations P, Q, ., F (P,Q) = Q0 , and
! y' " !
$vy _¢'vy! o' vy!
oAy gAY PR
k)
A ¢ v
G (P,Q) = /P Q e
El ]P'
o' Ay’

The remaining definitions (of F' and G" on 2=-cells, and of

the diagonal 2-functors 6" and F") are obvious.

It is not too difficult to see that the dictionary can

be extended:

ol A
IF: (v Exp) identity
IG: identity (A Exp)
YF: (v Perm)+(v Red) identity
C: identity (A Red)

For example, consider 1G for A : let ¢, Y be formulae;

G .
then ‘<¢-W> is the operation:.

BAD redy e 228 2R 4 )
) § i
78]

F
similarly, consider Yy £or X

P
be derivations; then Y(R,s),(P,Q)

¢ ¢! v o'
s det P R diy Q8B
o' ¢ 3

is the composite operation:

®
[yl
[g@ 8 (11 @ t%]®
R

(T)"v\,!l" @ ir 14 e

dulbih AL
ovy  o'vu! o'vy! C) o "
vy ! o"vy"
o vy

61®@ 31 @ 1@ 110101 @r1 @
t 4 R S Q R S

q; ¢" !,’ w

9' ¢)II L

(t)'V\'J' (,")“V\!)" ¢“V\U" @ (b'v\n’)' Q"Vk')" Q"lel @

¢vw ¢|| Vl,’)“

oV vy" () ==> (v I':d)

¢ll Vl!)"

[M@ [kU]@
P Q

¢'] [v*l
Eoad R S"
gll !
UL il . sl i il T
¢'l vq}"

3.4 Given such data, it is natural to ask whether the

following coherence conditions hold:

£
given morphisms A %;;

g
By C 9—> D and 2-cells £ §=o £
gl

‘ g =§> g' in A, the following diagrams cormute:

(1) F(lB)F(f) = F(le)

iy
5 id

1. P18) w= F(£)
FB 14

(ii) F(f)F(lA) == F(flA)

r f‘ia
FftA id
F(£)1 = F(£)
FA 34




So let us see how these prineiples give us the coherencc

F
YhygFf conditions: (iv) is satisfied in any case (without need of
FhFgFf ==——— F (hg)F£ : ; £
FhYF r {} YF (r), (11), or (III)),in view of the piece-wise definition o
g,f Y ha T . i
Pt FhF (gf) =2;2£=; F (hgf) horizontal composition of 2-cells. (i) and (ii) are cases
of (I), with (III) allowing some permutation to intervene,
Fbra (in the case of v.) For example (for v) (i) says that
FgFf =—— Fqg'F£!
v ﬁ U e : expanding (the top of)
(iv) 9,£ F(ba) 9% £
[¢]CD, [¢]() g r ]C> [w]CD
(Analagous conditions for G.) P Q ® ® ¢ 2
' N [4] ™~ LYl g' o
—-|L T v V1 [AAY J
To satisfy these (and other) coherence conditions, we L i s @ to s AR o
o - vy ol e1vit
can adopt the following (not too unreasonable, if rather o'vy’

vague) meta-principles concerning operations:
then permuting this (in fact, using only Vi Reduction) to

[¢]® w]@ [¢J® [¢J® i
P 0 :

(I) An expansion followed by a reduction is (as close

as can be expected) the identity.

P Q |
(IT) It does not matter how you reduce. [ jCD § e [h]GD ¢! ' !
Bigd ¥ !
(III) It does not matter how, or (to some extent) even - oV  SolbA . ial . b7 ® ey Hhi M M/ M @ f
LRV o vy’
whether you permute. Vi) $'vy D)
lewl

(Equivalently, we could examine each coherence condition as

i i derivations to arrive
it appears, and postulate it as a condition on our operations. and finally reducing the evident S“b9erl :

; iqi i i > identity
This would amount to a case-by-case description of the meta- again at the original derivation, is to be the 4

principles above.) operation. (iii) is similarly a case of (II), with some

v case.
In keeping with principle (I), we are tempted to reqard (II1), in the

ce
(v Perm) and ( 3 Perm) as identity operations, although we I will not dwell long on these and other coheren

are analagous
shall continue to note any uses of permutation, so as not conditions, other than to point out that they qJi

ocedures
to commit ourselves unnecessarily to such a view. Of course, (at the level of 2-cells) to the normalisation proc

- tions
from this point of view, (III) becomes superfluous. of [36G] (at the level of morphisms), which take reduc

and certain permutations as equivalences, treating introductiocn

SN




and elimination rules as "reductions" and "expansions"

of formulae. They are more complicated when set out in

full of course, partly because of the permutations for v

and 3 , but also because derivations are more complicated

structures than formulae. One is at liberty to impose

. IO |
)

) 6
A (BY o4 B GviR .
0.6¥) sab - gAY
¢ v

(The actions of Kv, Av, KA, A" on 2-cells (operations) are

obvious.)

coherence conditions or not, as one pleases; the corresponding i 3.6 k and A are lax in the sense that strict naturality

2-categorical structure will share such properties or the

lack thereof.
3.5 We come now to the lax 2-natural transformations

(F-,-) —— (-,G-), and extend our dictionary:

A

. 2
K: (vI) (AI)
As (VE) (AE)

These are defined as follows.

ovy o 7 v
For -v: s - Jot P g Qrp-Robo-derivationseThen (k = )
0 0 6
V0. SR K
K (P) =/ ovu ! dvi and (A = 1Y)
$v)e P P
0 0
¢ ¥
(Q,R) = 4 -
($.¥).6 vy 6 ®
0
¢ 0 0
For Ac3) 16k Bl G o be derivations. Then (k = «
dAY $ ¥
6 0 &
(Q,R) = 0O R and (A = x")
86y o 1

is replaced by the existence of 2-cells as indicated in
the following diagrams:

¥ o :
(For v and 3 ): Given morphisms A' =%—> A‘in A, Bi—> B!

in B, there are natural transformations (2-cells in Cat)

K A
(FA,B) —2B 5 (A, 6B)—BEB— (FAB)

(Ff,B)l kep e, ffl

(FA’, B) ———— (A", GB) =—+ (A", B)
“x,B

(FA’, g)l kﬂ,‘gf\, l(A Gg) IA/ l (FA',q)
(FA'B)—-——->(A GB)-—*(FA B’)
-0

5.8) (1)

(Definitions: kg o = Knu Kg g 7 fg g7 Lar,o%s,n")

We shall say k' is lower and 2 is upper, following Butler
fo713.
For A (and ¥ ), the directions of the natural
A
transformations k; /. are reversed, so the x is upper and

A" is lower.

A ] ; g
) : This gives another section of the dictionary:

i




31
44 &
. { 1 ol
kA,'g. idenkity (A 3ec)
Le pt (v Perm)+(v Red) identity
’
RA,'g: (v Perm) (A Red)
kf’B: (v Red) identity
" el el
For example, consider kA'g + for A. Suppose g v B
’ v

are derivations, (i.e. an object h of (FA',B),) and that

¢ 1% 1
P , Q are derivations, (i.e. a morphism g of Bs)  Then
sy . ;

(A',6g) kpy y(h) is the derivation
4
6' el 6' el
' G RS
g ¢ v
O AU [
@ v
P Q
Q' ![l
Grap!
6! 6'
R S
. [l CL[wl
and KA,’B,(FA',g)(h) is the derivation P| ?- ;
(plAlpl

kA.g is the operation (A Red) applied to the subderivations
4

above ¢' and above ¥' in the first derivation, yielding the

second.
¢ Y
Analagously, consider zf B for v. Suppose R , S
) 6 6
are derivations, (i.e. an object h of (A,GB),) and that
o' y!

P, Q are derivations, (i.e. a morphism f of A.) Then
¢ v

(FE£,B) A (h) is the derivation
A,B

[¢‘]@[‘Ié']®

P
2 v (o] ®[\P] @
s'vy ' BVY BV ® R S
v ¢} 6
: ®

A,sn(£,GB) (h) is the derivation
A;B

[¢']® W']®
P Q

[¢] [yl
R S

\ ¢,'V\!}' 8 6 @

0
‘e n is the composite operation: first (v Perm) - in fact
I
only VE Reduction = to get

L@ o

o'l
P [¢]® [w]® __UL_ [4};]® [gj@
[} R S ]
ovy 8 ] @ GV o ) @
o'vy! e 8 Ol
0

and then (v Red) to get AA.B(f,GB)(h).
’

¢I d’,
i Finally, consider %., for v. Suppose R , - § are
o % Alg 8 0
el
derivations, (i.e. an object h of (A',GB),) and g' a

derivation, (i.e. a morphism £ of A.) Then (FA';g)AA;B(h)

is the derivation

e



XA;B.(A',GQ)(h) the derivation

[6'1 [yl
R ]

(81 (o]
P P
¢ vy 8! 9t
14
el

and lA' is precisely (v Perm).
9

The other natural transformations k,{f are treated

similarly.

3.7 We could impose coherence conditions on k,! in precisely
the same way we did on 1 and y; for example, for kf B (for v),
v

we would require that the following diagrams cormute:

! Ky o ltgsB)
A,B( rarE) KA’B(EIA,B)

id “ ' Jj %
“a,B e (1,,GB)k

%

A,B

KinalY oo 48)
: A'BIELE ¢
(1%) KR",B(Ff',B)(Ff,B) KA"'B(P(f'f),B)
k
f;B(Ff,B) ﬂ kf'f,b‘
(f',GB)K (Ff,B) ===————————— £ i
A'IB i £1 3) W ( 'f'(TB)KA B
(£ ’Gl")“f,B '
(£ R £ 4
or morphisms A" ——> A' —=> A in A.)
k
(iil) KA,,B(Ff,B) ity (f’GB)KA,B
il a,B) a,GB
AlB 1‘ (a,CB)ky
B
KA.,B(Ff',B) ===f=> (f' GB)«k

A,B

(for a 2-cell N'Y 438 2N dn B.)
\~f7_'"

Such conditions are consequences of our neta-principles
of §3.4, just as similar conditions were for x and ¥. . 50y
for example, for the conditions above for kf,B {Tor Vi, 18449
is true in any event, (ii) follows from (I1) (with a.little
(III)), and (i) follows from (I), as is easily seen by writing

out the corresponding derivations and operations.

3.8 The adjointness of «k and A is expressed in terms of
a unit and a counit:

(For v) There are modifications

a whos
l(F-,—) == )Ak-and KA l(—,G—)
(unit and counit respectively); that is, for ijects a of A,

B of B there are 2-cells

: —_— : _— 1 4
ar,8° 1(ra,B) xa,8%a,B 24 Ba . Ka,BA,B (7, GB)

For A, the directions of a and B are reversed, SO that

a is the counit, p the unit.

These are given by the new entries in the dictionary:

i o 3
as (v Exp) (A Red)
B: (v Red) (n Exp)

oV

In fact, for v, given a derivation g - a(¢'¢)'eﬁo is the

operation




[¢] [yl
vy dvi ovY
P = P Py and
6 (v Exp) vy 8 8
6
& d :
given derivations g ’ g ’ 8(¢’¢),e is the operation
[o1 [yl [} Léd Cyl J
1 BB Q="Pl_‘,"__1’g==5
vy 0 8 (v Red) 6 v 8 ) (v Red) 6 ;
0
6

(The case A is similar.)

3.9 We cannot expect a and B to be modifications in the
usual sense, because k and A are lax in different senses,

one being upper, the other lower. However, with the meta-
principles of §3.4, they are as close to modifications as can

be expected - i.e. they satisfyv the following coherence

conditions:

Given morphisms A'

>AinA, B > B' in B, the
£ g i
following commute:
{(FPor 'v)
&L (Ff£,9)a
4 (F£,9)35 5%, B
A'B' (Ff,g)“ \B R'f,gr'A,B
pi¥
XA'B'KA'B'(FL’CJ) M A'B'(f G(‘T)K'A B
i k A .
‘ £ e <r s 9%
VA;B'(F ,G)AA,B (£, Cg)KA B A B
Ka'ts, g n (£,G9)8, g
“arptiapplFsC9) e i (£,Gg)
A B Gg)

. \\!.‘

(For A, reverse all arrows.)

(All three principles are used - for v at least - as
may be seen by writing out the corresponding derivations and

comparing the operations used.)

3.10 All that remain to make k4 A (oxr A H4 «, as appropriate)
are the triangle ecgualities; viz.the following should commute

(for any A, B):

= . ;&“L')
(Br) (ka) = k2 Ky g *a,B A, 2R, B i
\ GA,BKA,B
id
“A,B 7
Py ===Aé=é§==¢
(AB) (ad) = Az Ay g Aa,B%A, 5%, B. I
|
AABBAB il
id _ il
: Aa,n ; il

Claim: These two conditions together express the strict
form of principle (I):

(Is) An expansion ‘of an occurrence of a logical symbol,
followed by a reduction of the same occurrence, is (provided

the composite is an endo-operation) the identity.

For let us look at this condition carefully to see just
what it means: -
(For v) To be able to.expand an occurrence of v in a derivation

means that the derivation has the form
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PO
[év] , whexre the occurrence of v shown is the one to be
Py
N

expanded. After the expansion, we have the derivation

i

GV 0 6

Now, this is supposed to admit a reduction of v at one of
the occurrences of v that correspond to the original one -
viz. to either that occurrence at the bottom of Po (case i)
or that at the top of Pl (case 1i). 1In case i, P° must then
be of the form Q. (or of the form Q o)
e,
ovY 4 ovy

Thus (Is) says the composite operation

Q
(]
L] [yl
ads. S (v Exp) ovy]l [ovyl (v Red) Qo
[¢v¢] =mmm—————— () P P spsmemmas> ¢
e sl Tovyl
Pl bV ¢} 0 Pl
] Fi, )

(or similarly, mutatis mutandis, for y) is the identity.

This is precisely the equation (BE)(Ka) = k, (although there

'
Q, need not be explicitly mentioned.)

: [e] [yl
In case ii, P, must have the form Q Q;
v 6 &)
6

if we are to be able to apply (v Red) to the occurrences

of v in the top formula of P,. (This is not quite true =

[é] [¢?
Py could also have the form Qi Q5
ovy 8" 8'
el
3
0

but this can be ruled out on other grounds - viz. first

expanding, then reducing gives the derivation

[¢? [W}
9 Q
o' 87
P, 0y Q,
A 0 5
)

vhich equals the original derivation Plpo only if Q3 is the
identity; i.e. we do not have an endo-operation.) |

Then (Is) says the composite operation

1wl (@]
(61 [yl (¢1 0, q, [vl g o
P, 0 R 9V 6 6 ge¥ § o,
ovy 8 g —_— vy e 6 |
(v Exp) 2]
)
[o1lY]
P, Q; Qp
= v 6 0
(v Red) 8

- os %, rre e o 3 et o g T
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is the identity. This is precisely the equation (A8) (a)) = A
(although there P, need not be explicitly mentioned.)

(And so we have proved the claim.)

Of course, A is similar: (ka) (Bk) = k says that

6 o 00 BB )

29 PO Pg PO

S mnpefl © GF 1 ey gl D

oxy 8 BEp) gap @ (A Bed) O
PAY

is the identity; (a)) (AB) = X says that

] 6 6 6
P P P P
Al At G AY GAY === $AY
é (A Exp) 0 P (A Red) o
IS
¢

is the identity (and similarly for y, mutatis mutandis).

These together give (Is) for a.

3.11 This completes the description of the weak hom-set (or

concrete) adjunctions suitable for v and 3 on one hand, and
for A and V on the other. Not surprisingly, o does not
have so nice a description, as it showus some of the character-

istics of each, as shown by the following tabla:

v

il R 1 vl ) 0
T LPC

H Iz 1>

\'4

.
S eessccce

9]

£ i Vi ee Uiagonal
1F:........ (v Exp)

1G:........ identity

a

¥ tenessees (v Berm)+(v Red)

YG:......¢. identity

e S L S S v
Ar anddiiis o B

k $iskana ddentity
Alg

fo
LPC
LPC x LPC
diagonal
A

identity
(A Exp)
identity

(A Red)
(a 1)
(A E)

(A Red)

sense of kA,g:lower (or 'strict) upper
’

: T + Red
%,B....... (v Perm)+(v Re )

sense of Ef,B: upper

zA;g:......

3 per
sense of iA;g uppe

(v Pern)

(v Red)

4 Sececes
TEyB

sense of kf'B: lower

identity
lower (or strict)
(A Red)
lower
identity

upper (or strict)

40 I

=

LPC

LPC
(=) Ad (fixed ¢)
o> (=) (fixed ¢)

(A Exp)
(> Exp)
(A Red)

(> Red)
(A I)+(> I)
(A E)+(> 1)

(> Red)
upper
(A Red)
upper
(> Red)
lovier
(A Red) il

lovier

These last entries mean that the diagram 3.6(i) (for v)

and the co-diagram (for A = reverse the 2-cells only) are

replaced (for > ) by

(Biy B) et (A, G sty PR, B
dsnis ] |
(FA',B)——> (A", CB) >(FA',B)
l kfl l
(FA',B") >(A',GB") >(FA',B")

K

e e et

(1)
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Even worse, we no longer have the modifications o,B assunption as well. 1In that case we could drop all

and so do not have the unit and counit of a desired references to A in the description of >, and give an analysis

adjunction. The best we can do is the existence of that resembled (in spirit, at least) that for a and V. .

e il (The basic outline of such an analysis is already to be seen
i > table in §3.11, and in the remarks re unit, counit,
a': Ak > (F(1.),=) and B':kX > (=,G(1)). in the table in ”

3 and triangle ecualities for > above.) It is clear how this
(These are given by (> Red) and (A Red) respectively.)

can be done - however, anyone who has worked with multi-
While o' is almost a counit, B' is nothing of the sort -

categories will, I hope, forgive me if I do not give a completec
what should be the unit is really

analysis of the (lax) multi-2-category structure of LPC here.

(-' lf) :

l(_'G_) » (—'G(l_)),

given by (> Exp). (Compare with v and A.) The meta- -
principles of §3.4 give us all the coherence we could want,
but there is no way to write out the triangle equalities

(which should express the strict principle (Is) of §3.10.)

3.12 There are two ways out of this problem, which are more
or less equivalent, to some extent. First, we could "factor
out by aA"; that is, we could introduce an equivalence
relation on derivations which would have the effect of making
all the A 2-cells equivalences, in the manner of the next
chapter. Of course, doing this trivialises much of what has
been said so far, and raises the question - "why reduce
only A; why not reduce all the logical symbols?" In short,
this solution takes us quickly to Chapter II. The second
solution is to drop the restriction that morphisms have only
one object as domain, allowing a finite set of objects as

dorain, That is, consider derivations with more than one

S e SR N L RS R R e e . ‘“



4 for gq: B —> B' a nmorphism of I3, there is a 2=-cell
§4 TFormal adjointness ’ ] wl

4,0 It is equally possible to express the proof-theoretical

e FG(g) == ge

i ) Bt
structure in terms of weak formal adjointness; i.e. in terms

&l Th s not quite right - we shall see ve must nodiry this
of units and counits. This works reasonably well for A,V , (This is not quite rig L o

last condition for v and 3 . Naturality at the level of
and >, but not so well for v and ‘3. ; in these latter cases, it :

: z 2-cells will be satisfied.
it is necessary to go outside the usual framework, using some i

of the notions from the concrete adjointness of §3, to describo Furthermore, there are modifications

the structure. We will give a brief outline of the structures d: (eF) (Fn) == F(1_); b: (Ge)(nG) ==.G(1 ).

obtained, and compare them with those of §3. It will be clear
. . i L4 " atever coherence we wish, as we did in §3.
from this discussion that the weak adjointnesses suitable for it o et i 5 g
these proof-theoretic considerations do not hav
p have (natural) 4.2 mdmrdmnsMwhml&elmﬁmlsﬂmﬂmemwhe

SUibslant aoparety 498 forma} Seserigrions. . 11T oy described this way, we shall compare this set-up with that

b ni i a .
e kept in mind that these descriptions are not character : of §3; this will show just why this set-up does and does

isations.
. sl not work in the various cases, and will point out its

4.1 We begin with the same initial data as in §3.1: two inadequacies.

2-categories A,B, and lax (in the sense there) 2-functors For all connectives and guantifiers, n is given by the

P introduction rule and e by the elimination rule: in each

A > B

e
G

then f. & o (1 .) and & = X {1. ). Msing this, we
Then, there are supposed to exist lax 2-natural transfor- A A,FA "FA B GB,B "Gb

may construct ng and eg: first notice that then

)i GF(f)nA.

nations

Y]Af e (f,GFI\) KA,I“]\(IFA (A, GFf) KA;FAI (thl) i

n s 1A > GF  and & 3 FG e

lw

gey = (FGB,@)Agy pllgy)i €y FO(9) = (FOGB gy Uy -

These are lax in the following sense: Consider the case of >: we may take ne to be the 2=-cell

for f£:A' —> A a rorphism of ‘A, there is a 2-cell ¥ K.y
' GF(£)ny, = (A',GFE)Kaypny (ppe) DL, ), (FAJFD) (1

0

ra*)
ng: GF(f)nA. = nAf ;

k
(FE,FA) (1) whalibs (£,GPAYR, Ls (eg) £ .

T RaIFA A, FA' FA! T Ma

case, if A (respectively B) is an object of A (respectively B

m



Similarly, we may take eg to be the 2-cell

: 3 '
epiFG(9) = (FGG,B Ay (Lgp) =B A 1, (Gg,GBY) (1,0)

Lan,q

= Agp,pr (6B/G) (15p) =22d_. (FGB (1

1D Argp,plep) = 9eg -

Looking at the table in §3.11, we see that this works
because kA',g and kf,B (respectively kf,B and lA',g) have
opposite senses. The same thing will work for A and v

I

because k and 1

£,B £,8" being identities, could have their
senses reversed if we so choose. For the same reason we

can construct ne for v (and 3 ), but unless we "factor out
by (Perm)" (ie. consider (Perm) as an equivalence) we must

replace the existence of eg by something weaker: there are
2-cells

[ y 1 g
il s 5
eB,FG(g) AGB,B.(Gg) gey -
(There is no notation for XGB B|(Gg) in the "formal" set-up -
’

we must use the )\ notation from the "concrete" set-up.)

4.3 The modifications d and b are somewhat more complicated
wvhen expressed in terms of the notation of §3; they depend on
the expression of Ff (respectively Gg) in terms of A, k, and
f (respectively g). Tor example, for the case of v (and 3 ),

we have the equation (for A' e A a morphism of A)

£} =
F(f) AA;FA(f,GFA)KA'FA(lFA) #

(This is more familiarly written Ff = AA',FA("Af)' or even

Ff = NI 1) Then for an object A of A, d, is the 2-cell

) e

€pafp = (FA'EFA)AA,FGFA(HA'GFGFA)KGFA,FGFA(IFGFA

) id ‘
%@:g
AA,FA(A'GEFA)(“A'GFGFA)KGFA,FGFA“FGFA)
e W ORI A5
iy ora’ fra

= A, pa (NarGFR) (GFA,Gepp) Kpp , porA FGFA

—— (nyrGFA) k (FGFA,EFA)(IFGFA)

XA,FA GI'A,FA

= A (n, ,GFA) A 'y LY faa.rn
0N pa B! KGra,rAGFA,FA ' “GrA

= A (nA,GFA)(l = A

A, FA fl) = F(lA) .

cra) A,FARA,FA TR

The other constructions are more or less similar - we
omit further details. (One remark, though: in considering
>, it is necessary to consider k¢ and A not only for >, hut

also for A. This should not be too surprising, howvever.)

4.4 Remark: Mith this presentation, there is no clear-cut
statement of principle (Is), the "triangle equalities” of
§3.10. To be sure, the three meta-principles are to be
found in various coherence conditions, just as thev were in
§3, but we might expect that (Is) be singled out for greater
attention, as ‘it was there. Considering Butler's proof of
ecuivalence between (one type of) formal and concrete
adjointness [06], one might consider sone condition like his
condition (A) and (B). (For they correspond to his (K) and’
(L), which are our triangle equalities.) If one writes out
the corresponding diagrams, one quickly realises that this
will not do. His (BA) is commutativity of the square (in

his notation)
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R B

Y\l e W DBRA<BA O
id " lBBA-aa

1 0y <M

BA BRA«aDA-q

In our case, this would have to be replaced by the diagram

i
g pLAa , Gden
cr'n > 1G-F(l)-n {———————— GeF*GFnen
ia ” G l”e’“’"’
(h e
Gr' N G(l)'lF'n < GeF*nGren

To state (Is), it would be necessary to use at least
some of the concrete presentation of §3 - in fact, it is

not hard to see that the formal set-up does not even have

enough notation! This is yet another inadequacy of the

formal presentation.

Chapter II

§0 Introduction

We have seen in the preceding chapter that one does not
get a natural or satisfying 2-categorical structure by
considering ordinary proof theory from a category boint of
view. However, it will be clear that if wve ignored all the
2-cells (treating then as equivalences, and considering anyv
two morphisms with a 2-cell between them as equivalént) ve
would have a well behaved l-categorical structure, with the
expected properties, that A be a product, v a coproduct, and
so on. In this chapter, we shall do precisely that, but to
make life a little rore interesting (and to arrive at a
"smoother" categorical structure), we shall consider nétv
just LPC, but LPCL (that is, LPC with equality.) We shall
also take more seriously the restrictions on LPC vhich nade
it differ from ordinary first order logic.

similar results have been obtained independently by

loens, [32] .
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