MODELLING OOMPUTATIONS: A 2-CATEGORICAL FRAMEWORK

R.A.G. SEELY

Dept. of Mathematics, John Abbott College, P.0. Box 2000

Ste. Anne de Bellevue, Quebec

and

HOX 3L9

Dept. of Mathematics, McGill University, Montreal, Quebec

ABSTRACT

An introduction to 2-categories 1is given by
illustrating how the structure of typed lambda
calculus may naturally be viewed as a 2-category.
In this vein, the structure of computations or
conversions gives rise to notions of lax
2-adjointness.

0. Introduction

It has become standard, when modelling the lambda
calculus (first or higher order), to treat beta
conversion as equality (and frequently eta
conversion as well.) In particular, all
categorical semantics (eg. for lambda calculus, in
terms of C-monoids -- for untyped —— or cartesian
closed categories -- for typed -- (LAMBEK-SCOTT
[1986]). and for polymorphic lambda calculus, in
terms of PL categories (SEELY [1986])) have this
property. However, there 1is no doubt that
something is lost with such an approach, since
beta conversion

(A x in A. a) (b) = a[x:=b]

explicitly equates each stage in a computation
process with the result of the computation.

There are several standard approaches to semantics
of lambda calculus which do not make such
identifications, particularly for the untyped
lambda calculus, and particularly in the setting
of domain models. For example, a model of untyped
lambda calculus may be given by a triple (D,h,k),
where D 1is a domain, h a map D — (D 2 D)
and k amap (D =D) — D, satisfying suitable
conditions. (For the moment, let me not specify
what "domain" means, nor what kinds of maps h
and k are.) In such a context, if h and k
are 1inverse isomorphisms, then D is an
extensional model, where both beta and eta
conversions are interpreted as identities.
Non-extensional models arise from weakening the
condition on h, k: for instance, if

hk = 1d(D D) and kh < id(D)

where ¢ 1is defined, usually pointwise, in terms
of the order on D, then we get a non-extensional
model in which ber=» conversion is identity, and
eta conversion is increasing:

(A x. a(x)) {a (for x not free in a).
Categorically, we would say that k is left
adjoint to h, and so (D D) is a coreflective
subcategory (or subdomain) of D. (SOOTT [1972]
calls (D D) a projection of D.)

Alternatively,
hk = id(D D) and id(D) < kh

gives a non-extensional model in which eta

conversion is decreasing: ie. h is a left
adjoint to k and so (D 2 D) 1is a reflective
subcategory of D. This is essentially the

situation of Scott’s %w model, SCOTT [1976].

Finally, replacing hk = id(D 2 D) with, for
instance,

hk < 1d(D D)

yields a lambda structure with increasing beta
conversion:

(A x. a)(b) ¢ afa: =b].

Pairing with this a decreasing eta conversion,
id(D) £ kh, yields an adjunction: h 1is left
adjoint to %k, (but (D » D) need not be a
subcategory of D.)

This last will be the motivating example for the
structures of this paper. However, we generalise
the usual domain framework by replacing poset
structure with categorical structure. We shall
work with the typed lambda calculus, for
simplicity —— however, I shall indicate at the end
how this extends to polymorphic lambda calculus,
which is why we use the typed structure. The
lambda structure we wish to abstract in this way
consists of the types. the terms, and the
conversions. This will produce a 2-category,
rather than just a category: the types will be
the objects, the terms the morphisms, and the
conversions will be the 2-cells of this
2-category. The point of this 1is that the
structure of =2 given by beta and eta conversion
amounts to a weak ("lax") notion of adjunction,
corresponding in the usual categorical setting to
cartesian closedness.

Proceedings of the Symposium on Logic in Computer Science, 1987

The main purpose of this paper is to introduce
2-categories to computer scientists as a suitable
framework for certain types of semantics. Hence a
few words of introduction about 2-categories might
be suitable. A 2-category is a category enriched
with some extra structure: the hom-sets are
themselves categories. (This generalises the
familiar context in which one has a category, e.g
of domains, in which each hom-set inherits a
partial order from the orders on the domains.
Since a poset is a category, every such category
of domains is in fact a 2-category.) The
morphisms between morphisms are called "2-cells”.
There are various axioms which guarantee that the
categorical structures on the hom-sets "mesh" well
with the original categorical structure (of
objects and morphisms). Of course it is my point
that the general flavour of this may be gleaned
from considering the (typed) lambda calculus:
thinking of types as "objects", it is easy to see
how a term a of type A with exactly one free
variable x of type B may be considered as a
map ("morphism”) B — A. Given another term b
of type A with exactly one free variable x of
type B, so b: B — A also, then a "2-cell”
p: a = b would be a reduction from a to b.
(Notice that p does not affect A, B, though
A, B are implicit in any description of p : p
only acts on a to produce b.)

There is an identity reduction a == a for any
term a, and one can compose reductions, in fact
in two ways: given terms

a,b,c : B— A and d,e : C — B

and given reductions

p:a=b,q: b=c, and T : d =>e

there are evident compositions

gp : a =>c (between terms B — A), and
pr : ad = be (between terms C — A),

where ad and be are defined by composition in
the category of types and terms -—-— ie. by
substitution:

ad = a[x:=d] and be = b[x:i=e].

The main axiom of 2-categories is the "interchange
law”, which asserts that these two kinds of
composition must commute with each other.

A final remark: 1initially we shall suppose that
eta conversion 1is decreasing, rather than
increasing. This follows the proof theorist’s
view that eta conversion is an expansion:

a ¢ (A x in A. a(x)) (for x mnot free in a)
rather than a reduction. As indicated above, this

will allow us to regard beta and eta conversions
as defining a (lax) adjunction in a fairly

standard way. Later, we shall consider the effect
of reversing the sense of eta conversion; this
allows a different formulation of lax adjunction,
but the notion of lax functor becomes less
satisfactory.

Acknowledgement: As stated above, this paper is
primarily intended as propdganda - 2-categories
occur naturally as structures in computer science.
(The interested reader should pursue this in more
mathematically serious works in "2-categorical
logic”, particularly those from the "Australian
school”; some references are given here.) I have
not used the heading "Theorem”, but rather
"Example”, since there are in fact no particularly
new ideas or theorems here; this paper is based on
SEELY [1979], which gives a similar analysis of
first order logic. The main difference between
that paper and this, is that in [1979],
implication is not successfully treated, whereas
here, by concentrating only on implication, those
difficulties are avoided.

This work was completed with partial support from
Fonds F.C.A.R., Québec.

1. 2-categorical preliminaries

We summarise here the basic notions we need from
the general body of 2-category theory; a more
comprehensive introduction may be found in
KELLY-STREET [1974].

1.1 Definition:
following structure:

A 2-category A has the

(1) a collection Ob(A) of objects, or
O-cells: A,B, etc.
(ii) a collection Mor(A) of morphisms, or

arrows or l-cells: a: B — A, etc.

(iii) a collection Cell(A) of 2-cells:
p:a=—>b : B— A, etc.
also denoted

The objects and morphisms form a category Ao,

the "underlying category of A". For fixed A,B,
the morphisms B — A and the 2-cells between
them form a category Hom(B,A), also denoted
A(B,A). Composition in this category is known as
"vertical composition’:

s Tl %,
N

[+

This composite is denoted q*p, or qp if no
confusion results. Furthermore, given 2-cells

Proceedings of the Symposium on Logic in Computer Science, 1987
{Camnntar Sariatv nf the TRER 10R7) AR—71

B Ip_ A cr] _ B
b e

we have a "horizontal composition” giving a 2-cell

d a ad
TN T T
B = C .
¢ Ir 111;:,\ ﬂ:rA
e e

This composite 1is denoted pi¥r, or pr if no
confusion results. (Here ad and be are given
by composition in the category Ao.)

The composition % must be associative and have
as identities the evident identity 2-cells.

Finally, the compositions must be compatible:
given

d a
PO
CLB@-’A
NN,
f c

then (q*p)¥(ser) = (qg*s)+(p¥*r), (this is known
as the "interchange law".) (If we view a
2-category as a CAT-enriched category, KELLY
f1982], this is part of the "functorality™ of
composition: A(B,A) x A(C,B) — A(C,A).)

1.2 Examples: The paradigmatic example (for
category theorists) is the 2-category CAT of
categories, functors, and natural transformations.
Indeed, there is an equation (categories:
2-categories) = (SET : CAT), where SET 1is the
(paradigmatic) category of sets and functions.

Other examples can be constructed from various
categories of ordered objects, where the hom-sets
are themselves ordered naturally, and so are
categories. For instance, the category Q‘l_)° of

qualitative domains and stable functions (GIRARD
[1986]) becomes a 2-category QD by saying there
is a 2-cell f == g just if f { g in the Berry
order, for stable functions f.g : X — Y, (ie.
if f<g in X=2Y.)

Finally, as stated in the introduction, the typed
lambda calculus may naturally be viewed as a
2-category, as discussed in section 2.

1.3 Definition: A (strict) 2-functor
F:A—B sends objects (respectively
morphisms, 2-cells) of A to objects
(respectively morphisms, 2-cells) of B,

preserving domains, codomains, identities, and
compositions.
2-natural

1.4 Similarly, we can define

transformations. K:F = G:A - B assigns to
each object A of A a morphism K(A):
F(A) — G(A) in B, natural in the usual sense
(for a:B — A, K(A)*F(a) = G(a)*K(B)). and
2-natural, in that for a 2-cell p:a =>b:B — A
in A, we have

F(a)

F(B) _{F(p) , F(A) — G(A) =
F(b) (B)

G(a)
F(B) — G(B)_{6(p),G(A)
G(b)

{(where this notation means in fact the horizontal
composite of, on the left hand side, the identity
2-cell id(K(B)) with F(p), and similarly on
the right.) (Note that one frequently identifies
an object with its identity map.)

1.5 Definition: A modification mn:K — L:
F= G: A — B is a morphism of 2-natural
transformations, and assigns to each object A of
A a 2-cell mn(A):K(A) = L(A) so that for

a:B—> A in A,
KW

F(B) — F(A) [n(A), G(A) =
F(a) LW(A)

m

F(B)_ {n(B), G(B) — G(A) .
_/
L(B) G(a)

(Again, F(a) means the identity 2-cell, and the
equation is between horizontal composite 2-cells.)

{(So, 2-CAT 1is really a 3-category!...)

1.6 In sections 3, 4, we shall also examine
weakenings of these notions, in discussing lax
functors, weak adjunctions, and so on. For a
fuller discussion, see KELLY-STREET [1974], KELLY
[1982] and GRAY [1974].

2. The 2-category LAMBDA

2.1 I outlined the structure in the introduction,
so now I shall be brief, mainly fixing notation
and clarifying some technical points. I assume
the reader is familiar with the typed lambda
calculus, as in LAMBEK-SCOTT [1986]: the
following is a brief summary.

Types are closed under the operations A & B, and
A » B.

Terms include variables for each type, and are
closed under:

Proceedings of the Symposium on Logic in Computer Science, 1987
{Mamnntor Sacietv of the TEEF 1987) 65-71

(&I) If a in A, b in B, then <a,b> in

A&B.
(&E) If c in A &B, then (lst c¢) in A, (2nd
c) in B.

(> I) If b in B, x a variable in A, then
(A x in A. b) in A = B.

(®E) If ¢ in A=3>B and a in A, then
c(a) in B.

Conversions include the following:

(& beta) lst<a,b> = a, 2nd<a.b> = b.
(& eta) c¢ = <Ist c, 2nd c>.

(See below why = appears here instead of ==.)

(® beta) (A x in A. b) (a) == b[x:=a].
(2eta) ¢ => A x in A. c(x) . (where x not
free in c).

2.2 LAMBDA is defined as outlined in the
introduction: objects are types, morphisms
a: B— A are terms of type A with exactly one
free variable x of type B, and a 2-cell
between such morphisms is a composition of
conversions (a '"reduction” -- I shall use this
term even though it may seem inappropriate for the
increasing eta conversions.)

2.3 I shall treat alpha conversions as
identities. Furthermore, for simplicity, I shall
concentrate solely on , and thus shall collapse
the 2-categorical structure dealing only with &
by regarding (& beta) and (& eta) as
identities also. This could be avoided by
dropping all reference to &, and generalising
the categorical structure to allow morphisms
A,B, C,... — Z with finite sequences of
objects as domains: such a morphism should be
thought of as an ordinary morphism A & B & C &...
— Z, or equivalently, A—B=>C=> ... 3 Z.

Such notions have been considered by others, but I
think that cartesian closed categories are so much
more natural that it would be a mistake to omit
finite products, (or even a terminal object., for
that matter.)

A consequence of this will be that we shall
frequently use ordered pairs <xA,yB> to denote

variables of type A & B.

2.4 It is straightforward to check that LAMBDA is
in fact a 2-category; most of the details are
either implicitly or explicitly in LAMBEK-SCOTT
[1986]. Only the interchange law needs comment:
in effect we just assume it to be true,
introducing an equivalence on reductions. {The
validity of this may be checked by considering the
corresponding situation in the & 3 fragment of
first order logic, via the Curry-Howard "types as
formulae" isomorphism, where interchange is valid;
see SEELY [1979].) The key to the interchange law
is this:

2.5 Definition/"Lemma': For p:a = b:B — A,
r:d = e:C — B (as in the introduction), the
following reduction sequences are the same:

pld] b[r]
a[x:=d] == b[x:=d] == b[x:=e]
alr] ple]

a[x:=d] == a[xi=e] == b[x:=e].
The common composite is p¥r.

2.6 Remark: Notice that the associativity of
composition of morphisms is equivalent to the
equality

a[xp:=b][y:=c] = a[xy:=bly :=c]]

for terms D—E—bCL»Bi»A.

3. Laxity

3.1 Definition: Given two 2-categories A
and B, by a lax functor F: A —> B we mean a
function that sends objects, morphisms, 2-cells of
A to, respectively, objects, morphisms, 2-cells
of B, which is strictly functorial on 2-cells:
instead of functorality for morphisms, we have
"comparison 2-cells" as follows:

if a: B— A, b: C — B in A, there are
2-cells in B

v(F; a,b): F(a)F(b) = F(ab)
¢(F; A): id(FA) = F(idA)

(Coherence conditions for these will be discussed
in the appendix.)

3.2 Example: Fix a type E:
induces a lax functor

then this

G: LAMBDA —— LAMBDA, G(A) = (E > A).

(Exercise: define G on morphisms and 2-cells.
Then show that in this case ~ is (2 beta) and
t is (D eta) .)

3.3 Definition: Given two lax functors
F:A— B , G: B — A, by a lax semantic
adjunction F — G we mean there is a pair of
lax 2-natural transformations

K:B(F-,~) —> A(-.G-) and L:A(-,G-) —> B(F-,-)

so that L 1is weakly left adjoint to K; this
means the following:

(i) (laxity of K,L} Instead of strict naturality
of K,L, there are comparison 2-cells. For

morphisms a:A1—>A in A, b:B-—B, in B.

there are natural transformations (2-cells in CAT)

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

k,1 as shown in figure 1.

(Note that K and L are strict in their first
coordinate, lax only in the second.)

L

K
B(FA.B) ___A_L__. AAcB) ——2 L praB)
B(Fa.B) l A(a.GB) ! lg(h.n)

AB
B(FA,.B) A(A1 e B(FA,.B)
B(FA,.b) l l Ala,. lg(nl.b)

B(FAIB)-—R—tA(A m)——r——-»nm :By)

Figure 1

(i1) (L — K) There are (lax) modifications

n : id(A(-. G-)) => KL
€ : LK = id (B(F-., -))

so that (K€)+*(rK) = K and (€L)+(Ln) =

(Again, coherence is relegated to the appendix,
where also the meaning of "lax modification” is
given.)

3.4 Example: Fix a type E. If G: LAMBDA —»
LAMBDA 1is the lax functor (E 2 A) of 3.2, and
if F: LAMBDA — LAMBDA is the (strict) functor
F(A) = (A &E), then F — G.

It is a pity, but setting out this structure in
full would take much too much space here; a
summary of the relevant ingredients is given in
Table 1. As an example, consider 7 and €:
Given objects (types) A,B and a morphism (term)
c: A — (E > B),

KABLAB(C) =Az in E. c[xA:= 1st<x,z>](2nd<x,z>)

= A z in E. ¢(z).

So ‘nAB(c) is the eta conversion
c =\ z in E. c(z).

(A &E) — B, with
is the beta

Similarly, for a term d:
free variable <xA, zE>, eAB(d)

conversion (A z in E. d) (z) = d.
The "triangle identities” are the following

principle, which may be viewed as an analogue to
beta conversion at the level of reductions:

(BETA) An eta conversion of an occurrence of a
logical symbol followed by beta conversion of the

same occurrence is an 1identity operation,
(provided the composite is an "endo-operation”, so
this makes sense.)

F: (- &E) k g (& beta)

G: (E=>-) kAb: (> beta)

e’ (® beta) laB: (& beta)

G (® eta) lAb: (® beta)

K: (&I, =I) n: (D eta)

L: (&E. =E) €: (= beta)
TABLE 1

3.5 Usually in defining a notion of adjunction,
it is expected that equivalent "semantic” and
"syntactic” formulations exist, (the former being
in terms of hom-sets, the latter of units and

counits.) For lax adjunctions the situation is
rather more complicated, and depends on the
precise details of the notion of "laxity”. In

particular, for the notion of 3.3, although no
doubt one could "fudge” an equivalent syntactic
formulation, what is striking is that the natural
such formulation fails. (Section 4 gives a
variant - see SEELY [1977] for a discussion of
this case.) Further, it is curious to note the
role eta conversion plays: for if we reverse the
sense of (® eta), then although LAMBDA is no
longer an example of 3.3, it gives nevertheless an
example of a natural notion of lax syntactic
adjunction (which has no natural semantic
equivalent.)

4. Reversing eta

4.1 In this section, we briefly consider the
situation when eta conversion is increasing. The
first remark, of course, is that we must alter the
definition (3.1) of lax functor by reversing

7 remains the same.

(It must be admitted that from a 2-categorical
viewpoint, this is highly unsatisfactory, in that
L and g are now going in reversed senses.
Indeed, on this observation could be based a
fairly convincing argument that this illustrates
just why eta ought not to be increasing.)

However, nevertheless, we can give a neat
description of the adjoint structure enjoyed by =
in this context as well.

4.2 Definition: Given two lax functors (as in
4.1) F: A— B , G: B—> A, by a lax syntactic
adjunction F —ll G, we mean that there are lax
2-natural transformations

a: id(A) —> GF and pB: FG — id(B)

lax in the sense that for morphisms a: Al — A

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

of A, b: B ——-—-)Bl of B. there are 2-cells
n(a) : FG(a)-a(Al) = a(A)-a

e(b) : B(Bl)°FG(b) = b+B(B) .

Furthermore, there are (lax) modifications

p : PBF*Fa == id(F)
o : GB+aG = 1d(G)

so that

tGpea = (oF+a)(GBF+nx) : GBF+GFa* a => a
and

B-Fo = (BpG)(eB-FaG) : B-FGB-FaG =5 B .

(Again, coherence is discussed in the appendix.)

4.3 Remark: This situation is somewhat
irregular, in that one would expect p, o to have
opposite senses. (Indeed, if one were interested
in setting up equivalent semantic and syntactic
notions of adjunction, in the notations of 3.3 and
4.2, one would expect a, B to correspond to K,
L; n, e to correspond to k, 1; p, © to
correspond to n, €; and the triangle identities
to correspond to each other. So in this sense,
p, 0 ought to be unit and counit, and p ought
to be reversed.) However, for the structure of
LAMBDA, this simply is not the case. (However,
the above correspondances are more or less
correct, and give rise to Table 2.)

4.4 Example: As in 3.4, if F(A) = (A & E),
G(A) = (E 2 A), then F —iI G. Again, the
details are but summarized, in Table 2. It seems
this formulation is less perspicuous, as may be
seen by considering p and o; (part of the
"problem” is that in 3.4, our objects are terms,
since we are working with hom-categories, whereas
here the objects are types.)

Given object A, pB(F(A)):F(a(A)) = (A z' in E.
Xy z‘>)(zE) and 1id(F(A)) 1is xy. oz p(A)

is the beta conversion

(A z' in E. <XA' z'>)(zE) = <xA. ZE>.

Given object B, G(B(B))+a(G(B)) = Az 1in E.
(1st(Az' in E.<y.z'>)(z))(2nd(Az'in E.<y.z'>)(z)).
where y is of type E =2 B, so that id(G(B)) = y:
a(B) is the reduction: beta applied to each
occurrence of (A z' in E. <y,z'>)(z) to produce
A z in E.y(z). (note that (& beta) is also
used), and then eta conversion to yield y.

a: (&I, 2 1) e : (& beta, = beta)

B : (&, 2 E) p : (& beta, 3 beta,)
& eta

n : (& beta, ® beta) o : (& beta, 3 beta,)
D eta

TABLE 2

5. Higher order lambda calculus

The structure discussed in sections 3,4 also
applies to higher order (polymorphic) lambda
calculus. The following brief outline shows how
this works for second order lambda calculus.

Types also include indeterminates (variable types)
and FORALL t. A.

Terms are also closed under

(FORALL I) If a in A, t not free in the
type of a free variable of a,
then (A t. a) in (FORALL t. A).

(FORALL E) If ¢ in (FORALL t. A), B a
type, then c(B) in A[t:=B].

Conversions include

(FORALL beta) (A t. a)(B) == a[t:=B].
(FORALL eta) c == A t. c(t).

We then define an indexed 2-category POLYLAMBDA,
along the lines of the PL categories of SEELY
[1986]: now each "fibre"” will be a 2-category
like LAMBDA in section 2 above. The base category
will consist, as in SEELY [1986], of "orders" (ie.
"kinds" ~- in the second order case, Jjust finite
powers of TYPE) and "operators” (ie.
"constructors’). Over a kind (e.g. TYPE) will be
the 2-category of types with the appropriate free
indeterminates (eg. exactly one, over TYPE),
terms, and reductions.

In such a context, FORALL t.() defines a lax
functor between fibres (ie. from the fibre over
K x TYPE to the fibre over K, for any kind K.)
This functor has a lax left adjoint (strict).
functor, viz. "add a dummy indeterminate"”, (this

is essentially the K-combinator, as discussed in

SEELY [1986].)
APPENDIX (Coherence considerations)

A.l It is usual, when considering "lax"
concepts, to require a host of coherence
conditions for the various comparison 2-cells.
Without being too precise, it turns out that
insofar as LAMBDA is concerned, these can
generally be subsumed under two principles:
(BETA) of 3.4, and:

(beta comm) Beta conversions applied to
different occurrences of logical symbols commute,
(ie. it doesn't matter what order the beta
conversions are done.)

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

Although a related notion 1is considered in
BARENDREGT [1981], from our point of view this
principle seems rather more dubious than, say.
(BETA): surely one ought to distinguish the order
of steps in making a computation, and not merely
the steps themselves. However, all the various
naturality and coherence conditions suitable for
sections 3,4 do seem to require (beta comm).

A2 For the record, the coherence conditions
referred to are the following. We suppose L
decreasing, as in section 3, and use the notation
there for objects, morphisms, and 2-cells.

(For ~,¢):
v(id(A).a)(A)F(a) id(F(a))
v(a,id(B))+F(a)¢(B) id(F(a))

v(ab,c)+*v(a,b)F(c)
v(a’,b")*F(p)F(r)

(and similarly for

v(a.bc)+F(a)v(b,c)
F(pr):v(a.b)

-)
(For k): k(A.id(B))-A(A, (B))K(A.B) = K(A.B)

Q

k(A.b'b)-A(A.7(b'.b))K(A,B,) =
k(A,b')B(FA,b)+A(A.Gb')k(A.b)

k(A,b')-A(A.G(p))K(A.B) =
K(A.B)B(FA.p)-k(A,b)

(and similarly for 1.)

(For m): k(A,b)L(A,B)+A(A.Cb)n(A,B) =
K(A.B,)1(A.b)-n(A,B,)A(A.Gb)

(and similarly for €; these give the "laxity"” of
the modifications n,€.)

A.3 Similar conditions apply for the situation
of section 4, with increasing .

(For e): e(id(B)) = B(B)(B)
e(b'b)°B(Bz)7(b',b) = b'e(b)+e(b’)FG(b)

pB(B)-e(b) = e(b')+B(B,)FG(p)

(and similarly for n: note the similarity with

the conditions for k.,1.)

(for p): p(A)F(a):B(F(A))F(n(a)) =
F(a)p(A,)-e(F(a))F(a(A)))

{(and similarly for o; these give the "laxity"” of
the modifications p,0.)
REFERENCES

H.P. BARENDREGT, The Lambda Calculus, (North-
Holland, 1981).

J.-Y. GIRARD, The system F of variable types,
fifteen years later, Theoretical Comp. Sci. 45
(1986) 2, 159-192.

J.W. GRAY, Formal Category Theory: Adjointness for
2-categories, (Springer LNM 391, 1974).

G.M. KEILY, ed., Category Seminar, (Springer LNM
420, 1974).

G.M. KELLY, R. STREET, Review of the elements of
2-categories, in KELLY [1974], 75-103.

G.M. KEILY, Basic Concepts of Enriched Category
Theory, London Math. Soc. Lecture Note Series 64,
(Cambridge University Press, 1982).

J. LAMBEK, P.J. SOOTT, Introduction to Higher
Order Categorical Logic, (Cambridge University
Press, 1986).

D.S. SCOTT, Continuous lattices, in F.W Lawvere,
ed., Toposes, Algebraic Geometry and Logic,
(Springer LNM 274, 1972).

D.S. SCOTT, Data types as lattices, SIAM J.
Comput. 5 {1976) 522-587.

R.A.G. SEELY, Hyperdoctrines and Natural
Deduction, Ph.D.Thesis, (University of Cambridge,
1977).

R.A.G. SEELY, Weak adjointness in proof theory, in
M.P. Fourman, C.J. Mulvey, and D.S. Scott, eds.,
Applications of Sheaves. (Springer LNM 753, 1979),
697-701.

R.A.G. SEELY, Categorical semantics for higher
order polymorphic lambda calculus, Math. Report
86-2, (McGill University 1986). (To appear in J.
Symbolic Logic, 1987.)

Proceedings of the Symposium on Logic in Computer Science, 1987
(Computer Society of the IEEE 1987) 65-71

