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1. Introduction

Subsequent to the previous works by Nishihara–Yang [18] and Marcati–Mei [10],
we continue to consider the following model of hyperbolic equations with damping,
on the quarter plane R+ × R+, (R+ = (0,+∞)), given by

{

vt − ux = 0

ut + p(v)x = −αu,
(x, t) ∈ R+ × R+, (1.1)

which models a compressible flow with dissipative external force field in Lagrangian
coordinates. The external force term −αu appears in the momentum equation.
Here, v > 0 is the specific volume, u is the velocity, the pressure p(v) is a smooth
function of v such that p(v) > 0, p′(v) < 0, and α > 0 is the damping constant.
Such a system was firstly studied by van Duyn and Peletier [3].

For the corresponding Cauchy problem, Marcati–Milani [11] in the case of
weak solutions, and Hsiao–Liu [4] and Nishihara [15] in the case of smooth solu-



Vol. 7 (2005) Hyperbolic Conservation Laws with Damping S225

tions proved that the solutions (v, u)(x, t) to the corresponding Cauchy problem of
(1.1) tend time-asymptotically to the nonlinear self-similar diffusion wave solutions
(v̄, ū)(x, t) (v̄(x, t) = φ(x/

√
1 + t)) of the porous media equation

{

v̄t = − 1
αp(v̄)xx

p(v̄)x = −αū,
i.e.,

{

v̄t − ūx = 0

p(v̄)x = −αū.
(1.2)

For the related initial-boundary value problems (IBVPs), Marcati–Mei [10] and
Nishihara–Yang [18] studied the convergence to diffusion waves on the quarter
plane R+ × R+, but the decay rates they showed are not optimal. Moreover,
Hsiao–Pan [7] studied the convergence to diffusion waves on the bounded domain
x ∈ [0, 1]. We note also that, by using the method of pointwise estimates and the
approximating Green function for a parabolic equation, Nishihara–Wang–Yang
[17] succeeded in obtaining the optimal rates for the Cauchy problem case, which
improves the previous works by Hsiao–Liu [4] and Nishihara [15]. But the method
used in [17] is hard to extend to the IBVP case because of the difficulty of con-
structing a suitable approximating Green function. In the present paper the main
purpose is to obtain the optimal decay rates for the convergence. The approach we
adopt is the Fourier transform together with the energy method. We first reduce
the fundamental solutions for the IBVPs to the corresponding linear equation and
show the energy decay rates for the fundamental solutions by the Fourier transform
method. Basing on it, we can see the optimal rates we expect for the nonlinear
problems. Then we apply the basic energy estimates of the linear IBVP to the

nonlinear cases and improve the previous convergence Lp-rates (1 + t)−( 3
4−

1
2p ) for

2 ≤ p ≤ ∞ in [10, 18] to the optimal ones (1 + t)−(1− 1
2p ), which is the main part

of this paper.
For the other model equations dealing with the stability theory of diffusion

waves, we refer to [1, 2, 5, 6, 8, 9, 14, 16] and the references therein.

2. Main results

In this paper, we mainly consider the IBVP studied by Nishihara–Yang [18]


















vt − ux = 0

ut + p(v)x = −αu, (x, t) ∈ R+ × R+

(v, u)(x, 0) = (v0, u0)(x) → (v+, u+) as x → ∞
u(0, t) = 0.

(2.1)

The main goal is to improve the previous stability of diffusion waves and to show
the optimal convergence rates. As for the other IBVP studied by Marcati–Mei
[10], since it can be similarly treated, we will state the improved convergence rates
in the last part of this paper but without proof.

In [18], Nishihara and Yang selected the linear diffusion waves (v̄, ū)(x, t) as
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the asymptotic profile of (2.1):

v̄t − κv̄xx = 0, v̄x(0, t) = 0, v̄(+∞, t) = v+, and ū(x, t) := κv̄x(x, t), (2.2)

which solve explicitly

v̄(x, t) = v+ +
δ0

√

4κπ(t + 1)
exp

(

− x2

4κ(t + 1)

)

, (2.3)

where

κ = −p′(v+)/α > 0, δ0 = 2

(
∫ ∞

0

(v0(x) − v+)dx − u+

α

)

. (2.4)

Then they proved its stability with algebraic decay as follows

‖∂k
x(v − v̄)(t)‖L2(R+) = O(1)(1 + t)−(k+1)/2, k = 0, 1, 2, (2.5)

‖∂k
x(u − ū)(t)‖L2(R+) = O(1)(1 + t)−(k+2)/2, k = 0, 1, (2.6)

‖(v − v̄)(t)‖Lp(R+) = O(1)(1 + t)−( 3
4−

1
2p ), 2 ≤ p ≤ ∞. (2.7)

However, these rates are not optimal, because the linear diffusion wave (v̄, ū)(x, t)
is not the right asymptotic profile of (2.1), and causes a slower delay in L1 by the
term (p′(v̄) − p′(v+))v̄x. According to Darcy’s law, we believe that the optimal
profile to the solution (v, u)(x, t) of (2.1) is the following nonlinear diffusion wave
(¯̄v, ¯̄u)(x, t):

α¯̄vt + p(¯̄v)xx = 0, (x, t) ∈ R+ × R+ (2.8)

with the boundary restrictions

¯̄vx|x=0 = 0, ¯̄v|x=+∞ = v+. (2.9)

Here

¯̄u(x, t) = − 1

α
p(¯̄v)x. (2.10)

We shall prove the convergence rates of (v, u)(x, t) to (¯̄v, ¯̄u)(x, t) to be better than
the above.

In order to construct such a nonlinear diffusion wave, let us consider a function
φ(x, t+1) (here, using t+1 instead of t is to avoid the singularity of solution decay
at the point t = 0) which satisfies

αδ̄0φt + p(v+ + δ̄0φ)xx = 0, (x, t) ∈ R+ × R+ (2.11)

namely,

φt −
−p′(v+)

α
φxx = − 1

αδ̄0
[p(v+ + δ̄0φ)− p(v+)− p′(v+)δ̄0φ]xx, (x, t) ∈ R+ ×R+

(2.12)
with the initial boundary values

φx|x=0 = 0, φ|x=+∞ = 0, and φ|t=0 = φ(x, 1) =: φ0(x), (2.13)
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where φ0(x) is a given smooth function such that

φ0(x) ∈ L1(R+) and

∫ ∞

0

φ0(x)dx 6= 0, (2.14)

and δ̄0 is a constant such that
∫ ∞

0

[v0(x) − v+]dx − δ̄0

∫ ∞

0

φ0(x)dx − u+

α
= 0, (2.15)

namely,

δ̄0 :=

(
∫ ∞

0

[v0(x) − v+]dx − u+

α

)

/

∫ ∞

0

φ0(x)dx. (2.16)

By making an iteration φn+1(x, t + 1) for n = 0, 1, · · ·

∂tφn+1 −
−p′(v+)

α
∂2

xφn+1 = − 1

αδ̄0
∂2

x[p(v+ + δ̄0φn) − p(v+) − δ̄0p
′(v+)φn]

=: − 1

αδ̄0
∂2

xH(φn)

and by using the integral form

φn+1(x, t + 1)

=

∫ ∞

0

G(x, y; t + 1, 0)φ0(y)dy − 1

αδ̄0

∫ t

0

∫ ∞

0

G(x, y; t + 1, τ)∂2
yH(φn)dydτ

=

∫ ∞

0

G(x, y; t + 1, 0)φ0(y)dy − 1

αδ̄0

∫ t

0

∫ ∞

0

Gyy(x, y; t + 1, τ)H(φn)dydτ,

where G(x, y; t, τ) is the Green function of the Nuemann IBVP to the heat equation

G(x, y; t, τ) =
1

√

4πκ(t − τ)

[

e−
(x−y)2

4κ(t−τ) + e−
(x+y)2

4κ(t−τ)

]

, κ := −p′(v+)

α
,

then we can prove that {φn} is the Cauchy series and converges to a limit, say φ,
which is the unique global solution of the IBVP (2.11) and (2.13). Furthermore, by
using the Green function method and energy estimates, we can prove the following
decay rates

‖∂j
t ∂k

xφ(t)‖L2 = O(1)δ̄0(1 + t)−(4j+2k+1)/4, (2.17)

‖φxt(t)‖L1 = O(1)δ̄0(1 + t)−3/2. (2.18)

Now we construct our diffusion wave as

¯̄v(x, t) := v+ + δ̄0φ(x, t + 1). (2.19)

From (2.17), (2.18) and (2.19), we get

‖∂j
t ∂k

x(¯̄v − v+)(t)‖L2(R+) = O(1)δ̄0(1 + t)−(4j+2k+1)/4, (2.20)

‖¯̄vxt(t)‖L1(R+) = O(1)δ̄0(1 + t)−3/2. (2.21)
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In particular, if
∫ ∞

0

[v0(x) − v+]dx − u+

α
= 0, (2.22)

(2.16) implies δ̄0 = 0, that is, the nonlinear diffusion wave ¯̄v(x, t) degenerates to the
state constant v+ (¯̄v(x, t) ≡ v+). The relationship (2.8)-(2.10) is also equivalent
to











¯̄vt − ¯̄ux = 0

p(¯̄v)x = −α¯̄u

¯̄u(0, t) = 0, (¯̄v, ¯̄u)(∞, t) = (v+, 0).

(2.23)

Here follows our main result.

Theorem 2.1. Suppose that v0 − v+ ∈ L1(R+), (V0, z0)(x) :=
(

−
∫ ∞

x
[v0(y) −

¯̄v(y, 0)]dy, u0(x) − ¯̄u(x, 0)
)

∈ (H3(R+) ∩ L1(R+)) × (H2(R+) ∩ L1(R+)) and that

‖v0 − v+‖L1(R+) + ‖V0‖H3(R+) + ‖z0‖H2(R+) + ‖V0‖L1(R+) + ‖z0‖L1(R+) + |u+| ≪ 1
hold. Then there exists a unique time-global solution (v, u)(x, t) of the IBVP (2.1)
such that

v− ¯̄v ∈ Ck(0,∞;H2−k(R+)), k = 0, 1, 2, u− ¯̄u ∈ Ck(0,∞;H1−k(R+)), k = 0, 1

and

‖∂k
x(v − ¯̄v)(·, t)‖L2(R+) = O(1)(1 + t)−(2k+3)/4, k = 0, 1, (2.24)

‖(v − ¯̄v)(·, t)‖Lp(R+) = O(1)(1 + t)−(2p−1)/(2p), 2 ≤ p ≤ +∞, (2.25)

‖(u − ¯̄u)(·, t)‖L2(R+) = O(1)(1 + t)−5/4. (2.26)

Remarks. 1. It is easy to see that our new convergence rates in (2.24)–(2.26) are
better than Nishihara–Yang’s as stated in (2.5)–(2.7).

2. The smallness conditions are sufficient in this paper as well as in most of
the previous works. In spite of the recent work by Zhao [20], might it be possible
to remove them from the present paper? This is still unknown.

3. Proof of the main theorem

As in [4, 15, 10, 18], let us introduce a pair of auxiliary functions (v̂, û)(x, t):

(v̂, û)(x, t) =

(

u+m0(x)

−α
e−αt, u+

∫ x

0

m0(y)dye−αt

)

, (3.1)
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where m0 ≥ 0 is a smooth function with compact support in R+ such that
∫ ∞
0

m0(y)dy = 1. One can verify that (v̂, û)(x, t) satisfies










v̂t − ûx = 0

ût = −αû

û(0, t) = 0, (v̂, û)(∞, t) = (0, u+e−αt).

(3.2)

By adding the first equations in (2.1), (2.23) and (3.2), and by integrating it over
(−∞,∞) × [0, t], as well as by using (2.15), one gets

∫ ∞

0

(v − ¯̄v − v̂)(x, t)dx =

∫ ∞

0

[v0(x) − v+]dx − δ̄0

∫ ∞

0

φ0(x)dx − u+

α
= 0. (3.3)

Thus, it is reasonable to introduce the following perturbations as our new variables

V (x, t) : = −
∫ ∞

x

(v − ¯̄v − v̂)(y, t)dy (3.4)

z(x, t) : = u(x, t) − ¯̄u(x, t) − û(x, t). (3.5)

Finally, one obtains a new IBVP on (V, z)(x, t) as follows


















Vt − z = 0

zt + (p′(¯̄v)Vx)x + αz = −F, (x, t) ∈ R+ × R+

(V, z)|t=0 = (V̄0, z̄0)(x)

V |x=0 = 0,

(3.6)

where

F :=
1

α
p(¯̄v)xt + (p(Vx + ¯̄v + v̂) − p(¯̄v) − p′(¯̄v)Vx)x, (3.7)

V̄0(x) :=V0(x) +

∫ ∞

x

v̂(y, 0)dy = −
∫ ∞

x

[v0(y) − ¯̄v(y, 0) − v̂(y, 0)]dy, (3.8)

z̄0(x) :=z0(x) − û(x, 0) = u0(x) − ¯̄u(x, 0) − û(x, 0). (3.9)

Without any difficulty, we can prove the following stability with slower decay
rates by using a similar argument of [18, 10]. Since the proof is tedious but similar
as in the previous works (see Theorem in [18] and Theorem 2.1 in [10]), we omit
its details.

Theorem 3.1. Under the assumptions in Theorem 2.1 there exists a unique time-

global solution (V, z)(x, t) of the IBVP (3.6) such that

V ∈ Ck(0,∞;H3−k(R+)), k = 0, 1, 2, 3, z ∈ Ck(0,∞;H2−k(R+)), k = 0, 1, 2

and

‖∂k
xV (t)‖L2(R+) = O(1)(1 + t)−k/2, k = 0, 1, 2, 3, (3.10)

‖∂k
xz(t)‖L2(R+) = O(1)(1 + t)−(k+2)/2, k = 0, 1, 2, (3.11)
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and

(1+ t)2‖zt(t)‖L2(R+) +(1+ t)−5/2(‖zxt(t)‖L2(R+) +‖ztt(t)‖L2(R+)) = O(1). (3.12)

Furthermore, we improve the decay rates in Theorem 3.1 to be optimal as
follows.

Theorem 3.2. Under the assumptions in Theorem 2.1, the solution (V, z)(x, t)
decays time-asymptotically as

‖∂k
xV (t)‖L2(R+) = O(1)(1 + t)−(2k+1)/4, k = 0, 1, 2, (3.13)

‖z(t)‖L2(R+) = O(1)(1 + t)−5/4. (3.14)

The proof of Theorem 3.2 will be completed in the next section. Based on the
above theorem, we are going to prove Theorem 2.1.

Proof of Theorem 2.1. Thanks to Theorem 3.2, and by noticing that Vx = v− ¯̄v− v̂,
z = u − ¯̄u − ū, and (∂k

x v̂, ∂k
x û)(x, t) decays like e−αt, we have

‖∂k
x(v − ¯̄v)(t)‖L2 = ‖∂k

x(Vx + v̂)(t)‖L2

≤ ‖∂k
xVx(t)‖L2 + ‖∂k

x v̂(t)‖L2

≤ C(1 + t)−(2(k+1)+1)/4 + Ce−αt

≤ C(1 + t)−(2k+3)/4 (3.15)

and

‖(u − ¯̄u)(t)‖L2 = ‖(z + û)(t)‖L2

≤ ‖z(t)‖L2 + ‖û(t)‖L2

≤ C(1 + t)−5/4 + Ce−αt

≤ C(1 + t)−5/4. (3.16)

This proved (2.24) and (2.26).

For the proof of (2.25), by using (2.24) and Sobolev’s inequalities ‖f‖L∞ ≤√
2‖f‖1/2

L2 ‖fx‖1/2
L2 and ‖f‖Lp ≤ ‖f‖(p−2)/p

L∞ ‖f‖2/p
L2 for 2 ≤ p ≤ +∞, we get

‖(v − ¯̄v)(t)‖Lp

≤ ‖(v − ¯̄v)(t)‖(p−2)/p
L∞ ‖(v − ¯̄v)(t)‖2/p

L2

≤
(√

2‖(v − ¯̄v)(t)‖1/2
L2 ‖∂x(v − ¯̄v)(t)‖1/2

L2

)(p−2)/p

‖(v − ¯̄v)(t)‖2/p
L2
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= 2
p−2
2p ‖(v − ¯̄v)(t)‖

p−2
2p + 2

p

L2 ‖∂x(v − ¯̄v)(t)‖
p−2
2p

L2

≤ C(1 + t)−
3
4×( p−2

2p + 2
p )(1 + t)−

5
4×

p−2
2p

≤ C(1 + t)−(1− 1
2p ). (3.17)

This proved (2.25). The proof is complete. ¤

4. Proof of Theorem 3.2

Now we are going to prove Theorem 3.2. For the system (3.6), by substituting the
first equation z = Vt into the second one, we obtain











Vtt + αVt − βVxx = G, (x, t) ∈ R+ × R+

(V, Vt)(x, 0) = (V̄0, z̄0)(x)), x ∈ R+

V (0, t) = 0,

(4.1)

where β = −p′(v+) and

G = −F − ((p′(¯̄v) − p′(v+))Vx)x. (4.2)

In what follows, we deduce the fundamental solutions and their basic energy
estimates for the linear damped wave equation with the null-Dirichlet boundary
condition. Based on this, we know what are the optimal rates we may obtain for
the linear and nonlinear damped wave equations. In such a sense, it is essential.

Let us consider the linear damped wave equation

φtt + αφt − βφxx = 0, (x, t) ∈ R+ × R+, (4.3)

with the initial data

(φ, φt)|t=0 = (φ0, φ1)(x), x ∈ R+ (4.4)

and the Dirichlet boundary condition

φ|x=0 = 0. (4.5)

In order to solve the IBVP (4.3)–(4.5), we make an odd extension

ψ(x, t) :=

{

φ(x, t), x ≥ 0

−φ(−x, t), x < 0,
ψi(x) :=

{

φi(x), x ≥ 0

−φi(−x), x < 0,
i = 0, 1

then we get a corresponding Cauchy problem
{

ψtt + αψt − βψxx = 0, (x, t) ∈ R × R+

ψ|t=0 = ψ0(x), ψt|t=0 = ψ1(x).
(4.6)

Thus, the solution of (4.6) can be represented in an integral form

ψ(x, t) = K0(t) ∗ ψ0 + K1(t) ∗ ψ1, (4.7)
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where Ki(x, t) (i = 0, 1) are the fundamental solutions of (4.6), that is,

Kitt + αKit − βKixx = 0, i = 0, 1 (4.8)

with
{

K0(x, 0) = δ(x)
d
dtK0(x, 0) = 0

and

{

K1(x, 0) = 0
d
dtK1(x, 0) = δ(x),

(4.9)

where δ(x) is the Delta function. The asterisk ∗ means convolution, i.e., Ki(t) ∗
ψi =

∫ ∞
−∞ Ki(x − y, t)ψi(y)dy.

As in [12], let Ri(ξ, t) be the Fourier transform of Ki(x, t), i = 0, 1, then Ri

satisfies the following ODE

d2

dt2
Ri + α

d

dt
Ri + βξ2Ri = 0, i = 0, 1 (4.10)

with the initial data
{

R0(ξ, 0) = 1
d
dtR0(ξ, 0) = 0

and

{

R1(ξ, 0) = 0
d
dtR1(ξ, 0) = 1

(4.11)

respectively. By solving the previous two ODEs directly, we obtain the exact
solutions as

R1(ξ, t) =























2e−αt/2√
α2−4βξ2

sinh
(

√
α2−4βξ2

2 t
)

, |ξ| < α
2
√

β

te−αt/2, |ξ| = α
2
√

β

2e−αt/2√
4βξ2−α2

sin
(

√
4βξ2−α2

2 t
)

, |ξ| > α
2
√

β

(4.12)

and
R0(ξ, t) =

α

2
R1(ξ, t) + R2(ξ, t) (4.13)

where

R2(ξ, t) =



















e−αt/2 cosh
(

√
α2−4βξ2

2 t
)

, |ξ| < α
2
√

β

e−αt/2, |ξ| = α
2
√

β

e−αt/2 cos
(

√
4βξ2−α2

2 t
)

, |ξ| > α
2
√

β
.

(4.14)

Thus, we see that the fundamental solutions Kj(x, t) (j = 0, 1) can be given by
making use of the inverse Fourier transform to Rj(ξ, t) (j = 0, 1):

Kj(x, t) =
1√
2π

∫ ∞

−∞
eixξRj(ξ, t)dξ.

For the IBVP (4.3)–(4.5), due to the odd symmetry ψ(−x, t) = −ψ(x, t) and
ψi(−x) = −ψi(x) (i = 0, 1), we obtain the expression of the solution as follows,
for all x ≥ 0,

φ(x, t) = ψ(x, t) =

∫ ∞

−∞
K0(x − y, t)ψ0(y)dy +

∫ ∞

−∞
K1(x − y, t)ψ1(y)dy
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=

(
∫ ∞

0

+

∫ 0

−∞

)

K0(x − y, t)ψ0(y)dy

+

(
∫ ∞

0

+

∫ 0

−∞

)

K1(x − y, t)ψ1(y)dy

=

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]φ0(y)dy

+

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]φ1(y)dy. (4.15)

Furthermore, for the linear equation with source term

φtt + αφt − βψxx = g(x, t), (x, t) ∈ R+ × R+ (4.16)

with the initial value condition (4.4) and the Dirichlet boundary value condition
(4.5), by making an odd extension to the source term g(−x, t) = −g(x, t), we can
produce the expressions of solutions by the Duhamel’s principle:

φ(x, t) =

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]φ0(y)dy

+

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]φ1(y)dy

+

∫ t

0

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]g(y, τ)dydτ, (4.17)

In the Cauchy problem case, we note that Matsumura [12] got the following
energy estimates.

Lemma 4.1 ([12]). If f ∈ L1(R) ∩ Hj+k−1(R), then
∥

∥

∥
∂j

t ∂k
x(K1(t) ∗ f)

∥

∥

∥

L2(R)
≤ C(1 + t)−j− 2k+1

4 (‖f‖L1(R) + ‖f‖Hj+k−1(R)). (4.18)

If f ∈ L1(R) ∩ Hj+k(R), then
∥

∥

∥
∂j

t ∂k
x(K0(t) ∗ f)

∥

∥

∥

L2(R)
≤ C(1 + t)−j− 2k+1

4 (‖f‖L1(R) + ‖f‖Hj+k(R)). (4.19)

By using this lemma, we may prove the energy estimates for the linear IBVP.

Lemma 4.2. If f ∈ L1(R+) ∩ Hj+k−1(R+), then
∥

∥

∥

∥

∂j
t ∂k

x

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]f(y)dy

∥

∥

∥

∥

L2(R+)

≤ C(1 + t)−j− 2k+1
4 [‖f‖L1(R+) + ‖f‖Hj+k−1(R+)], (4.20)

If f ∈ L1(R+) ∩ Hj+k(R+), then



S234 P. Marcati, M. Mei and B. Rubino JMFM

∥

∥

∥

∥

∂j
t ∂k

x

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]f(y)dy

∥

∥

∥

∥

L2(R+)

≤ C(1 + t)−j− 2k+1
4 [‖f‖L1(R+) + ‖f‖Hj+k(R+)], (4.21)

Proof. Firstly we are going to prove (4.20). Setting

φ̄(x, t) :=

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]f(y)dy,

we know that φ̄(x, t) is a solution of the IBVP as follows










φ̄tt + αφ̄t − βφ̄xx = 0, (x, t) ∈ R+ × R+

φ̄|t=0 = 0, φ̄t|t=0 = f(x), x ∈ R+

φ̄|x=0 = 0.

By an odd extension to the above IBVP

ψ̄(x, t) :=

{

φ̄(x, t), x ≥ 0

−φ̄(−x, t), x < 0,
h(x) :=

{

f(x), x ≥ 0

−f(−x), x < 0,

such that we may consider its corresponding Cauchy problem for ψ̄(x, t) with the
initial data (0, h(x)), and note that
∫ ∞

−∞
ψ̄2(x, t)dx=2

∫ ∞

0

φ̄2(x, t)dx, ‖h‖L1(R) =2‖f‖L1(R+), ‖h‖2
Hj(R) =2‖f‖2

Hj(R+)

due to the odd symmetry, and by using Matsumura’s lemma (Lemma 4.1), then
we obtain

∥

∥

∥

∥

∂j
t ∂k

x

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]f(y)dy

∥

∥

∥

∥

L2(R+)

=

∥

∥

∥

∥

∂j
t ∂k

x

∫ ∞

−∞
K1(x − y, t)h(y)dy

∥

∥

∥

∥

L2(R+)

=
1√
2

∥

∥

∥

∥

∂j
t ∂k

x

∫ ∞

−∞
K1(x − y, t)h(y)dy

∥

∥

∥

∥

L2(R)

≤ C(1 + t)−j− 2k+1
4 [‖h‖L1(R) + ‖h‖Hj+k−1(R)]

= 2C(1 + t)−j− 2k+1
4 [‖f‖L1(R+) + ‖f‖Hj+k−1(R+)]. (4.22)

This proved (4.20).
Similarly, without any difficulty we can prove (4.21). Here we omit the details. ¤

We even state another auxiliary lemma which is used to prove the decay rates.
The proof and a lot of applications of this lemma can be found in many bibliogra-
phies, for example in [19, 12, 13, 8] and the references therein.
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Lemma 4.3. Let a > 0 and b > 0 be constants. If max(a, b) > 1, then

∫ t

0

(1 + t − s)−a(1 + s)−bds ≤ C(1 + t)−min(a,b). (4.23)

If max(a, b) = 1, then

∫ t

0

(1 + t − s)−a(1 + s)−bds ≤ C(1 + t)−min(a,b) ln(2 + t). (4.24)

If max(a, b) < 1, then

∫ t

0

(1 + t − s)−a(1 + s)−bds ≤ C(1 + t)1−a−b. (4.25)

Proof of Theorem 3.2. Firstly, we prove the optimal decay rates for ‖∂k
xV (t)‖L2

(k = 0, 1, 2), namely, (3.13).
By noticing (4.17), we obtain an equivalent integral equation of the IBVP (4.1)

as follows

V (x, t) =

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]V̄0(y)dy

+

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]z̄0(y)dy

+

∫ t

0

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]G(y, τ)dydτ. (4.26)

By differentiating (4.26) k-times (k = 0, 1, 2) with respect to x, and by taking its
L2(R+)-norm, we obtain

‖∂k
xV (t)‖L2(R+)

≤
∥

∥

∥

∥

∂k
x

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]V̄0(y)dy

∥

∥

∥

∥

L2(R+)

+

∥

∥

∥

∥

∂k
x

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]z̄0(y)dy

∥

∥

∥

∥

L2(R+)

+

∫ t

0

∥

∥

∥

∥

∂k
x

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]G(y, τ)dy

∥

∥

∥

∥

L2(R+)

dτ. (4.27)

Since V̄0 ∈ L1(R+) ∩ H3(R+) and z̄0 ∈ L1(R+) ∩ H2(R+), we apply Lemma 4.2
then to have

∥

∥

∥

∥

∂k
x

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]V̄0(y)dy

∥

∥

∥

∥

L2(R+)

≤ C[‖V̄0‖L1(R+) + ‖V̄0‖H3(R+)](1 + t)−(2k+1)/4, (4.28)
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and
∥

∥

∥

∥

∂k
x

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]z̄0(y)dy

∥

∥

∥

∥

L2(R+)

≤ C[‖z̄0‖L1(R+) + ‖z̄0‖H2(R+)](1 + t)−(2k+1)/4 (4.29)

for k = 0, 1, 2.
Now we are going to estimate the last term in (4.27). By Taylor’s expansion,

and by noticing (4.2) and (3.7), we have

|G| ∼ O(1){|¯̄vx ¯̄vt| + |¯̄vxt| + |((¯̄v − v+)Vx)x| + |v̂x| + |(V 2
x )x|}, (4.30)

|∂k
xG| ∼ O(1){|∂k

x(¯̄vx ¯̄vt)| + |∂k
x
¯̄vxt| + |∂k

x((¯̄v − v+)Vx)x| + |∂k
x v̂| + |∂k

x(V 2
x )x|}.

(4.31)

From (3.1), (2.20), (2.21) and (3.10), and by Hölder’s inequality ‖fg‖L1 ≤
‖f‖L2‖g‖L2 , then the L1-norm for G can be estimated as follows

‖G(t)‖L1(R+)

≤ C{‖¯̄vt(t)‖L2(R+)‖¯̄vx(t)‖L2(R+) + ‖¯̄vxt(t)‖L1(R+)

+ ‖(¯̄v − v+)(t)‖L2(R+)‖Vxx(t)‖L2(R+) + ‖(¯̄v − v+)x(t)‖L2(R+)‖Vx(t)‖L2(R+)

+ ‖v̂x(t)‖L1(R+) + ‖Vx(t)‖L2(R+)‖Vxx(t)‖L2(R+)}
≤ C{(1 + t)−1− 1

4−
3
4 + (1 + t)−

3
2 + (1 + t)−

1
4−

2
2

+ (1 + t)−
3
4−

1
2 + e−αt + (1 + t)−

1
2−

2
2 }

≤ C(1 + t)−5/4. (4.32)

Similarly, we can also prove

‖G(t)‖Hk(R+) ≤ C(1 + t)−3/2. (4.33)

By noting (4.32), (4.33) and 3/2 > 5/4 ≥ (2k + 1)/4 for k = 0, 1, 2, and applying
Lemmas 4.2 and 4.3, we obtain optimal rates for the last term of (4.27) as follows

∫ t

0

∥

∥

∥

∥

∂k
x

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]G(y, τ)dy

∥

∥

∥

∥

L2(R+)

dτ

≤ C

∫ t

0

(1 + t − τ)−(2k+1)/4[‖G(τ)‖L1(R+) + ‖G(τ)‖Hk−1(R+)]dτ

≤ C

∫ t

0

(1 + t − τ)−(2k+1)/4[(1 + τ)−5/4 + (1 + τ)−3/2]dτ

≤ C(1 + t)−(2k+1)/4, for k = 0, 1, 2. (4.34)

Applying (4.28), (4.29) and (4.34) to (4.27), we prove (3.13) for k = 0, 1, 2.
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Now, we are going to prove (3.14). It is well known that

z(x, t) = Vt(x, t)

= ∂t

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]V̄0(y)dy

+ ∂t

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]z̄0(y)dy

+

∫ t

0

∂t

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]G(y, τ)dydτ

+

∫ ∞

0

[K1(x − y, 0) − K1(x + y, 0)]G(y, t)dy. (4.35)

By making use of the fashion as before, then Lemmas 4.2 and 4.3 help us to reach
the goal

‖z(t)‖L2(R+) = ‖Vt(t)‖L2(R+)

≤
∥

∥

∥

∥

∂t

∫ ∞

0

[K0(x − y, t) − K0(x + y, t)]V̄0(y)dy

∥

∥

∥

∥

L2(R+)

+

∥

∥

∥

∥

∂t

∫ ∞

0

[K1(x − y, t) − K1(x + y, t)]z̄0(y)dy

∥

∥

∥

∥

L2(R+)

+

∫ t

0

∥

∥

∥

∥

∂t

∫ ∞

0

[K1(x − y, t − τ) − K1(x + y, t − τ)]G(y, τ)dy

∥

∥

∥

∥

L2(R+)

dτ

+

∥

∥

∥

∥

∫ ∞

0

[K1(x − y, 0) − K1(x + y, 0)]G(y, t)dy

∥

∥

∥

∥

L2(R+)

≤ C(‖V̄0‖L1(R+) + ‖V̄0‖H3(R+)(1 + t)−5/4

+ C(‖z̄0‖L1(R+) + ‖z̄0‖H2(R+)(1 + t)−5/4

+ C

∫ t

0

(1 + t − τ)−5/4(‖G(τ)‖L1(R+) + ‖G(τ)‖H2(R+))dτ

+ C(‖G(t)‖L1(R+) + ‖G(t)‖H2(R+))

≤ C(‖V̄0‖L1(R+) + ‖V̄0‖H3(R+))(1 + t)−5/4

+ C(‖z̄0‖L1(R+) + ‖z̄0‖H2(R+))(1 + t)−5/4

+ C

∫ t

0

(1 + t − τ)−5/4((1 + τ)−5/4 + (1 + τ)−3/2)dτ

+ C((1 + t)−5/4 + (1 + t)−3/2)

≤ C(1 + t)−5/4. (4.36)

This proved (3.14). ¤
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5. Remark

This section is devoted to Marcati–Mei’s IBVP paper [10]


















vt − ux = 0

ut + p(v)x = −αu, (x, t) ∈ R+ × R+

(v, u)(x, 0) = (v0, u0)(x) → (v+, u+) as x → ∞
v(0, t) = g(t) → v+ as t → ∞,

(5.1)

where

|g(t) − v+| = O(1)|v+ − v+|(1 + t)−γ1 , γ1 > 3/4 (5.2)

and the compatibility condition g(0) = v0(0) holds. Let v̄(x, t) = φ(x/
√

1 + t) be
the self-similar solution to the parabolic equation in whole space x ∈ (−∞,∞)

αφt + p(φ)xx = 0, (x, t) ∈ R × R+,

Marcati and Mei in [10] selected a shifted nonlinear diffusion wave

(v̄, ū)(x + d(t), t) :=
(

φ,− 1

α
p(φ)x

)(x + d(t)√
1 + t

)

as the asymptotic profile of (5.1), where the shift d(t) in C3(R+) satisfies

d(t) > 0, for all t ≥ 0, (5.3)

exp
{

− αc0

( d(t)√
t + 1

)2}

≤ O(1)(2 + t)−γ2 , γ2 > 3/4, (5.4)

d′(t) exp
{

− αc0

( d(t)√
t + 1

)2}

≤ O(1)(1 + t)−(γ2+
1
2 )

√

log(2 + t). (5.5)

Under some smoothness and smallness restrictions on the initial data, they proved
in [10] the stability as follows

‖∂k
x(v − v̄)(t)‖L2(R+) = O(1)(1 + t)−(k+1)/2, k = 0, 1, 2, (5.6)

‖∂k
x(u − ū)(t)‖L2(R+) = O(1)(1 + t)−(k+2)/2, k = 0, 1, (5.7)

‖(v − v̄)(t)‖Lp(R+) = O(1)(1 + t)−( 3
4−

1
2p ), 2 ≤ p ≤ ∞. (5.8)

These rates are not sharp and can be improved as follows.

Theorem 5.1. Suppose that v0−v+ ∈ L1(R+), (V0, z0)(x) :=
(

−
∫ ∞

x
[v0(y)−v̄(y+

d(0), 0)]dy, u0(x)− ū(x+d(0), 0)
)

∈ (H3(R+)∩L1(R+))×(H2(R+)∩L1(R+)) and

that ‖v0−v+‖L1(R+)+‖V0‖H3(R+)+‖z0‖H2(R+)+‖V0‖L1(R+)+‖z0‖L1(R+)+|u+| ≪ 1
hold. Then there exists a unique time-global solution (v, u)(x, t) of the IBVP (5.1)
such that

v−v̄ ∈ Ck(0,∞;H2−k(R+)), k = 0, 1, 2, u−ū ∈ Ck(0,∞;H1−k(R+)), k = 0, 1
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and

‖∂k
x(v − v̄)(t)‖L2(R+) = O(1)(1 + t)−(2k+3)/4, k = 0, 1, (5.9)

‖(v − v̄)(t)‖Lp(R+) = O(1)(1 + t)−(2p−1)/(2p), 2 ≤ p ≤ +∞, (5.10)

‖(u − ū)(t)‖L2(R+) = O(1)(1 + t)−5/4. (5.11)

By using the Fourier transform and the energy method as before, we can sim-
ilarly prove Theorem 5.1. The details are omitted.
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