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Abstract

We study the asymptotic behavior as time goes to infinity of solutions to the
initial-boundary-value problem on the half space R+ for a one-dimensional model
system for the isentropic flow of a compressible viscous gas, the so-calledp-system
with viscosity. As boundary conditions, we prescribe the constant state at infinity
and require that the velocity be zero at the boundary x = 0. When the velocity
at infinity is negative and satisfies a condition on the magnitude, we prove that if
the initial data are suitably close to those for the corresponding outgoing viscous
shock profile, which is suitably far from the boundary, then a unique solution exists
globally in time and tends toward the properly shifted viscous shock profile as the
time goes to infinity. The proof is given by an elementary energy method.
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1. Introduction

We consider a one-dimensional model system for the isentropic flow of a com-
pressible viscous gas, the so-called p-system with viscosity, on the half space
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R+ = (0,∞) in the form

vt − ux = 0

ut + p(v)x =
(
µux

v

)
x

p(v) = av−γ




(x, t) ∈ R+ × R+, (1.1)

with the initial and boundary conditions

(v, u)(x, 0) = (v0, u0)(x), x ∈ R+, (1.2)

u(0, t) = 0, (v, u)(+∞, t) = (v+, u+), t ∈ R+. (1.3)

Here, v (> 0) is the specific volume, u is the velocity, µ (> 0) is the constant
viscosity, p(v) = av−γ is the pressure, γ = 1 is the adiabatic constant, and a is
a positive gas constant. We are especially interested in the asymptotic behavior of
the solution as the time goes to infinity, and how it is influenced by the prescribed
constant state (v+, u+) at infinity. Physically, we expect the asymptotic behavior
essentially to depend only on the sign of the velocity u+ at infinity. In particular,
the solution is expected to tend toward an outgoing viscous shock profile (a front) if
u+ < 0, and toward an outgoing rarefaction wave if u+ > 0. Since the case u+ > 0
was recently solved in a very satisfactory fashion by Matsumura & Nishihara
[13], we study the case u+ < 0 here. The viscous shock profile with a shock speed
s is a travelling-wave solution of (1.1) on the whole space R = (−∞,∞) of the
form (v, u) = (V ,U)(ξ) (ξ = x − st), satisfying the condition (V ,U)(±∞) =
(v±, u±). It is well known that such a viscous shock profile exists and is unique up
to shift, under the Rankine-Hugoniot (R-H) conditions

−s(v+ − v−)− (u+ − u−) = 0,

−s(u+ − u−)+ (p(v+)− p(v−)) = 0
(1.4)

and the entropy condition
u+ < u−. (1.5)

In our present problem, the desired viscous shock profile is to be determined, so
that for any given (v+, u+) with v+ > 0, u+ < 0 and with u− = 0, the values of
v− > 0 and s > 0 are uniquely given by the R-H condition (1.4):

av
−γ+1
+

(
1 −

(v−
v+

)−γ )(
1 − v−

v+

)
= −u2+, s = −u+

v+ − v−
, (1.6)

with v− < v+. The aim of this paper is to discuss the asymptotic convergence of a
solution toward a shift of this viscous shock profile.

The stability of viscous shock profiles for the Cauchy problem for various sys-
tems has been studied in many works; see [1, 2, 4–6, 10–12, 14–16, 18] and the
references therein. From both the mathematical and physical point of view it is
natural to investigate next the asymptotic behavior of solutions in the presence of
boundaries. For the Burgers equation on the half space R+ with a Dirichlet bound-
ary condition, the first treatment of the asymptotic convergence toward the viscous
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shock profile was given by Liu & Yu [9] (see also Yu [19]) by the method of
pointwise estimates. Recently, the problem for the generalized Burgers equation
has been thoroughly analyzed by Liu & Nishihara [8] by the elementary weighted
energy method. The asymptotic convergence toward the corresponding rarefaction
wave for the scalar conservation law with viscosity and with a Dirichlet boundary
has been studied by Liu, Matsumura & Nishihara [7], while the p-system with
viscosity has been very recently analyzed by Matsumura & Nishihara [13] and
Pan, Liu & Nishihara [17]. However, there are no works on the asymptotic con-
vergence to the viscous shock profile for physically meaningful systems with the
boundary effect.

In each of the previous cases, determining the amount of shift of the asymptotic
viscous shock profile plays an important role in the treatment of stability. Even for
the scalar cases, Liu & Yu [9] and Liu & Nishihara [8] needed a difficult analysis
to locate the shift, since it cannot be determined explicitly because of the viscosity
term. So we had thought that the case of the system is much more difficult in many
aspects. However, it turns out that the p-system with viscosity on the half space
has several features better than those for the scalar case with boundary and also for
systems without boundary:

1. Since there are no standing waves for the p-system, any waves with negative
speed are expected to be reflected at the boundary and finally be captured by the
outgoing shock profile. This makes the variations of asymptotic behavior of the
solution simpler than that for the Cauchy problem case, that is, we may classify the
behaviour in terms of the sign of u+.

2. The p-system with viscosity is not uniformly parabolic, i.e., there is no
viscosity term for the specific volume v(x, t) and we cannot impose the boundary
value of v(x, t), which usually gives difficulties. However, this is really the reason
why we can specify the shift α of the outgoing viscous shock profile V (x− st+α)
explicitly by the equation for v(x, t), and we can expect that the value of v(x, t) on
the boundary is automatically controlled by the effects of boundary and viscosity,
so that the velocity u(x, t) tends toU(x− st+α)with the same shift α. The details
will be discussed in the following section.

In this paper, under these considerations, we shall show that when u+ < 0, there
exist a viscous shock profile (V ,U)(x − st) unique up to a shift, and that if the
viscous shock profile is suitably far from the boundary and if the initial perturbation
is suitably small, then the global solution of the initial-boundary-value problem
(1.1)–(1.3) exists, is unique, and tends toward the shifted viscous shock profile
(V ,U)(x − st + α), where α is a constant uniquely determined by the initial data
and the viscous shock profile.

This paper is organized as follows. After some notations are given below, the
properties of the viscous shock profiles, a heuristic argument on how the shift
α is determined, and the main theorem are stated in Section 2. In Section 3, we
reformulate the original problem to obtain a new initial-boundary-value problem,
and prove the global existence and the asymptotic behavior of the solution for the
reformulated initial-boundary-value problem by proving local existence together



4 A. Matsumura & Ming Mei

with a priori estimates. The proof of the a priori estimates by the energy method
will be given in Section 4.

Notation. L2 denotes the space of measurable functions on R+ which are square
integrable, with the norm

‖f ‖ =
(∫ ∞

0
|f (x)|2dx

)1/2
.

H l (l = 0) denotes the Sobolev space of L2-functions f on R+ whose derivatives
∂
j
x f, j = 1, . . . , l, are also L2-functions, with the norm

‖f ‖l =
(

l∑
j=0

‖∂jx f ‖2

)1/2

.

Let T be a positive constant and let B be a Banach space. Ck(0, T ; B) (k = 0)
denotes the space of B-valued k-times continuously differentiable functions on
[0, T ], and L2(0, T ;B) denotes the space of B-valued L2-functions on [0, T ]. The
corresponding spaces of B-valued functions on [0,∞) are defined similarly. In
what follows, C denote generic positive constants.

2. Preliminaries and Main Theorem

2.1. Viscous Shock Profile

We first recall the properties of viscous shock profiles. Viscous shock profiles
are the travelling-wave solutions of (1.1) on the whole space of the form

(v, u)(x, t) = (V ,U)(ξ), ξ = x − st, (2.1)

which must satisfy

−sV ′ − U ′ = 0, −sU ′ + p(V )′ = µ
(U ′

V

)′
, (V ,U)(±∞) = (v±, u±),

(2.2)
where ′ = d/dξ , s is the shock speed and (v±, u±) are the given constant states at
ξ = ±∞. Integrating (2.2) under the Rankine-Hugoniot condition (1.4), we reduce
problem (2.2) to

µsV ′

V
= −s2V − p(V )− b ≡: h(V ), V (±∞) = v±,

U = −s(V − v±)− u±,
(2.3)

where b = −s2v± −p(v±). In this paper, we are interested in the case u+ < u− =
0, and in the 2-shock, i.e., the front shock, s > 0. In this case, as mentioned in Section
1, for any given (v+, u+) (u+ < 0, v+ > 0), we know that v− (0 < v− < v+) and
s > 0 are uniquely determined by the R-H condition (1.4); see also (1.6). Then, in
view of the convexity of p(v), i.e., p′′(v) > 0 for v > 0, the standard arguments
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for the ordinary differential equations assert the existence of a solution (V ,U)(ξ)
of (2.2) satisfying

Proposition 2.1. For any (v+, u+) (v+ > 0 = u− > u+), there exist unique
v− (v+ > v− > 0) and s (> 0) satisfying (1.6), and a viscous shock profile
(V ,U)(ξ) (ξ = x− st) unique up to a shift, which connects (v−, 0) and (v+, u+),
satisfying

0 < v− < V (ξ) < v+, u+ < U(ξ) < 0,

h(V ) > 0, Vξ = V h(V )/sµ > 0,
(2.4)

|V (ξ)− v±| = O(1)|v+ − v−|e−c±|ξ |,
|U(ξ)− u±| = O(1)|v+ − v−|e−c±|ξ | (2.5)

as ξ → ±∞, where c± = v±|p′(v±)+ s2|/µs > 0.

2.2. Location of the Shift

We first fix the viscous shock profile (V ,U)(x − st) mentioned above. We
consider the situation where the initial data (v0, u0)(x) are given in a neighborhood
of (V ,U)(x−β) for some constant β > 0, so that we can describe how (V ,U)(x−
β) is away from the boundary by takingβ large. Then, we make a heuristic argument
to determine which of the shifted profiles (V ,U)(x−st+α−β) the solution tends
toward. From the first equation of (1.1), we have

(v − V )t = (u− U)x, (2.6)

where (V ,U) = (V ,U)(x − st + α − β). Integrating (2.6) over [0,+∞) with
respect to x and using the boundary condition (1.3) yields

d

dt

∫ ∞

0
[v(x, t)−V (x−st+α−β)]dx = (u−U)|∞x=0 = U(−st+α−β). (2.7)

Integrating (2.7) again with respect to t , we have

∫ ∞

0
[v(x, t)− V (x − st + α − β)] dx

=
∫ ∞

0
[v0(x)− V (x + α − β)] dx +

∫ t

0
U(−sτ + α − β) dτ.

(2.8)

If we suppose that v(x, t) tends toV (x−st+α−β) inL1 as t → ∞, the right-hand
side of (2.8) must go to zero as t → ∞. Hence, if we set

I (α) :=
∫ ∞

0
[v0(x)− V (x + α − β)] dx +

∫ ∞

0
U(−st + α − β) dt, (2.9)
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the shift α must be determined so that I (α) = 0. Differentiating I (α) with respect
to α gives

I ′(α) = −
∫ ∞

0
V ′(x + α − β) dx +

∫ ∞

0
U ′(−st + α − β) dt

= −v+ + V (α − β)+ 1

s
U(α − β)

= −v+ + 1

s
(sv− + u−)

= v− − v+,

(2.10)

where we used formula (2.3). Hence, it follows that

I (α) =
∫ ∞

0
[v0(x)− V (x − β)] dx +

∫ ∞

0
U(−st − β) dt + (v− − v+)α.

Thus, the shift α = α(β) is determined explicitly by

α := 1

v+ − v−

{ ∫ ∞

0
[v0(x)− V (x − β)] dx +

∫ ∞

0
U(−st − β) dt

}
, (2.11)

and it follows from (2.8) and I (α) = 0 that∫ ∞

0
[v(x, t)− V (x − st + α − β)] dx

=
∫ ∞

0
[v0(x)− V (x + α − β)] dx +

∫ t

0
U(−sτ + α − β) dτ

= I (α)−
∫ ∞

t

U(−sτ + α − β) dτ

= −
∫ ∞

t

U(−sτ + α − β)dτ → 0 as t → ∞.

(2.12)

In particular,∫ ∞

0
[v0(x)− V (x + α − β)] dx = −

∫ ∞

0
U(−sτ + α − β) dτ. (2.13)

On the other hand, by applying a similar argument to the second equation of (1.1)
in the form

(u− U)t = −
(
p(v)− p(V )− µ

ux

v
+ µ

U ′

V

)
x
,

we find that∫ ∞

0
[u0(x)− U(x + α − β)] dx +

∫ ∞

0
[p(v(0, t))− p(V (−st + α − β))] dt

−µ
∫ ∞

0

[
ux(0, t)

v(0, t)
− U ′(−st + α − β)

V (−st + α − β)

]
dt = 0. (2.14)
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However, as stated in the introduction, we expect that v(0, t) andux(0, t) = vt (0, t)
are automatically controlled by the effects of boundary and viscosity so that (2.14)
holds with the same shift α defined by (2.11). This situation is really possible
because v(0, t) is not specified.

It is interesting to compare our case with the scalar case

ut + f (u)x = uxx, u|x=0 = u−, u|x=∞ = u+ (u− > u+),

which is considered by Liu & Yu [9] for f (u) = 1
2u

2 and by Liu & Nishihara
[8] for the general flux function f (u). To locate the shift α they had to control the
value

∫∞
0 ux(0, t)dt , as suggested by the form (2.14). They chose the shift α as a

function depending on time t , say d(t), and studied it by getting pointwise estimates
via the Green function in [9] or by getting technical weighted energy estimates in
[8], where the decay rate estimates on d(t) also played important role. But the
same argument cannot be applied straightforwardly to the case of systems, even
for the simpler 2 × 2 system, e.g., our p-system with vsicosity, because the shift
function d(t) is overdetermined by two equations, a situation that is even worse for
n×n conservation laws. However, in view of the observations 1 and 2 stated in the
Introduction, we can reasonably conjecture that the amount of shift α is a constant
for our problem, just as we have shown in (2.11). This is one of the key points in
this paper.

2.3. Main Result

To state the main theorem precisely, we suppose that for some β > 0,

v0(x)− V (x − β) ∈ H 1 ∩ L1, u0(x)− U(x − β) ∈ H 1 ∩ L1 (2.15)

and suppose that the compatibility condition

u0(0) = 0 (2.16)
holds. Setting

(Φ0, Ψ0)(x) = −
∫ ∞

x

(v0(y)− V (y − β), u0(y)− U(y − β)) dy, (2.17)

we further assume that
(Φ0, Ψ0) ∈ L2. (2.18)

We note an asymptotic property of the constant shift α, before we state the main
theorem.

Lemma 2.2. Under the assumptions (2.15), (2.16) and (2.18), (Φ0, Ψ0) ∈ H 2 and
the shift α defined by (2.11) satisfies α → 0 as ‖(Φ0, Ψ0)‖2 → 0 and β → +∞.

Proof. It is easy to see that (Φ0, Ψ0) ∈ H 2 from (2.15) and (2.18). Since 0 <

−U(−st − β) 5 Ce−c−(st+β) (see (2.4), (2.5)) and since β > 0, so that
| ∫∞

0 U(−st − β)dt | 5 Ce−c−β , we obtain from formula (2.11) for the shift α
that

|α| 5 C(|Φ0(0)| + e−c−β) 5 C(‖Φ0‖2 + e−c−β) → 0

as β → +∞ and ‖(Φ0, Ψ0)‖2 → 0. ut



8 A. Matsumura & Ming Mei

Now, we state our main theorem.

Theorem 2.3. For any u+ < 0 and v+ > 0, suppose that assumptions (2.15),
(2.16), and (2.18) hold. Furthermore, let

(γ − 1)2(v+ − v−) < 2γ v−, (2.19)

where v− (v+ > v− > 0) and s > 0 are defined by (1.6). Then there exists a
positive constant ε0 such that if ‖(Φ0, Ψ0)‖2 + β−1 < ε0, then (1.1)–(1.3) has a
unique global solution (v, u)(x, t) satisfying

v(x, t)− V (x − st + α − β) ∈ C0([0,∞);H 1) ∩ L2(0,∞;H 1),

u(x, t)− U(x − st + α − β) ∈ C0([0,∞);H 1) ∩ L2(0,∞;H 2)

and the asymptotic behavior

sup
x∈R+

|(v, u)(x, t)− (V ,U)(x − st + α − β)| → 0 as t → ∞, (2.20)

where α = α(β) is determined by (2.11).

Remark. Condition (2.19) is much weaker than those in Matsumura & Nishihara
[12] and Liu & Wang [10], even for the Cauchy problem. In fact, both of their
conditions in [12, 10] imply that v+ − v− < C(γ − 1)−1, but our condition is
v+ − v− < Cγ (γ − 1)−2. We are indebted to Professor Shuichi Kawashima for
his helpful suggestion [3] for this weaker condition.

3. Reformulation of the Original Problem

Following the argument in Subsection 2.2, let us continue a heuristic argument
for the solution. Define new unknown functions φ(x, t) and ψ(x, t) by

φ(x, t) = −
∫ ∞

x

[v(y, t)− V (y − st + α − β)] dy

ψ(x, t) = −
∫ ∞

x

[u(y, t)− U(y − st + α − β)] dy




(x, t) ∈ R+ × R+,

(3.1)
which means that we look for the solution (v, u)(x, t) in the form

v(x, t) = φx(x, t)+ V (x − st + α − β),

u(x, t) = ψx(x, t)+ U(x − st + α − β).
(3.2)

Substituting (3.2) into (1.1), and integrating the system on [x,∞) with respect to
x, we obtain the system for (φ, ψ)(x, t) in the form

φt − ψx = 0,

ψt + p(V + φx)− p(V ) = µ
(U ′ + ψxx

V + φx
− U ′

V

)
.

(3.3)
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By (3.1), the initial data satisfy

φ(x, 0) = −
∫ ∞

x

[v0(y)− V (y + α − β)] dy

= Φ0(x)+
∫ ∞

x

[V (y + α − β)− V (y − β)] dy

= Φ0(x)+
∫ ∞

x

∫ α

0
V ′(y + θ − β) dθ dy

= Φ0(x)+
∫ α

0
[v+ − V (x + θ − β)] dθ

= : φ0(x),

(3.4)

ψ(x, 0) = −
∫ ∞

x

[u0(y)− U(y + α − β)] dy

= Ψ0(x)+
∫ ∞

x

[U(y + α − β)− U(y − β)] dy

= Ψ0(x)+
∫ α

0
[u+ − U(x + θ − β)] dθ

= : ψ0(x).

(3.5)

The initial perturbations (3.4) and (3.5) satisfy

Lemma 3.1. Under the assumptions (2.15), (2.16) and (2.18), the initial perturba-
tion (φ0, ψ0) ∈ H 2 and satisfies

‖(φ0, ψ0)‖2 → 0 as ‖(Φ0, Ψ )‖2 → 0 and β → +∞. (3.6)

Proof. Let χ1(x) := ∫ α
0 [v+ − V (x − β + θ)] dθ . Then it follows from (2.5) that

|v+ − V (x − β + θ)| 5 Ce−c+|x−β+θ | 5 Ce−c+|x−β|ec+|α| 5 Ce−c+|x−β|

for |α| < 1 (see Lemma 2.2). Hence, we have

‖χ1‖2 5 C

∫ ∞

0
α2e−2c+|x−β|dx

= Cα2
[ ∫ β

0
e−2c+(β−x)dx +

∫ ∞

β

e−2c+(x−β)dx
]

= Cα2

2c+
[
2 − e−2c+β] 5 Cα2/c+,

where C is independent of α and β. Similarly, we can prove that ‖χ ′
1‖2 5 Cα2

and ‖χ ′′
1 ‖2 5 Cα2. Thus, we proved ‖χ1‖2 5 C|α|. In the same way, we have that
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χ2(x) := ∫ α
0 [u+ −U(x + θ − β)]dθ satisfies ‖χ2‖2 5 C|α|. Thus, using Lemma

2.2, we have

‖(φ0, ψ0)‖2 5 ‖(Φ0, Ψ0)‖2 + ‖(χ1, χ2)‖2 5 C(‖(Φ0, Ψ0)‖2 + |α|),
which tends to zero as β → +∞ and ‖(Φ0, Ψ0)‖2 → 0. ut

By (3.1), (3.2) and (2.12) the boundary data satisfy

φ(0, t) =
∫ ∞

t

U(−sτ + α − β) dτ ≡: A(t), (3.7)

φ0(0) =
∫ ∞

0
U(−sτ + α − β) dτ = A(0), (3.8)

ψx(0, t) = u(0, t)− U(−st + α − β) = −U(−st + α − β) = A′(t). (3.9)

Note that if (3.8) and (3.9) hold, then (3.7) automatically holds by the equation
φt −ψx = 0. Hence, we regard (3.9) as a Neumann boundary condition for ψ and
(3.8) as a restriction on the initial data φ0. Under these considerations, we rewrite
the system (3.3) in the form

φt − ψx = 0

ψt − f (V )φx − µ

V
ψxx = F


 (x, t) ∈ R+ × R+, (3.10)

with the initial conditions (3.4) and (3.5) and Neumann boundary condition (3.9)
as

(φ, ψ)|t=0 = (φ0, ψ0)(x) ∈ H 2, x = 0,

ψx |x=0 = A′(t), t = 0,

φ0(0) = A(0),

(3.11)

where A(t) = ∫∞
t
U(−sτ + α − β)dτ and

f (V ) = −p′(V )+ µsVx

V 2
= h(V )− p′(V )V

V
≡ K(V )

V
, (3.12)

F = −{p(V + φx)− p(V )− p′(V )φx} (3.13)

−(µψxx + h(V )φx)
( 1

V + φx
− 1

V

)
.

Conversely, once we prove that the initial-boundary-value problem (3.10) and
(3.11) has a unique global solution (φ, ψ)(x, t) in C([0,+∞);H 2), then we can
have a unique global solution (v, u)(x, t) of the original initial-boundary-value
problem (1.1)–(1.3) in C([0,+∞);H 1) by (3.2).
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For any interval I ⊂ R+, we define the solution space X(I) by

X(I) =
{
(φ, ψ) ∈ C0(I ;H 2);φx ∈ L2(I ;H 1),

ψx ∈ L2(I ;H 2), sup
t∈I

‖(φ, ψ)(t)‖2 5 δ0

}
,

where δ0 = 1
2v−, and set

N(t) = sup
05τ5t

(‖φ(τ)‖2 + ‖ψ(τ)‖2), N0 = ‖φ0‖2 + ‖ψ0‖2.

By the Sobolev lemma,

sup
x

|f (x)| 5 ‖f ‖1 for f ∈ H 1.

Note that if (φ, ψ) ∈ X([0, T ]) for T ∈ R+, then

(V + φx)(x, t) = v− − ‖φx‖1 = 1
2v−, (x, t) ∈ R+ × [0, T ],

which ensures that the system (3.10) is uniformly nonsingular on [0, T ], and

|F | = O(|φx |2 + |φx ||ψxx |). (3.14)

Then, corresponding to Theorem 2.3, we give the following theorem for the initial-
boundary-value problem (3.10) and (3.11).

Theorem 3.2. Suppose that the assumptions of Theorem 2.3 hold. Then there exists
a positive constant ε1 such that if N0 + β−1 5 ε1, then the initial-boundary-
value problem (3.10) and (3.11) has a unique global solution (φ, ψ) ∈ X([0,∞))

satisfying

‖(φ, ψ)(t)‖2
2 +

∫ t

0
{‖φx(τ)‖2

1 + ‖ψx(τ)‖2
2} dτ

5 C(‖(φ0, ψ0)‖2
2 + e−c−β),

(3.15)

∫ t

0

∣∣∣ d
dt

‖φx(τ)‖2
∣∣∣+ ∣∣∣ d

dt
‖ψx(τ)‖2

∣∣∣ dτ 5 C(‖(φ0, ψ0)‖2
2 + e−c−β), (3.16)

for any t = 0. Moreover, the solution is asymptotically stable:

sup
x∈R+

|(φx, ψx)(x, t)| → 0 as t → ∞. (3.17)

Theorem 2.3 easily follows from Theorem 3.2. Therefore, our purpose is now
to prove Theorem 3.2. We now state the local existence result and the a priori
estimates for the initial-boundary-value problem (3.10) and (3.11) as follows.

Proposition 3.3 (Local Existence). For any τ = 0, consider the problem

φt − ψx = 0

ψt − f (V )φx − µ

V
ψxx = F


 x ∈ R+, t = τ, (3.18)
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with initial and boundary conditions

(φ, ψ)(x, τ ) = (φτ , ψτ )(x) ∈ H 2,

ψx(0, t) = A′(t), t = τ,
(3.19)

subject to the compatibility condition ψτ,x(0, τ ) = A′(τ ). Then there exists a
positive constantC0 independent of τ such that: For any δ ∈ (0, δ0/C0] and β > 1,
there exists a positive constant T0 depending on δ and β but not on τ such that, if
‖(φτ , ψτ )‖ 5 δ and supt=0(|A′(t)| + |A′′(t)|) 5 δ, then the problem (3.18) and
(3.19) has a unique solution (φ, ψ) ∈ X([τ, τ + T0]) satisfying ‖(φ, ψ)(t)‖2 5
C0δ for t ∈ [τ, τ + T0].
Proposition 3.4 (A Priori Estimates). Let (φ, ψ) ∈ X([0, T ]) be a solution of
(3.10) and (3.11) for a positive T . Then there exist positive constants δ1(5 δ0) and
C1, which are independent of T , such that ifN(T ) < δ1, then (φ, ψ)(x, t) satisfies
the a priori estimates (3.15) and (3.16) with C = C1 for 0 5 t 5 T .

We omit the proof of Proposition 3.3 because it can be shown in a standard
way. The proof of Proposition 3.4 is a key for Theorem 3.2; it will be obtained in
the next section.

Proof of Theorem 3.2. Based on the repeated use of Propositions 3.3 and 3.4, the
standard continuation argument asserts the existence of a unique global solution
(φ, ψ) ∈ X([0,∞)) satisfying (3.15) and (3.16) for any t ∈ [0,∞), provided that
‖(φ0, ψ0)‖2 and β−1 are chosen so small that

‖(φ0, ψ0)‖2 5 δ1/C0, C1(‖(φ0, ψ0)‖2
2 + e−c−β) 5 (δ1/C0)

2,

sup
t=0
(|A′(t)| + |A′′(t)|) 5 δ1/C0.

To prove (3.17), we consider the function H(t) := ‖(φx, ψx)(t)‖2. By virtue of the
uniform estimates (3.15) and (3.16), we see that both H(t) and |H′(t)| are integrable
over t = 0. Thus H(t) → 0, i.e., ‖(φx, ψx)(t)‖ → 0, as t → ∞. Furthermore,
‖(φxx, ψxx)(t)‖ is uniformly bounded for t = 0 due to (3.15). By the Sobolev
inequality, we then obtain

sup
x∈R+

|(φx, ψx)(x, t)|2 5 2{‖φx(t)‖‖φxx(t)‖ + ‖ψx(t)‖‖ψxx(t)‖} → 0

as t → ∞. This completes the proof of Theorem 3.2. ut

4. Proof of the a Priori Estimates

Let (φ, ψ) ∈ X([0, T ]) be a solution of (3.10) and (3.11) for a positive constant
T . Without loss of generality, we may restrict N(T ) < δ0, β > 1 and |α| < 1.
Throughout this section, we use the letterC to denote some positive constant which
is independent of T , β and α. We first give the boundary estimates.
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Lemma 4.1. For 0 5 t 5 T , the following inequalities hold:∣∣∣ ∫ t

0
(φψ)|x=0dτ

∣∣∣ 5 Ce−c−β,
∣∣∣ ∫ t

0
(ψψx)|x=0 dτ

∣∣∣ 5 Ce−c−β, (4.1)

∣∣∣ ∫ t

0
(φxψx)|x=0 dτ

∣∣∣ 5 Ce−c−β,
∣∣∣ ∫ t

0
(ψxψt )|x=0 dτ

∣∣∣5 Ce−c−β, (4.2)

∣∣∣ ∫ t

0
(ψxψxx)|x=0 dτ

∣∣∣ 5 Ce−c−β,
∣∣∣ ∫ t

0
(ψxtψxx)|x=0 dτ

∣∣∣ 5 Ce−c−β, (4.3)

where c− = |p′(v−)+ s2|v−/µs > 0 is as in (2.5).

Proof. We need some preliminary results: From the first equation of (3.10) and the
Neumann boundary condition in (3.11), we have φt |x=0 = ψx |x=0 = −U(−st +
α − β). We integrate this equation with respect to t to get

φ(0, t) = φ0(0)+
∫ t

0
A′(τ ) dτ

=
∫ ∞

t

U(−sτ + α − β) dτ = A(t).

(4.4)

Since |−st+α−β| = st+β−α because s > 0 andβ−α > 0 (β > 1, |α| < 1), and
since |U(−st+α−β)| 5 Ce−c−|−st+α−β| = Ce−c−(β−α)e−c−st 5 Ce−c−βe−c−st
(see (2.5)), we have

|φ(0, t)| = |A(t)| 5 O(1)e−c−βe−c−st . (4.5)

Sinceψx |x=0 = −U(−st+α−β) = A′(t) from the definitions (3.9) and (4.4), we
haveψxt |x=0 = A′′(t). Similarly, using (2.2) (or (2.3)), (2.5), and |−st+α−β| =
st + β − α, we can conclude that A(t) ∈ W 3,1(0,∞) and∣∣∣ dk

dtk
A(t)

∣∣∣ 5 Ce−c−βe−c−st , k = 0, 1, 2, 3,

‖A‖W 3,1 5 Ce−c−β.
(4.6)

The following estimates obtained by the Sobolev lemma are also used in what
follows:

|ψ(0, t)| 5 sup
x∈R+

|ψ(x, t)| 5 CN(T ) 5 C,

|φx(0, t)| 5 sup
x∈R+

|φx(x, t)| 5 CN(T ) 5 C,
(4.7)

where we have assumed that N(T ) < δ0.
Let us give the proofs of (4.1)–(4.3). Using (4.4)–(4.7), we have the first in-

equality of (4.1) for the boundary value:∣∣∣ ∫ t

0
(φψ)|x=0 dτ

∣∣∣ 5
∫ t

0
|A(τ)||ψ(0, τ )| dτ

5 CN(T )

∫ t

0
|A(τ)| dτ 5 Ce−c−β.
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A similar computation yields the second inequality of (4.1) and the first inequality
of (4.2):

∣∣∣ ∫ t

0
(ψψx)|x=0 dτ

∣∣∣ 5
∫ t

0
|A′(τ )||ψ(0, τ )| dτ

5 CN(T )

∫ t

0
|A′(τ )| dτ 5 Ce−c−β,

∣∣∣ ∫ t

0
(φxψx)|x=0 dτ

∣∣∣ 5
∫ t

0
|A′(τ )||φx(0, τ )| dτ

5 CN(T )

∫ t

0
|A′(τ )| dτ 5 Ce−c−β.

To prove the other boundary estimates, we make use of φtx = ψxx , integration by
parts, and (4.6), (4.7), to obtain

∣∣∣ ∫ t

0
(ψxψt )|x=0 dτ

∣∣∣ =
∣∣∣ ∫ t

0
A′(τ )ψt (0, τ ) dτ

∣∣∣
=
∣∣∣ ∫ t

0
[{A′(τ )ψ(0, τ )}t − A′′(τ )ψ(0, τ )] dτ

∣∣∣
5 |A′(t)ψ(0, t)| + |A′(0)ψ0(0)| +

∫ t

0
|A′′(τ )||ψ(0, τ )| dτ

5 CN(T )
[
|A′(t)| + |A′(0)| +

∫ t

0
|A′′(τ )| dτ

]
5 Ce−c−β;

∣∣∣ ∫ t

0
(ψxψxx)|x=0 dτ

∣∣∣ =
∣∣∣ ∫ t

0
A′(τ )ψxx(0, τ ) dτ

∣∣∣ =
∣∣∣ ∫ t

0
A′(τ )φxt (0, τ ) dτ

∣∣∣
=
∣∣∣ ∫ t

0
[{A′(τ )φx(0, τ )}t − A′′(τ )φx(0, τ )] dτ

∣∣∣
5 |A′(t)||φx(0, t)| + |A′(0)||φx(0, 0)|

+
∫ t

0
|A′′(τ )||φx(0, τ )| dτ

5 CN(T )
[
|A′(t)| + |A′(0)| +

∫ t

0
|A′′(τ )|dτ

]
5 Ce−c−β;
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∣∣∣ ∫ t

0
(ψxtψxx)|x=0 dτ

∣∣∣ =
∣∣∣ ∫ t

0
A′′(τ )ψxx(0, τ ) dτ

∣∣∣ =
∣∣∣ ∫ t

0
A′′(τ )φxt (0, τ ) dτ

∣∣∣
=
∣∣∣ ∫ t

0
[{A′′(τ )φx(0, τ )}t − A′′′(τ )φx(0, τ )]τ

∣∣∣
5 |A′′(t)||φx(0, t)| + |A′′(0)||φx(0, 0)|

+
∫ t

0
|A′′′(τ )||φx(0, τ )| dτ

5 CN(T )
[
|A′′(t)| + |A′′(0)| +

∫ t

0
|A′′′(τ )| dτ

]
5 Ce−c−β. ut

We now establish the a priori estimates. We first obtain

Lemma 4.2. Suppose V (x − st + α − β) is the viscous shock profile. Then

0 5 h(V )

V
5 s2(v+ − v−)

v−
, (4.8)

0 < −p′(v+) 5 f (V ) 5 −p′(v−)+ s2(v+ − v−)
v−

≡: c0, (4.9)

f (V )− h(V )

2V
= −p′(v+) > 0. (4.10)

Proof. Since 0 < v− < V < v+ and p(V ) = aV −γ , we easily find that

p(v−) > p(V ) > p(v+) > 0, −p′(v−) > −p′(V ) > −p′(v+) > 0. (4.11)

Thus, h(V ) = p(v−) − s2(V − v−) − p(V ) 5 p(v−) − p(v+) = s2(v+ − v−)
and h(V )

V
5 s2(v+−v−)

v− . This proves (4.8). By the definition of f (V ) and by (4.8)
and (4.11), we get (4.9). Furthermore,

f (V )− h(V )

2V
= −p′(V )+ h(V )

2V
= −p′(v+),

due to (4.8) and (4.11). This proves (4.10). ut

Next, we have the following basic energy estimate.

Lemma 4.3. For t ∈ [0, T ],

‖(φ, ψ)(t)‖2 +
∫ t

0
‖ψx(τ)‖2dτ

5 C
{
‖(φ0, ψ0)‖2 + e−c−β + N(T )

∫ t

0
[‖φx(τ)‖2 + ‖ψxx(τ )‖2]dτ

}
.

(4.12)
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Proof. Multiplying the first equation of (3.10) by φ and the second of (3.10) by
f (V )−1ψ (where f (V ) = K(V )/V ; see (3.12)), and adding these equalities, we
obtain{1

2
φ2
}
t
− {φψ}x +

{ 1

2f (V )
ψ2
}
t
+ s

2

( V

K(V )

)′
Vxψ

2 −
{ µ

K(V )
ψψx

}
x

+ µ

K(V )
ψ2
x − µK ′(V )Vx

K(V )2
ψψx = F · Vψ

K(V )
. (4.13)

Since ∣∣∣µK ′(V )Vx
K(V )2

ψψx

∣∣∣ 5 ε
µ

K(V )
ψ2
x + µK ′(V )2V 2

x

4εK(V )3
ψ2

for any ε > 0, which will be determined later, substituting this inequality into
(4.13) yields

{1

2
φ2 + 1

2f (V )
ψ2
}
t
−
{
φψ + µ

K(V )
ψψx

}
x

+ (1 − ε)
µ

K(V )
ψ2
x + Z(V )Vxψ

2 5 F · Vψ

K(V )
,

(4.14)

where

Z(V ) = s

2

( V

K(V )

)′ − µK ′(V )2Vx
4εK(V )3

. (4.15)

In view of (2.3), (3.12) and p(V ) = aV −γ , a tedious but straightforward compu-
tation gives

Z(V ) = 1

4sK(V )3

{
2s2[γ 3p(V )2 + h(V )2 + γ s2Vp(V )]

+ 2s2[γ (γ + 1)− (2ε)−1γ (γ − 1)]p(V )h(V )

− γ 2(γ − 1)2h(V )

εV
p(V )2 + 2s4[1 − (2ε)−1]V h(V )

}
.

(4.16)

Substituting (4.8) into (4.16) yields

Z(V ) = 1

4sK(V )3

{
2s2[h(V )2 + γ s2Vp(V )]

+ 2s2γ 2
[
γ − (γ − 1)2(v+ − v−)

εv−

]
p(V )2

+ 2s2γ [(γ + 1)− (2ε)−1(γ − 1)]p(V )h(V )
+ 2s4[1 − (2ε)−1]V h(V )

}
.

(4.17)
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Using the sufficient condition (2.19), and choosing ε as

max
{ (γ − 1)2(v+ − v−)

2γ v−
,

1

2

}
5 ε < 1,

we have
Z(V ) = C > 0. (4.18)

Integrating (4.14) over [0,∞)× [0, t], we have∫ ∞

0
[φ2 + f (V )−1ψ2] dx + 2(1 − ε)µ

∫ t

0

∫ ∞

0
K(V )−1ψ2

x dx dτ

+ 2
∫ t

0

∫ ∞

0
Z(V )Vxψ

2 dx dτ

5
∫ ∞

0
[φ2

0 + f (V (x + α − β))−1ψ2
0 ] dx

+ 2
∣∣∣ ∫ t

0

(
φψ + µ

K(V )
ψψx

)
|x=0dτ

∣∣∣+ 2
∫ t

0

∫ ∞

0
|FVK(V )−1ψ | dx dτ.

Using (4.18), Vx > 0 (see (2.4)), v−|p′(v+)| 5 K(V ) 5 c0v+, f (V )−1 = c−1
0

(see (4.9)), and the boundary estimates (4.1) and (4.3), we get the basic energy
estimate (4.12). ut
Lemma 4.4. For t ∈ [0, T ],

‖φx(t)‖2 +
∫ t

0
‖φx(τ)‖2 dτ

5 C
{
‖(φ0, ψ0)‖2

1 + e−c−β +N(T )

∫ t

0
[‖φx(τ)‖2 + ‖ψx(τ)‖2

1] dτ
}
.

(4.19)

Proof. From the equation (3.10), we have

µφxt

V
+ f (V )φx = ψt − F. (4.20)

Multiplying (4.20) by φx yields{ µ
2V

φ2
x

}
t
+
(
f (V )− h(V )

2V

)
φ2
x = ψtφx − Fφx, (4.21)

where we used µsVx = V h(V ). The first equation of (3.10) gives

ψtφx = {ψφx}t − ψφxt = {ψφx}t − ψψxx

= {ψφx}t − {ψψx}x + ψ2
x .

(4.22)

Substituting (4.22) back into (4.21), and noting (4.10), we obtain{ µ
2V

φ2
x − ψφx

}
t
+ |p′(v+)|φ2

x 5 ψ2
x − {ψψx}x − Fφx. (4.23)
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Integrating (4.23) over [0,∞)×[0, t] and using v− 5 V 5 v+ and the inequalities∫ ∞

0
|ψ0φ0,x | dx 5 1

2
(‖ψ0‖2 + ‖φ0,x‖2),

∫ ∞

0
|ψφx |dx 5 µ

4v+
‖φx(t)‖2 + v+

µ
‖ψ(t)‖2,

we have

µ

4v+
‖φx(t)‖2 + |p′(v+)|

∫ t

0
‖φx(τ)‖2dτ

5 µ

2v−
‖φ0,x‖2 + 1

2
‖ψ0‖2 + 1

2
‖φ0,x‖2 +

∣∣∣ ∫ t

0
ψψx |x=0 dτ

∣∣∣+ v+
µ

‖ψ(t)‖2

+
∫ t

0
‖ψx(τ)‖2dτ +

∫ t

0

∫ ∞

0
|Fφx | dx dτ.

Applying the estimate (4.1) for the boundary and the basic estimate (4.12) to this
inequality yields the estimate (4.19). ut

Lemma 4.5. For t ∈ [0, T ],

‖ψx(t)‖2 +
∫ t

0
‖ψxx(τ )‖2 dτ

5 C
{
‖(φ0, ψ0)‖2

1 + e−c−β +N(T )

∫ t

0
[‖φx(τ)‖2 + ‖ψx(τ)‖2

1]dτ
}
.

(4.24)

Proof. Multiplying the second equation of (3.10) by −ψxx gives

1

2
{ψ2

x }t − {ψxψt }x + f (V )φxψxx + µ

V
ψ2
xx = −Fψxx. (4.25)

Inequality (4.9) and the Cauchy inequality yield

|f (V )φxψxx | 5 µ

2v+
ψ2
xx + c2

0v+
2µ

φ2
x, (4.26)

and (3.14) and the Cauchy inequality yield

| − Fψxx | 5 C(|φx |2 + |φx ||ψxx |)|ψxx | 5 C|φx |(|φx |2 + |ψxx |2). (4.27)

Substituting (4.26), (4.27) and µ/V = µ/v+ into (4.25), we have

1

2
{ψ2

x }t − {ψxψt }x + µ

2v+
ψ2
xx 5

c2
0v+
2µ

φ2
x + C|φx |(|φx |2 + |ψxx |2). (4.28)

Integrating (4.28) over [0,∞)×[0, t], and making use of the estimate (4.2) for the
boundary and Lemmas 4.3 and 4.4, we have (4.24). ut
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Lemma 4.6. For t ∈ [0, T ],

‖φxx(t)‖2 +
∫ t

0
‖φxx(τ )‖2dτ

5 C
{
‖(φ0, ψ0)‖2

2 + e−c−β +N(T )

∫ t

0
‖φx(τ)‖2 dτ

+N(T )
∫ t

0
‖ψx(τ)‖2

1 dτ +
∫ t

0
‖Fx(τ)‖2dτ

}
.

(4.29)

Proof. Differentiating (4.20) with respect to x and multiplying the derivative by
φxx , we have{ µ

2V
φ2
xx

}
t
+
(
f (V )− h(V )

2V

)
φ2
xx + µVx

V 2
φxtφxx + f (V )xφxφxx

= ψxtφxx − Fxφxx,

(4.30)

where we used µsVx = V h(V ). By the first equation of (3.10) and the Cauchy
inequality, we have∣∣∣µVx

V 2
φxtφxx

∣∣∣ =
∣∣∣µVx
V 2

ψxxφxx

∣∣∣ 5 1

4
|p′(v+)|φ2

xx + C|ψxx |2, (4.31)

|f (V )xφxφxx | 5 1
4 |p′(v+)|φ2

xx + C|φx |2, (4.32)

|Fxφxx | 5 1
4 |p′(v+)|φ2

xx + C|Fx |2, (4.33)

ψxtφxx = {ψxφxx}t − ψxφxxt = {ψxφxx}t − ψxψxxx

= {ψxφxx}t − {ψxψxx}x + ψ2
xx.

(4.34)

Substituting (4.31)–(4.34) into (4.30), integrating it over [0,∞)×[0, t], and making
use of (4.10), we then have

‖φxx(t)‖2 +
∫ t

0
‖φxx(τ )‖2dτ 5 C

{
‖(φ0, ψ0)‖2

2 + e−c−β

+ ∫ t0 (‖φx(τ)‖2 + ‖ψx(τ)‖2
1 + ‖Fx(τ)‖2)dτ

}
,

which implies (4.29) by Lemmas 4.3–4.5, that is, we used the fact∫ t

0
(‖φx(τ)‖2 + ‖ψx(τ)‖2

1)dτ 5 C
{
‖(φ0, ψ0)‖2

2 + e−c−β

+N(T )
∫ t

0
(‖φx(τ)‖2 + ‖ψx(τ)‖2

1)dτ
}
.

Thus, the proof is complete. ut
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Lemma 4.7. For t ∈ [0, T ],

‖ψxx(t)‖2 +
∫ t

0
‖ψxxx(τ )‖2dτ

5 C
{
‖(φ0, ψ0)‖2

2 + e−c−β +N(T )

∫ t

0
(‖φx(τ)‖2

1 + ‖ψx(τ)‖2
1)dτ

+
∫ t

0
‖Fx(τ)‖2dτ

}
.

(4.35)

Proof. As in the proofs of Lemmas 4.5 and 4.6, we differentiate the second equation
of (3.10) with respect to x, multiply the derivative by −ψxxx , integrate the resulting
equality over [0,∞)×[0, t], and make use of (4.10), Lemmas 4.1, 4.3–4.6, to prove
(4.35). The details are omitted here. ut
Proof of Proposition 3.4. Combining Lemmas 4.3−4.7, we have

‖(φ, ψ)(t)‖2
2 +

∫ t

0
[‖φx(τ)‖2

1 + ‖ψx(τ)‖2
2]dτ

5 C
{
‖(φ0, ψ0)‖2

2 + e−c−β + N(T )

∫ t

0
[‖φx(τ)‖2 + ‖ψx(τ)‖2

1]dτ (4.36)

+
∫ t

0
‖Fx(τ)‖2dτ

}
.

Using the Sobolev lemma, we have by (3.13) and (3.14) that

‖Fx‖2 5 C

∫ ∞

0
(φ4
x + φ2

xφ
2
xx + ψ2

xxφ
2
xx + ψ2

xxxφ
2
x + φ2

xψ
2
xx) dx

5 C

[
sup
x∈R+

φ2
x

∫ ∞

0

(
φ2
x + φ2

xx + ψ2
xxx + ψ2

xx

)
dx + sup

x∈R+
ψ2
xx

∫ ∞

0
φ2
xxdx

]

5 C[‖φx‖2
1(‖φx‖2 + ‖ψxxx‖2)+ ‖ψxx‖2

1‖φxx‖2]

5 C‖φx‖2
1

(‖φx‖2
1 + ‖ψx‖2

2

)
5 CN(T )

(‖φx‖2
1 + ‖ψx‖2

2

)
.

(4.37)
Substituting (4.37) into (4.36) yields

‖(φ, ψ)(t)‖2
2 + (1 − CN(T ))

∫ t

0

[‖φx(τ)‖2
1 + ‖ψx(τ)‖2

2

]
dτ

5 C
{
‖(φ0, ψ0)‖2

2 + e−c−β
}
. (4.38)

Hence, choosing N(T ) so small that N(T ) 5 min{δ0, C
−1}, we can prove the

a priori estimate (3.15).
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To prove (3.16), we differentiate the first equation of (3.10) with respect to x,
multiply it by φx , and integrate the resulting equality with respect to x, to obtain

d

dt
‖φx(t)‖2 = 2

∫ ∞

0
ψxxφxdx.

Then, from (3.15) we get∫ t

0

∣∣∣ d
dt

‖φx(t)‖2
∣∣∣ 5

∫ t

0
(‖φx(τ)‖2 + ‖ψxx(τ )‖2)dτ

5 C
{‖(φ0, ψ0)‖2

2 + e−c−β
}
.

(4.39)

Similarly, the second equation of (3.10) and the estimate (3.15) give us∫ t

0

∣∣∣ d
dt

‖ψx(t)‖2
∣∣∣ 5 C

{‖(φ0, ψ0)‖2
2 + e−c−β

}
. (4.40)

Thus, (4.39) and (4.40) imply the a priori estimate (3.16). ut
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