
Champlain College – St.-Lambert

MATH 201-203: Calculus II

Review Questions for Test # 2

Instructor: Dr. Ming Mei

——————————————————————————————————————–

1. Find integrals:

(a)

∫
ln x

x3
dx, (b)

∫
(x− 3)e−xdx,

(c)

∫
x + 1

x2 − 4x + 3
dx, (d)

∫
1

x3 − 4x2 + 4x
dx.

2. Evaluate each integral, and test if it is convergent or divergent:

(a)

∫ ∞

1

e−
√

x dx, (b)

∫ 1

0

1

x2 − 1
dx.

3. Find the solutions to the following differential equations:

(a) y′ = xyex,

(b) y′ =
y2

x− 2
, y(3) = 1.

——————————————————————————————————————–
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Solutions to Review Questions for Test # 2

1(a). Let f(x) = ln x, g′(x) = x−3, then f ′(x) = 1
x

and g(x) = −1
2
x−2. By using

integration by parts, we obtain

∫
ln x

x3
dx =

∫
x−3 ln x dx

= f(x)g(x)−
∫

f ′(x)g(x) dx

= (ln x)
(
− 1

2
x−2

)
−

∫
1

x
·
(
− 1

2
x−2

)
dx

= − ln x

2x2
+

1

2

∫
x−3dx

= − ln x

2x2
− 1

4x2
+ C.

1(b). Let f(x) = x − 3, g′(x) = e−x, then f ′(x) = 1 and g(x) = −e−x, which can be
integrated by substituting u = −x (i.e., du = −dx) as follows

g(x) =

∫
e−xdx =

∫
eu(−du) = −

∫
eudu = −eu = −e−x.

By using the integration by parts, we then obtain

∫
(x− 3)e−x dx = (x− 3)(−e−x)−

∫
1 · (−e−x) dx

= −(x− 3)e−x +

∫
e−xdx

= −(x− 3)e−x − e−x + C.

1(c). Notice that x2 − 4x + 3 = (x− 3)(x− 1), and use the strategy of partial fractions
to set

x + 1

x2 − 4x + 3
=

x + 1

(x− 3)(x− 1)
=

A

x− 3
+

B

x− 1
=

A(x− 1) + B(x− 3)

(x− 3)(x− 1)
,

and compare the numerators to have

x + 1 = A(x− 1) + B(x− 3),
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we then get A = 2 by setting x = 3 and B = −1 by setting x = 1. Thus, we can integrate
∫

x + 1

x2 − 4x + 3
dx =

∫ ( 2

x− 3
− 1

x− 1

)
dx

= 2

∫
1

x− 3
dx−

∫
1

x− 1
dx

= 2 ln |x− 3| − ln |x− 1|+ C.

1(d). Since x3 − 4x2 + 4x = x(x− 2)2, we then set

1

x3 − 4x2 + 4x
=

1

x(x− 2)2
=

A

x
+

B

x− 2
+

C

(x− 2)2
=

A(x− 2)2 + Bx(x− 2) + Cx

x(x− 2)2
,

and compare the numerators to have

1 = A(x− 2)2 + Bx(x− 2) + Cx.

By setting x = 0, we have A = 1
4
, and set x = 2 to have C = 1

2
, and set x = 1 to have

B = −1
4
. Thus, we can integrate
∫

1

x3 − 4x2 + 4x
dx =

∫ [ 1

4x
− 1

4(x− 2)
+

1

2(x− 2)2

]
dx

=
1

4

∫
1

x
dx− 1

4

∫
1

x− 2
dx +

1

2

∫
(x− 2)−2dx

=
1

4
ln |x| − 1

4
ln |x− 2| − 1

2(x− 2)
+ C.

2(a). By substituting u = −√x, i.e., u2 = (−√x)2 = x and dx = 2udu, and the new
upper-limit of the integral is u = −√x|x=∞ = −∞ and the new lower-limit of the integral
is u = −√x|x=1 = −1, we have

∫ ∞

1

e−
√

xdx =

∫ −∞

−1

eu2udu = lim
t→−∞

∫ t

−1

2u eu du

[integration by parts: f(u) = 2u, g′(u) = eu, f ′(u) = 2, g(u) = eu]

= lim
t→−∞

(
2ueu

∣∣∣
t

−1
−

∫ t

−1

2eudu
)

= lim
t→−∞

(
2tet − 2(−1)e−1 − 2eu

∣∣∣
t

−1

)

= lim
t→−∞

(
2tet + 2e−1 − [2et − 2e−1]

)

= lim
t→−∞

(2tet)− lim
t→−∞

(2et) + 4e−1

= 0− 0 +
4

e
=

4

e
,
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where we got limt→−∞ et = 0 by the horizontal asymptotic property of the exponential
function, and got limt→−∞(tet) = 0 by the so-called L’Hospital Law as follows

lim
t→−∞

(2tet) = lim
s→∞

(−s)e−s [set: s = −t]

= − lim
s→∞

s

es
[type of “∞∞”]

= − lim
s→∞

(s)′

(es)′
= lim

s→∞
1

es

= − 1

∞ = 0.

So, the improper integral is convergent to 4
e
.

2(b). Since x2 − 1 = 0 at x = 1, the integral is improper at the singular point x = 1.
Thus we have

∫ 1

0

1

x2 − 1
dx = lim

t→1−

∫ t

0

1

x2 − 1
dx [by partial fractions]

= lim
t→1−

∫ t

0

[ 1

2(x− 1)
− 1

2(x + 1)

]
dx

= lim
t→1−

[1

2
ln |x− 1| − 1

2
ln |x + 1|

]∣∣∣
t

0

= lim
t→1−

[(1

2
ln |t− 1| − 1

2
ln |t + 1|

)
−

(1

2
ln |0− 1| − 1

2
ln |0 + 1|

)]

=
1

2
ln |0+| − 1

2
ln 2 = −∞.

So, the improper integral is divergent.

3(A). By the separation of variables, from y′ = xyex, we have

dy

y
= xexdx.

Integrating the above equation
∫

1

y
dy =

∫
xex dx,

yields
ln |y| = xex − ex + C, (0.1)

where by setting f(x) = x and g′(x) = ex which imply f ′(x) = 1 and g(x) = ex, we used
the integration by parts to get

∫
xexdx = xex −

∫
1 · exdx = xex −

∫
exdx = xex − ex + C.
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From (0.1), we have
eln |y| = exex−ex+C ,

which gives
|y| = eCexex−ex

,

namely,
y = ±eCexex−ex

.

Denote C1 := ±eC , which can be any non-zero number due to the arbitrariness of C, we
have

y = C1e
xex−ex

, C1 6= 0. (0.2)

Notice that, y = 0 is a particular solution of the differential equation, which is same to
the solution in (0.2) by setting C1 = 0. So, the general solution is

y = C1e
xex−ex

for arbitrary constant C1.

3(b). By the separation of variables, from y′ = y2

x−2
, we have

dy

y2
=

1

x− 2
dx.

Integrating the above equation
∫

y−2 dy =

∫
1

x− 2
dx,

yields

−1

y
= ln |x− 2|+ C,

where C is an arbitrary constant. So, the general solution is

y = − 1

ln |x− 2|+ C
.

Using the initial value condition y(3) = 1, we can specify

1 = − 1

ln |3− 2|+ C
= − 1

C
, i.e., C = −1.

Thus, the particular solution is

y = − 1

ln |x− 2| − 1
.
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