
Champlain College – St.-Lambert

MATH 201-203: Calculus II

Review Questions for Test # 3

Instructor: Dr. Ming Mei

——————————————————————————————————————–

1. Test the convergence or divergence of the following sequence, if it is convergent, find
its limit.

(a) an =
n

2n + 1
, (b) an =

10n

32n
,

(c) an =
(−1)nn

2n + 1
, (d) an =

(−2)n

4n + 1
.

2. Test convergence or divergence of the following series.

(a)
∞∑

n=1

2n

4n2 − 1
, (b)

∞∑
n=0

n + 1√
n2 + 1

(c)
∞∑

n=1

3n

4n + 1
, (d)

∞∑
n=0

n

en
.

3. Find an exact fraction number to 1.121121 · · · = 1.121.

4. Find the interval of convergence of the power series
∑∞

n=1

(x + 1)n

n2
.

5. Find Maclaurin series of the following function:

(a) ln(1 + x), (b)
1

(1 + x)2
.

——————————————————————————————————————–
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Solutions to Review Questions for Test # 3

1(a).

lim
n→∞

an = lim
n→∞

n

2n + 1
= lim

n→∞
n/n

(2n + 1)/n
= lim

n→∞
1

2 + 1
n

=
1

2 + 0
=

1

2
.

It converges to 1
2
.

1(b).

lim
n→∞

an = lim
n→∞

10n

32n
= lim

n→∞
10n

(32)n
= lim

n→∞

(10

9

)n

= ∞.

It diverges to +∞.

1(c). When n is even, then (−1)n = 1, and

lim
n→∞

an = lim
n→∞

(−1)nn

2n + 1
= lim

n→∞
n

2n + 1
=

1

2
.

When n is odd, then (−1)n = −1, and

lim
n→∞

an = lim
n→∞

(−1)nn

2n + 1
= lim

n→∞
−n

2n + 1
= −1

2
.

Since the limits of an for even n and odd n are different, the limit limn→∞ an doesn’t exit.
So, the sequence is divergent.

1(d). Since −1 ≤ (−1)n ≤ 1, we have −2n ≤ (−2)n = (−1)n2n ≤ 2n, and − 2n

4n+1
≤

(−2)n

4n+1
≤ 2n

4n+1
. Notice that,

lim
n→∞

2n

4n + 1
= lim

n→∞
2n/4n

(4n + 1)/4n
= lim

n→∞
(1

2
)n

1 + (1
4
)n

=
0

1 + 0
= 0,

by using the squeeze theorem, limn→∞
(−2)n

4n+1
= 0. So, it is convergent.

2(a)[Method 1: Limit Comparison Test]. Let an = 2n
4n2−1

and bn = n
n2 = 1

n
. Since

lim
n→∞

an

bn

= lim
n→∞

2n

4n2 − 1

/ 1

n
= lim

n→∞
2n

4n2 − 1
× n

1
= lim

n→∞
2n2

4n2 − 1
=

1

2
,

by the limit comparison test, the series
∑∞

n=1 an =
∑∞

n=1
2n

4n2−1
and

∑∞
n=1 bn =

∑∞
n=1

1
n

both have the same convergence or divergence. Since
∑∞

n=1 bn =
∑∞

n=1
1
n

is divergent,
because it is a p-series with p = 1, we know that

∑∞
n=1 an =

∑∞
n=1

2n
4n2−1

is also divergent.
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2(a)[Method 2: Integral Test].

∞∑
n=1

2n

4n2 − 1
∼

∫ ∞

1

2x

4x2 − 1
dx

[substitute: u = 4x2 − 1, du = 8dx,

new limits: u = 3 for x = 1, and u = ∞ for x = ∞]

=

∫ ∞

3

1

4u
du

= lim
t→∞

∫ t

3

1

4u
du

= lim
t→∞

1

4
ln |u|

∣∣∣
t

u=3

= lim
t→∞

[
1

4
ln t− 1

4
ln 3]

= ∞.

So it diverges.

2(b). Since

lim
n→∞

an = lim
n→∞

n + 1√
n2 + 1

= lim
n→∞

(n + 1)/n√
n2 + 1/n

= lim
n→∞

1 + 1
n√

1 + 1
n2

=
1 + 0√
1 + 0

= 1 6= 0,

by the test for divergence, the series is divergent.

2(c). Let an = 3n

4n+1
and bn = 3n

4n = (3
4
)n. Notice that,

lim
n→∞

an

bn

= lim
n→∞

3n

4n + 1
/
3n

4n
= lim

n→∞
3n

4n + 1
× 4n

3n

= lim
n→∞

12n

12n + 3n
= lim

n→∞
12n/12n

(12n + 3n)/12n

= lim
n→∞

1

1 + (1
4
)n

=
1

1 + 0
= 1,

by the limit comparison test, the series
∑∞

n=1 an =
∑∞

n=1
3n

4n+1
and

∑∞
n=1 bn =

∑∞
n=1(

3
4
)n

both have the same convergence or divergence. Since
∑∞

n=1 bn =
∑∞

n=1(
3
4
)n is convergent,

because it is a geometric series with r = 3
4

< 1, we know that
∑∞

n=1 an =
∑∞

n=1
3n

4n+1
is

also convergent.
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2(d).

∞∑
n=0

n

en
∼

∫ ∞

0

x

ex
dx

= lim
t→∞

∫ t

0

xe−xdx

[integration by parts: u = x, dv = e−xdx, du = dx, v = −e−x]

= lim
t→∞

[
− xe−x

∣∣∣
t

x=0
+

∫ t

0

e−xdx
]

= lim
t→∞

[
− xe−x

∣∣∣
t

x=0
− e−x

∣∣∣
t

x=0

]

= lim
t→∞

[−te−t − e−t + e0] = 1− lim
t→∞

t

et

= 1− lim
t→∞

(t)′

(et)′
[by l’Hospital Law]

= 1− lim
t→∞

1

et

= 1− 1

∞ = 1− 0 = 1.

So, it converges.

3.

1.121 = 1 + 0.121 + 0.000121 + 0.000000121 + · · ·
= 1 +

121

1000
+

121

10002
+

121

10003
+ · · ·

= 1 +
121

1000

(
1 +

1

1000
+

1

10002
+

1

10003
+ · · ·

)

= 1 +
121

1000
· 1

1− 1
1000

=
1120

999
.

4. The radius of convergence is

R = lim
n→∞

∣∣∣ an

an+1

∣∣∣ = lim
n→∞

1

n2

/ 1

(n + 1)2
= lim

n→∞
(n + 1)2

n2
= 1.

So, the series
∑∞

n=1

(x + 1)n

n2
is convergent for x in (a− R, a + R) = (−1− 1,−1 + 1) =

(−2, 0). Furthermore, at the endpoint x = 0, the series becomes
∑∞

n=1

1

n2
, which is
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convergent, because it is a p-series with p = 2 (> 1). While, at the other endpoint x = −2,

the series becomes
∑∞

n=1

(−1)n

n2
, which is absolutely convergent, because

∣∣∣(−1)n

n2

∣∣∣ =
1

n2
,

and
∑∞

n=1

1

n2
is the p-series with p = 2 (> 1). Therefore, the interval of convergence for

∑∞
n=1

xn

n2
is [−2, 0].

5 (a).

ln(1 + x) =

∫ x

0

1

1 + y
dy

=

∫ x

0

1

1− (−y)
dy

=

∫ x

0

∞∑
n=0

(−y)ndy

=
∞∑

n=0

∫ x

0

(−y)ndy

=
∞∑

n=0

∫ x

0

(−1)nyndy

=
∞∑

n=0

(−1)n xn+1

n + 1
, x ∈ (−1, 1).

5 (b).

1

(1 + x)2
= − d

dx

( 1

1 + x

)

= − d

dx

( 1

1− (−x)

)

= − d

dx

∞∑
n=0

(−x)n

= −
∞∑

n=0

d

dx
(−x)ndy

= −
∞∑

n=1

n(−x)n−1(−1)

=
∞∑

n=1

(−1)nnxn−1, x ∈ (−1, 1).
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