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Abstract

In this paper, we investigate the properties of traveling waves to a class of lattice differential equations
for cellular neural networks with multiple delays. Following the previous study [38] on the existence of the
traveling waves, here we focus on the uniqueness and the stability of these traveling waves. First of all, by
establishing the a priori asymptotic behavior of traveling waves and applying Ikehara’s theorem, we prove
the uniqueness (up to translation) of traveling waves ¢ (n — ct) with ¢ < c4 for the cellular neural networks
with multiple delays, where cx < O is the critical wave speed. Then, by the weighted energy method to-
gether with the squeezing technique, we further show the global stability of all non-critical traveling waves
for this model, that is, for all monotone waves with the speed ¢ < cx, the original lattice solutions con-
verge time-exponentially to the corresponding traveling waves, when the initial perturbations around the
monotone traveling waves decay exponentially at far fields, but can be arbitrarily large in other locations.
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1. Introduction

Cellular neural networks (CNN) were first proposed by Chua and Yang [8,9] as an achievable
alternative to fully-connected neural networks in electric circuit systems. Since then, the study of
cellular neural networks has been one of hot research topics due to their many significant applica-
tions to a broad scope of problems arising from, for example, image and video signal processing,
robotic and biological visions, and higher brain functions [7-9,29]. The infinite system of the
ordinary differential equations for the one-dimensional CNN with a neighborhood of radius m
but without inputs is of the form

(0 = =00 () + 2+ Y ai f i () +af Q@) + Y i fnsi@), (LD

i=1 i=1

for n € Z, m € N. Here, x,(t) denotes the state function of cell C,, at time ¢. The quantity z
is called a threshold or bias term and is related to independent voltage sources in electric cir-
cuits. The nonnegative constant coefficients a;, o and g; of the output function f constitute the
so-called space-invariant template that measure the synaptic weights of self-feedback and neigh-
borhood interactions. When the cells are taken account of the instantaneous self-feedback and
neighborhood interaction with distributed delays, because of the finite switching speed of signal
transmission, the dynamic system can be presented by the following nonlocal lattice differential
equation with multi-delays [32,38]

T

x,/l(t)Z_Xn([)+Zai/~]i(}’)f(xn—i(t_y))dy +06f1m+1(y)f(xn(t—y))dy
=l 9 0

T

I
+ Zﬁj / Imi14 ) f Gy j (8 = y))dy (1.2)
Jj=1 0

for n € Z, m,l € N, where J; : [0, 7] — [0, 00) is the density function for delay effect of
the neighbors. Particularly, if the kernels are taken as some delta-functions J; = §(y — 1;),
i=1,2,---,m+1+4 1, where t; > 0 are the time-delays, then the equation (1.2) is reduced to
the following multiple time-delayed lattice differential equation for the cellular neural networks
[12-16,19,30]

X (1) = —xa (1) + Zaif(xn—i (t =) +af (xn(t — Tui1))

i=1

1
+ ) B f Congj (t = Tug11)), (1.3)
j=1
subjected to the initial data
X, (s)=x%(s), se[-r0], r= max {5} (1.4)

I1<i<m+1+l
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This will be the targeted equation concerned in the present paper. Here, the nonlinear output
function f is assumed to satisfy:

(H1) Equation (1.3) possesses two constant equilibria: 0 and K > 0 such that f(0) =0 and

(a+a+pB)f(K)=K, where a —Za, >0, >0and g := Zﬂj > 0;
i=1 j=1
(H2) f e C([0, K1, [0, K]) is non-decreasing with restrictions of (a + 8) f'(0) > 1, (@ + « +
B)f (W) >uforue(0,K), and |f(u)— f()| < f(0)|u—v|foru,v e [0, K];
(H3) There exists o € (0, 1] such that

limsup[ f'(0) — f(u)/ulu™° < +o0. (1.5)

u—0t
(H4) f"(u) <0foru e (0,K)and f(K)(a+a+B) <1.
Remark 1.1.

i) In (H2), (@ + B) f'(0) > 1 means that (a + « + 8) f'(0) > 1 and 0 is an unstable node for
the linearized equation around 0 of the following homogeneous equation

X)) =—x({)+ (a@a+a+B)f(x@)). (1.6)

On the other hand, f(0) =0and | f () — f (v)| < f'(0)|u — v| for u, v € [0, K] immediately
indicates f/(0)u > f(u) foru € [0, K];

ii) In (H3), the condition (1.5) implies that there exist d > 0 and y > O such that f(u) >
F'(0)u — du®*t! for u € [0, y1;

iii) In (H4), the condition f'(K)(ax +a + B) < 1 is equivalent to that the equilibrium K is a
stable node for the linearized equation of (1.6) around K.

The typical example of the output function to satisfy the conditions (H1)—(H3) is Nicholson’s
function

fw)=pue™ for l <(a+a+pB)p<e.

In this case, K =In[(a + o+ B)p] >0and o = 1.

In the study of CNN and delayed CNN (simply denoted by DCNN), traveling waves in the
form of ¢ (n — ct) play a crucial role in understanding the fundamental structure of the dynamical
systems, where c is the wave speed. Let x,,(t) = ¢(n — ct) =: ¢(£) be the solution of (1.3)
connecting the constant equilibria O with K at far fields, then

—c¢/(E)=—¢E) + Y _aif(PE —i+cr) +af BE+cTui)

i=1

1
+Y Bif@E +j+ cTurir)),
j=1

¢(—00) =0, ¢(+00)=K

(1.7)
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The existence of the monotone traveling waves ¢ (n — ct) connecting the constant equilibria
0 with K for the equation (1.3) has been proved by the method of upper and lower solutions
[12-16,19,30], and by the Schauder’s fixed point theorem [38], respectively. Here, we just need
the first three conditions (H1)—(H3) for the existence of traveling waves. That is,

Proposition 1.1. (See [38].) Assume that (H1)—(H3) hold. Then there exists c, < 0 such that for
any ¢ < ¢y, (1.3) admits a non-decreasing positive traveling wave solution ¢ (n — ct) satisfying
(1.7).

Remark 1.2. The positivity of the traveling wave solution can be directly obtained by the con-
struction of upper—lower solutions. Indeed, according to the above arguments in [38], ¢(§) <
d (&) < P(£), where ¢(£) := min{K, e*1¢}, ¢(&) := max{0, e*§ — ge"1€}. Note that there ex-
ists B < 0 such that ¢(£) > 0 for & < B. Thus, ¢ (§) > ¢ (&) > 0 for £ < B, and the monotonicity
of ¢ implies that ¢ is positive. B

As a continuity of the previous study [38], it is very natural and interesting to investigate the
uniqueness of the traveling waves (up to translation) and their asymptotic stabilities. This will be
the main purpose of the present paper.

First of all, inspired by the approach developed by Carr and Chmaj [1] for integro-differential
equation without time-delays, by establishing the a priori analysis of the asymptotic behavior of
the traveling waves and applying Ikehara’s theorem, we will be able to show the uniqueness of all
traveling waves for ¢ < c,. This method (see also the application in [35,36] for the non-monotone
delayed systems on Lattices) is different from the traditional ones used in [3-5,10,11,20,23] for
the proof of uniqueness of traveling waves to the other types of evolution systems. Our first main
result is as follows.

Theorem 1.1 (Uniqueness). Assume that (H1)—(H3) hold. Let ¢ (n — ct) be a traveling wave of
(1.3) with the wave speed ¢ < cy, which is given in Proposition 1.1. If ¥ (n — ct) is any positive
traveling wave of (1.3) with the same wave speed c satisfying (1.7), then ¢ is a translation of \;
more precisely, there exists € € R such that ¢(n — ct) =¥ (n — ct + &).

As a direct result of Proposition 1.1 and Theorem 1.1, we have

Corollary 1.1 (Monotonicity). Assume that (H1)—-(H3) hold. If ¥ (n — ct) is any positive traveling
wave of (1.3) with the same wave speed ¢ < c, and satisfying (1.7), then ¥ (§) is non-decreasing
on & eR, where £ =n — ct.

Remark 1.3. For the uniqueness of the monotone traveling waves (up to translation) presented
in Theorem 1.1 and Corollary 1.1, we need that f satisfies the conditions (H1)-(H3) only. But
the equation (1.3) may be non-monotone for u € [0, K] if f is non-monotone, see [39]. Conse-
quently, the equation (1.3) may not hold the comparison principle. This means, we can still have
the uniqueness of the traveling waves for the non-monotone equation (1.3) by the technique of
a priori analysis on the behavior of the traveling waves at far fields with the help of Ikehara’s the-
orem. This is essentially different from the other studies [3-5,10,11,20,23] where the comparison
principle plays a key role in the uniqueness proof.
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Our next goal is to show the stability of the traveling waves with ¢ < c. By using the technical
weighted-energy method developed recently in [2,18,24-27,17,28,33,34] for the time-delayed
reaction—diffusion equations in the continuous forms, we will prove that, for all monotone travel-
ing waves with the wave speed ¢ < ¢, the original lattice solutions converge time-exponentially
to the corresponding traveling waves, when the initial perturbations around the monotone trav-
eling waves decay exponentially at far fields, but can be arbitrarily large in other locations. The
exponential convergence rate will be also derived. Note that, for the discrete reaction—diffusion
equations with time-delay, the stability of the traveling waves was also shown in [6,37] for the
faster traveling waves with the speed |c| > |c«|. As we know, when the weighted functions were
chosen as the piecewise continuous functions, just like the original studies [24-26], it always
causes us to take |c| > 1 in order to control some bad terms in establishing the basic energy esti-
mates. For such a reason, this makes the stability open for the case when the wave speed c is close
to c,. To overcome this shortage, inspired by [18], by choosing the weight function as the opti-
mal exponential function, and applying the weighted energy method and the Gronwall inequality
plus the squeezing technique, we can further prove the global stability for all non-critical travel-
ing waves. Here the wave speed ¢ can be arbitrarily close to the critical wave speed c,. For other
studies on the stability of traveling waves for delayed lattice reaction—diffusion equations with
bistable and monostable nonlinearities, we refer to Ma and Zhao [21] and Ma and Zou [22,23]
by the method of upper and lower solutions.

Before stating our second main result, let us introduce the following notation. Throughout this
paper, 15 denotes the weighted />-space with a weighted function 0 < v(&) € C(R), that is,

2=l ={glien ¢ €R| Y vEne? < oo}
i
and its norm is defined by

1
el = (Y vee?), forcell.

]
In particular, when v = 1, we denote l,% by /2. We define a weighted function v(£) by
v(E) = e PHET ke (y,02), o> 1 (1.8)

where A1, Ap are given in Lemma 2.1. Our second main result on the stability of the traveling
waves is as follows.

Theorem 1.2 (Stability). Assume that (H1)-(H4) hold and let ¢ (n — ct) be a traveling wave with
¢ < ¢y and satisfy (1.7). If the initial data satisfy

Ofwg(s)fl( fors e[—r,0], neZ, (1.9)

where r = max {t;} and the initial perturbation wg(s) — ¢ —cs) isin C([—r,0], 15),
1<i<m+1+1
where v is the weighted function given in (1.8), then Eq. (1.3) with the initial data (1.9) admits a
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unique solution {wy, (t)},cz such that

0<w,(t) <K, fortel0,4+00), neZ

and

{wn (1) — ¢ (n — ct) ez € C ([0, 00), 12).

In particular, the solution {w,(t)},cz converges to the traveling wave ¢ (n — ct) exponentially in
time t, that is,

sup |w, (1) —¢p(n —ct)| < Ce™ ™, 1 >0,
nez

for some positive constants C and L.

Re

i)

ii)

i)

mark 1.4.

Unfortunately, the stability for the critical wave with speed ¢ = ¢, for the lattice equation
(1.3) cannot be solved at the current stage, due to some technical difficulties in the a priori
estimates. We have to leave it for the future work.

The stability of the traveling waves presented in Theorem 1.2 is global in the weighted
space llz,, because the initial perturbation around the wavefront can be arbitrarily large. The
monotone conditions (H2) and (H4) play the key role in the proof of global stability, because
the comparison principle holds for the equation (1.3). If the equation losses its comparison
principle, by the same approach (the weighted energy method), we may still obtain the local
stability by taking the initial perturbation small enough. This is the advantage for the energy
method working out for the non-monotone equations. While, the monotone technique and
the upper—lower solution methods adopted in [3,11,20,23] usually requests the monotonicity
of the working equations for the proof about the stability of the traveling waves.

When we use the /2-weighted energy method, as showed in [26], the nonlocal terms (integral
terms) will cause us some troubles in the /2-weighted energy estimates. In order to treat these
nonlocal terms properly, we usually need to take |c| > |c«|. So, the technique developed
in the present paper for treating the local equation (1.3) cannot perfectly work out for the
nonlocal equation (1.2), and we need a different strategy. This will be another target in future.

The rest of this paper is organized as follows. In Section 2, we prove the uniqueness of trav-

eling waves for DCNNSs. Section 3 is devoted to proving the stability result.

2.

Uniqueness of traveling waves

In order to prove the uniqueness of traveling waves for (1.1), we need to investigate asymptotic

behavior of any traveling wave.

2.1

. Asymptotic behavior of traveling waves

In this subsection, we show the asymptotic behavior of traveling waves of (1.3) for ¢ < ¢,

with the help of Ikehara’s theorem.
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Define the characteristic equation

m 1
Al M) =—ch+ 1= f/0)| D @i gt 43" g Utemet) | (2.1)
i=1 j=1

According to Lemma 2.1 in [38], we have

Lemma 2.1. Assume that B > 0 and (o + B) f'(0) > 1 hold. Then, there exist a unique pair of
cx < 0 and hy > 0 such that the following assertions hold.

(i) Alcs,hy) =0, 288 5, =0;
(1) For any ¢ > ¢, and A € [0, +00), A(c,A) <0;
(iii) Forany c < ¢y, A(c, A) = 0 has two positive roots A1 > Ay > 0. Moreover, if ¢ < Cy, A2 > A
and A(c, A) > 0 for any k € (A1, A2); if ¢ = Cx, then A] = Ay = Ay

‘We recall a version of Ikehara’s Theorem.

Lemma 2.2. (See [1], Proposition 2.3.) Let F(A) = 0+°o u(x)e **dx, with u being a positive
decreasing function. Assume that F ()) has the representation
h(X)

FA)= ———,
* (h + o)kt
where k > —1 and h is analytic in the strip —o <ReA < 0. Then

. u(x) h(—a)
lim T =
x—>+o00 xkem®¥ (o +1)

We now state asymptotic behaviors of positive traveling waves for (1.3).

Lemma 2.3. Assume that (H1)-(H3) hold and let r (n — ct) be a positive traveling wave of (1.3)
with ¢ < ¢y and satisfy (1.7). Then there exists p > 0 such that ¥ (§) = O (e "¢) as € — —oo.

Proof. Since f'(0)(a + « + B) > 1, there exists €y > 0 such that
A=1—-€)f'O(@a+a+p)—1>0.
For such ¢y > 0, there exists §; > 0 such that f(u) > (1 — €g) f/(0)u for any u € [0, §;]. Since

¥ (—o00) = 0, there exists M > 0 such that ¥/ (£) < §; for any & < —M. Integrating (1.7) from n
to & with & < —[ — M, it follows that

g &
—etw© v == [ v+ Y ai [ F0 =i+ cnndy
n =l

£ ] £
+aff<w(y +cTur))dy + Y B f FAQ+J+ ctnprs))dy
n =t 5
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m

£ &
—fW(y)dy+f/(0)(l—€o) Za,fw<y—i+cmdy
n

i=1

+<¥/W()’+crm+1)d)’+z:ﬁj/Vf()"i‘] +crm+1+1)d)’]
0

j=1

m £
=A/1//(y)dy+f’(0)(1—eo) > a /w<y—i+cri>—w<y>>dy
i=l 5
ta / WO + CTmrt) — ¥ (5))dy

£ / WO+ + CTsrs)) = Wy . 22)

j=l1

Since v (§) is differentiable, we have

3 & —i+cT;
f(w<y—i+cr,->—w<y>>dy=/ ( / w’(y+x>dx) dy
n

n 0
—i4cT;

— / (W (€ +x) — ¥ ( +x))dx.

Similarly, it follows that

CTm+1

/(I/I(y+CTm+1)—1ﬁ(y))dy— /(W($+X)—Iﬂ(n+x))dx

and
j+CTm+l+j
/w(y ot Ctmrie)) — )y = / (W (€ +x) — Y0+ ).
0

Letting  — —oo in (2.2), we obtain

—i+C‘El'

g m
A/w(y)dys—cw@)—f’(mu—eo>[2ai / V(€ +x)dx
i=l1 0
CTm41 i JHCTmt1+j

a/lp(é+x)dx+2ﬂj / w(s+x)dx]. 2.3)

0 j=1 0
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It then follows from (2.3) that ffoo Y (y)dy < +oo. Letting ®(§) = ffoo ¥ (y)dy and integrating
(2.3) from —oo to &, we have

3 m —itcr;
A f <I>(y)dy§—c<l>($)—f/(0)(1—60)[Zai / @ (5 +x)dx
A =1 g
CTnt1 i JHCTmy1+j
ta / O +0)dx+ Y B / q>(g+x)dx]
0 =1 0
=0®¢ +x) 2.4

for some k > 0 and ¢ > 0 according to the monotonicity of ®(£). Letting & > 0 such that
0 < Aw, and for § < —[ — M, it then follows that

£
1
o — w)<5 / <I>(y)dy<— / <I>(y)dy<A—<I>(é+/<) (2.5)
E—w
Define (&) = ®(§)e™¢, where p = — In 22 > 0. Hence,
0

h(E —@)=dE —w)e P < =P TP i) = h(E +x),
Aw

which implies % is bounded. Therefore, ®(§) = O(e”%) when £ — —o0. Integrating (1.7) from
—oo to &, it follows from (H2) that

3
—cw(é)——<1>($)+2al/f(l/f(y—l+cr,))dy+a/f(W(y+crm+1))dy

—00

35 / FWG A+ +CTnrre)dy

=1 "
m &
<= 0@+ SOy a [ wi-itendytar (0>/w(y+crm+1>dy
i=l 5
&

Y5 f<0>/¢<y+J g1 )dy

j=1

=—-®@)+ f'(O)Zai®(§ —i+cn) +af 0PE +ctuy)

i=1

1
+ ) B OPE + j + cTugrs))- 2.6)

j=1

Thus, we have ¥ (£) = O(e”¥) when £ - —c0. O
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Proposition 2.1. Assume that (H1)-(H3) hold and let \ (n — ct) be a positive traveling wave of
(1.3) with ¢ < ¢ and satisfy (1.7). Then

) exists for ¢ < cy, : lim exists for ¢ = cy. 2.7

f—>—o0 eM§ — =00 [§|erE

Proof. According to Lemma 2.3, for any 0 < ReX < p, we can define the two-sided Laplace
transform of :

Loy = / v (e dy.
R

We claim that L(A) is analytic for any ReA € (0, A1) and has a singularity at A = A;. Indeed,
since

—cy' ) + Y E) — f1O)Y iy —i+cr) —af OYE + cTugr)

i=1

I
— Z,ij/(o)l/f(f +J + CTmtit))

j=1
=Y alfWE —i+cn)— fOYE—i+cr)]
i=1
+alf (Y& +ctni) = £ O (E + cTus1)]

!
+ ) BILFWE+j+ T ) = OV E +j + cTmrig))]

j=1

= RY)(&),

we obtain

o8]

A(c, L(A) = / e R (y)dy. (2.8)

—00

It is easily seen that the left hand si_de of (2.8) is analytic for Re A e_(O, p). According to Re-
mark 1.1, for any & > 0, there exist d > 0 such that f(u) > f'(0)u — dut! Yue [0, ], where

d := max {d, Y=+ max, (£ (O — f(u)}}. Thus,

[

—d | > aiy TN E —i+er) ey T E+ctur) + Y BT E+ T+ ctmis))
i=1 j=1

<R{)(&) <0.
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Choose v > 0 such that g < p. Then for any Re A € (0, p 4+ v), we have

o0

/ R ()dy

—00

o0 m
<d / e‘”[ZW““(y —i+ct) +ayp T (y+ ctut)
—00

i=1

l
Y BTG+ T [dy

j=1

B m 1 oo
=d | Y ;T gt 1N gt CTi) / e Yot (y)dy

| i=1 j=1 1%

[ m l ] o
<d Zaie)‘(_i"’”i) + a4 Z ,Bje)‘(j“L”m“*f) L\ —v) (sup w(s)e—”a—g>

| i=1 j=1 ] eR
< +o0. 2.9)

We now use the property of Laplace transform (p. 58, [31]). Since ¥ > 0, there exists a real
number B such that L(}) is analytic for 0 < ReA < B and L(A) has a singularity at A = B.
Hence for ¢ < ¢y, L(}) is analytic for Re A € (0, A1) and L(A) has a singularity at > = A1.

We rewrite (2.8) as

Jr e MR (0)do
A(c, )

0 00
/ v (©)e 0do = - / v (©)e *0do.
AR 0

Note that f;° v (8)e*?d6 is analytic for Re A > 0. Also, A(c,A) = 0 does not have any zero
with Re L = A other than A = A;. Indeed, let A = 1| + i, then

m
O=—cr+1-— f’(O)[ZakeA'(_H”") cos(—k + cte)A
k=1
1

+ Qe T+l COS(C‘L’m_Hi) + Z ﬁjem(j-i-ctmﬂﬂ') cos(j + C'L'm+1+j))~h] (2.10)
j=1

and

m
0=—ci— f’(O)[ZakeW*ka sin(—k + cte)i
k=1
I
+ gttt sin(crmﬂ;\) + Zﬂjekl(j+crm+1+j) sin(j + CTm+l+j)5h]~ (2.11)
j=1
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Thus, according to (2.10) and A(c, A1) =0, we have

m
0= Z a; ' TR — cos(—k + ctp)A]
k=1
l .
+ ettt [1 — cos(cTma1r)] + Zﬂjekl(h%rmﬂﬂ)[l —coS(j + CTmi14/)A],
j=I
(2.12)

which implies that
cos(—k + crk)X = cos(crmHX) =cos(j + crm+1+j)5» =1. (2.13)
Combining (2.11) and (2.13), we obtain A = 0.
Assume that 1 (£) is increasing for large —£ > 0. Then we can choose a translation of v such
that it is increasing for £ < 0. Letting u(§) = ¥ (—&) and T (u)(€) := R(y)(—§), it is clear that

u(€) is decreasing £ > 0 and

o]

M T (u)(0)do h()
0 )»Qde — fR / 9 l@de ,
/”( e Ac, 1) u(®)e = AT
0
where k =0 for ¢ < ¢4, and k =1 for ¢ = ¢y, and
0
A= ADKL [T (u)(9)do
h(x)z( DT g T@EO) — (L= Akt / u®)e*?do.
A(c, )
—00

By Lemma 2.1, limy_,,, k(1) exists. Therefore, 4 (A) is analytic for all 0 < ReA < Aq. Then
Lemma 2.2 implies that

. yE) .
im ———— existsi.e., lim exists,
£>+o0 Eke—ME £—>—oo |E|ker1§
that is,
V(&)

exists for ¢ < ¢y, lim exists for ¢ = cy.

E——c0 |& €Mt

E——00 eME

Now we assume that 1 (§) is not monotone for large —& > 0. Letting p = —c > 0 and 1[,(5) =
W (€)ePs > 0, it follows that

V'(€)

m l
S @i fWE — it cw) + af WE+ )+ 3B fWE+ j+cteii) | e,

i—1 j=1
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which implies that V'(E) >0 for any & € R. Let u( )= ¥ (—€). Obviously, @i(§) is decreasing
oné& >0.Let L(}) = ffooo e 61 (£)d&. Noting that L(1) = L(X — p) and repeating the above
argument, we have

() . ¥ (&)

im ————= lim exists.
&E—+00 %‘ke—(P'H\l)S £——00 |§|ke)‘1$

Thus, it follows that

im 26
1m

: e exists for ¢ < ¢y, lim V&)
——00 €

LN exists for ¢ = cy.
This completes the proof. O
2.2. Proof of Theorem 1.1

From Proposition 2.1, there exist some positive numbers 61 and 6, such that

¢ (&) Cand lim &) k

im =w = w,,
£ o0 |E|KeME 1 f>—co |EkeME T T2

where k = 0 for ¢ < ¢y, and k = 1 for ¢ = c,. For € > 0, let us define

@) —y(E+E ) —y(E+E _
w():= o for ¢ < ¢y, and we(§) := —(e|§|+1)ek*§ for ¢ = ¢4, (2.14)

_ k
where £ = ;—1 In % Then w(z00) = 0 and w, (+00) = 0.
2
First, we consider ¢ < cy. Since w(£oo) = 0, sup{w(&)} and sinﬂg{w(’;‘)} are finite. With-
EeR €
out loss of generality, we assume sup{w (&)} > | Sinﬂf% {w(&)}| (otherwise, we may take w(§) :=
£eR €

%). If w(€) #£ 0, there exists &y such that
w (&) = max{w(§)} = sup{w (&)} > 0 and w' (&) = 0.
§€R £cR

We claim that

w(&o —i +ct) =w(o + ctr1) = w(o + j + cTmt1+;) = w(éo)

for all i and j. Suppose for the contrary that one of three inequalities w(§o — ip + cT;) < w(éo),
w(éo + ctmr1) < w(&) and w&o + Jjo + cTuri1+j,) < w(&) for some ip and jo must hold.
According to (1.7) and (H2), we have
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0 =cw'(%o)

= — (o) + w(Eo) — e MY @i F@E —i +cr) — fWE —i+en))]

i=1

— e ME[f@E —i o) — FWE—i+cn)]

1
—eHEN B[ F@E ]+ etu) = FWE+ )+ cTiie)]
i=1
<- C)»lw(i;'o) + w(éo)
_ f’(O)w(éo) iaiekl(*ﬂrcn) + af/(O)e)VlCTerl + iﬁjekl(jﬂ‘fmﬂﬂ')
i=1 j=1
=—w(é)A(c, 21) =0, (2.15)
which is a contradiction. Again by bootstrapping, w(&y + kct,u+1) = w(&p) for all k € Z and

w(400) =0, we get ¢ (&) = (& + &) for & € R, which contradicts w(£) 0.

Next, we consider ¢ = c,. Similar to the above argument, assume sup{w¢(§)} > | EinIfK {we(€)}.
£cR €
If we (&) # 0, there exists & such that

we (§5) = max{we (§)} = sup{w, (§)} > 0 and w; (&) = 0.
£eR geR

We first suppose that £§ — oo as € — 0. Choose € > 0 sufficiently small such that
g5 > max {—i +c7}.
1<i<m
Note that
¢ (E5) — W/ (E§ + ) = w(E5) (e£§ + DeM 0 + we (E§)ee™ 0 + we (£5) (€55 + DAy
Thus, we get
_C*we(fg)f — CyxAxWe (55)(656 +1D
m .
< —(e&5 + Dwe ) + £/(0) Y ail(e&s — i+ cti) + e w5 — i + cn)
i=1
+af (O)[(e& + ctmr1) + 11T we (55 + cTm1)

1
+ 10) Y BII(eEs + j + cTmprs)) + N Ty (&6 + j + ctuyir)). (2.16)
j=1

It follows from (2.16) and Lemma 2.1 (i) that

w€(§(§) =we($(§ —i+cr)= we(ég +CTuy1) = we(‘fé +j+CTm+l+j)
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for all i and j. Indeed, as showed before, we may assume one of three inequalities w, (&5 — i +
i) < we(§5), We (§5 + cTmt1) < we(§5) and we (55 + j + cTim+1+;) < we(7) for some i and
Jo holds, then

—CxWe (55)6 - C*A*we(sg)(eég +1)

< —(e&§ + DweES) + £/(0) Y ail(ek§ — i + 1) + 1w ()

i=l1
+af (O)[(eES + cTms1) + 1e™Tm+w, (£5)

l

+ 110 Bil€&s + j + cTmrig ) + e UTmaeu, (&5), (2.17)
j=1

which implies that

—cxwe (§5)€ — we (§5)(€£5 + D A(cx, Ax)

m
< 1O aie(=i +ct)e TP we (55) + af (O)cTmi1€™ T we (65)
i=1
[

+ 1O B+ ety et YT (66). (2.18)
j=1

This is a contradiction with Mg%”lczc*, 1=, = 0. Repeating the above arguments, we have
we (§5) = we (&5 + kctpy1) for k € Z which implies we is a constant. Since we (4+00) = 0, we
get ¢(£) = Y (£ + &) for £ € R, which contradicts we (£€) 0.

Next we assume that £§ — —o0 as € — 0, then w¢ (§5) — 0, as € — 0. Since

lin(l) we () =wo(€) = W forall £ e R, (2.19)

and we(x) < we(&5), we have wo(§) <0 for all £ € R. Note that w,(&5) > 0 implies ¢ (&5) —
¥ (&5 + &) > 0 and hence wo (&) > 0, which gives a contradiction.

Last we assume {&7} is bounded, then we can take a subsequence &; — & as € — 0, for some
finite £;. From uniform convergence of w, to w on compact sets, we (55 ) — w(y) as € = 0,
where wo(£) is defined by (2.19). Thus, wo(§) = lime o we(§) < limeowe(§5) = wo(§1)
for all £ € R and wq(&1) > 0. Similar to the argument in the case ¢ > ¢, and we can also get
wo(£) = 0, that is, we have ¢ (£) = ¥ (&£ + &) for £ € R. This completes the proof. O

Remark 2.1. Based on the above arguments, the asymptotic behavior and uniqueness of traveling
waves are still obtained without assuming that the equation be monotone.
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3. Stability of traveling waves
In this section, we will give the proof of stability of traveling waves, i.e. Theorem 1.2. First
of all, we state the following boundedness and the comparison principle which are given in

Lemma 2.4 of [32].

Lemma 3.1 (Boundedness [32]). Assume that (H1)—(H2) hold. Then (1.3) with the initial data
(1.4) admits a unique solution {w, (t)},cz satisfying

0<w,(t) <K, fortel0,+), neZ.

Lemma 3.2 (Comparison principle [32]). Assume that (H1)—(H2) hold. Let {W,(t)}pez and

{W,,(1)}nez be the solutions of (1.3) with the initial data {WS (O}nez and {ES () }nez, respec-
tively. If

0 Sﬂg(s) §W2(s) <K forse[-r0],neZ
then
0<W,(t)<W,(t)<K fortel0,+00), neZ.
For any given traveling wave ¢ (n — ct) with the wave speed ¢ < c, satisfying (1.7), it follows

from Corollary 1.1 that ¢ (£) is non-decreasing on & € R.
Let the initial data wg (s) satisfy

0<wl(s)<K forse[—r0], neZ,
and define

—0 _ 0 _
W (s) = max{uwy (). g0 = ek o [—r,0], neZ. 3.1)
WI(s) =min{w(s), ¢ (n — cs)},

It is obvious that

0< Wos) <wd(s) < W(s) <K,
0 fors € [—r,0], n € Z. 3.2)
0<Wi(s)<p(n—cs) <W,(s) <K,

Let W, (¢) and W,,(¢) be the corresponding solutions of (1.3) with the initial data Wg(s) and
Eg (s), respectively. According to Lemmas 3.1 and 3.2, we easily obtain

0< W, <w, (1) <W,(t) <K,
fort € [0, +00), n € Z. (3.3)

0<W,t)<¢p(nn—ct) <W,(1) <K
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Proof of Theorem 1.2. We divide the proof into three steps.
Step 1. W, (t) converges to ¢ (n — ct) for n € Z. For the sake of convenience, we always take
E=&(t,n):=n—ct. Let

U, () =Wy(t) —¢p(n—ct), t €[0,400), neZ
and
uS(s) =W2(s) —¢(n—cs), se[—r0], neZ.
Therefore, it follows from (3.2) and (3.3) that
u,(t) >0and u,(s) > 0. (3.4)
From (1.3) and (1.7), u,(¢) satisfies

d“;t(f) =—u,(t) + Zai[f(Wn—i(t = 7)) — f(@(n—ct —i+cy))]

i=1
Fa[fWalt = tms1)) = f(P(n = ct + CTi1))]
!

+ Y B Wit = Tug14)) = F( @ = ct + j + cTnr11))]
j=1

= —uy () + Y aif (@ —ct —i+cT)up—i(t — )
i=1

+Olf/(¢(n — ¢t + CTyr1)Un(t — Tip+1)

I
+ Zﬁjf’(‘b(n —ct+ j+ Tt ) Untj (& — Tt1+j)
Jj=1

+ 0n (1) (3.5)

where

On() = _ailf Woi(t =) = f(@(n —ct —i +cT;))]

i=1

FalfWy(t = tws1) — f(@(n —ct + et )]

l
+ D B W j (6 = tugr)) — F(@ (= ct + j + cTui11))]
j=1

~[Yas @m =t —i+erunic
i=1
+af/(qb(n —ct + Ty 1) un(t — Tipy1)
!
+ Zﬂj f @ —ct+ j+ctpprsj)unsj(t — Tm+1+j)]- (3.6)
j=1
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According to Taylor’s formula and assumption (H4), we have Q,(¢) <0. Let v(§) > 0 be the
weight function defined in (1.8). Multiplying (3.5) by oMy, (t)v(&(t,n)), where u > 0 will be
given later in Lemma 3.4, we have

%%[ﬂmuﬁ(t)v(é'(t, )] — (1 — D2 (1) E(t, n)) + _ezm 21y}

- [Zaif’(rﬁ(n —ct — i+ ety (t — Tun (DV(ET, n))e™

i=1

+af (@ — ct + 1) (t — Tui)un (OVEE, n))e*

I
+ Zﬁjf’@(n —ct+ j+ Tty ) ungj & — T Dun(OvE(QE, ”))ezm]
i=1

= Q0 (e u, (t)v(E(t, n)) <0. (3.7)

By the Cauchy-Schwarz inequality |xy| < 5 x + 26 sy2foranyk; >0,i=1,--- ,m+1+1
and summing them for all n € Z and 1ntegrat1ng the resultant inequality over [0, 7] for (3.7), then
we have

VL (6 s, n>)]

t
e lu )iy — ||u0<0>||%5+0/;e2“ WA )uEs )| =20 =1 +e G

/Z Zalf(¢(n—cs—l+cn))(l<z wy (s — tl)+—u (S)) P (E(s, n))]

n i=1

t
1
b [ Y70 = o5 + et (ks = i) + 1)) P s, m)ds
n m+1

! /
+/Z Zﬂjf’(¢(n—cs+j+0tm+]+j))
o " L=t

: u%(s))ez’”v(é(s, n))] ds. (3.8)

2
X <Km+1+jun+j(s - Tm+1+j) + e
m J

Note that there exists C| > 0 such that

£(0) l;amezwf v(g(ié(z’:);r D) _ ¢, forallneZ. s € [-r.0],

In view of (H2) and (H4), we have 0 < f/(u) < f’(0) for any u € [0, K], and
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n i=1

! m
/Z (Zauqf’(d)(n —cs—i+ ct,'))uz_i (s — 1) S v (& (s, n)))ds
0

t

=/Zam Zf (¢ (k — cs + ct))ui(s — 1) v (& (s, k+l)))

i=1

f D aik - 1@ — s+ erud(s — e uiE (s ) )ds
o =1 n

t—
=Y aiKi Yy / F(p(n — es)uz(s)e ST y(E(s + 1, n + z))ds)
i=1

—T;

Z, [ / / )1 0 = e u(E(s + 7, n+z)>ds}

—r

0

<C f )l 7ds

O/Zu Z(s)e* S v(E(s,n)) f (¢(n—CS))(121:am e U(E(z;(?”:);ri)))ds. (3.9)

Similarly, there exist C2 > 0 and C3 > 0 such that
1
K1 / D @ — s+ cTus)un(s — Tuy1)e v(E (s, n))ds
n

0
=G [ 1 G)ds

v(E(s + fm+1,n))>ds

t
+/ ;u,%(nezf”v(s(s,n))f’<¢(n—CS”(“"’"“‘?Z“’"“ v(E(s, )

(3.10)

and

t

!
/ > (Zﬁjxm+1+jf’(¢<n — s+ + T4 )Dpy (s — Tms14))e v (EGs, n)))ds

o n J=l

=G [ I oIds
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t
+ / D ur)e vE(s, m) £ (@ (n — cs))

0

[

) 21T jv(é(5+fm+1+jvn_j))
x (Zﬁjxmﬂﬂe M1t o )ds. 3.11)

j=1

Thus, it follows from (3.8)—(3.11) that

t
A lu @Iy + f > up(s)v(E(s. n)) By (s, n)ds
0 n

< 4’ O3 + C4 f lu® ) l5ds. (3.12)

—r
where

Cys=C1+ Cy + C3,

B,L,v(t,n) :Ap,,v(tvn) _ou— f’(qb(n ) |:Zai/<i (ezli'[i . 1) v +r1,n+1i))

= V&, m)
+jl§ﬁj’(m+l+j (2 — 1) Ve +vf(r§t1;/))n - j))} o
and
At = vj((:((tt n)))) 2= '@ —cn) [; o ’U@(Z(Z(Z’:);r =
e L +§ﬂ,«m+1+,- MR e g - j))}

[Z @ —ct —i+cm) + —f (@ (n —ct+ctuy1))

lll

= Km+l+]

+Z i pripn—civj +crm+1+,)>} (3.14)
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The most important step now is to prove B, ,(¢,n) > 0 for t € (—00,+00) and n € Z. In
order to obtain this, the following lemma plays a key role in this paper.

Lemma 3.3. Assume that (H1)-(H4) hold and let k; := A=) (G =1, m), kpy1 =
e~ Tt gnd Kmt14j = e~ AUFCTnt1+)) (j=1,---,1). Then, for any ¢ < cx, Ay y(t,n) defined
in (3.14) satisfies A (t,n) > Cs > 0 for some positive constant Cs, which is independent on

t,n and (.

Proof. Notice that 0 < f'(w) < f'(0) for any w € [0, K] and

ve(§(t,n) ”, v +1i,n+1i)) — e~ 2Mi—cn)

vE@,n) v(£(t, n))
VEC+ Tt 1) _ oieryyy YECH a1 = D)) oagiketaiieg)
v(E(t, n)) ’ v(E(t,n))

According to Lemma 2.1, it follows from (1.8)—(1.9) and (3.14) that

m
Aup(t,n)=—2xc+2— f(0) |:Z ai ke 2Hi—em)
i=1
l
+ Ole_i_le2)»ch+1 + Zﬁ‘ikm+l+./e2)\(]+crm+1+j)
j=I

Z“’f(0)+—f<0>+2 i g

Km+1+j

m I
=—2r 42— 2f/(0) Zaie—k(i—fn) + ae™Ctml + Z ﬂjek(j+crm+1+j)
i=1 j=1

=2A(c,A) =:C5>0 for e (A1, A2). (3.15)
This completes the proof. O

Lemma 3.4. Assume that (H1)—(H4) hold. Then, for any ¢ < cx, there exists a positive number

w1 > 0 such that By o(t,n) > 0 for 0 < u < 1, where wy is the unique root of the following
equation

m
Cs —2u — f/(O) |:Za ( 2ut ) —Ai—cT) —i—(x(ez’”’"“ _ ])e)»cfmﬂ

i=1

/

+ Z'Bj (ezl”m+l+j — 1>g)~(f+”m+1+.i) =0. (3.16)
j=1
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Proof. As shown in Lemma 3.3, it follows immediately that

v +T,n+1i))
v(§(r,n))

m
By.y(t,n) = Cs =21 — f(0) [Zam (62“” - 1)
i=1

l) v+ Ty, n))
v(§(, n))

+ K41 <e2ﬂfm+l —

v+ Tmti+j,n— J))
v(&(t,n))

I
+ Z,Bij-‘rl-i-j (ezur"1+l+j — 1)

j=1

ai (eZ’”" _ l)e—k(i—cr;)
1

=C5—2M—f’(0)[

m

1
l
T a(ezurmﬂ _ 1) pr Z B; (ezurm+1+,- _ 1) ATt 1))
j=1

>0 forall ue (0, ur).
This completes the proof. O

According to Lemma 3.4 and dropping the positive term

t
/ Z ez’”uﬁ(s)v(é(s, n)) By (s, n)ds
0 n

in (3.12), we obtain the following basic energy estimate.

Lemma 3.5. Assume that (H1)—(H4) hold. Then for any ¢ < cy, it holds

0
| < 1 O3 + Ca / lu®)lpds. 120, € (O, ). (3.17)

—r

Notice that the standard Sobolev’s embedding result is /> < [°°. However, we cannot apply
the standard Sobolev’s embedding inequality 13 — [*® since v(§,) — 0 asn — oo and §, — oo.
For any integer interval |z = (—oo, N] C Z for some large integer N >> 1, we may have the
Sobolev’s embedding result l%(I|Z) < [*°(I|z), which gives the following /*°-estimate.

Lemma 3.6. Assume that (H1)—(H4) hold. Then, for any ¢ < c, it holds

2

0
sup [un ()] < Coe ™ | [ O)II}> + / lu®@Ipds | . 120, pe@p). (18)
—r

ne[|Z
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Proof. According to the standard Sobolev’s embedding inequality /% < [*°, it follows that

sup |un ()] < Nlu@)ll2(s1,)-
n€1|Z

Since v(£&,) = e & =5) > | for &, < &) as n € I|z, there exists some positive constant C such
that

lu @21, < Cle@®lizqy,-
According to the above inequalities and (3.17), one has immediately the conclusion. O

In order to extend the time-exponential decay in (3.18) to the whole space Z, the key step is
to prove the decay at n = oo.

Lemma 3.7. Assume that (H1)—(H4) hold. Then, for any c < cy, it holds

lim u, () < C7e™", t>0. (3.19)
n—o00

Proof. According to Q,(t) <0, (3.5) can be reduced to

dudnt(_t) <—u,t)+ gaif’(qb(n —ct—i+ct))un_i(t — i)

+af (@ —ct + cTur1)un(t — Tms1)

1
+Y B @ =t A g1t — Tt (3.20)
j=1

Taking limits as n — oo and letting lim u, () := uso(t), it follows from (3.20) that
n—0oo

duz(t) < —uo(t) + gaif/(K)uoo(t — 1)+ af (K)utoo(t — Tmi1)
!
+ Y B (Koot = Tni ). (3.21)
j=1

When f/(K) <0, it follows from (3.4) and (3.21) that 24" < (). Thus, we have
oo (1) <ul, (0)e™. (3.22)
When f/(K) > 0, integrating (3.21) over [0, ¢], we can obtain

t t—1; t 0

/uoo(s—ti)ds: / uoo(s)dsffuoo(s)ds+/ugo(s)ds, i=1,--- m+I1+1
0

—Ti 0 —Ti
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and
t m t
oo(1) < — / Uoo(s)ds + Y ai f'(K) / oo(s — Ti)ds
0 i=l 0
1 i t
af () [[uasts = tmends + 3815 (K) [ nls = s s
0 j=1 0
t
5[(a+ot+ﬂ)f/(K)—1]/uoo(s)ds~|—M, (3.23)
0
where
m 0 0 / 0
M:=Y a;f'(K) / ul (s)ds 4+ af'(K) / ulo()ds + > B f'(K) / ud, (s)ds.
i=1 -7 —Tm+1 j=1 “Tm+1+j

By the Gronwall’s inequality, (3.23) yields
Uoo(t) < Cge M, (3.24)

where uzs =1— (a + o + B) f/(K) > 0. Taking up = min{1, w3}, (3.22) and (3.24) imply that
the conclusion holds. This completes the proof. O

According to Lemmas 3.6 and 3.7, it immediately has the following result.

Lemma 3.8. Assume that (H1)—(H4) hold. Then for any c < cy, it holds
sup [W,(t) — ¢ (n — ct)| = sup v, (1)| < Coe ™™, € (0, min{pu1, pa}) (3.25)
n n

forall t > 0 and some positive constant Cy.

Thanks to the above arguments, Step 1 has been proven.
Step 2. W, (t) converges to ¢ (n — ct). Let

va(t) = W, (t) — ¢ (n — ct)
and
v0(s) = WO(s) — p(n — cs).

Similar to all processes in Step 1, we have the following proposition.
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Lemma 3.9. Assume that (H1)—(H4) hold. Then for any c < cy, it holds

sup | W, (1) — ¢ (n — ct)| = sup |va (1)| < Croe™" (3.26)

for all t > 0 and some positive constant Cyy.
Step 3. W, (t) converges to ¢(n — ct).
Lemma 3.10. Assume that (H1)-(H4) hold. Then, for any c < cy, it holds

sup |Wy, (1) — ¢p(n — ct)| < Ce ™™ (3.27)

for all t > 0 and some positive constant C.

Proof. Since the initial data satisfy W, (s) < w,(s) < W, (s), s € [—r,0], it follows from
Lemma 3.2 that the corresponding solutions of (1.1) and (1.2) satisfy

W, (1) <w,(t) < W,(t), forallt>0,neZ.
According to Lemmas 3.8 and 3.9, the squeezing argument yields

sup [Wy, (1) — ¢p(n — ct)| < Ce™™ (3.28)

for all # > 0 and some positive constant C. This completes the proof. O
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