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In this paper we consider a 2_2 relaxation hyperbolic system of conservation
laws with a boundary effect, and we show that the solutions of this initial boundary
problem tend to the traveling wave solutions of the corresponding Cauchy problem
time-asymptotically. In particular, we give the algebraic and exponential decay
rates by using the weighted energy method. The location of a shift for the traveling
wave, to overcome the difficulty in the boundary, plays a key role in this paper.
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1. INTRODUCTION

Relaxation phenomenon often arise in many physical situations, for
example, gases not in thermodynamic equilibrium, kinetic theory, chromat-
ography, river flows, traffic flows, and more general waves, cf. [32, 5].
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The general 2_2 relaxation hyperbolic system of conservation laws in the
form

{ut+ f (u, v)x=0
vt+ g(u, v)x=h(u, v)

(1.1)

was first analyzed by T.-P. Liu [16] to justify some nonlinear stability
criteria for diffusion waves, expansion waves and traveling waves in the
Cauchy problem case. After then, the stability of traveling waves with
decay rates for the Cauchy problem and the stability theory but without
decay rate for the initial boundary problem were studied by Zingano [34]
and Nishibata [29], respectively. The problem on the convergence to the
diffusion waves was given by Chern [4], too. Related results on the relaxa-
tion time limit can be found in Chen and T.-P. Liu [3], Chen et al. [2],
Natalini [28], and Marcati and Rubino [21].

In this paper, we investigate the simplest relaxation model in the half line
x # R+=(0, +�)

{
ut+vx=0,

(1.2)
vt+aux=

( f (u)&v)
=

, (x, t) # R+_R+

with the initial boundary conditions

{(u, v)| t=0=(u0 , v0)(x) � (u+ , v+), as x � +�
v|x=0=g(t),

(1.3)

where (u+ , v+) satisfying v+= f (u+) is one of the end constant states of
the traveling wave solutions (U, V )(x&st) of (1.2) corresponding to the
Cauchy problem, with other end states given as (u& , v&) and satisfying
v&= f $(u&). The unknowns u, v belong to R. We give v0(0)= g(0) as the
compatibility condition. The boundary function g(t) is given in [v+ , v&].
The function f (u) is smooth (say, f # C2) and can be in general nonconvex.
a is a positive constant satisfying

&- a< f $(u)<- a, for all u under consideration, (1.4)

which is the subcharacteristic condition introduced in [16]. In this paper,
we always assume the relaxation time ==1 without loss of generality,
because we can scale the variable (x, t) to a new one (=x, =t), then we have
Eqs. (1.2) with ==1.

The model (1.2) was first introduced by Jin and Xin [9] for numerical
analysis interest. The stability of traveling wave solutions, (u, v)(x, t)=
(U, V )(x&st) with (U, V )(\�)=(u\ , v\), for the Cauchy problem
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associated to (1.2), was studied by H. L. Liu et al. [12, 13], Mascia and
Natalini [22], and finally Mei and Yang [27]. The authors [27] improved
the algebraic decay rates shown in [12] to the optimal one and also con-
tributed an exponential decay rate when the initial perturbation decays in
a spatial exponential form. The stability of front waves in the higher space
dimensions was shown by Luo and Xin [20] recently. For the convergence
theory of the corresponding rarefaction waves the reader is referred to Luo
[19] and Mascia and Natalini [23]. The convergence to the traveling
wave solutions, as the relaxation time goes to zero, was recently considered
by Jin and H. L. Liu [8]. Furthermore, the numerical computation and the
properties of entropy solution for the model (1.2) were shown by Aregba-
Driollet and Natalini [1] (see also [6, 7]). On the other hand, the
asymptotic limit of relaxation time for (1.2) with a boundary effect was
given by Wang and Xin [31] (with a different choice of the boundary con-
dition, u |x=0=0) and by Yong [33] for the case of smooth solutions.
Regarding the boundary layer behaviors for some hyperbolic systems of
conservation laws, the reader is referred to J.-G. Liu and Xin [14, 15].
However, in the initial boundary value problem (IBVP from now on) case,
there is no work on the decay rate convergence to the traveling wave solu-
tion, even for the scalar viscous conservation law

{ut+ f (u)x=uxx ,
u| t=0=u0(x),

x<0, t>0
u|x=0=u+

(1.5)

studied by T.-P. Liu and Yu [18] and T.-P. Liu and Nishihara [17]. In
fact both of them have to choose the shift to be a time-function d(t)
depending on the solution u(x, t) of (1.5), and this arises a difficulty to
yield a decay rate. Therefore, it should be significant to show the decay rate
to the traveling wave for the IBVP (1.2) and (1.3), both in the senses of the
scalar case and the system case. This is our purpose in the present paper.

It seems to be interesting to compare our problem with Nishibata's
problem [29]. That paper is in fact a pioneer in considering the IBVP for
a relaxation model and the author examines there the general case of
systems of the form (1.1). Therein, he put the boundary layer on the travel-
ing waves, (u, v)|x=0=(U, V )(&st), which corresponds to the case when
there is no perturbation on the boundary layer: this case, even more impor-
tant, should be a bit special; somehow it is like the corresponding Cauchy
problem by cutting off the other side x<0. Moreover he proved, under the
convex assumption on f in the sense of the simplest model (1.2), that the
solutions of (1.1) approach the corresponding traveling waves as t � +�,
but without decay rate. On the other hand in our problem, if we put g(t)=
V(&st) the same as Nishibata's problem, we can have the convergence to
the wave with the exponential and algebraic decay rates. If we let g(t)

140 MEI AND RUBINO



be so closed to the wave V(&st), the same convergence theory can be
expected, too.

The really interesting case is g(t)=v& or v+ which will be our main pur-
pose in this paper. First of all, we will make an effort to the case g(t)=v�

with s{0 in Section 4 and to the case g(t)=v� with s=0 in Section 5. In
these cases we have, for the special relaxation system (1.2), a boundary per-
turbation (v&V )|x=0=v�&V(&st), as a consequence of the boundary
condition g(t)=v& or v+ contained in (1.3). The other boundary perturba-
tion (u&U )|x=0 is not known and can be controlled automatically by Eqs.
(1.2). Under this background, we are going to prove the asymptotic
behavior of the solutions of the IBVP (1.2) and (1.3), with some kinds of
decay rates like O(t&:�2) and O(e&%t�2) for some constants :, %>0, to the
traveling waves for the general nonconvex f (u). To treat the nonconvexity,
as in [27] we will introduce two weight functions. How to locate the shift
for the traveling waves plays a key role in this paper.

To go to our goal in the cases g(t)=v& or v+ , here, we have two obser-
vations on the IBVP (1.2) and (1.3). First, in the front traveling wave case,
i.e., s>0, or the back wave case s<0, since the first equation of (1.2) is a
conservation law, by borrowing the idea of Matsumura and Mei [24] used
in the case of the viscous p-system, we expect to determine the shift as an
exact constant. This may be important to ensure the decay rates we can
have. Since the shift may be a constant, the weighted energy method used
in [11, 26, 25] (see also [12, 27]) is expected availably to deduce the same
decay rates to [27] in the IBVP case. Second, in the stationary traveling
wave case (s=0), since the wave V(x) is a constant V(x)#v\ , quite
similarly to the case g(t)=V(&st), we can also obtain the decay rates.
However, we discover that, for some shift functions d(t)>0 including
c log(1+t) or (1+t)c for some constant c>0, we can get the convergence
as well as the algebraic and exponential decay rates to the shifted station-
ary traveling waves (U, V)(x+d(t)) even for the shock conditions
f $(u+)<s=0� f $(u&), since x+d(t)>0 and the wave U(x+d(t)) does
not go to the end state u& . We remark that the shift d(t)=c log(1+t) is
the one considered by T.-P. Liu and Yu [18] for the Burger equation (1.5)
with f =u2�2 in the case s=0 by using pointwise estimate technic. In T.-P.
Liu and Nishihara [17], it remained an open problem the convergence in
the case s=0 for the general viscous equation (1.5) via energy method
analysis.

This paper is organized as follows. After stating some notations in the
following, in Section 2, we give some preliminaries on the traveling wave
solutions of the corresponding Cauchy problem, then we discuss the easier
case g(t)=V(&st) for the convergence theory in Section 3. Section 4 is
devoted to considering the case g(t)=v� with s{0. We will prove that the
solutions (u, v)(x, t) converge, with some algebraic and exponential decay
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rates, to the traveling waves as t goes to infinity. Section 5 treats the
stationary traveling wave for g(t)=v� . We will prove that the stationary
waves without any shift function on the time t are stable for the IBVP (1.2)
and (1.3) when the initial perturbations are small. Moreover, the con-
vergence to the shifted stationary waves (U, V )(x+d(t)) will be obtained
with the algebraic and exponential decay rates, for some shift functions
d(t), both in the nondegenerate shock case ( f $(u+)<s=0< f $(u&)) and
the degenerate case ( f $(u+)<s=0= f $(u&)). For the general case of g(t)
in Section 6, when the boundary layer g(t) is closed to the wave V(&st) in
the space W3, 1(R+), we discuss the convergence of the solutions (u, v)(x, t)
of the IBVP (1.2) and (1.3) time-asymptotically toward the corresponding
traveling waves (U, V )(x&st) with some decay rates. Finally, we give some
concluding remarks on the unsolved problems in this paper in Subsection 6.1.

Notations. L2 denotes the space of measurable functions on R or R+

which are square integrable, with the norm

& f &=\| | f (x)|2 dx+
1�2

.

H l (l�0) denotes the Sobolev space of L2-functions f on R or R+ whose
derivatives � j

x f, j=1, ..., l, are also L2-functions, with the norm

& f &l=\ :
l

j=0

&� j
x f &2+

1�2

.

L2
w denotes the space of measurable functions on R or R+ which satisfy

w(x)1�2 f # L2, where w(x)>0 is a so-called weight function, with the norm

| f |w=\| w(x) | f (x)|2 dx+
1�2

.

H l
w (l�0) denotes the weighted Sobolev space of L2

w -functions f on R
whose derivatives � j

x f, j=1, ..., l, are also L2
w -functions, with the norm

| f | l, w=\ :
l

j=0

|� j
x f | 2

w+
1�2

.

Denoting (x) =- 1+x2 and

(x) +={- 1+x2,
1,

if x�0,
if x<0,

we will make use of the spaces L2
(x)+

and H l
(x)+

(l=1, 2) later. If
w(x)=(x):, we denote L2

w=L2
: . The weighted space L2

w for such weight
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function w=(x) : (x) + is denoted as L2
:(x)+

, and the corresponding
norm is | } |:(x)+

. Since we consider x # R+ , sometimes we mean (x)=(x) + .
We denote also f (x)tg(x) as x � x0 when C&1g� f�Cg in a neighbor-
hood of x0 , and |( f1 , f2 , f3)|X t | f1 | X+| f2 |X+| f3 |X , where | } |X is the
norm of space X. Without any ambiguity, we denote several constants by
Ci , or ci , i=1, 2, ..., or by C. When C&1�w(x)�C for x # R, we note that
L2=H0=L2

w=H 0
w and & }&=& }&0 t | } |w=| } |0, w .

Let T and B be a positive constant and a Banach space, respectively. We
denote Ck(0, T ; B) (k�0) as the space of B-valued k-times continuously
differentiable functions on [0, T ], and L2 (0, T ; B) as the space of
B-valued L2-functions on [0, T ]. The corresponding spaces of B-valued
function on [0, �) are defined similarly.

2. TRAVELING WAVE SOLUTIONS

The traveling wave solution of system (1.2) for the corresponding
Cauchy problem is such a solution (U, V)(z), (z=x&st), satisfying
Eqs. (1.2) and (U, V )(\�)=(u\ , v\) where v\= f (u\), namely,

&sUz+Vz=0,

{&sVz+aUz= f (U )&V, (2.1)

(U, V )(\�)=(u\ , v\),

which implies

(a&s2) Uz= f (U )&V. (2.2)

Integrating the first equation of (2.1) over (\�, z) and noting
(U, V )(\�)=(u\ , v\), we have

&sU+V=&su\+v\=&su\+ f (u\). (2.3)

Substituting (2.3) into the second equation of (2.1) we obtain

(a&s2) Uz= f (U )& f (u\)&s(U&u\)#: h(U ). (2.4)

From (2.3), we see that the speed s and the state constants (u\ , v\) satisfy
the so-called Rankine�Hugoniot condition

s=
v+&v&

u+&u&

=
f (u+)& f (u&)

u+&u&

. (2.5)
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It is well known that the ordinary differential equation (2.4) has a solution
if and only if the R-H condition (2.5) and the Oleinik's entropy condition

h(u)= f (u)& f (u\)&s(u&u\) {<0, u+<u&

>0, u+>u&

(2.6)

hold. This entropy condition implies

f $(u+)<s< f $(u&) (2.7)

or

f $(u+)=s< f $(u&) or f $(u+)<s= f $(u&) or f $(u\)=s.

(2.8)

Condition (2.7) is the well-known Laxian shock condition. Here we will
call this the nondegenerate shock condition and we will refer to each one
of the possibilities in (2.8) as the degenerate shock condition, or the contact
shock condition.

When g(t)=V(&st), we say that all the shock cases in (2.6) are valid for
the convergence theory, since this problem is like the corresponding
Cauchy problem by cutting off another side x<0.

When g(t)=v& with s>0, we will restrict our focus in this paper to the
cases

f $(u+)�s< f $(u&), (2.9)

since other cases in (2.8) f $(u+)�s= f $(u&) cannot yield a constant shift;
see the Subsection 4.1.1 below. Therefore, it remains still an open problem
to get the decay rate for s= f $(u&) in our problem (1.2) and (1.3).

When g(t)=v+ with s<0, we will consider only the cases

f $(u+)<s� f $(u&), (2.10)

because we are not able to control the boundary integration in the cases
f $(u+)=s� f $(u&), and these shock cases are open too.

When g(t)=v� with s=0, it means from (2.1) and (2.5) that

V(x)=v\=f (u\);

this problem is included in the case g(t)=V(&st), so we can easily treat
it. However, if we want to have a convergence to the shifted stationary
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waves (U, V)(x+d(t)) with some shift function d(t) satisfying d(t) � +�
as t � +�, we have to restrict ourself on

f $(u+)<s=0� f $(u&). (2.11)

The reason is that we cannot determine a suitable shift d(t) for the stationary
waves to have a convergence when f $(u+)=0=s, which will be precisely
stated in Section 5. So, unfortunately, the cases f $(u+)=s� f $(u&) remain
also open problems.

Furthermore, without loss of generality we assume in this paper
u+<u& , and for s= f $(u+) or s= f $(u&)

f (n)(u\)=0 and f (n+1)(u\){0 for n�2. (2.12)

We now state the existence of the traveling wave solutions given in [13]
by a similar proof in [25] for the scalar viscous conservation laws.

Proposition 2.1 [13]. Under Oleinik's shock condition (2.6) and the R-H
condition (2.5), then there exists a traveling wave solution (U, V)(x&st) of
(1.2) with (U, V )(\�)=(u\ , v\), unique up to a shift, and the speed
satisfies

s2<a. (2.13)

Moreover, it holds

(a&s2) Uz=h(U )<0 for u+<u& (2.14)

and as z=x&st � \�

{ |h(U)|t |(U&u\ , V&v\)(z)|texp(&c\ |z| ),
|h(U)|1�(1+n)

t |(U&u\ , V&v\)(z)|t |z| &1�n,
f $(u+)<s< f $(u&)
f $(u\)=s, (2.15)

where c\=| f $(u\)&s|�(a&s2)>0.

Defining the following weight functions, cf. [27, 25],

w1(U )=
(U&u+)(U&u&)

h(U )
, w2(U )=&

(U&u+)1�2 (u&&U )1�2

h(U )
(2.16)

for U # (u+ , u&), which are positive due to u+<u& and h(U )<0, we
recall the properties of the traveling wave solutions (U, V) given in [27]
as follows.
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Lemma 2.2 [27]. Let (U, V )(x&st) be the traveling wave solutions of
(1.2) for the corresponding Cauchy problem. Then it holds

{w1(U )tO(1), w2(U )tec\ |z|�2,
w1(U )t(z) \ ,

if f $(u+)<s< f $(u&)
if f $(u\)=s

(2.17)

as z � \�, and

(w1h)" (U )=2, } wi (U )z

w i(U ) }=O(1)
|u+&u& |

a&s2 , i=1, 2, (2.18)

&h(U )(w2h)" (U )=O(1) w2(U ), for f $(u+)<s< f $(u&). (2.19)

3. CASE g(t)=V(&st)

In this section, we discuss the easier case g(t)=V(&st), which means
that there is no perturbation in the boundary x=0. Such a problem is the
same as Nishibata's problem [29]. We can easily prove the convergence
with some decay rates to the traveling waves (U, V )(x&st), since it can be
treated somewhat like the corresponding Cauchy problem.

By using the result of Section 2 about traveling waves (U, V )(x&st), we
can assume s>0 or =0 or <0, as well as we can consider any one of the
shock cases f $(u+)�s� f $(u&). We assume

|
�

0
[u0(x)&U(x)] dx=0. (3.1)

From the first equation of (1.2) we have (u&U )t=&(v&V )x , and
integrating it over [0, +�)_[0, t], using g(t)=V(&st), v|x=+�=
V |x=+�=v+ and (3.1), we finally obtain

|
�

0
[u(x, t)&U(x&st)] dx

=|
�

0
[u0(x)&U(x)] dx&|

t

0
|

�

0
(v(x, {)&V(x&s{))x dx d{

=|
�

0
[u0(x)&U(x)] dx&|

t

0
(v(x, {)&V(x&s{))| �

x=0 d{

=|
�

0
[u0(x)&U(x)] dx=0. (3.2)
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Let us consider

,(x, t) :=&|
�

x
[u( y, t)&U( y&st)] dy, �(x, t) :=v(x, t)&V(x&st),

(3.3)

which implies, by using (3.2), that

,|x=0=0, (3.4)

then the original IBVP (1.2) and (1.3) can be transformed into the new
IBVP

{
,t+�=0,

(3.5)

�t+a,xx& f $(U) ,x+�=F, x>0, t>0,

(,, �)| t=0=\&|
�

x
[u0( y)&U( y)] dy, v0(x)&V(x)+=: (,0 , �0)(x),

,|x=0=0,

where F= f (U+,x)& f (U )& f $(U) ,x .
Since the new IBVP (3.5) has a zero boundary layer, the convergence to

the traveling waves is the same as the one studied by Nishibata [29]. The
decay rates can be obtained, without any difficulty, by a similar argument
used for the Cauchy problem (see [12, 27, 34]). The details may be omitted.

Theorem 1.3 (Algebraic Rates). Under the assumption (3.1), let a be
suitably large or, fixed a>0, |u+&u& | be suitably small.

(i) Case f $(u+)<s< f $(u&). Suppose that (,0 , �0)(x) # L2
: & H2 for

some :>0 holds. Then there exists a constant $1>0 such that if
|(,0 , �0)|:+&(,0 , �0)&2<$1 , then the system (1.2) and (1.3) has a unique
global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V)(x&st)|�C(1+t)&:�2 ( |(,0 , �0)|:+&(,0 , �0)&2).

(ii) Case f $(u+)=s< f $(u&). Suppose that (,0 , �0)(x) # L2
:(x)+

& H2

for some 0<:<2�n holds. Then there exists a constant $2>0 such that, if
|(,0 , �0)|:(x)++&(,0 , �0)&2<$2 , then the system (1.2) and (1.3) has a
unique global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st)|

�C(1+t)&:�4 ( |(,0 , �0)|:(x)+
+&(,0 , �0)&2).
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Theorem 3.2 (Exponential Rates). Under the assumption (3.1), let a be
suitably large, or |u+&u& | be suitably small for any given a>0. If
f $(u+)<s< f $(u&) and ,0 # H 3

w2(U) , �0 # H 2
w2(U ) , then there exist constants

$3>0 and %=%( |u+&u& |, a)>0 such that if |(,0 , �0)| 2, w2
�$3 , the IBVP

(1.2) and (1.3) has a unique global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st)|�Ce&%t�2 |(,0 , �0)|2, w2
. (3.6)

4. CASE g(t)=v� , s{0

This section is devoted to studying convergence for the solutions of the
IBVP (1.2) and (1.3) to the corresponding traveling waves (U, V )(x&st).
In particular, as discussed in Section 2, here we need to restrict to the
shock cases f $(u+)�s< f $(u&) for the front traveling waves (s>0) and
boundary condition g(t)=v& , and to f $(u+)<s� f $(u&) for the back
traveling waves (s<0) and boundary condition g(t)=v+ . We will obtain
results of algebraic and exponential decay rates under the hypothesis of
small initial-boundary perturbations. We will develop the details only for
the case s>0 and g(t)=v& , summarizing in a last subsection the corre-
sponding results for the case s<0 and g(t)=v+ .

4.1. Case s>0, g(t)=v&

4.1.1. Determination of the Shift. Here, we share Matsumura and Mei's
idea in [24] to determine the shift as a constant. Assume the initial data
(u0 , v0)(x) of the fixed front traveling waves (U, V )(x&st) located in a
neighborhood of the traveling wave solutions (U, V)(x&x1). Then we try
to make an heuristic argument to determine which of the shifted front
waves (U, V)(x&st+x0&x1) the solutions tend toward.

Denote (U, V )=(U, V )(x&st+x0&x1). From the first equation of
(1.2), we have

(u&U )t=&(v&V )x . (4.1)

Integrating (4.1) over R+ with respect to x, and noting v|x=0=v& and
v|x=+�=V |x=+�=v+ , it yields

d
dt |

�

0
[u(x, t)&U(x&st+x0&x1)] dx

=&(v&V )| �
x=0=v&&V(&st+x0&x1). (4.2)
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By integration on the time t, we have

|
�

0
[u(x, t)&U(x&st+x0&x1)] dx

=|
�

0
[u0(x)&U(x+x0&x1)] dx+|

t

0
[v&&V(&s{+x0&x1)] d{.

(4.3)

If we assume

|
�

0
[u(x, t)&U(x&st+x0&x1)] dx � 0 as t � +� (4.4)

for some x0 , i.e., the right hand side of (4.3) must go to zero as t � +�.
Hence, if we set

I(x0) :=|
�

0
[u0(x)&U(x+x0&x1)] dx+|

�

0
[v&&V(&st+x0&x1)] dt,

(4.5)

the shift x0 must be determined so that I(x0)=0. Differentiating I(x0) with
respect to x0 gives

I$(x0)=&|
�

0
U$(x+x0&x1) dx&|

�

0
V$(&st+x0&x1) dt

=&[u+&U(x0&x1)]+
1
s

[v&&V(x0&x1)]

=u&&u+ , (4.6)

where we used formula (2.3). Hence, by integration of (4.6) it follows
I(x0)=I(0)+(u&&u+) x0 . Thus, the shift x0=x0(x1 , u0) should be deter-
mined explicitly by I(0)+(u&&u+) x0=I(x0)=0, that is,

x0 :=
1

u+&u& {|
�

0
[u0(x)&U(x&x1)] dx+|

�

0
[v&&V(&st&x1)] dt= .

(4.7)

In order to conclude we must show that the right hand side of (4.7) makes
sense. In fact, we have u0(x) in a neighborhood of U(x&x1) as hypotheses
and we may be more precise assuming that

} |
�

0
[u0(x)&U(x&x1)] dx }<+�.
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Moreover, since we restrict ourself to the shock case of s>0 and
f $(u+)�s< f $(u&) as stated in (2.9), we have

} |
�

0
[v&&V(&st&x1)] dt }
�|

�

0
|v&&V(&st&x1)| dt=O(1) |

�

0
e&c&(st+x1) dt�C, (4.8)

and this assures us that the fundamental assumption (4.4) is verified when
x0 is fixed as in (4.7). So, x0 defined in (4.7) should be an exact constant.
Let us remark that, when s= f $(u&), since |v&&V(&st&x1)|=
O(1)(st+x1)&1�n we have |��

0 [v&&V(&st&x1)] dt|=+�, so with this
technique we cannot choose the shift x0 to be a constant and this will
remain still an open problem as we mentioned above.

Thus, it follows from (4.3) and I(x0)=0 that

|
�

0
[u(x, t)&U(x&st+x0&x1)] dx

=|
�

0
[u0(x)&U(x+x0&x1)] dx+|

t

0
[v&&V(&s{+x0&x1) d{

=I(x0)&|
�

t
[v&&V(&s{+x0&x1) d{

=&|
�

t
[v&&V(&s{+x0&x1) d{ � 0, as t � +�.

Let

(u0(x)&U(x&x1), v0(x)&V(x&x1)) # H1 (4.9)

and

(80 , 90)(x) :=\&|
�

x
(u0( y)&U( y&x1) dy, v0(x)&V(x&x1)+ # L2,

(4.10)

then we have an asymptotic property of the constant shift x0 as follows; we
omit its proof since a similar one can be found in [24].

Lemma 4.1. With the previous hypotheses, it holds (80 , 90) # H2 and
|x0 | � 0 as &(80 , 90)&2 � 0 and x1 � +�.
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4.1.2. Main Theorems. Due to x1>>|x0 | (see the Lemma 4.1), we
define

w0, 2(x)={ec+(x+x0&x1),
1,

if x�x1&x0 ,
if 0�x<x1&x0 ,

(4.11)

then w0, 2(x)tw2(U(x+x0&x1)) by Lemma 2.2. Setting

(,0 , �0)(x) :=\&|
�

x
(u0( y)&U( y+x0&x1) dy, v0(x)&V(x+x0&x1)+ ,

(4.12)

we state our main theorems as follows.

Theorem 4.2 (Convergence). Under the assumptions (1.4), (2.5), (2.6),
and (2.9), let a>0 be a suitably large but fixed constant.

(i) Case f $(u+)<s< f $(u&). Suppose ,0 # H2 and �0(x) # H 1 hold.
Then there exists a constant =1>0 such that if a(&,0 &2+&�0 &1+x&1

1 )<=1 ,
then the IBVP (1.2) and (1.3) has a unique global solution

u&U # C0([0, +�); H 1) & L2([0, +�); H1)

v&V # C0([0, +�); H1) & L2([0, +�); H1)

satisfying

sup
x # R+

|(u, v)(x, t)&(U, V)(x&st+x0&x1)| � 0, as t � +�. (4.13)

(ii) Case f $(u+)=s< f $(u&). Suppose ,0 # L2
(x)+

& H2 and �0 #
L2

(x)+
& H 1 hold. Then there exists a constant =2>0 such that if

a( |(,0 , �0)| (x)+
+&,0&2+&�0&1+x&1

1 )<=2 , then the system (1.2) and
(1.3) has a unique global solution

u&U # C0([0, +�); L2
w1

& H 1) & L2([0, +�); H1)

v&V # C0([0, +�); L2
w1

& H 1) & L2([0, +�); L2
w1

& H1)

satisfying the asymptoticity condition (4.13).

Theorem 4.3 (Exponential Rate). Under the assumptions of (1.4), (2.5),
(2.6), and (2.9), let a>0 be a suitably large but fixed constant. If f $(u+)<
s< f $(u&) and ,0 # H 2

w0, 2
, �0 # H 1

w0, 2
, then there exist constants =3>0 and
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%=%( |u+&u& |, a)>0 such that if a( |,0 |2, w0, 2
+|�0 |1, w0, 2

+x&1
1 )�=3 , then

the IBVP (1.2) and (1.3) has a unique global solution (u, v)(x, t) satisfying

u&U # C0(0, �; H 1
w2

) & L2(0, �; H 1
w2

)

v&V # C0(0, �; H 1
w2

) & L2(0, �; H 1
w2

)

and

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st+x0&x1)|

�Ce&%t�2( |,0 |2, w0, 2
+|�0 |1, w0, 2

+e&c&x1�4). (4.14)

Theorem 4.4 (Algebraic Rates). Let us assume the hypotheses of
Theorem 4.2.

(i) Case f $(u+)<s< f $(u&). Suppose ,0 # L2
: & H2, �0 # L2

: & H 1

for some :>0. When (,0 , �0) is small enough in (L2
: & H 2)_(L2

: & H 1),
then

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st+x0&x1)|

�C(1+t)&:�2 ( |(,0 , �0)|:+&,0&2+&�0&1+e&c&x1�4). (4.15)

(ii) Case f $(u+)=s< f $(u&). Suppose the initial data (,0 , �0) #
(L2

:(x)+
& H2)_(L2

:(x)+
& H1), for some 0<:<2�n and that they are

suitably small. Then

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st+x0&x1)|

�C(1+t)&:�4 ( |(,0 , �0)| :(x)+
+&,0&2+&�0&1+e&c&x1 �4). (4.16)

Remark 4.5. (1) The restriction of a>>1 but without |u+&u& |<<1
is the same used by H. L. Liu et al. [12, 13] for the Cauchy problem. This
means that we need a stronger diffusion effect for the convergence. Regard-
ing the Cauchy problem the restriction a>>1 was recently substituted with
|u+&u& |<<1 in Mei and Yang [27]. Unfortunately here we still need
a>>1 to overcome the difficulty arising on the boundary.

(2) The algebraic decay rates both in the nondegenerate and
degenerate cases seem to be optimal compared with the corresponding
Cauchy problem studied in [27].
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4.1.3. Reformulation of the Original Problem. Let us define the new
unknowns as

{,(x, t) :=&|
�

x
[u( y, t)&U( y&st+x0&x1)] dy

(4.17)
�(x, t) :=v(x, t)&V(x&st+x0&x1),

then the original system (1.2) can be reduced to

{,xt+�x=0,
�t+a,xx= f (,x+U)& f (U )&�,

(4.18)

which we can rewrite as

{,t+�=0,
�t+a,xx& f $(U ) ,x+�=F,

(4.19)

where F :=f (,x+U )& f (U )& f $(U) ,x satisfies |F |�C |,x|2 .
The initial boundary conditions (1.3) will be now transformed in

,| t=0=,0(x), �| t=0=�0(x), (4.20)

,|x=0=&|
�

0
[u(x, t)&U(x&st+x0&x1)] dx

=|
�

t
[v&&V(&s{+x0&x1] d{=: A(t), (4.21)

� |x=0=&,t |x=0=v&&V(&st+x0&x1)=&A$(t). (4.22)

Here, since |v&&V(&st+x0&x1)|=O(1) exp [&c&(st+x1)] by (2.15)
and |x0 |<<x1 , we have

|A(t)|t |A$(t)|t |A"(t)|t |A$$$(t)|tO(1) exp [&c&(st+x1)]. (4.23)

Substituting �=&,t into the second equation of (4.19), we have

L(,) :=,tt+,t&a,xx+ f $(U ) ,x=&F, x>0, t>0

{(,, ,t)| t=0=(,0 , ,1)(x), x>0 (4.24)

(,, ,t)|x=0=(A, A$)(t), t>0.

We reformulate the theorems corresponding to the main Theorems 4.2�4.4
as follows.

Theorem 4.6 (Convergence). Under the assumptions in Theorem 4.2,
then the IBVP (4.24) has a unique global solution ,(x, t) satisfying the
following properties:
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(i) Case f $(u+)<s< f $(u&).

, # C0([0, +�); H 2), ,x # L2([0, +�); H1)

,t # C0([0, +�); H1) & L2([0, +�); H 1)

and, if M 2
0 :=e&c&x1 �2+&,0&2

2+&,1&2
1 ,

&,(t)&2
2+&,t(t)&2

1+|
t

0
&(,x , ,t)({)&2

1 d{�CM 2
0 , (4.25)

which implies

sup
x # R+

|(,x , ,t)(x, t)| � 0, as t � +�. (4.26)

(ii) Case f $(u+)=s< f $(u&).

, # C0([0, +�); L2
w1

& H 2), ,x # L2([0, +�); L2
w1

& H 1)

,t # C 0([0, +�); L2
w1

& H1) & L2([0, +�); L2
w1

& H 1)

and, if M� 2
0 :=e&c&x1 �2+|(,0 , ,1)| 2

(x)+
+&,0&2

2+&,1&2
1 ,

|(,, ,t)(t)| 2
w1

+&,x(t)&2
1+&,xt(t)&2

+|
t

0
[|(,x , ,t)({)| 2

w1
+&(,xx , ,xt)({)&2] d{�CM� 2

0 , (4.27)

which in particular implies (4.26).

Theorem 4.7 (Exponential Rate). Under the assumptions in
Theorem 4.3, then the IBVP (4.24) has a unique global solution satisfying

, # C0(0, �; H 2
w2

) & L2(0, �; H 2
w2

), ,t # C 0(0, �; H 1
w2

) & L2(0, �; H 1
w2

)

and, if M� 2
0 :=e&c&x1 �2+|,0 | 2

2, w0, 2
+|,1 | 2

1, w0, 2
,

|,(t)| 2
2, w2

+|,t(t)| 2
1, w2

+% |
t

0
[ |,({)| 2

2, w2
+|,t({)| 2

1, w2
] d{�CM� 2

0 , (4.28)

namely,

|,(t)| 2
2, w2

+|,t(t)| 2
1, w2

�CM� 2
0 e&%t. (4.29)

Theorem 4.8 (Algebraic Rates). Under the assumptions in Theorem 4.4,
denoting M 2

1 :=|(,0 , ,1)| 2
:+M 2

0 , M� 2
1 :=|(,0 , ,1)| 2

:(x)+
+M� 2

0 , then the
solution ,(x, t) of (4.24) satisfies
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sup
x # R+

|(,, ,x , ,t)(x, t)|�CM1(1+t)&:�2, for f $(u+)<s< f $(u&),

(4.30)

sup
x # R+

|(,, ,x , ,t)(x, t)|�CM� 1(1+t)&:�4, for f $(u+)=s< f $(u&).

(4.31)

These theorems can be shown by the continuity argument dependent on
the local existence result together with the a priori estimates. We will omit
here the local existence result since it is standard, while the a priori
estimates will be shown in the following two subsections.

4.1.4. Convergence to Front Waves and Exponential Decay Rate. In this
subsection, we are going to prove Theorems 4.6 and 4.7. We focus on the
nondegenerate case f $(u+)<s< f $(u&), because the degenerate case
f $(u+)=s< f $(u&) can be similarly treated.

Define the solution spaces of (4.24) as

X1=[, # C0(0, T ; H2) :,x # L2(0,T ; H1), ,t # C0(0, T ; H 1) & L2(0, T ; H1)],

X2=[, # C0(0, T ; H 2
w2

) & L2(0, T ; H 2
w2

) :,t # C0(0, T ; H 1
w2

) & L2(0, T ; H 1
w2

)],

and let

N1(T)= sup
0�t�T

[&,(t)&2
2+&,t(t)&2

1],

N2(T)= sup
0�t�T

[ |,(t)| 2
2, w2

+|,t(t)| 2
1, w2

],

for T # [0, +�]. In order to obtain a priori estimates, in what follows we
will assume to have Ni (t) (i=1, 2) small enough. To say this we will use
the notation Ni (t)<<1 (i=1, 2). Before proving the basic energy estimate,
we need the following estimates for the boundary in lower order differential
form.

Lemma 4.9. Let us assume Ni (t) bounded. It holds for i=1, 2

|
t

0 \ |aw i,,x |+
a
2

|wix,2|+
1
2

|wi f $,2|+|2aw i,t ,x |+}x=0

d{�aCe&c&x1 �2,

(4.32)

where C>0 depends on Ni (t), i=1, 2 but it is independent from a and x1 .
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Proof. We have |,x |x=0
|�CNi (t)�C by the Sobolev's inequality,

and |,|x=0 |=|A(t)|=O(1) e&c&x1e&c&st, w1(U )=O(1), w2(U )| x=0=
O(1) ec&x1�2ec&st�2, by (4.23) and (2.17). As a consequence |(w1(U ) ,)|x=0 |=
O(1) e&c&x1e&c&st and |(w2(U ) ,)| x=0 |=O(1) e&c&x1 �2e&c&st�2 hold, so we
obtain the estimate

|
t

0
|(aw i,,x)|x=0 | d{

�aCNi (t) |
t

0
|[wi (U ) ,]|x=0 | d{�aCe&c&x1 �2, i=1, 2. (4.33)

On the other hand from (2.18) we have |wix |=O(1) ( |u+&u& |�(a&s2)) wi . So,
since |,t(0, t)|=|A$(t)|tA(t), and | f $(U )| is bounded, by the same way in
(4.33), we can prove

|
t

0 \}
a
2

wix ,2 }+1
2

|w i f $,2|+|2aw i,t,x |+}x=0

d{�aCe&c&x1 �2, i=1, 2.

(4.34)

Combining (4.33) and (4.34), we have completed the proof of the
lemma. K

Lemma 4.10 (Basic Energy Estimate). Let us assume the solution
, # X1(0, T ) for a fixed T>0. Then

&(,, - a,x , ,t)(t)&2+|
t

0
[a &(,x({)&2+&,t({)&2] d{

�aC[e&c&x1�2+&(,0 , ,0, x , ,1)&2], (4.35)

holds for t # [0, T ], provided N1(T )<<1, where C>0 is independent of a, x1

and (,0 , ,1).
Moreover, if we assume the solution , # X2(0, T), then there exists a

constant %1>0 such that

|(,, - a,x , ,t)(t)| 2
w2

+%1 |
t

0
&(,, - a,x , ,t)({)&2

w2
] d{

�aC[e&c&x1�2+|(,0 , ,0, x , ,1)| 2
w2

], (4.36)

holds, provided N2(T )<<1, where C>0 is independent of a, x1 , and
(,0 , ,1).
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Proof. As in [13, 12, 27], we multiply (4.24) by 2wi (U ) , and 2wi,t ,
i=1, 2, respectively, to have

2wi (U ) , } L(,)=&2wi (U ) ,F, i=1, 2, (4.37)

2wi (U ) ,t } L(,)=&2wi (U ) ,tF, i=1, 2. (4.38)

Combining (4.37)_1
2+(4.38), by a simple but tedious computation, we

have

[E1(,, ,t)+E2(,x)]t+E3(,x , ,t)+E4(,)&[ } } } ]x=&2Fw i [
1
2,+,t],

(4.39)

where

E1(,, ,t)=w i _,2
t +,,t+

1
2 \1+s

wix

wi + ,2& , (4.40)

E2(,x)=aw i ,2
x , (4.41)

E3(,x , ,t)=w i _\1+s
wix

wi + ,2
t +2 \ f $+a

wix

wi + ,x,t+a \1+s
wix

wi + ,2
x& ,

(4.42)

E4(,)=&
1
2

(wih)" (U ) Ux,2, (4.43)

[ } } } ]={awi,,x&
1
2

wix,2&
1
2

wi f $,2+2awi ,t ,x= . (4.44)

When a>0 is suitably large, namely, |wix �wi |=O(1) ( |u+&u& |�(a&s2))<<1,
by using the subcharacteristic condition (1.4), with a similar argument in
[13, 27], we conclude

D1 :#1&4_
1
2 \1+s

wix

wi +=&\1+2s
wi (U )x

wi (U ) +�&C<0, i=1, 2,

(4.45)

D3 :#4 \ f $(U )+a
wi (U)x

wi (U ) +
2

&4a \1+s
wi (U )x

wi (U ) +
2

�&4C<0, i=1, 2,

(4.46)

for some constant C>0, where D1 and D3 denote the discriminants of E1

and E3 , respectively. Thus, we have
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E1(,, ,t)�c1 wi ,2+c2wi,2
t , i=1, 2, (4.47)

E3(,x , ,t)�c3 wi ,2
x+c4wi ,2

t , i=1, 2, (4.48)

for some positive constants cj , j=1, 2, 3, 4.
On the other hand, from (2.18) and (2.19) in Lemma 2.2, we have

E4(,)={ |Ux | ,2,
O(1) w2(U ) ,2,

for w1(U ),
for w2(U ).

(4.49)

Integrating (4.39) over R+ _[0, t], using (4.47), (4.48), (4.49) and the
boundary estimate (4.32) into it, since the nonlinear term can be controlled
as

} |
t

0
|

+�

0
Fwi (,+2,t) dx d{ }�CN i(T ) |

t

0
|,x({)| 2

wi
d{

due to |F |�C,2
x , we prove the basic estimate (4.35) provided N1(T )<<1

and the estimate (4.36) with some constant %1>0 provided N2(T)<<1. K

The next step is to do a bit of effort for the boundary in the higher order
case.

Lemma 4.11. It holds for i=1, 2,

|
t

0 \ |awi ,x,xx |+
a
2

|wi, x ,2
x |+

1
2

|wi f $,2
x |+}x=0

d{

�aC(e&c&x1�2+|,0 | 2
1, wi

+|,1 | 2
wi

), (4.50)

} |
t

0
(awi,xt,xx )|x=0 d{ }
�C |,xx(t)| 2

wi
+aC(e&c&x1�2+|,0 | 2

1, wi
+|,1 | 2

wi
), (4.51)

where C>0 is independent of a, x1 , and (,0 , ,1).

Proof. First, we prove

|
t

0
(wi ,2

x)|x=0 d{�aC(e&c&x1 �2+|,0 | 2
1, wi

+|,1 | 2
wi

), i=1, 2,

(4.52)

|
t

0
|(aw i,x,xx)x=0 | d{�aC(e&c&x1�2+|,0 | 2

1, wi
+|,1 | 2

wi
), i=1, 2.

(4.53)
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Since 2wi,x } L(,)=&2wi,xF, we have

&[awi ,2
x]x=&[2wi,x,t]t+2wit,x,t+[wi,2

t ]x&wix,2
t

&2wi,x ,t&aw ix ,2
x&2wi f $,2

x&2wi,xF. (4.54)

Integrating (4.54) on [0, t]_R+ , using | 1
s wit |= |wix |=

O(1) ( |u+&u&|�(a&s2)) wi , the boundary estimate (4.32), the basic estimates
(4.35) for i=1, and (4.36) for i=2, we have

a |
t

0
[w i,2

x]|x=0 d{

�2 |
�

0
w i |,x,t | dx+2 |

�

0
wi0 |,0, x,0 | dx+2C |

t

0
|

�

0
wi |,x,t | dx d{

+|
t

0
[wi ,2

t ]| x=0 d{+C |
t

0
|

�

0
wi,2

t dx d{

+C |
t

0
|

�

0
wi ,2

x dx d{+CNi (t) |
t

0
|,x({)| 2

|i
d{

�C { |,x(t)| 2
wi

+|,t(t)| 2
wi

+|,0, x | 2
wi

+|,1 | 2
wi

+|
t

0
[|,x({)| 2

wi
+|,t({)| 2

wi
] d{+e&c&x1 �2=

�aC(e&c&x1 �2+|,0 | 2
1, wi

+|,1 | 2
wi

).

This proves (4.52). To prove (4.53), let us use (4.24) to write

a,xx |x=0=[,tt+,t+ f (U+,x)& f (U )]|x=0

=A"(t)+A$(t)+O(1) ,x |x=0 . (4.55)

Then using (4.52) and (4.55) we can easily prove (4.53) as

|
t

0
|(aw i,x ,xx)|x=0 | d{

=|
t

0
|(wi,x)x=0 (A"({)+A$({)+(\O(1) ,x |x=0)| d{

�CNi (T ) |
t

0
wi |x=0( |A"({)|+|A$({)| ) d{+C |

t

0
(wi,2

x)|x=0 d{

�aC(e&c&x1 �2+|,0 | 2
wi

+|,1 | 2
wi

), i=1, 2.
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Therefore, by (4.52) and (4.53), and using |wix |=O(1) ( |u+&u& |�(a&s2)) wi (U )
and | f $(U )|�C, we complete the proof of (4.50).

Now we are going to prove (4.51). Noting (4.55) and using the integration
by part with respect to t, we have

} |
t

0
(aw i,xt ,xx )x=0 d{ }
= } |

t

0
(wi,xt)|x=0 [A"({)+A$({)+[ f (U+,x)& f (U )]|x=0] d{ }

� }{([wi,x]| x=0 } [A"({)+A$({)])| t
0

&|
t

0
[wi ,x]|x=0 } [A$$$({)+A"({)] d{

&|
t

0
[wit ,x]|x=0 } [A"({)+A$({)] d{=}

+ } |
t

0
[wi,xt]|x=0 } [ f (U+,x)& f (U )]|x=0] d{ }

=: I1+I2 . (4.56)

Since |A"(t)|t |A$(t)|te&c&(st+x1), w1(U)tO(1), w2(U )|x=0 tec&(st+x1)�2,
we have wi (U )|x=0 } ( |A"(t)|+|A$(t)| )�Ce&c&(st+x1)�2 for all t�0, and by
the Sobolev inequality |,x(0, t)|�CNi (T )�C, we get

|([wi ,x]|x=0 } [A"({)+A$({)])| t
0 |�Ce&c&x1 �2. (4.57)

On the other hand, by the facts �t
0 wi | x=0( |A$$$({)|+|A"({)|+|A$({)| ) d{�

Ce&c&x1 �2, and |wit |=s |wix |=O(1) (s |u+&u& |�(a&s2)) wi , we obtain

|
t

0
|[wi ,x]|x=0 } [A$$$({)+A"({)]|+|[wit,x]|x=0 } [A"({)+A$({)]| d{

�Ce&c&x1�2. (4.58)

Hence, thanks to (4.57) and (4.58), we proved

I1�Ce&c&x1 �2. (4.59)

To control I2 , let us define

q(t) :=|
,x(0, t)

0
[ f (U+')& f (U )] d'. (4.60)
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We can easily check that

qt(t)=([ f (U+,x)& f (U )] ,xt )|x=0

+Ut |x=0 } |
,x(0, t)

0
[ f $(U+')& f $(U )] d', (4.61)

and, by using | f $(U+'� )|�C,

|q(t)|= } 1
2 |

,x(0, t)

0
f $(U+'� ) d'2 }�C,x(0, t)2, (4.62)

where '� # (0, ,x(0, t)).
By the Sobolev inequality and the basic estimates in Lemma 4.10 for

|,x(t)| 2
wi

, we have

|- wi ,x |2�C |,x(t)| 2
1, wi

�C |,xx | 2
wi

+aC(e&c&x1 �2+|,0 | 2
1, wi

+|,1 | 2
wi

).

(4.63)

Hence, from (4.60)�(4.63) and (4.52) we can control I2 as

I2= } |
t

0
[wi ,xt]|x=0 } [ f (U+,x)& f (U )]|x=0 d{ }

= } |
t

0
wi | x=0 } qt({) d{&|

t

0
(wiUt)|x=0

} |
,x(0, {)

0
[ f $(U+')& f $(U)] d' d{ }

� } (wi | x=0 q({))| t
0&|

t

0
wit |x=0 } q({) d{ }

+C |
t

0
|(wi Ut ,x)| x=0 | d{

�(wi,2
x)| [x=0, {=t]+(wi ,2

x)|[x=0, {=0]

+C
s |u+&u& |

a&s2 |
t

0
(wi,2

x)|x=0 d{+sCNi (t) |
t

0
(wi |Ux | )|x=0 d{

�C |,xx(t)| 2
wi

+aC(e&c&x1 �2+|,0 | 2
1, wi

+|,1 | 2
wi

). (4.64)

Thus, substituting (4.59) and (4.64) into (4.56), we have completed the
proof of (4.51). K
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Lemma 4.12. Let us assume the solution , # Xi (0, T ), i=1, 2. Then, for
some constant %2>0,

|(,x , ,xt)(t)| 2
wi

+a |,xx(t)| 2
wi

+%2 |
t

0
[a |(,xx({)| 2

w2
+|(,x , ,xt)({)| 2

w2
] d{

�aCM2 (4.65)

holds, provided Ni (T )<<1, i=1, 2. Here M=M0 or M� 0 when i=1 or 2.

Proof. Since

|
t

0
|

�

0
wi (,x+2,xt) } �xL(,) dx d{=&|

t

0
|

�

0
w i (,x+2,xt) F dx d{

using the basic estimate Lemma 4.10, and the boundary estimate
Lemma 4.11 we obtain, by using again the argument used in Lemma 4.10,

|(,x , ,xt)(t)| 2
wi

+(a&C) |,xx(t)| 2
wi

+%$2 |
t

0
[a |(,xx({)| 2

wi
+|(,x , ,xt)({)| 2

wi
] d{

�aCM2. (4.66)

Since a>>1, the above estimate (4.66) implies (4.65) for some %2>0, which
completes the proof. K

Combining Lemmas 4.10 and 4.12, we prove Theorem 4.6 and
Theorem 4.7. Therein we take %=min[%1 , %2] for Theorem 4.7.

4.1.5. Algebraic Decay Rate. In this subsection, we are going to prove
the algebraic decay rates. First, we pay our attention to the nondegen-
erate case f $(u+)<s< f $(u&). Let us define u� :=(u++u&)�2. Since U is
strictly decreasing in R, there exists a unique number z* # R such that
U(z*)=u� . Denote K(x, t)=(1+t)# ( (z&z*)�a) ; w1(U ), K� (x, t)=
(1+t)# ( (z&z*)�a) ;, i.e., K(x, t)=K� (x, t) w1(U ), where U=U(z), z=
x&st+x0&x1 . Multiplying Eq. (4.24) by 2K(x, t) , and 2K(x, t) ,t ,
respectively, yields

2K(x, t) , } L(,)=&2K(x, t) ,F, (4.67)

2K(x, t) ,t } L(,)=&2K(x, t) ,tF. (4.68)

Combining (4.67)_1
2+(4.68), by a straightforward but tedious calculation

as in [12], we obtain
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{K,2
t +K,t,+

1
2

(K+sKx) ,2+aK,2
x= t

&
#

1+t _K,2
t +K,,t+

1
2

(K+sKx) ,2+aK,2
x&

+(K+sKx) ,2
t +2( f $(U ) K+aKx) ,x,t+a(K+sKx) ,2

x

+(a&s2) K� xw1(U ) ,,x+
1
2

P;,2+[Boundary]x

=&K(,+2,t) F, (4.69)

where

[Boundary] :=[aK� w1 ,,x& 1
2a(K� x w1+K� w1x) ,2& 1

2K� w1 f $(U ) ,2

+2aK� w1,t ,x+ 1
2 (a&s2) K� xw1,2], (4.70)

while P;(z) := &K� x(w1h)$&K� (w1h)" Ux satisfies the following lemma
proved in [12].

Lemma 4.13 [12]. Let : be a given positive number. For ; # [0, :], there
exists a constant c0>0 independent of ; such that

P;(z)�c0;(1+t)# ( (z&z*)�a) ;&1 for any z # R. (4.71)

Since K� (x, t)|x=0=(1+t)# ( (&st+x0&x1)�a) ;, K� x(x, t)| x=0=
2;(1+t)# ( (&st+x0&x1)�a) ;&2 (&st+x0&x1)�a, w1(U )=O(1) and
|w1x(U )|�C ( |u+&u& |�(a&s2))w1(U ), we get

|
t

0
[K� (0, {)+|K� x(0, {)|] e&c&(s{+x1) d{�Ce&c&x1 �2

for all t�0, so, the boundary integration can be controlled as follows by
a similar fashion as in Lemma 4.9. Here, we omit the details.

Lemma 4.14. It holds

|
t

0
|[Boundary] |x=0

| d{�aCe&c&x1 �2. (4.72)

Since

} Kx

K }= } K� wix+K� xwi

K� wi }= } wix

w1

+
K� x

K� }� } wix

w1 }+ } ;
a

(z&z*)�a
( (z&z*)�a) 2 }�C

a
<<1
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for a>>1, denoting by D5 and D6 the discriminantes of E5 and E6 , respec-
tively, we have

D5=&1&2sKx �K<0,

D6=4[( f $+aKx�K )2&a(1+sKx �K )2]<0.

Thus, we get

E5 :=K,2
t +K,t ,+ 1

2 (K+sKx) ,2�CK(,2+,2
t ), (4.73)

E6 :=(K+sKx) ,2
t +2( f $(U ) K+aKx,x,t+a(K+sKx) ,2

x�CK(,2
x+,2

t )

(4.74)

for some C>0.
After integrating (4.69) over R+_[0, t], using (4.71)�(4.74), it yields

(1+t)# |(,, ,x , ,t)(t)| 2
;+; |

t

0
(1+{)# |,({)| 2

;&1 d{

+|
t

0
(1+{)# |(,x , ,t)({)| 2

; d{

�C {a |(,, ,x , ,t)(0)| 2
;+ae&c&x1 �2

+# |
t

0
(1+{)#&1 |(,, ,x , ,t)({)| 2

; d{+(a&s2) |
t

0
|

�

0
|K� x | |,,x | dx d{

+|
t

0
|

�

0
K(x, {) |(,+2,t) F | dx d{= , (4.75)

where | } |;=| } | (z); , z=x&st+x0&x1 .
Making a similar estimate for

C |
t

0
|

�

0
|K� x,,x | dx d{� 1

2 |
t

0
|,x({)| 2

; d{+;C |
t

0
&,x({)&2 d{ (4.76)

as shown in [12], and controlling the nonlinear term by a usual way as

|
t

0
|

�

0
K(x, {) |(,+2,t) F | dx d{�CN1(t) |

t

0
(1+{)# |(,x , ,t)({)| 2

; d{,

(4.77)
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then applying (4.76) and (4.77) into (4.75), we proved

(1+t)# |(,, ,x , ,t)(t)| 2
;+

;
2 |

t

0
(1+{)# |,({)| 2

;&1 d{

+\1
2

&CN1(t)+ |
t

0
(1+{)# |(,x , ,t)({)| 2

; d{

�C {a |(,, ,x , ,t)(0)| 2
;+ae&c&x1 �2

+# |
t

0
(1+{)#&1 |(,, ,x , ,t)({)| 2

; d{+; |
t

0
(1+{)# &,({)&2 d{= ,

which implies the following estimates.

Lemma 4.15. The following estimates hold for t # [0, T], provided
N1(t)<<1,

(1+t)# |(,, ,x , ,t)(t)| 2
;+|

t

0
[;(1+{)# |,({)| 2

;&1+(1+{)# |(,x , ,t)({)| 2
;] d{

�C { |(,, ,x , ,t)(0)| 2
;+e&c&x1 �2+# |

t

0
(1+{)#&1 |(,, ,x , ,t)({)| 2

; d{

+; |
t

0
(1+{)# &,x({)&2 d{= (4.78)

for any #�0 and ; # [0, :],

(1+t)# |(,, ,x , ,t)(t)| 2
:&#+(:&#) |

t

0
(1+{)# |,({)| 2

:&#&1 d{

+|
t

0
(1+{)# |(,x , ,t)({)| 2

:&# d{

�C( |(,, ,x , ,t)(0)| 2
:+e&c&x1 �2) (4.79)

for # integer in [0, :].

The estimate (4.79) can be derived from (4.78), with a similar argument
used in the case of the Cauchy problem in [12] (for the original proof see
also [10]). Based on this lemma, as in [27] (see the Lemma 5.2 therein)
or in [30] for the Burger's equation, we may immediately get the following
optimal decay rate without any difficulty.
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Lemma 4.16. It holds for any =>0

(1+t): &(,, ,x , ,t)(t)&2+(1+t)&= |
t

0
(1+{):+= &(,x , ,t)({)&2 d{

�C( |(,, ,x , ,t)(0)| 2
:+e&c&x1 �2). (4.80)

For the higher derivatives of the solution, since the same boundary
estimates in (4.50) and (4.51) are bounded due to the estimate (4.65), by
a similar procedure in Lemma 4.15, we can have the estimates as follows.

Lemma 4.17. It holds for any =>0

(1+t): &�x(,, ,x , ,t)(t)&2+(1+t)&= |
t

0
(1+{):+= &�x(,x , ,t)({)&2 d{

�C(&(,, ,x , ,t)(0)&2
2+|(,, ,x , ,t)(0)| 2

:+e&c&x1 �2). (4.81)

Combining Lemmas 4.16 and 4.17, we have completed the proof of
Theorem 4.8 in the nondegenerate case f $(u+)<s< f $(u&).

For the degenerate case f $(u+)=s< f $(u&), since the boundary pertur-
bations can be well controlled like the nondegenerate case f $(u+)<s<
f $(u&), taking a similar fashion as before, again available for the Cauchy
problem case in [12, 25], we can prove the last part of Theorem 4.8. The
details are omitted here.

4.2. Case s<0, g(t)=v+

Let x0>0 be any given large constant. Our essential assumption in this
subsection is

|
�

0
[u0(x)&u+] dx=0. (4.82)

By denoting (U, V )=(U, V )(x&st+x0), to determine the shift, we use
that

|
�

0
[u(x, t)&U(x&st+x0)] dx � 0 as t � +� (4.83)

for all x0 . We are going to reformulate the original IBVP (1.2) and (1.3).
Similar to Subsection 4.1.3, let us define the new unknowns as

{,(x, t) := &|
�

x
[u( y, t)&U( y&st+x0)] dy

(4.84)

�(x, t) :=v(x, t)&V(x&st+x0),
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then the original problem (1.2) and (1.3) can be reduced to

{,t+�=0,
�t+a,xx& f $(U ) ,x+�=F,

(4.85)

where F :=f(,x+U )& f (U )& f $(U) ,x , with the initial boundary conditions

(,, �)| t=0=\&|
�

x
[u0( y)&U( y+x0)] dy, v0(x)&V(x+x0)+

=: (,0 , �0)(x), (4.86)

,|x=0=&|
�

0
[u(x, t)&U(x&st+x0)] dx

=|
�

t
[v+&V(&s{+x0] d{=: A1(t), (4.87)

�|x=0=&,t |x=0=v+&V(&st+x0)=&A$1(t). (4.88)

Substituting �=&,t into the second equation of (4.85), we get

L(,) :=,tt+,t&a,xx+ f $(U ) ,x=&F, x>0, t>0

{(,, ,t)| t=0=(,0 , ,1)(x), x>0 (4.89)

(,, ,t)|x=0=(A1 , A$1)(t), t>0.

By a similar fashion to Subsection 4.1, we can also prove the following
theorems. The details of the proof are omitted.

Theorem 4.18 (Convergence). Assume f $(u+)<s� f $(u&) and (4.82).
Let a be a large but fixed constant and suppose that (,0 , �0) # H2_H 1.
There exists a constant '1>0 such that if a(&,0&2+&�0&1+x&1

0 )<'1 , then
(4.89) has a unique global solution ,(x, t) satisfying

sup
x # R+

|(,x , ,t)(x, t)| � 0, as t � +�. (4.90)

Theorem 4.19 (Exponential Rate). Assume f $(u+)<s� f $(u&) and
(4.82). Let a be a large but fixed constant and suppose that (,0 , �0) #
H 2

w2
_H 1

w2
. There exist constants '2>0 and %>0 such that if a( |,0 |2, w2

+
|�0 |1, w2

+x&1
0 )<'2 , then (4.89) has a unique global solution ,(x, t) satisfying

|(,(t)| 2
2, w2

+|,t)(t)|2
1, w2

�Ce&%t. (4.91)
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Theorem 4.20 (Algebraic Rates). Assume f $(u+)<s� f $(u&) and
(4.82). Let a be a large but fixed constant and suppose (,0 , �0) #
(L2

: & H 2)_(L2
: & H 1) for some :>0. There exists a constant '3>0 such

that if a( |,0 | :+|�0 |:+&,0&2+&�0&1+x&1
0 )<'2 , then (4.89) has a unique

global solution ,(x, t) satisfying

sup
x # R+

|(,, ,x , ,t)(x, t)|�CM� 1(1+t)&:�2. (4.92)

Remark 4.21. Since s<0, x�0 and x0>0, namely, x&st+x0>0, the
back waves (U, V)(x&st+x0) do not go to the end state (u& , v&), i.e.,
U # [u+ , U(x0)], which implies w1(U )tO(1), w2(U )t |U&u+ | &1�2 for
both shock cases f $(u+)<s< f $(u&) and f $(u+)<s= f $(u&). Therefore,
Theorems 4.18�4.20 hold for degenerate and nondegenerate shock cases.

5. CASE g(t)=v� , s=0

This section is devoted to the convergence toward the stationary waves.
Since V(x)#v\= f $(u\), see (2.5) and (2.3), this is a special case of
Section 3, so the convergence with decay rates to the stationary waves
(U, V )(x)=(U(x), v+) can be well understood in Section 3. However,
now we want to answer to the following question: Can we have the possi-
bility to consider the convergence to the waves (U, V )(x+d(t))=
(U(x+d(t)), v+) for some shift function dependent on the time t? More
precisely, can we find shift functions d(t) such that the solutions of
(1.2) and (1.3) converge to the shifted waves time-asymptotically when the
initial and boundary perturbations to the shifted stationary waves
(U(x+d(t)), v+) are small? The answer is positive and will be our main
effort in this section. In order to do it, we have to restrict ourself on the
shock cases f $(u+)<s=0� f $(u&). To this end will be essential to choose
a suitable shift function and to reformulate the original problem. As we
shown before, to treat the nonconvexity of f (u), the weight functions wi (U )
(i=1, 2) are valid for the convergence theory in the case s=0. But to show
the algebraic decay, the weight w1(U ) is now not sufficient, so we have to
choose another new one. For the details, let us see (5.47) and (5.51) below.

5.1. Shift Function and Main Theorems

For any given constants x1>0 and d0>0 (x1 may be taken large), we
want to choose some smooth shift function, say d(t)>0 in C2 satisfying
d(0)=d0 , such that the solutions (u, v)(x, t) approach, as t goes to infinity,
to the shifted stationary traveling waves (U, V )(x+d(t)+x1) with some
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decay rate, under the hypothesis of small initial perturbations, where we
remember that V(x) is a constant

V(x)#v+=v&= f (u\), (5.1)

see (2.3) and (2.5).
As in Subsection 4.2, here the hypothesis (4.82) will be essential. From

the first equation of (1.2), we have

(u&U(x+d(t)+x1))t=&d $(t) Ux(x+d(t)+x1))&(v&V )x , (5.2)

where d(t) is expected in C2 and d(t)>0, d(0)=d0 , d(t) � +� as
t � +�. Integrating (5.2) over [0, +�) with respect to x and noting
v|x=+�=v+ , v|x=0=v+ and V#v+=v& , we have

d
dt |

�

0
[u(x, t)&U(x+d(t)+x1)] dx=&d $(t)[u+&U(d(t)+x1)],

which implies

|
�

0
[u(x, t)&U(x+d(t)+x1)] dx

=|
�

0
[u0(x)&U(x+d0+x1)] dx&|

t

0
d $({)[u+&U(d({)+x1)] d{.

(5.3)

As usual, to determine the shift we assume now

|
�

0
[u(x, t)&U(x+d(t)+x1)] dx � 0, as t � +�. (5.4)

In other words, we expect that the right hand side of (5.3) tends to zero as
t � +�, namely,

Id :=|
�

0
[u0(x)&U(x+d0+x1)] dx&|

�

0
d $({)[u+&U(d({)+x1)] d{

=0. (5.5)

In fact, under the essential condition (4.82), for some shift d(t) satisfying
d(t)>0, d(0)=d0 , d(t) � +� as t � +�, and the following estimates
hold

{|
�

0
e&c+ d(t)[1+|d $(t)&d"(t)|+|d $(t)| 2] dt�C,

(5.6)

|d $(t)|�C,
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for some constant C>0. We will see that (5.5) is true. Of course, (5.6)
ensures the last integration in (5.5) is possible, since |u+&U(d(t)+x1)|t
e&c+(d(t)+x1) as t � +�, so the definition (5.5) makes sense and

Id=|
�

0
[u0(x)&U(x+d0+x1)] dx&|

�

0
d $({)[u+&U(d({)+x1)] d{

=|
�

0
[u0(x)&U(x+d0+x1)] dx&|

�

0
[u+&U( y+d0+x1)] dy

=|
�

0
[u0(x)&u+] dy=0

by using again the change of variable y=d(t)&d0 previously used.
The shift function d(t) satisfying (5.6) may include many examples. Two

kinds of them are d(t)=d0+b1 log(1+t) for all b1>1�c+ , and d(t)=
d0(1+t)b2 for all 0<b2�1. Especially, the first kind of examples, i.e.,
d(t)=d0+b1 log(1+t), is just T.-P. Liu and Yu's shift function for the
Burger's equation (1.5) with f =u2�2 and s=0 in [18].

We claim that when the shift function d(t) satisfies (5.6), and the initial-
boundary perturbation dealing with d(t) is suitably small, we can prove the
convergence of the solutions (u, v)(x, t) to the shifted stationary waves
(U, V )(x+d(t)+x1). However, to get the algebraic decay rate, instead of
the condition (5.6), we need a stronger condition on d(t) as

{|
�

0
(1+t): e&c+d(t)[1+|d $(t)&d"(t)|+|d $(t)|2] dt�C,

(5.7)

|d $(t)|�C

for some constants C>0 and :>0. Examples of functions satisfying (5.7)
are again d(t)=d0+b1 log(1+t) and d(t)=d0(1+t)b2 but now respec-
tively with b1>:�c+ , and 0<b2�1. To get the exponential decay rate, the
restriction on the shift d(t) is

{|
�

0
e&c+d(t)�2[1+|d $(t)&d"(t)|+|d $(t)|2] dt�C,

(5.8)

|d (k)(t)|�C, k=1, 2,

where C is some positive constant. Shift functions d(t) satisfying the condi-
tions (5.8) includes again as examples d(t)=d0+b1 log(1+t) and d(t)=
d0(1+t)b2 but respectively with b1>2�c+ and 0<b2�1.
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Let us define

(,, �)(x, t) :=\&|
�

x
[u( y, t)&U( y+d(t)+x1)] dy, v(x, t)&v++ , (5.9)

Then the original equations (1.2) can be reduced to

{,xt+d $(t) Ux(x+d(t)+x1)+�x=0,
�t+a,xx= f (,x+U )& f (U)&�,

(5.10)

and, after the integration ��
x (5.10)1 dy we get

{,t&d $(t)[u+&U(x+d(t)+x1)]+�=0,
�t+a,xx= f (,x+U )& f (U )&�.

(5.11)

Substituting �=&,t+d $(t)[u+&U(x+d(t)+x1)] in the second equation
of (5.11), we have

L(,) :=,tt+,t&a,xx+ f $(U ) ,x=&F1&F2 , x>0, t>0, (5.12)

where

F1= f (U+,x)& f (U )& f $(U) ,x , (5.13)

F2=&d"(t)[u+&U ]+d $(t)2 Ux&d $(t)[u+&U ]. (5.14)

The initial values can be given as

(,, �)| t=0=\&|
�

x
[u0( y)&U( y+d0+x1)] dy, v0(x)&v++

=: (,0 , �0)(x). (5.15)

We also have, from the first equation of (5.10) and (5.15), that

,t | t=0=&�0(x)+d $(0)[u+&U(x+d0+x1)]=: ,1(x). (5.16)

By (5.3) and (5.5), the boundary values are given in the form

,|x=0=&|
�

0
[u(x, t)&U(x+d(t)+x2)] dx

=&Id&|
�

t
d $({)[u+&U(d({)+x1)] d{

=&|
�

d(t)
[u+&U( y+x1)] dy

=: B(t), (5.17)
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by taking the variable transform y=d(t) in the third step of (5.17), and

,t | x=0=d $(t)[u+&U(d(t)+x1)]=B$(t). (5.18)

Since |u+&U( y)|=O(1) e&c+y as y � +�, and d(t)>0, x1>0, we have

{ |B(t)|te&c+x1e&c+d(t),
|B$(t)|te&c+x1 |d $(t)| e&c+d(t),

as t � +�,
as t � +�.

(5.19)

We now state our main results as follows.

Theorem 5.1 (Convergence). Assume f $(u+)<s� f $(u&) and (4.82)
hold and let a be a suitably large but fixed constant. Suppose that ,0(x) # H 2,
,1(x) # H 1, and d(t) satisfies (5.6). Then there exists a constant =4>0 such
that, if a(&,0&2+&,1&1+x&1

1 )<=4 , then the IBVP (5.12), (5.15), (5.16),
and (5.17) has a unique global solution ,(x, t) such that

, # C0([0, +�); H 2), ,x # L2([0, +�); H1),

,t # C0([0, +�); H1) & L2([0, +�); H 1)

and the following estimates holds,

&,(t)&2
2+&,t(t)&2

1+|
t

0
&(,x , ,t)({)&2

1 d{�CM 2
0 , (5.20)

where M 2
0 :=e&c&x1 �2+&,0&2

2+&,1&2
1 , which implies

sup
x # R+

|(,x , ,t)(x, t)| � 0, as t � +�. (5.21)

Theorem 5.2 (Exponential Rate). Assume f $(u+)<s� f $(u&), the
essential assumption of (4.82), and let a>>1, |u+&u& |<<1. Suppose that
,0(x) # H 2

w2
, ,1(x) # H 1

w2
, and d(t) satisfies (5.8). Then there exist constants

=5>0 and %>0 such that if a( |,0 |2, w2
+|,1 |1, w2

+x&1
1 )<=5 , then the IBVP

(5.12), (5.15), (5.16), and (5.17) has a unique global solution (,, ,t)(x, t) in

, # C0([0, +�); H 2
w2

), & L2([0, +�); H 1
w2

),

,t # C0([0, +�); H 1
w2

) & L2([0, +�); H 1
w2

)

and the following estimate holds,

|,(t)| 2
2, w2

+|,t(t)| 2
1, w2

+% |
t

0
[ |,x({)| 2

2, w2
+|,t)({)| 2

1, w2
d{�CM� 2

0 , (5.22)
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where M� 2
0 :=e&c&x1 �2+|,0 | 2

2, w2
+|,1 | 2

1, w2
, which implies

|,(t)| 2
2, w2

+|,t(t)| 2
1, w2

�CM� 2
0 e&%t. (5.23)

Theorem 5.3 (Algebraic Rates). Assume f $(u+)<s� f $(u&), the essen-
tial assumption of (4.82), and let a>>1. Suppose ,0(x) # H2 & L2

: and
,1(x) # H 1 & L2

: for a constant :>0, and d(t) satisfies (5.7). Then the
solution ,(x, t) of (5.12), with the initial boundary conditions (5.15), (5.16),
and (5.17), satisfies the estimate

sup
x # R+

|(,, ,x , ,t)(x, t)|�CM1(1+t)&:�2, (5.24)

where M 2
1 :=|(,0 , ,1)| 2

:+M 2.

Remark 5.4. (1) Since d(t)>0 and d(t)+x+x1>&� does not go
to &� for all t�0 and x�0, we have, as in Subsection 4.2, that
U(x+d(t)+x1) does not go to u& . As a consequence, the properties of the
weights w1(U ) and w2(U ) in the case f $(u+)<0= f $(u&) are the same to
those in the case f $(u+)<0< f $(u&). So, even for the degenerate case
f $(u+)<s=0= f $(u&), the decay rates and the conditions on d(t) are
same to the nondegenerate case f $(u+)<s=0< f $(u&), as we mentioned
in the above theorems.

2. To have the exponential decay, in Theorem 5.2 we assume two small-
ness hypotheses a&1<<1 and |u+&u& |<<1. We don't know if these condi-
tions can be dropped. Further contributions are expected in this direction.

5.2. Proofs of Main Theorems

Since the local existence for the IBVP (5.12), (5.15), (5.16), and (5.17) is
standard, we are going to show only the a priori estimates. Let us define
the solution spaces as

Y1(0, T )=[, # C 0([0, T ]; H 2), ,x # L2([0, T ]; H 1),

,t # C 0([0, T ]; H 1) & L2([0, T ]; H 1)]

Y2(0, T )=[, # C 0([0, T ]; H 2
w2

), & L2([0, T ]; H 1
w2

),

,t # C 0([0, T ]; H 1
w2

) & L2([0, T ]; H 1
w2

)]

for any given constant 0�T�+�, and

N1(T )= sup
0�t�T

(&,(t)&2+&,t(t)&1),

N2(T )= sup
0�t�T

( |,(t)|2, w2
+&,t(t)&1, w2

).
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Thanks to (5.6) (or (5.7) or (5.8)), by a similar procedure used in
Lemma 4.9, we may prove the following estimates for the boundary. We
omit the details of the proof.

Lemma 5.5. It holds

|
t

0 _ |aw i,,x |+
a
2

|w i, x ,2|+
1
2

|w i f $,2|+|2awi,t ,x |&} x=0

d{

�aCe&c&x1 �2, i=1, 2, (5.25)

|
t

0
(1+{): _ |aw1,,x |+

a
2

|w1, x,2|+
1
2

|w1 f $,2|+|2aw1,t ,x |&} x=0

d{

�aCe&c&x1 �2, (5.26)

where C>0 is independent of a and x1 .

The main goal of this subsection will be the proof of the basic estimates.
To this end we need before to obtain a technical result.

Lemma 5.6. Let U=U(x+d(t)+x1) be the shifted stationary wave for
any d(t)�0. Then it holds

|w$1(U )|tw1(U )tO(1). (5.27)

Proof. By a straightforward calculation, we have

|w$1(U )|=
(U&u+)(u&&U )

h(U )2 } h(U )
U&u+

+
h(U )

U&u&

&h$(U ) } .

Due to the Taylor's formula 0=h(u+)=h(U )+h$(U )(u+&U )+O(1)
|u+&U |2, we have

} h(U)
U&u+

&h$(U ) }t |U&u+ |t |h(u)|. (5.28)

Since U(x+d(t)+x1) will remain away from u& for all (x, t) # R+_R+ ,
we get |h(U )�(U&u&)|t |U&u+ |. Thus (5.27) is proved.

Lemma 5.7 (Basic Energy Estimate). Assume the solution , # Y1(0, T ).
Then the estimate

&(,, - a,x , ,t)(t)&2+|
t

0
[a &(,x({)&2+&,t({)&2] d{

�aC[e&c&x1�2+&(,0 , ,0, x , ,1)&2], (5.29)
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holds, provided N1(T )<<1, where C>0 is independent of a, x1 , and
(,0 , ,1).

Moreover, if the solution , # Y2(0, T ), then

|(,, - a,x , ,t)(t)| 2
w2

+%1 |
t

0
&(,, - a,x , ,t)({)&2

w2
] d{

�aC[e&c&x1�2+|(,0 , - a,0, x , ,1)| 2
w2

], (5.30)

holds, for some constant %1>0, provided N2(T )<<1, where C>0 is inde-
pendent of a, x1 , and (,0 , ,1).

Proof. Multiplying (5.12) by 2wi (U ) , (i=1, 2) and by 2wi (U ) ,t , we
have respectively

2wi , } L(,)=&2wi, } (F1+F2), (5.31)

and

2wi ,t } L(,)=&2wi,t } (F1+F2), (5.32)

where

2wi, } L(,)=[wi,2+2wi,,t&wit ,2]t&2wi,2
t +2awi ,2

x&(wh)" Ux,2

+(witt&wit) ,2&[2aw i ,,x&awix ,2&2(wi f $)(U ) ,2]x .

and

2wi ,t } L(,)=[wi ,2
t +aw i,2

x]t+(2wi+wit) ,2
t &awit ,2

x

+(2awix+2wi f $(U )) ,x ,t&[2aw i,t ,x]x .

Combining 1
2_(5.31)+(5.32), we obtain

[E7(,, ,t)+E8(,x)]t+E9(,x , ,t)+E10(,)&[ } } } ]x

=&(witt&wit) ,2&2(F1+F2) w i [
1
2,+,t], (5.33)

where

E7(,, ,t)=wi _,2
t +,,t+

1
2 \1+d $(t)

wix

wi + ,2& , (5.34)

E8(,x)=awi,2
x , (5.35)
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E9(,x , ,t)=wi _\1+d $(t)
wix

wi + ,2
t +2 \ f $+a

wix

wi + ,x,t

+a \1+d $(t)
wix

wi + ,2
x& , (5.36)

E10(,)=&
1
2

(wi h)" (U ) Ux ,2, (5.37)

[ } } } ]={aw i,,x&
1
2

wi, x,2&
a
2

wi f $,2+2awi ,t ,x= . (5.38)

Denote D7 and D9 as the discriminantes of E7 and E9 , respectively. Since
|wix �wi |=O(1) |u+&u& |�a (here s=0) and a> f $(U )2 (see (1.4)), using
the condition |d $(t)|�C in (5.6) and (5.7) for w1(U ), and in (5.8) for
w2(U ), respectively, we get

D7 :=1&4_
1
2 \1+d $(t)

wix

wi +
=&\1+2d $(t)

wix

wi +
�\1&2 |d $(t)|

O(1) |u+&u&|
a +

�&C<0

D9 :=4 \ f $+a
wix

wi +
2

&4a \1+d $(t)
wix

wi +
2

=&4 \- a+ f $+(- a d $(t)+a)
wix

w i +\- a& f $+(- a d $(t)&a)
wix

wi +
�&4 \- a+ f $&O(1) |u+&u&| \ 1

- a
+1++

_\- a& f $&O(1) |u+&u&| \ 1

- a
+1++

�&C<0
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for a>>1, so we have

c1wi ,2+c2w i ,2
t �E7(,, ,t)�c$1wi ,2+c$2 wi ,2

t , (5.39)

c3wi ,2
x+c4wi ,2

t �E9(,x , ,t)�c$3wi ,2
x+c$4wi ,2

t , (5.40)

for some positive constants cj , cj$ , j=1, 2, 3, 4.
Integrating (5.33) over [0, +�)_[0, t] and using (5.39), (5.40), and

the boundary estimate (5.5), we obtain

c1 |,(t)| 2
wi

+c2 |,t(t)| 2
wi

+a |,x(t)| 2
wi

+|
t

0
|

�

0
[&1

2 (w i h)" Ux] ,2 dx d{

+|
t

0
[c3 |,x({)| 2

wi
+c4 |,t({)| 2

wi
] d{

�aC( |,0 | 2
1, wi

+|,1 | 2
wi

+e&c+x1 �2)

+|
t

0
|

�

0
( 1

2 |witt&wit | ,2+wi |(F1+F2)(,+2,t)| ) dx d{. (5.41)

We now have, by using |u+&U |t(a&s2) |Ux |te&c+(x+d(t)+x1), the
following estimates for the nonlinear terms:

|F1 |�C |,x | 2, |F2 |�C[|d"(t)|+d$(t)2+|d$(t)|] e&c+d(t)e&c+ (x+x1).

So, by using the condition (5.6), and w1(U )tO(1), w2(U )t

ec+(x+d(t)+x1)�2, we obtain

|
t

0
|

�

0
wi |(F1+F2)(,+2,t)|] dx d{

�CNi (T ) |
t

0
|

�

0
wi[,2

x+(|d"(t)|+d $(t)2+|d $(t)| )

_e&c+d(t)e&c+(x+x1)] dx d{

�CNi (T ) \|
t

0
|,x({)| 2

wi
d{+|

t

0
|

�

0
[|d"(t)|+d $(t)2+|d $(t)|]

+e&c+ d(t)e&c+(x+x1)�2 dx d{+
�CNi (T ) \|

t

0
|,x({)| 2

wi
d{+e&c+x1 �2+ . (5.42)
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Let us control the term � t
0 ��

0
1
2 |witt&wit | ,2 dx d{. Since s=0 and

aUx=h(U ), a straightforward calculation yields

witt(U )&wit(U)=
1
a

(wi h)" (U ) Ux d $(t)2&
1
a

wix(U ) h$(U) d $(t)2

&
1
a

wi (U ) h"(U ) Ux d $(t)2+wix(U )[d"(t)&d $(t)].

(5.43)

In particular, let us consider the weight function w1(U ). We have a |Ux |=
|h(U )|te&c+(x+d(t)+x1), and by Lemma 5.6 |w$1(U )|tw1(U )tO(1),
namely, |w1x(U )|t |Ux |. Moreover, (w1h)" (U)=2, |h$(U )|, and |h"(U )|
are bounded. So, by the condition (5.6), we have from (5.43)

|
t

0
|

�

0

1
2 |w1tt&w1t | ,2 dx d{

�CN 2
1(T ) |

t

0
|

�

0
|w1tt&w1t | dx d{

�CN 2
1(T ) |

t

0
|

�

0 \d $({)2

a
+|d"({)&d $({)|+ |Ux | dx d{

�
CN 2

1(T )
a |

t

0
|

�

0
[a&1d $({)2+|d"({)&d $({)|]

+exp(&c+(x+d({)+x1) dx d{

�
CN 2

1(T )
a

e&c+x1

�
C
a

e&c+x1

for N1(T )<<1.
Substituting (5.42) and (5.44) into (5.41), by dropping the positive term

|
t

0
|

�

0
(&1

2 (w1h)" Ux) ,2 dx d{=|
t

0
|

�

0
|Ux | ,2 dx d{,

we proved the basic estimate (5.29).
Let we examine now the weight function w2(U). We have |w2x(U )�

w2(U )|=O(1)( |u+&u& |�a) and &(w2 h)" Ux=&(w2h)" h(U )�a=O(1)
w2(U )�a, see (2.18) and (2.19). Moreover, |w2x |=O(1) |u+&u& |
|(w2h)" Ux |. By using this facts and the boundedness of |d $(t)| and |d"(t)|
in (5.8), we also have
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|
t

0
|

�

0

1
2

|w2tt&w2t | ,2 dx d{

�|
t

0
|

�

0 \d $({)2

a
+

|u+&u& |
a

d $({)2+|Ux | d $({)2

+|u+&u& | |d"({)&d $({)|+ |(w2h)" Ux | ,2 dx d{

�C \1
a

+
|u+&u& |

a
+|u+&u& |+ |

t

0
|

�

0
|(w2h)" Ux | ,2 dx d{.

(5.45)

Substituting (5.42) and (5.45) into (5.41) yields

c1 |,(t)| 2
w2

+c2 |,t(t)| 2
w2

+a |,x(t)| 2
w2

+_1
2

&C \1
a

+
|u+&u& |

a
+|u+&u&|+& |

t

0
|

�

0
|(w2h)" Ux | ,2 dx d{

+(c3&CN2(T )) |
t

0
|,x({)| 2

w2
d{+c4 |

t

0
|,t({)| 2

w2
d{

�aC( |,0 | 2
1, w2

+|,1 | 2
w2

+e&c+x1 �2).

Finally, if we assume a>>1, |u+&u& |<<1, and N2(T )<<1, we proved
(5.30) for some constant %1>0. K

By the same argument used in Subsection 4.1.4, by applying the basic
energy estimates in Lemma 5.7, we can similarly prove the estimates for the
higher order case.

Lemma 5.8. Let us assume the solution , # Yi (0, T ), i=1, 2. Then there
exists a constant %2>0 such that the estimate

|(,x , ,xt)(t)| 2
wi

+a |,xx(t)| 2
wi

+%2 |
t

0
[a |(,xx({)| 2

w2
+|(,x , ,xt)({)| 2

w2
] d{�aCM2 (5.46)

holds, provided Ni (T )<<1, i=1, 2, where M=M0 or M� 0 when i=1 or 2
respectively.

Combining Lemma 5.7 and Lemma 5.8, we prove Theorem 5.1 for the
convergence and Theorem 5.2 for the exponential decay rate.

To conclude the result of Theorem 5.3 on the algebraic decay rates, it
will be useful at this point to use an argument similar to the one used in
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Subsection 4.1.5 and in particular on the Lemma 4.13. However, the weight
function w1(U ) cannot be useful to this purpose, since we cannot have a
z*=x*+d(t*)+x1 such that U(z*)=(u++u&)�2. However, we will see
that the result can be obtained by using the new weight function

w3(U )=
u+&U

h(U )
>0, for U # [u+ , U(d0+x0)]. (5.47)

Here x+d(t)+x1�d0+x1>0. It is clear that this weight function has
some properties as follows:

w3(U )t |w$3(U )|tw1(U )tO(1) for U # [u+ , U(d0+x0)], (5.48)

and

(w3h)$ (U )=&1, (w3 h)" (U )=0, |w3x(U )|tO(1) |h(U )|�a. (5.49)

Now, denoting

K� 3(x, t) :=(1+t)# (1+x) ;, and K3(x, t) :=K� 3(x, t) w3(U ),

we get

|
t

0
|

�

0
K3(,+2,t) } L(,) dx d{=&|

t

0
|

�

0
K3(,+2,t) } (F1+F2) dx d{.

(5.50)

To complete the analogy with Subsection 4.1.5, we define a function P; as

P; :=&K� 3x(w3 h)$&K3(w3 h)"=K� 3x(x, t)

=;(1+t)# (1+x);&1. (5.51)

Thus, without any difficulty, repeating a procedure similar to Subsec-
tion 4.1.5, applying the basic estimates in Lemma 5.7, Lemma 5.8 and the
boundary estimate (5.26), we may prove the following lemma. The details
are omitted.

Lemma 5.9. It holds for any =>0

(1+t): &(,, ,x , ,t)(t)&2+(1+t)&= |
t

0
(1+{):+= &(,x , ,t)({)&2 d{

�C( |(,, ,x , ,t)(0)| 2
:+e&c&x1 �2). (5.52)

Furthermore, we have the estimate for the higher order case.
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Lemma 5.10. For any =>0, the following estimate holds,

(1+t): &�x(,, ,x , ,t)(t)&2+(1+t)&= |
t

0
(1+{):+= &�x(,x , ,t)({)&2 d{

�C(&(,, ,x , ,t)(0)&2
2+|(,, ,x , ,t)(0)| 2

:+e&c&x1 �2). (5.53)

Combining Lemmas 5.9 and 5.10 yields the algebraic rate of
Theorem 5.3.

6. RESULTS FOR THE GENERAL CASE

In this section, we briefly discuss the convergence to the traveling waves
for a general boundary condition g(t). More precisely, we will prove the
solutions of (1.2) and (1.3) converge to the corresponding traveling waves
(U, V )(x&st) time-asymptotically, with some decay rates, under some
restrictions on g(t), say g(t) small perturbation of the wave V(&st), with
initial perturbations also sufficiently small.

For the traveling waves (U, V )(x&st), suppose that g(t)&V(&st) #
L1(R+) and satisfies

|
�

0
[u0(x)&U(x)] dx+|

�

0
[ g(t)&V(&st)] dt=0, (6.1)

Then we have from the first equation of (1.2), (u&U )t=&(v&V )x , and

|
�

0
[u(x, t)&U(x&st)] dx=|

�

0
[u0(x)&U(x)] dx

+|
t

0
[ g({)&V(&s{)] d{

=&|
�

t
[ g({)&V(&s{)] d{ � 0,

as t � +�. (6.2)

Define

,(x, t) :=&|
�

x
[u( y, t)&U( y&st)] dy, �(x, t) :=v(x, t)&V(x&st),

(6.3)
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which implies, by using (6.2), that

, |x=0=|
�

t
[ g({)&V(&s{)] d{=: G(t), (6.4)

we can rewrite the original IBVP (1.2) and (1.3) as

{
,t+�=0,

�t+a,xx& f $(U ) ,x+�=F, x>0, t>0,

(,, �) | t=0=\&|
�

x
[u0( y)&U( y)] dy, v0(x)&V(x)+=: (,0 , �0)(x),

, |x=0=G(t),

(6.5)

where F= f (U+,x)& f (U )& f $(U ) ,x .
If the boundary perturbation G(t) # W3, 1(R+) is small and initial pertur-

bations (,0 , �0)(x) are also small, we can prove the following theorem.

Theorem 6.1 (Algebraic Rates). Under the assumption (6.1), let a be a
suitably large but fixed constant.

(i) Case f $(u+)<s< f $(u&): Suppose that G(t) # W3, 1(R+) and
(,0 , �0)(x) # L2

: & H 2 for some :>0. Then there exists a constant $4>0
such that if a(&G&1�2

w3, 1+|(,0 , �0)| :+&(,0 , �0)&2)<$4 , then the system (1.2)
and (1.3) has a unique global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st)|

�C(1+t)&:�2 (&G&1�2
w3, 1+|(,0 , �0)|:+&(,0 , �0)&2).

(ii) Case f $(u+)=s< f $(u&): Suppose that G(t) # W3, 1(R+) and
(,0 , �0)(x) # L2

:(x)+
& H2 for some 0<:<2�n. Then there exists a constant

$5>0 such that if a(&G&1�2
w3, 1+|(,0 , �0)|:(x)+

+&(,0 , �0)&2<$5 , then the
system (1.2) and (1.3) has a unique global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st)|

�C(1+t)&:�4 (&G&1�2
w3, 1+|(,0 , �0)|:(x)+

+&(,0 , �0)&2).

If the boundary perturbation G(t) # W 3, 1
w2

(R+), namely, w2(&st) G(k)(t)
# L1(R+) (k=0, 1, 2, 3), are small and the initial perturbations
(w2(x))1�2 (,0 , �0)(x) are small too, we have the exponential decay rate as
follows.
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Theorem 6.2 (Exponential Rates). Let a be a suitably large but fixed
constant. Assume the hypothesis (6.1), f $(u+)<s< f $(u&), G(t) #
W3, 1

w2
(R+), ,0 # H 3

w2(U ) , �0 # H 2
w2(U ) . Then, there exist positive constants $6

and %=%( |u+&u& | , a) such that if a(&G&1�2
Ww2

3, 1+|(,0 , �0)|2, w2
)�$6 , the

IBVP (1.2) and (1.3) has a unique global solution (u, v)(x, t) satisfying

sup
x # R+

|(u, v)(x, t)&(U, V )(x&st)|�Ce&%t�2 (&G&1�2
Ww2

3, 1+|(,0 , �0)|2, w2
).

(6.6)

Since the proofs of the above theorems can be similarly treated as in
Subsection 4.1, we just state them here without the details of the proof.

6.1. Concluding Remarks

Even most of the important situation, also in the degenerate shock case
are solved in this paper for the problem (1.2)�(1.3), there are some
unsolved cases that we are at this moment not able to solve. We list them
below and we expect more contributions to them.

Problem 1. When g(t)=v& with f $(u&)=s>0, the convergence of the
solutions (u, v)(x, t) to the corresponding front traveling waves is
unknown. In fact we cannot determine a shift by our analysis.

Problem 2. When g(t)=v+ with f $(u+)=s<0, the convergence of the
solutions (u, v)(x, t) to the corresponding back traveling waves is
unknown. In fact we cannot control the boundary integration in this case.

Problem 3. When g(t)=v� with f $(u+)=s=0, is there a nonconstant
shift d(t), such that (u, v)(x, t) � (U(x+d(t)), v+) as t � +�? Here we
failed to have a result since we cannot look for a suitable shift function d(t)
satisfying the conditions (5.6).

For other situations, when g(t)=v& with s<0, it should be no
convergence to the back waves, since the boundary perturbation is really
big

|(v&V ) |x=0 |=|v&&V(&st)|�|v&&V(0)|>0.

Similarly, when g(t)=v+ with s>0, the boundary perturbation is also big

|(v&V ) |x=0 |=|v+&V(&st)|�|v+&V(0)|>0.

But this does not mean necessarily instability, since, for example, we are
also not sure that there is a convergence to the front wave.

Finally, it could be interesting to discuss the case with boundary
condition u |x=0= g(t) and the differences with the present case.
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