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Abstract. For a time-delayed reaction-diffusion equation of age-structured
single species population, the linear and nonlinear stability of the traveling

wavefronts were proved by Gourley [4] and Li-Mei-Wong [8] respectively. The

stability results, however, assume the delay-time is sufficiently small. We now
prove that the wavefronts remain stable even when the delay-time is arbitrarily

large. This essentially improves the previous stability results obtained in [4,

8]. Finally, we point out that this novel stability can be applied to the age-
structured reaction-diffusion equation with a more general maturation rate.

1. Introduction and main results. Subsequent to [8], in this paper we consider
a model of population for a single species with age-structure

∂v

∂t
= d

∂2v

∂x2
+ αe−γτv(x, t− τ)− βv2, t ∈ [0,∞), x ∈ R, (1)

with an initial value condition

v(x, s) = v0(x, s), s ∈ [−τ, 0], (2)

where v(x, t) denotes the total population of mature species after the mature age τ >
0 at time t and location x, d > 0 is the spatial diffusion rate of the mature species,
α and β both are positive constants, the terms αe−γτv(x, t− τ) and βv2 represent
the birth rate and the maturation rate of the mature population, respectively. For
more details, we refer to [1]-[8].

Notice that equation (1) has two constant equilibria

v− = 0 and v+ =
α

β
e−γτ .
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We assume that the initial data satisfies

v0(x, s) → v±, s ∈ [−τ, 0] as x → ±∞, (3)

A traveling wavefront connecting the constant states v± is the monotone solution
of equation (1) in the form of φ(x+ct), where c is the wave speed. Namely, φ(x+ct)
satisfies the following ordinary differential equation

{
dφ′′(ξ)− cφ′(ξ) + αe−γτφ(ξ − cτ)− βφ2(ξ) = 0,

φ(−∞) = 0 = v−, φ(∞) = (α/β)e−γτ = v+,
(4)

where ξ = x + ct, and ′ = d
dξ .

The existence of the traveling wavefronts was proved by Al-Omari and Gourley
[3]. That is, there exists a minimum speed c0 = c0(τ), also called the critical speed,
such that for all c > c0, the traveling wavefront φ(x + ct) uniquely exists (up to
shift), where the minimum speed c0 = c0(τ) is determined by

Fc0(λc0) = Gc0(λc0), F ′c0
(λc0) = G′c0

(λc0). (5)

Here

Fc(λ) = 2αe−γτe−λcτ/2, Gc(λ) = cλ− 1
2
dλ2. (6)

Namely, (c0, λc0) is the tangent point of Fc(λ) and Gc(λ), and c0 is the solution of
the following implicit equation

α exp
(
1− γτ − c2

0τ

2d
− 1

2d

√
4d2 + c4

0τ
2

)
=

1
c2
0τ

2

(
− 2d +

√
4d2 + c4

0τ
2

)
, (7)

which implies c2
0 < 4αde−γτ (see the explanation in [8]).

It can be also seen from the graphs of Fc(λ) and Gc(λ) showed in [8] that, when
c = c0, then Fc0(λc0) = Gc0(λc0); while, when c > c0, then Fc(λc0) < Gc(λc0),
namely,

2αe−γτe−λc0cτ/2 < cλc0 −
1
2
dλ2

c0
. (8)

The linear stability of traveling wavefronts was proved by Gourley [4], and further
extended by Li-Mei-Wong [8] for the nonlinear stability. But both need to restrict
the delay-time τ to be small enough.

Let ṽ = v−φ. From (1), the nonlinear perturbation ṽ for v around the wavefront
φ satisfies

∂ṽ

∂t
− d

∂2ṽ

∂x2
+ αe−γτ ṽ(x, t− τ) + 2βφṽ + βṽ2 = 0. (9)

If one drops the nonlinear term βṽ2, one gets a linear perturbation of v around φ
as follows

∂ṽ

∂t
− d

∂2ṽ

∂x2
+ αe−γτ ṽ(x, t− τ) + 2βφṽ = 0. (10)

In [4], when the delay-time τ is small enough such that

4ατe−γτ < cosh−1(2), (11)

and the initial perturbation ṽ0(x, s) := v0(x, s) − φ(x + cs) (s ∈ [−τ, 0]) decays as
fast as

|ṽ0(x, s)| = |v0(x, s)− φ(x + cs)| = O(1)e−λc0 |x|/2, as x → −∞, (12)
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where the wavefront φ(x + ct) is slower with a small speed

c0 < c <

√
d cosh−1(2)

τ
, (13)

by using the weighted energy method (see also [12, 13]), Gourley proved that the
wavefront φ(x+ct) is linearly stable, namely, the linear perturbation of (10) satisfies

sup
x∈R

|ṽ(x, t)| = O(1)e−µt, t > 0. (14)

Furthermore, under the same conditions as requested in [4], by using the weighted
energy method with the comparison principle together, Li-Mei-Wong [8] extended
Gourley’s result to the nonlinear stability, namely, (14) holds also for the nonlinear
perturbation ṽ of (9). However, the stability of traveling wavefronts for arbitrarily
large delay-time τ still keeps open, but more significant and challenging as we know.
To solve this problem is our main purpose of this note.

An extensive examination of (2.15)-(2.17) in [4] shows that, the restriction (11)
on the small delay-time τ is only requested in the proof of B(x) > 0 as x ∈ (x0,∞),
where x0 À 1 is sufficiently large (see pp.263 in [4]). However, as we know, when
x = +∞, the wavefront φ(x + ct) is just equal to the equilibrium v+, and v+ is a
stable node of equation (1). This should be one advantage for us in the proof of
stability. In fact, the difficulty for the wave stability is only caused by the non-
stable node v− = 0 as x → −∞ for φ(x + ct). That is why we need to construct
a weight function as eλc0 |x| for x → −∞ to overcome such a difficulty in the proof
by the energy method. Based on the above consideration, by constructing a new
weight function, and technically treating the convergence of the solution v(x, t) of
(1) to the wavefront φ(x + ct) at x = +∞, here, we can further prove the stability
of the traveling wavefronts for all delay-time τ (no matter it is large or small) and
for all wavefronts φ(x + ct) with c > c0 (no matter their speed is large or small). A
similar result for the Nicholson’s blowflies equation with a local birth rate function
or a nonlocal birth rate function has been also obtained in [10, 11].

Notations. Before we state our new stability, we introduce some notations.
In what follows, C > 0 denotes a generic constant, while Ci > 0 (i = 0, 1, 2, · · · )
represents a specific constant. Let I be an interval, typically I = R. L2(I) is the
space of the square integrable functions on I, and Hk(I) (k ≥ 0) is the Sobolev
space of the L2-functions f(x) defined on the interval I whose derivatives di

dxi f ,
i = 1, · · · , k, also belong to L2(I). L2

w(I) represents the weighted L2-space with the
weight w(x) > 0 and its norm is defined by

‖f‖L2
w

=
( ∫

I

w(x)f(x)2dx
)1/2

.

Hk
w(I) is the weighted Sobolev space with the norm

‖f‖Hk
w

=
( k∑

i=0

∫

I

w(x)
∣∣ di

dxi
f(x)

∣∣2dx
)1/2

.

Let T > 0 and let B be a Banach space, we denote by C0([0, T ];B) the space of the
B-valued continuous functions on [0, T ], and L2([0, T ];B) as the space of the B-
valued L2-functions on [0, T ]. The corresponding spaces of the B-valued functions
on [0,∞) are defined similarly.

Our main result is as follows.
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Theorem 1.1. Let w(x) > 0 be a weight function given by

w(x) = e−λc0x, (15)

where λc0 > 0 is specified in (5). For a given traveling wavefront φ(x + ct) with
speed c > c0, if the initial datum satisfies

v0(x, s)− φ(x + cs) ∈ C0([−τ, 0];H1
w(R)), (16)

then the unique solution v(x, t) of the Cauchy problem (1) and (2) exists globally

v(x, t)− φ(x + ct) ∈ C0([0,∞);H1
w(R)) ∩ L2([0,∞);H2

w(R))

and it converges to the traveling wavefront φ(x + ct) time-asymptotically

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt, 0 ≤ t ≤ ∞ (17)

for some positive constant µ.

Remark 1. This novel stability result for the specific maturation rate βv2 in Eq.
(1) can be also applied to a general maturation rate m(v). For details, we refer to
the last section of the present paper, where some of typical examples for m(v) are
also given.

2. Proof of Theorem 1.1. We are going to prove the new stability of the traveling
wavefronts by the weighted energy method with the comparison principle together,
which was used in our previous paper [8], and initially in [9].

For given traveling wavefront φ(x + ct) with c > c0, we define
{

v+
0 (x, s) := max{v0(x, s), φ(x + cs)},

v−0 (x, s) := min{v0(x, s), φ(x + cs)}, for (x, s) ∈ R× [−τ, 0], (18)

so

v−0 (x, s) ≤ v0(x, s) ≤ v+
0 (x, s) for (x, s) ∈ R× [−τ, 0] (19)

v−0 (x, s) ≤ φ(x + cs) ≤ v+
0 (x, s) for (x, s) ∈ R× [−τ, 0]. (20)

Denote v+(x, t) and v−(x, t) as the corresponding solutions of equations (1) and (2)
with respect to the above mentioned initial data v+

0 (x, s) and v−0 (x, s); i.e.,




∂v±

∂t
− d

∂2v±

∂x2
+ β(v±)2 = αe−γτv±(x, t− τ), (x, t) ∈ R×R+

v±(x, s) = v±0 (x, s), x ∈ R, s ∈ [−τ, 0].
(21)

By the Comparison Principle (see Lemma 3.2 in [8]), we have

v−(x, t) ≤ v(x, t) ≤ v+(x, t) for (x, t) ∈ R×R+, (22)
v−(x, t) ≤ φ(x + ct) ≤ v+(x, t) for (x, t) ∈ R×R+. (23)

Now we are going to prove the new stability in three steps.

Step 1: The convergence of v+(x, t) to φ(x + ct)
Let ξ := x + ct and {

z(ξ, t) := v+(x, t)− φ(x + ct),
z0(ξ, s) := v+

0 (x, s)− φ(x + cs),
(24)

then by (20) and (23), we have

z(ξ, t) ≥ 0, z0(ξ, s) ≥ 0. (25)
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Since v+(x, t) and φ(x + ct) both satisfy equation (1), it can be verified that z(ξ, t)
satisfies





∂z

∂t
+ c

∂z

∂ξ
− d

∂2z

∂ξ2
− αe−γτz(ξ − cτ, t− τ) + 2βφ(ξ)z + βz2 = 0,

(ξ, t) ∈ R×R+,

z(ξ, s) = z0(ξ, s), (ξ, s) ∈ R× [−τ, 0].

(26)

Multiplying (26) by e2µtw(ξ)z(ξ, t), we obtain

(1
2
e2µtwz2

)
t
+ e2µt

(1
2
cwz2 − dwzzξ

)
ξ
+ de2µtwz2

ξ + de2µtw′zzξ

−µe2µtwz2 − 1
2
ce2µt w

′

w
wz2 − αe−γτe2µtw(ξ)z(ξ, t)z(z − cτ, t− τ)

+2βe2µtwφz2 + βe2µtwz3 = 0. (27)

By the Cauchy-Schwarz inequality, we have

|de2µtw′zzξ| ≤ de2µtwz2
ξ +

d

4
e2µt

(w′

w

)2

wz2,

and dropping the positive term βe2µtwz3 (i.e., the last term in (27)), because
z(ξ, t) ≥ 0 (see (25)), we have

(1
2
e2µtwz2

)
t
+ e2µt

(1
2
cwz2 − dwzzξ

)
ξ

−µe2µtwz2 − 1
2
ce2µt w

′

w
wz2 − d

4η1
e2µtwz2

−αe−γτe2µtw(ξ)z(ξ, t)z(z − cτ, t− τ) + 2βe2µtwφz2 ≤ 0. (28)

As exactly showed in [4, 8], by integrating (28) with respect to (ξ, t) over R× [0, t],
we further obtain

e2µt‖z(t)‖2L2
w

+
∫ t

0

∫

R

e2µsB(µ, ξ)w(ξ)z2(ξ, s) dξds

≤ ‖z(0)‖2L2
w

+
1
η2

αe−γτ+2µτ

∫ 0

−τ

∫

R

e2µsw(ξ + cτ)z2
0(ξ, s) dξds, (29)

where (see (2.6) and (2.7) in [4], and (43)-(45) in [8], respectively)

B(µ, ξ) : = B(ξ)− 2µ− 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

(
e2µτ − 1

)
, (30)

B(ξ) : = −c
w′(ξ)
w(ξ)

− d

2

(w′(ξ)
w(ξ)

)2

+ 4βφ(ξ)− η2αe−γτ

− 1
η2

αe−γτ w(ξ + cτ)
w(ξ)

, (31)

η2 : = e−λc0cτ/2. (32)
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Since w(ξ) = e−λc0ξ, η2 = e−λc0cτ/2 and φ(ξ) ≥ 0, it can be easily verified that

B(ξ) = cλc0 −
1
2
dλ2

c0
+ 4βφ(ξ)− η2αe−γτ − 1

η2
αe−γτe−λc0cτ

= cλc0 −
1
2
dλ2

c0
+ 4βφ(ξ)− 2αe−γτe−λc0cτ/2

≥ cλc0 −
1
2
dλ2

c0
− 2αe−γτe−λc0cτ/2

=: C1 > 0, [ by (8)]. (33)

Let µ1 > 0 be the unique solution to the following equation

C1 − 2µ1 − 1
η2

αe−γτe−λc0cτ (e2µ1τ − 1) = 0. (34)

Thus, for 0 < µ < µ1, from (30) and (33), we obtain

B(µ, ξ) = B(ξ)− 2µ− 1
η2

αe−γτe−λc0cτ (e2µτ − 1)

≥ C1 − 2µ− 1
η2

αe−γτe−λc0cτ (e2µτ − 1)

> 0. (35)

Applying (35) to (29), and dropping the positive term
∫ t

0

∫
R

e2µsB(µ, ξ)w(ξ)z2(ξ, s)
dξds, we get the first energy estimate

e2µt‖z(t)‖2L2
w

≤ ‖z(0)‖2L2
w

+
1
η2

αe−γτ+2µτ

∫ 0

−τ

∫

R

e2µsw(ξ + cτ)z2
0(ξ, s) dξds

≤ ‖z(0)‖2L2
w

+ C

∫ 0

−τ

‖z0(s)‖2L2
w

ds. (36)

Similarly, differentiating (26) with respect to ξ and multiplying it by e2µtw(ξ)
zξ(ξ, t), then by integrating the resultant equation with respect to (ξ, t) over R ×
[0, t], and applying (36), we obtain

e2µt‖zξ(t)‖2L2
w
≤ C

(
‖z(0)‖2H1

w
+

∫ 0

−τ

‖z0(s)‖2H1
w

ds
)
. (37)

Thus, summing (36) and (37) gives the basic energy estimate as follows.

Lemma 2.1. It holds that

‖z(t)‖2H1
w
≤ Ce−2µt

(
‖z(0)‖2H1

w
+

∫ 0

−τ

‖z0(s)‖2H1
w

ds
)
. (38)

Notice that, we cannot have the embedding result H1
w(R) ↪→ C(R), because of

the shortage w(ξ) → 0 as ξ →∞. However, for any given sufficiently large number
ξ0 À 1, we have w(ξ) ≥ e−λc0ξ0 for ξ ∈ (−∞, ξ0], and

H1
w((−∞, ξ0]) ↪→ H1((−∞, ξ0])

with
‖z(t)‖H1((−∞,ξ0]) ≤ eλc0ξ0‖z(t)‖H1

w((−∞,ξ0]).

Thus, the Sobolev’s embedding theorem further implies

H1
w((−∞, ξ0]) ↪→ H1((−∞, ξ0]) ↪→ C((−∞, ξ0])
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and
sup

ξ∈(−∞,ξ0]

|z(ξ, t)| ≤ C2‖z(t)‖H1
w((−∞,ξ0]), (39)

where C2 = C2(ξ0). Combining (39) and (38) yields the following convergence.

Lemma 2.2. It holds that

sup
ξ∈(−∞,ξ0]

|z(ξ, t)| ≤ C3e
−µt, t > 0 (40)

for a sufficiently large number ξ0 À 1 and a positive constant C3 = C3(ξ0).

Now we are going to prove the convergence of z(ξ, t) at ξ = ∞.

Lemma 2.3. It holds that

lim
ξ→∞

|z(ξ, t)| ≤ Ce−µ2t, t > 0, (41)

where µ2 := αe−γτ .

Proof. From equation (26) and by dropping the positive term βz2, we have

∂z

∂t
+ c

∂z

∂ξ
− d

∂2z

∂ξ2
− αe−γτz(ξ − cτ, t− τ) + 2βφ(ξ)z ≤ 0.

Taking limits to the above inequality as ξ →∞, and noting that zξ(∞, t) = 0 and
zξξ(∞, t) = 0 because of the boundedness of z(ξ, t) for all ξ ∈ R, and φ(∞) = v+,
we immediately obtain

d

dt
z(∞, t)− αe−γτz(∞, t− τ) + 2βv+z(∞, t) ≤ 0.

Integrating the above inequality over [0, t] with respect to t yields

z(∞, t)− αe−γτ

∫ t

0

z(∞, s− τ)ds + 2βv+

∫ t

0

z(∞, s)ds ≤ z(∞, 0) = z0(∞) = 0.

(42)
Here we used (3) and (4) to get z(∞, 0) = z0(∞) = 0. Notice also that, by the
change of variables,

αe−γτ

∫ t

0

z(∞, s− τ)ds = αe−γτ

∫ t−τ

−τ

z(∞, s)ds

≤ αe−γτ

∫ t

0

z(∞, s)ds + αe−γτ

∫ 0

−τ

z0(∞, s)ds.(43)

Substituting (43) to (42), and noting v+ = α
β e−γτ , we then have

z(∞, t) + αe−γτ

∫ t

0

z(∞, s)ds ≤ αe−γτ

∫ 0

−τ

z0(∞, s)ds.

Since z(∞, t) ≥ 0, by Grownwall’s inequality, we prove

(0 ≤)z(∞, t) ≤ C4e
−µ2t,

where C4 := αe−γτ
∫ 0

−τ
z0(∞, s)ds and µ2 = αe−γτ . Thus, the proof of the lemma

is completed.

Finally, combining Lemma 2.2 and Lemma 2.3, we prove the convergence of
z(ξ, t) in the whole space (−∞,∞) as follows.
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Lemma 2.4. It holds that

sup
x∈R

|v+(x, t)− φ(x + ct)| = sup
ξ∈R

|z(ξ, t)| ≤ Ce−µt, t > 0 (44)

for 0 < µ < min{µ1, µ2}.

Step 2: The convergence of v−(x, t) to φ(x + ct)

Lemma 2.5. It holds that

sup
x∈R

|v−(x, t)− φ(x + ct)| ≤ Ce−µt, t ≥ 0 (45)

for 0 < µ < min{µ1, µ2}.
Proof. Let z(ξ, t) = φ(x+ct)−v−(x, t), ξ = x+ct, and z0(ξ, s) = φ(x+cs)−v−0 (x, s);
then z(ξ, t) satisfies the Cauchy problem (26). As shown in Step 1, we can similarly
prove Lemma 2.5. The detail is omitted.

Step 3: The convergence of v(x, t) to φ(x + ct)

Lemma 2.6. It holds

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt, t ≥ 0 (46)

for 0 < µ < min{µ1, µ2}.
Proof. Since v−0 (x, s) ≤ v0(x, s) ≤ v+

0 (x, s) for (x, s) ∈ R × [−τ, 0], by using the
comparison principle showed in [8], the corresponding solutions satisfy

v−(x, t) ≤ v(x, t) ≤ v+(x, t), (x, t) ∈ R×R+.

Thanks to Lemmas 2.4 and 2.5, we have the following convergence results:

sup
x∈R

|v−(x, t)− φ(x + ct)| ≤ Ce−µt, sup
x∈R

|v+(x, t)− φ(x + ct)| ≤ Ce−µt.

Then, by using the squeeze technique, we finally prove

sup
x∈R

|v(x, t)− φ(x + ct)| ≤ Ce−µt.

The proof is complete.

3. Concluding remark. In this section, we extend the wave stability result ob-
tained before for equation (1) with a specific maturation rate m(v) = βv2 to a
general case. Namely, we consider

∂v

∂t
= d

∂2v

∂x2
+ αe−γτv(x, t− τ)−m(v), t ∈ [0,∞), x ∈ R, (47)

with an initial value condition

v(x, s) = v0(x, s), s ∈ [−τ, 0], (48)

where m(v) is a more general maturation rate satisfying the following hypotheses
(H) There exist v− = 0 and v+ > 0 as two constant equilibria for equation (47)

such that αe−γτv± −m(v±) = 0, and satisfy m(0) = 0, m′(0) = 0, m′(v+) >
αe−γτ , and m′(v) > 0, m′′(v) > 0 for 0 = v− < v < v+.
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As some important and typical examples, we may take m(v) as

m1(v) := βvp, for β > 0, p > 1,

with v− = 0 and v+ =
(

α
β e−γτ

) 1
p−1

. Here, m1(v) satisfies the condition (H).
Or, we may take

m2(v) := βvpeav, for β > 0, p > 1, a > 0,

with only two equilibria v− = 0 and v+ > 0 such that vp−1
+ eav+ = α

β e−γτ (the
increasing monotonicity of vp−1eav determines a unique v+ > 0). Note also that,
both βvp and eav are increasing and concave upward, so m2(v) satisfies (H), namely,
m2(0) = 0, m′

2(0) = 0, m′
2(v+) > αe−γτ , and m′

2(v) > 0, m′′
2(v) > 0 for v− = 0 <

v ≤ v+.
We may also take

m3(v) :=
βvp

1− av
, for β > 0, p > 1, a > 0,

with only two constant equilibria v− = 0 and v+ > 0 such that βvp−1
+ = αe−γτ (1−

av+). It can be easily seen that such a v+ > 0 is uniquely determined by the
increasing monotonicity of the function βvp−1 and the decreasing monotonicity of
the function αe−γτ (1 − av). It can be also verified directly that m3(v) satisfy the
conditions given in (H), namely, m3(0) = 0, m′

3(0) = 0, m′
3(v+) > αe−γτ , and

m′
3(v) > 0, m′′

3(v) > 0 for 0 = v− < v < v+.
Thus, by the method of upper-lower solutions as showed in [3], we can similarly

prove the existence of the traveling wavefront φ(x+ct) for equation (47) connecting
the state constants v± given in the hypotheses (H), where the speed c > c0 > 0,
and c0 is the critical wave speed and exactly same to what we obtained in (5).
Furthermore, we can check out that, under the same sufficient conditions in Theorem
1.1, the wave stability stated in Theorem 1.1 is also true for the equation (47).
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