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CONVERGENCE TO NONLINEAR DIFFUSION WAVES
FOR SOLUTIONS OF THE INITIAL BOUNDARY PROBLEM

TO THE HYPERBOLIC CONSERVATION LAWS WITH DAMPING
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Abstract. In this paper we consider a model of hyperbolic balance laws with damping
on the quarter plane (x, t) e R+ x R+. By means of a suitable shift function, which will
play a key role to overcome the difficulty of large boundary perturbations, we show that
the IBVP solutions converge time-asymptotically to the shifted nonlinear diffusion wave
solutions of the Cauchy problem to the nonlinear parabolic equation given by the related
Darcy's law. We obtain also the time decay rates, which are the optimal ones in the
L2-sense. Our proof is based on the use of the classical energy method.

1. Introduction. Let us consider the following model of hyperbolic equations with
damping, on the quarter plane R+ x R.+ (R+ = (0, +00)) given by

{Vt — Ut = 0,
* (x,t)eR+xR+, (l.l)

ut + p(f)* = -au,

which models a compressible flow with dissipative external force field in Lagrangian
coordinates. The external force term —au appears in the momentum equation. Here,
v > 0 is the specific volume, u is the velocity, the pressure p{v) is a smooth function of
v such that p(v) > 0, p'{v) < 0, and a > 0 is the damping constant.

It has been proved in Marcati and Milani [13] in the case of weak solutions and in Hsiao
and Liu [7], Nishihara [19] in the case of smooth solutions that the solutions (v,u)(x,t)
to the corresponding Cauchy problem of (1.1) tend time-asymptotically to the nonlinear
self-similar diffusion wave solutions (v,u)(x,t) (v(x,t) = <fi(x/\/l +1)) of the porous

Received September 30, 1998.
2000 Mathematics Subject Classification. Primary 35L65; Secondary 35B40, 76R50.
E-mail address: marcati@univaq.it
E-mail address: mei@kappa.s.kanazawa-u.ac.jp

©2000 Brown University
763



764 PIERANGELO MARCATI and MING MEI

media equation

namely

XX 1I vt = -~p(v)
[p{v)x = -Ciu,

J Vt - Ux = 0,
\p{v)x = -au,

(I,i)elxl+, (1.2)

(x, t) E lx M+. (1-3)

The convergence theory on the nonlinear diffusion waves for the Cauchy problem can be
found, for instance, in [14, 3, 1, 8, 2, 9, 5, 4, 15], and in the references quoted in those
papers.

Denote by v(x,t) any solution of (1.2) with the end states

iJ(±oo, t) = v±, v+^v_. (1-4)

Due to the Darcy law u(x,t) = —-^p(v)x, we have

u(±oo, t) = 0. (1.5)

Suppose that the initial data for (1.1) satisfy the following limiting conditions:

(v,u)\t=o = (vo,uo){x) -» (v+,u+) as x -> +oo. (1.6)

Moreover, we assume that the following boundary condition for (1.1) holds:

v\x=o = g{t), tE R+, (1.7)

where g(t) takes a value on [i>+,u_] (or say [u_,t;+], if < v+). This kind of boundary
condition arises in several physical problems and, in particular, it has been considered,
in a different setting, to model the isentropic hydrodynamic flow of electrons in a semi-
conductor device, where the Ohmic contact is described by using a boundary condition
on the electron density. This problem will be considered in a forthcoming paper by the
authors.

The main purpose of this paper is to show that the solutions of (1.1) with the initial
data (1.6) and the boundary condition (1.7) converge to the nonlinear diffusion wave so-
lutions of (1.2) when v+ ^ V- and the initial-boundary perturbations are small. This will
be given in the following Sections 2 and 3. In the special case v+ = i>_, the convergence
of the IBVP solutions (v,u)(x,t) to the constant solutions (v,u)(x,t) = (f+,0) will be
discussed in the last part of this paper. Therein, instead of the boundary condition (1.7),
we will consider a boundary condition on u.

Now, let us assume for the moment that v+ ^ V-. In general, we will consider the
situation in which g(t) converges as t —> +oo. As a prototype of this situation we will
investigate the case where g(t) —> v+ as t —> +oo. To overcome the difficulty of large
boundary perturbations,

v|x=o - v(x/VT+T)|x=0 = g(t) - u(0) v+ - v(0) / 0 as t —> +oo,

we will introduce a suitable time-dependent shift function on the time t. Such a technique
was used to treat the convergence to travelling waves in [12, 11, 17, 18] for some examples
of conservation laws with the boundary conditions.
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To be consistent with the known decay estimates for the corresponding Cauchy prob-
lem given in [7, 19], we assume that

\d(t) - f+| = 0(l)|u+ - u_|(l -R)~71, 7i >3/4, (1.8)

and the compatibility condition

ff(0)=«o(0). (1-9)

Since the nonlinear diffusion wave v(x,t) = <j>(x/y/t+T) of (1.2) satisfies (see [7, 19])

|u+ — v(x,t)\ < C\v+ — t;_|e~CoQ? , £ = x/y/t + 1, for x > 0 (1-10)

for some constants C > 0 and Co > 0, let us choose the shift function d(t) in C3(R+)
such that

d{t) > 0 for all t > 0, (1-H)

exp |-ac0 | < 0(l)(2 + i)-72, 72 > 3/4, (1.12)

d'(£)exp j-ac0 ^-^===^ j < 0(1)(1 + t)-^2"^) ^log^ + t). (1.13)

Here, we denote d(0) = do- The function d(t) satisfying (1.11)—(1.13) includes many
examples. Two kinds of important examples are d(t) = y/l + t ■ \/clog(2 +1) with
c > 72/(qco) and d(t) = (1 + t)i+c with any c > 0. Note that the choice d(t) =
y/T+t ■ a/ci log(2 +1) with c\ = 72/(000) is the weakest one in the sense of optimal
decay rates.

Because of the second equation of (1.1), we have

u(x, t) —> e~~atu+ as x —» +00 (1-14)

and the implicit relation

u\x=o = e~atuo{0) - [ e~a^~r)p'{g(T))vx{0,T) dr. (1.15)

Let us denote (v,u) = (v,u)(x + d(t),t): the shifted nonlinear diffusion waves of (1.2).
By (1.3) we get

—v(x + d(t),t) = d'(t)vx(x + d(t),t) + ux(x + d(t),t) (1-16)dt
and by (1.4) and (1.5) we have

(y, u) —> (v+, 0) as x —* +00. (1-17)

Denote

(v(x,t) := - u+~2°(0)e~atm0{x),

\u(x, t) := e~at [u+ - (u+ - uo(0)) /x°° m0{y) dy] ,

where mo(x) is a C^°(E+) function satisfying
r+00

mo > 0 for all x £ K+, too(0) = 0 and / mo(x)dx = l. (1-19)
Jo

(1.18)
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We can easily check that

\ Vt. 0,
(1.20)

I ut = —cm,

and the following boundary and limit conditions hold:

(£,w)U=+oo = (0, e~atu+), (1.21)

(M)|*=o = (0,«o(0)e-Q<), (1.22)
l^l < a~l\u+ - uo(0)|e~Qtmo(x). (1-23)

From (1.1), (1-16), and (1.20), we have

(v — v — v)t = (u — u — u — d'(t)v)x; (1-24)

by integrating it over [x, +oo) and by using that (v—v—■0)|I=+oo = 0, (u—u—u)\x=+oc = 0
and (1.15), (1.22) we have

d f°°— / (v(x,t) — v(x + d(t),t) — v(x,t)) dx
dt J o

= ~(u -u-u) |x=0 - d'(t)[v+ -v(d(t),t)] (1.25)

= f e~a(-t~T)p'(g(T))vx(0,T)dT + u(d{t),t) - d'(t)[v+ -v(d(t),t)].
Jo

Since vx(0,t) can be controlled automatically by the equations (1.1), we conjecture that
the right-hand side of (1.25) is integrable and the integration tends to zero as t goes to
infinity, namely,

(Ansatz) :
roo

/ (v(x, t) — v(x + d(t), t) — i)(x, t)) dx
Jo

rOC

= / (uo(^) — v{x + d0,0) - v(x, 0)) dx
Jo

+ [ { [ e~a{T~v)p'(g{ri))vx{0,ri) dri ^1'26^
0 WO

+ u(cZ(t),t) - d'(r)\v+ - v(d(r), r)] dr|

< 0(1)(1 + t)~1^ as t —> +oo.

(1.27)

In the next sections, we will prove that this ansatz is true.
Due to the previous analysis, let us define the new variables

r+oo

V{x,t) ■=- [v{y,t) -v(y + d{t),t) -v(y,t)]dy,
J X

z{x, t) := u(x, t) — u(x + d(t),t) — u(x, t).

Thus, the ansatz (1.26) is equivalent to showing that

(Ansatz)' : |l/|x=0| < 0(1)(1 + t)-1/4 as t —+ +oo. (1-28)

It will be answered below; see Theorem 2.1, Corollary 2.2, and Remark 2.3 in Sec. 2.
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Prom the equations (1.1), (1-3), (1.16), (1-20), and (1-27), we can reformulate the
original equations (1.1) to the new one

[Vxt = Zx~.d'^*\ t (M)eR+x R+ (1.29)
[zt + az+ (p {v)Vx)x = fi,

where

fi ■= -^-u{x + d(t),t) - {p(Vx + « + {/) -p(v) -p'(v)Vx}x. (1.30)
at

Since V\x=jrOC = z\x=+oc = 0, v\x=+00 = v+, then by integrating the first equation of
(1.29) over [jr,+oo), one has

(V,=z + <f (t)[»+ - v], (x,()eR+xR+. (1,31)
\zt+az + (p'(v)Vx)x = f1,

The corresponding initial data are given by

(V,Vt,z)\t=0 = (V0,V1,z0)(x), xeR+, (1.32)

where
r+OO

Vo(x) := - / [v0(y) - v{y + d0,0) - v(y, 0)] dy, (1.33)
J X

zo(a:) := uq(x) — u{x + do, 0) — u(x, 0), (1-34)

Vi(x) := zq(x) + d'(0)[i;+ - v(x + cZq,0)], (1.35)

and the boundary value is given by (1.7) and (1.22):

Vx\x=0 = (v - v - v)\x=0 = g(t)-v{d(t),t)

= [9(t)-v+] + [v+-v{d(t),t)]=:G(t), teR+.

Plugging the first equation of (1.31) into the second equation of (1.31), we have the
following Neumann type IB VP:

' L(V) := Vtt + aVt + (p'{v)Vx)x = F, X > 0, t > 0,

(V,^)|t=0 = (Vb,^i)(x), x>0, (1.37)
Vx\x=0 = G(t), t > 0,

where F := fi + f2 and

/2 := d"(t){v+ —v) — d'(t)^-v(x + d(t),t) + ad'{t)(y+ — v). (1.38)dt
Prom the compatibility condition (1.9), we may easily check the other compatibility
condition G(0) = Vo,x(0) for the IBVP (1.37).

In the following two sections, we will prove that the IBVP (1.37) has a unique global so-
lution with some algebraic decay rates in the L2-sense by the elementary energy method.

Notation. Here and after here, we denote several generic constants by c or C, or Ci,Ci.
Hk(R+) is the usual Sobolev space with the norm

k

ll/IU = £R/ll,
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where ||/|| = (/0+°° f(x)2 dx)1^2 is the norm of L2( R+). Wk,oc(0,T\H[) {k > 0,1 >
0,0 <T < +oo) is the space of //'-valued fc-times differentiable functions on [0, T].

2. Nonlinear diffusion waves and main theorem. In this section, we firstly
recall the properties of the nonlinear diffusion waves. Then we are going to state our
main result on the convergence to the suitable diffusion waves.

As shown in [6], [7], and [19], since the nonlinear diffusion equation

n = -~p(t)xx, p'(t) < 0, (2.1)a

is invariant under the transformation (x,t) —> (cx,c2t), c > 0, then it has self-similar
solutions called "nonlinear diffusion waves", namely solutions in the form

T*(x, t) = (j>(x/Vt) := <£(£), (el, (2.2)

with </>(±oo) = v±. The function </> satisfies

3 dh

d^kE + 10(0 -^+le>o + 1^(0 -v_|c<0 < C\v+ -v-\e cai\ (2.3)
fc=i

and hence T*(x,t) satisfies

_* _ <ft'(0 = 0 _£(0 _* ^(0 + ̂ (0 (0As
Vt ' ' 2t ' Txx t ' xt 2tVt '

, ww * _ no * mz)+w(Q+e4>w(s) ̂
tt it2 , rxxx ^ , Txtt 4^2^_ , (Z.O)

and the following decay estimates:

\r*(x,t)\2dt = 0(l)|u+ - v-\2t~1/2,

Tt? + Kx\2)dt = 0(l)|u+ - v_\2t~3/2,

Loc

/

/oo

-oo
OO

(l^l2
OO

oc

+ \Txxx\2)dt = 0{l)\v+- v-\2t 5/2, (2.6)

/

/J —oo
oo

Ttt(x> t)\2 dt = 0(l)\v+ - v_\2t 7/2,

Txtt(x^)\2dt = C(l)|f+ -u_|2r9/2.

To avoid the singularity at t = 0, we prefer to set

v(x,t) := T*(x,t+ 1) = (j){x/y/1 + f). (2.7)

Our main theorem can be stated as follows.

Theorem 2.1. Suppose that vq E //3(R+),t;i 6 /72(R+) and denote by <5 = |i>+ — u_| +
|u+ — Wq(0)|. Then there exist a constant £i > 0 such that if || Vq||3 + || V\ H2 + (5 < £1,
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then the IBVP (1.37) has a unique globally defined solution V(x,t) satisfying
3

V e p) Wi'°°([0,oo);H3-i)
2=0

and

£(1 + ty\\div(;t)\\2 + E(1 + ty+2 || W,*)||2
i=0 i=0

+ f [E(! + ry-'W^VMf + £(1 + ry^\\divt(.,-
Jo i= 1 i=0

]2 dr
(2.8)

<C(||Vo||^ + ||Vi||^ + <5).

By using the inequality ||/||l°° < V^ll/ll1^2!!/^!!1^2, Theorem 2.1 yields to the follow-
ing sup-norm estimates.

Corollary 2.2. Under the previous hypotheses, one has

lFM)iu~<c(i+r1/4
||^M)||l~ <C(l + i)"3/4

l|vi(-,i)|U~ <c(i + t)-5/4
||^M)||l~ <C(l + i)"5/4

||^M)lk~ <c{\ + t)-7'A

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Remark 2.3. From (2.9), we see that our Ansatz (1.28) or (1.26) is true, namely
iv(o,t)i< im-,f)iiL~ <ca+t)-i/\

3. A priori estimates. Since we intend to apply the classical continuation method,
we will give a proof of Theorem 2.1 based on a local existence result together with higher-
order a priori estimates, which are the core argument. Since the local existence can be
proved by a standard method, see, for instance, Matsumura [16] and Nishida [20], our
main effort, in this section, will be to prove the a priori estimates. The outline of the
proof is quite similar to that one in the paper of Nishihara [19].

Let us define

N(T)2 := sup /^(l+^||^(^)||2 + E(l + ^+2|l^(-,0l|2) (3-1)

for any T £ [0, +oo]. We will prove our estimates in five steps. Our estimates will provide
both the a priori bounds and the decay rate at the same moment.

Step 1. The decay rate for Vx and Vt. We begin with the first-order energy estimate.

Lemma 3.1. It follows that

||(V,^,W)I|2+ ^ \\{Vx,Vt){T)\\2 dr < C(||(Vb, Vb.cc, V^)||2 + <5) (3.2)
Jo

provided N(T) + S <C 1.
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Proof. By multiplying (1.37) by XV + Vt (0 < A <C 1), it follows that

{Ei(V, Vt, Vx)}t + E2(Vx, Vt) + {Bl(x,t)}x = F ■ {XV + Vt), (3.3)

where

Ei(v, K, Vt) := \V2 + XWt + ~V2 - \p'{v)Vl (3.4)

E2(Vx, Vt) := (a - X)Vt2 + (-Ap'(v) + \p"{v){vt + d'[t)vx))V2, (3.5)
B\{x,t) :=p'(v)Vx(XV + Vt). (3.6)

It is clear that, when 0 < A <C 1, we have constants C\ > 0 and C[ > 0, such that

C^ + V^ + V2) <Ei{V,Vx,Vt) <C[{V2 + V2 + V2). (3.7)

Since —p'(v) > 0, \p"{v)\ < C, 0 < d'{t) = 0(1)(1 + t)_1/2(log(2 + t))1^2 < C, and
|^t| < C\v+ — v_|, |ux| < C\v+ — v_|, letting |w+ — v_| < 5 •C A, we obtain for some
C2 > 0

E2{Vx,Vt)>C2{V.2 + V2). (3.8)

Now we deduce the boundary estimate. By using (1.8), (2.3), and (1.12), one has

\G{t)\ = |[ff(*) - v+] + [v+ - v(d(t),t)}|

<0(1)«[(1+ ()-■» +exp (-oc(-^|=) )] (3 g)

<0(l)^[(l + i)"71 +(l + 0"72]

< 0(l)<5(l + i)~73,

where 73 := min{7i,72} > | (since 71,72 > f )• Therefore, it follows that

(1 + i)1/4 sup \V(x,t)\ + (1 + <)5/4 sup \Vt(x,t)\
x€R+ xGfi+

< v/2(l + t)1/4||V(t)||1/2||^(t)||1/2 + y/2(l + «)5/41|(t)||1/21|(t)||1/2 <3-10)

< CN(t).

Then the boundary integration can be controlled as follows. Since 73 > 3/4,

f Bi(0,r)dT = ( p'(v\x=o)G(T)[Vt(0,T) + XVx(0,T)\dr
J 0 Jo

<CSN(t) ( (1 + r)-73 [(1 + t)-5/4 + (1 + t)~1//4] dr
Jo

< C5N(t).

Integrating (3.3) over M+ x [0, i] and using (3.7), (3.8), and (3.11), we get

UVVx,Vt)(t)\\2 + [ \\{Vx,Vt){r)\\2dr
Jo

<C(\\(V0,V0,x,V1)\\2 + 6) + C [ f°° F-(XV + Vt)dxdr. (3.12)
Jo Jo

(3.11)
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Similar to (3.11), by Taylor's formulas,

Ip(Vx + v + v) -p{Vx + t7)| = 0(l)|t>| (3.13)

and

\p{Vx + v) -p(v) -p'ty)Vx\ = 0( 1)\VX\2, (3.14)

and by u|x=o = 0 (see (1.19)), Vx\x=o = G(t), we have another boundary decay as follows:

I [(p(Vx + v + v) - p(v) -p'(v)Vx){XV + Vt)] |x=o|

< 11(P(VX + v + v)~ p(Vx + v))(XV + Vt)] |x=oI
+ I[(p{Vx + v) -p(v) -p'(v)Vx)(XV + Ft)]|x=0|

< C\[v(XV + Vt)]\x=0\ + C\[V2(XV + K)]|»=o| (3.i5)
< CSN{t)G{t)2[X{l + t)-l'A + (1 + i)~5/4]

< CSN{t)[( 1 + i)-(2Ti + 3) + (1 + + i)]

< CSN{t)(l + t)~^1+il

Now, we are going to estimate the integration dealing with the first part /i of the
nonlinear term F. First by (1.30) and by integrating by parts with respect to x, we can
rewrite it as follows:

nt rOO

/ / fi-(XV + Vt)dxdr
Jo Jo

n°° d-~J2U{X + d(r),r)(XV + Vt) dxdrdt

+ [ [(p{Vx + v + v)-p(v)-p'(y)Vx){XV+ Vt)]\x=0dT
Jo
noo (p(Vx + v + v) - p{v) - p'(v)Vx)(XVx + Vxt) dx dr

='■ h + h + h-

From (1.2), (2.3), and (2.4), we note

Kl = \p'(y)vxx +p"(v)vl\

<C|t;+-t;_|(l + t)_1exp^-coa^^=^ (3.17)

\ut\ = \p'{v)vxt +p"{v)vxvt\

< C\v+ -v-\{l + t)-3/2exp f-c0a V (3.18)
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Then, due to (3.17), (3.18), (1.12), (1.13), and the inequality (3.10), since d(t) > 0, I\
can be controlled in the following way:

noo — (df(r )ux + ut)(\V + Vt)dxdT

< C\v+ — V-\N(t) f f [d'(r)(l + r)"1 + (1 + t)~3/2]
Jo Jo

(^F=) 2) [A(l + r)"1/4 + (1 + r)"5/4] dx dr• exp — coa

< C\v+ - v-\N(t) [\(1 + r)-3/2(log(2 + r))1/2 + (1 + t)~3'2]
Jo

■ [A(l +r)~1/4 + (1 + t)~5/4](1 + t)1/2 exp ^-c0q ^-^===^ ^ dr

fJ o

(3.19)

exp (~C0Q fe)) dvhi
< C\v+— V-\N(t) f (1 + r)-^72+^[l + (log(2 + r))1/2] dr

Jo
< C6N(t).

On the other hand, the boundary integration I2 can easily be controlled from (3.15) and
71 >3/4. Then

12 < C5N(t) f (1 + t)"(27i + ̂  < CSN{t). (3.20)
Jo

Finally, we are going to estimate I3. By the Sobolev inequality, (l+£)3/4 supxe/j4 \Vx(x, <)|
< CN(t) and since |0| < CSe~atmo(x), mo(x) > 0, see (1.23), we have

t poo
//—\sJo Jo

(p(Vx + v + v) - p(y) - p (v)Vx)XVx dx dr

noc I(p(vx + tJ + 0) -p(Vx + v))XVx\dxdr

ft poor-i noo

+ c / \{p{Vx+v) - p(v) - p'(v)Vx)\Vx\dxdT
Jo Jo

nOC ft n OG
\vVx\dxdr + C / / |V*\dxdr (3.21)

Jo Jo
nt nOO

<CSN(t) / / e_QT(l + r)~3//4mo(x) dx dr
Jo Jo

nt rOC

+ CN(t) / / (1 +T)-'3/4V?dxdT
Jo Jo

<CSN(t) + CN(t) [ \\Vx{r)\\2 dr.
Jo
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Now let us observe that

(p(Vx +v + v)~ p{v) - p'(v)Vx)Vxt

d
dt

rVx+v+v

p(s) ds - p{v)Vx - \p'{v)V2
J V

(3.22)

p(Vx + v + v) - p{v) - p'(v)Vx

rpfj
-p(Vx+v + v)vt + y'(v)-Vl

d_
dt

Therefore, denoting by

H(y) := f p(s) ds for y E R,
Jv

one has

rVx+v+vrvx-T-v+v

H(Vx+v + v)= / p(s)ds, H(v) = 0, H'(v)=p(v), and H"(v)=p'(v).
Jv

Thus, Taylor's formula

H(VX +v + v) = H(v) + H'(v)(Vx + v) + \H"{ v)(Vx + v)2 + 0( 1){VX + «)3

leads to the following identity:

l-Vx+v+vrvx+v+v

p(s) ds = p{v)(Vx + v) + \p"{v){Vx + v)2 + 0(1)(VX + v)3,
J V

namely,

/Vx+v+v
p{s) ds - p(v)Vx - \p\v)V2

(3.23)

= p(v)v + \p"{v)(2Vxv + v2) + 0(1)(VX + v)3.

By means of the same calculation as used in (3.21), we can prove

/>OC

/ \p{v)v + \p"{v){2Vxv + v2) + 0( 1)(VX + 0)3] dx
Jo

<C6(l + N(t)) + CN(t)\\Vx(t)\\2,
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so that from (3.23), we get

roc ( pVx+v+v ]

^ S J p(s) ds - p(v)Vx - \p'{v)Vx > dx

< C8(l + N(t)) + CN(t)\\Vx{t)f.

(3.24)

Similarly, thanks to (1.11)—(1.13), (1.18), (1.19), (1.23), and (2.3)-(2.5), by using the
Taylor expansions (3.13) and (3.14), we show

—v dx drdt
noo - p{Vx + v + v) - p{v) - p'(v)Vx

1

pt pOO _

= 11- p(Vx + v + v)— p(Vx + v) d!(t)vx + vt dx dr
Jo Jo L J J

pt pOO n

~ / p(Yx + v) - p(v) - p'{v)Vx d'(t)vx + vt dx dr
Jo Jo L J L J

noo _ pt pOC
v d'(r)vx + vt dxdr + C / Vx d'(t)vx +vt

-I Jo Jo ^

pt poo pt

<CS e~aT / m0{x)dx + C6 / (1 + -r)~(72+5)(log(2 + r))i ||V^(r)||2 dr
Jo Jo Jo

<CS + CS [ \\Vx(t)\\2 dr, 72 > 3/4,
Jo

(3.25)

dx dr

and

pt /*oo

J j \-p(Vx + V + v)vt + \p"(v)%Vt\ dxdT

pt p OO

<CS e~aT / mo{x) dx
Jo Jo

(3.26)

+ CS J j(l + r)"^72+1)(log(2 + r))2 + (1 + t)"(72+2) j ||Vx(t)||2dr

< CS + CS f \\Vx(t)\\2 dr, 72 >3/4.
Jo
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Due to (3.22), (3.21), (3.24)-(3.26), and the integration by parts in t for the term Vxt,
we estimate I3 as follows:

ft poo
h =

pt nOO

/ / p{Vx+v + v)-p(v)-p'{v)Vx (\Vx + Vxt)dxdT
Jo Jo 1 J

no° _p(Vx + v + v) - p(v) - p'(v)Vx XVx dx dr
L J

cl d r°° f fVx+v+v 1
+ J0dtJ0 j )_ p{s) ds - p(v)Vx - \p'(v)V2 \ dx dr

noo - p(Vx + v + v) - p(v) - p'(v)Vx
L J

f>t roc 1—

+ JoJo {-P^ + v + ̂ t + W'W^Vl
< CSN(t) + CN(t) f \\Vx{t)\\2 dr

Jo
/o° ( rVx+v+v ^

< J p(s) ds - p(v)Vx - \p\v)V2 > dx

+ CS + C[6 + N(t)} f \\Vx{t)\\2 dr
Jo

< CN(t)\\Vx(t)\\2 + C\S + N(t)\ f || 14(r)||2 dr
Jo

—v dx drdt

dx dr

+ C\\V0\\i + C(l + N(t))6.

If we combine (3.19), (3.20), and (3.27) with (3.16), we obtain

t pOO

fi ■ (XV + Vt) dxdrJJJo Jo

< CN(t)\\Vx(t)\\2 + C[<5 + N(t)} f ||^(r)||2 dr
Jo

+ C\\Vo\\i + C(l + N(t))S.

(3.27)

(3.28)

In order to estimate the second part /a, of the nonlinear term F, we notice that the terms
d"(t)[v+ — v(x + d(t), t)], d'(t)2vx(x + d(t),t), and d'(t)vt(x + d(t),t) have a faster time-
decay with respect to the last term ad'(t)[v+ — v(x + d(t),t)]\ then we restrict ourselves
to analyze this last term. Since of d(t) > 0, (1 +t)5^4|Vt|, one has (1 + t)1^4|V| < CN(t)
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and (1.13), then it follows that
t pOCnoo ad!(t)[v+ — v(x + d(r), t)](AV + Vt) dx dr

.

<aC6N(t)J J d'{r) expf— acq ̂  ^ [(1 + r)-1/4 + (1 + r)_5,/4] dr

iC6N(t) J [(1+r) 1/4 + (l+r) 5/4]\/r+ ld'(r)exp

f
d(r)

Vt + 1
v 2\

X \ \ , Xexp|_QC0|_J d-^=dr

< aC6N(t) [ [(1 + r) 1/4 + (1 + t) 5/4](1 + t) 72(log(2 + r))1/2 dr
J o

< CSN{t), 72 > 3/4.

Therefore, the integration on /2 can be controlled in a similar way:

nt pOO

(3.29)

IfJo Jo
/2 • (AV + Vt) dx dr < CSN(t). (3.30)

Letting N(t) <C 1 and applying (3.28) and (3.30) to (3.12) implies (3.2). □

Lemma 3.2. It follows that

(1 + t)\\{Vx, Vt)(t) ||2 + f\l + T)\\Vt(r)\\2 dr < C(||(VJ), Vo.^, Vx)||2 + J), (3.31)
Jo

provided N{T) + <5 <§; 1.

Proof. Multiplying (1.37) by (1 + t)Vt and integrating it over R+ with respect to x,
we have

\jt + (K2 - p(v)V2) rfx-| + a(l + t) J Vt2dx
1 f°°= 2 J - P'^V") dx + (l + t)(p'(v)VxVt)U=0 (3-32)

f°° rr>" (v\ r°°
- / (1 + t){vt + d'(t)vx)V2 dx+ (l + t)FVtdx.

Jo 1 ^ J Jo

Because of the boundary decays, the formulas (3.11), (3.15) and 71,73 > 3/4 yield

ft

(1 + t)(p' (v)VxVt)fJO
dr

x=0

< C6N(t) f (1 + r)(l + r) 1,3 (1 + r)-5/4 dr
Jo

< CSN(t)

(3.33)
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and

[ (1-+t)[(p(Vx + v + v) -p(v) -p'(v)Vx)Vt]\x=0dT
Jo

< CS [ (1 + r)(l + r)"(2'1'1+t)dT ^3'34^
J o

< C6N(t).

Since \vt{x + d(t),t)\ = 0(l)(l + t)_^+72^ and \d'(t)vx\ = 0(1)(1-K)~(1+72)(log(2 + t))5
for all x 6 M+, 72 > 3/4, see (2.3), (2.4) and (1.11)—(1.13), by using the energy estimate
(3.2), we get

[ [^(1 + t)(vt + d'(t)vx)V2]dx <c f WV^fdTKCiUV^Vo.zWW2+ 6).
J 0 L - J Jo

(3.35)
By using the estimate (3.29) for the slowest decay term for 72 > 3/4, one has

noo (1 + r)ctd' (t)[v+ — v(x + d(r),r)]Vt dxdr

<aC5N(t) f (1+ t)(1+ T)"72(log(2 + r))1/2(l+ T)-5/4dr
Jo (3.36)

= aCSN(t) f (1 + r)~^72+^(log(2 + t))1/2 dr
Jo

< CSN(t).
Furthermore, by the boundary integral (3.34), a similar calculation to (3.28) and (3.30)
yields

noo ft f CO
(1 + T)FVtdxdT = / / (1 + r)(fi + f2)Vt dx dr

Jo Jo

<CN(t)(l + t)\\Vx(t)\\2+C[S + N(t)\ f \\Vx(r)\\2 dr (3'3?)
Jo

+ CWVoWl + C(l + N(t))5.
Thus, integrating (3.32) over [0, <] and using (3.33)-(3.37) and the basic estimate (3.2),
we prove (3.31) provided that N(t) + S -C 1. □

Step 2. The decay rate for Vxx and Vxt. Let us differentiate (1.37) in x and multiply
the resulting equation by Vxt. Then by integrating it over [0, +00) with respect to x, we
get

1 ri r°° rv r00
2ltJ0 (K2t-p'(v)VT2x)dx+- jf Vx2tdx

1 rj r°°
< 9 T+ / (p'(Vx + v + v)~ p\v))V2x dx + ({p'(v))Vx)xVxt\x=02 dt Jo (3.38)

r r°° r°°
+ C(N(t) + 5) (1 + t)~2 / V2 dx + { 1 + t)-1 / dx

Jo Jo
+ C<5(l + £)"(f+73)(log(2 + *))5.
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Here we used (1.8), (1.11)—(1.13), and the decay estimates (2.6) for the diffusion waves.
Note that | + 73 > 3, since 73 = min{7x,72} > 3/4.

From (3.9) and (2.3), (2.4), and the inequality (1 + t)5^4\Vxx(x, £)| < CN(t), the
boundary decay can be estimated as follows:

\((p'(v))Vx)xVxt\x=ol

= \(p"(v)vxG(t) + p'(v)Vxx)(0,t)G'{t)\

< C(5[(l + t)~{Hti) + N{t){l + t)'5/4]( 1 + i)"(1+Ti) ^3'39^

< CS{\ + £)"(3+7l),

where | + 71 > 3, since 71 > |.
On the other hand, by differentiating (1.37) in x, by multiplying the resulting equation

by Vx, and by integrating it over [0, +00) with respect to x, we obtain

d r°°

dt
/oo r-oo roo

(2 Vx2 + VxVxt) dx-V*tdx + J0 (-p'(v))V"xdx

< [p\v)vx)xvx\x=0 + c&N{t){\ + ty1 r vl dx (3-4°)
JO

+ C*(l + i)~(J+7s)(lOg(2 + 0)i.

where | + 73 > 2 since 73 = min{7i,72} > |. As shown in (3.39), we also have

W{v))Vx)xVx\x=0\ < CS( 1 + £)-(J+7l), (3.41)

where | + 71 > 2 since 71 > | -
By (3.38) + A x (3.40) for 0 < A <C 1, integrating it over [0, t], we have

Lemma 3.3. It follows that

\\(Vx,Vxx,Vxt)(t)f + [ \\{Vxx,Vxt){T)\\2 dr < C{\\{V0,x,V0tXX,VltX)f + 5) (3.42)
Jo

provided N(T) +<5< 1.

By multiplying (3.38) + A x (3.40) by (1 + t), and by using (3.39), (3.41), and the
inequality

f (1 + r)(l + r)~^+T3)(i0g(2 4. 7-))2 dT < c,
Jo

since 73 > 3/4, by virtue of Lemmas 3.1 and 3.3, we proved

Lemma 3.4. It follows that

(1 + t)IKK, Vxx, Vxt)(t)||2 + [\l + r)\\{Vxt, Vxx){t)||2 dr < C(||Vb||| + IIViH? + 5)
Jo

(3.43)

provided N(T) +<5c 1.
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Furthermore, by multiplying (3.38) by (1 +t)2 and integrating it over [0, t], thanks to
(3.39) and Lemmas 3.1-3.4, as well as the fact

rt
/ (1 + r)2(l + r)~^+73'(log(2 + r))5 dr < C (3-44)

Jo

since 73 > |, we proved

Lemma 3.5. It follows that

(1 + t)2||(^x, Vxt)(t)II2 + A(1 + r)||Kx(r)||2 + (1 + r)2\\Vxt(r)\\2} dr
J 0 (o.45J

<<miii + mu?+<5),
provided N(T) + 5 <C 1.

Step 3. The decay rate for Vxxx and Vxxt■ First, we are going to prove the boundary
estimate in the higher-order case. From (1.37), that is,

Vxtt + aVxt + (p(Vx + v + v) - p(v))xx = ~^ux + f-ix, (3.46)

which implies

Vxxx = V (Vx + v + v) ^ ^xtt &Vxt V (Vx ~h f ~h tyfaxx ^xx)

+p"{Vx + v + v){Vxx +vx + vx)2 +p{v)xx - ^ux + f2x \ , (3.47)

then (3.47) and Vx\x=o = G(t), v\x=o = 0 gives us

Vxxx\x=0=p'(G(t)+v\x=0)-1 | - G"(t) - aG'(t)

— p'(G(t) + l>|a:=o)( Vxx ^xx ) |:r=0
(o jqA

+ p"(G(t) + v\x-o)(Vxx\x=q + (vx + t)x)U=o)2

-}- p{v')xx\x=Q ~^^x\x=0 ~t~ f2x\x=0

By making use of (3.48), (3.9), (2.3)—(2.5), (1.12), and (1.13), as well as 71,72 > 3/4,
and by integrating by parts with respect to t, thanks to the inequality

(1 + t)3/4\Vx(0,t)\ + (1 + t)5/4\Vxx(0,t)\ + (1 + t)7'A\Vxt{0,t)\ < CN(t),
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we estimate the boundary integral as follows:

It 3 / ( rrJ (TT(1 + t) ((P (v)Vx)xxVxxt) dr
x=0

<CS + CSN(t){ 1 + i)-(73-i)(log(2 + t))i

+ C8N{tf( 1 + <)~73(log(2 + t))a + CSN{t)3{ 1 + t)~l

+ C5N(t) f (1 + r) ^73+4^(log(2 + r))2 dr
Jo

+ C6N(t)2 f (1 + r)_l-73+1'(log(2 + r))5 dr + C5N(t)3 f (1 + r)_(73+^ dr
Jo J o

<C6, 73 = min{7i,72} > 3/4,
(3.49)

provided N(t) <C 1.
Differentiating (1.37) twice in x and multiplying it by (1 + t)3Vxxt, by procedures

similar to Step 2 and by using the estimate (3.49), we prove

Lemma 3.6. It follows that

(1 + t)3\\(Vxxx, Vxxt){t)\\2 + f [(1 + T)2||Vrxxa;(T)||2 + (1 + r)'i||14xi(r)||2] dr
J o (3.50)

< c(il(vbiii + HViiii +«),
provided N(T) + 5 -C 1.

Step 4. The decay rate for Vt and Vxt and Vtt. By differentiating (1.37) in t it follows
that

L(V)t := Vttt + aVtt + (p'(v)Vx)xt = Ft. (3.51)

By multiplying it by Vtt and by integrating, with respect to x, the resulting identity on
[0, +oo), we get

nOO rOO

/ Vtt ■ L(V)t dx = / VtfFtdx. (3.52)
Jo Jo

Hence, by a straightforward computation, we get

1 d
2 dt

r°° n f°°
(V?t-p'(v)Vx2t)dx + -Jo V?tdx

rOO

/ {p'{Vx + v + v) - p'{v))V2t dx + {{p'(v))Vx)tVtt\x=o
Jo

rOO rOC

+ C(N(t) + 5) (1 + ty3 / V2 dx + (1 + t)"2 / V2X d
L J o J o

1 d< 
~ 2 dt (3.53)

+ C5(l + £)-(T+T3)(log(2 + t))i.

Thanks to the inequality

(l + t)5/4\Vt(0,t)\<CN(t),
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and (2.3), (2.4), (3.9), and (1.12), by integrating by parts in t, we estimate the boundary
integral as follows:

dr
x=0

[ (l + rf((p'(v))Vx)tVt
Jo

= [ (1 + r)3 (p'(v(<1(t),t))G'(t) + p"(v(d{T),T))vt{d(T),T)) MO, t) dr
J 0

= |(1 + r)3 (p'(t7(d(r), t))G'{t) + p"(v(d{r), r))vt(d(r), r)) Vt(0, r)|*=0

- 3 [ (i + r)2 (p'(u(d(r), r))G'(r) + p"(u(d(r), r))tJt(d(r), r)) Vt(0, r) dr
J o

- [ (1 + r)3 (p'(TJ(d(r), t))G'(t) + p"(v(d(r), r))ut(d(r), r))t 14(0, r) dr|
Jo

< CSN(t) ^1 + (1 + t)-tw-i) + jf (i + r)-(1+^"t) dr^)

< C<MV(i)
(3.54)

provided 73 > 3/4 (see (3.9)).
On the other hand, by multiplying (3.51) by Vj we get

d
dt

poo poo

( 2 V* + VtV„) d* - j Vft dx + jf (V(^))K2t dx

< (p'{v)Vx)tVtU=0 + C5N(t)( 1 + i)"2 /°° ^2dx (3-55)
J 0

+ C5(l + t)-(3+73)(log(2 + t))i

As shown in (3.54), the boundary integral can also be estimated in the following way:

f(l + T)\{p'(v))Vx)tVt
Jo

dr
x=0

< CS. (3.56)

(3.57)

By taking /^[A • (3.55) + (3.53)] dr, f*( 1 + r)[A ■ (3.55) + (3.53)] dr, /Q(( 1 + r)2[ A • (3.55) +
(3.53)] dr for 0<A<1, respectively, and by using (3.54), (3.56), and (3.44), we have

Lemma 3.7. It follows that

(l+t)2\\(Vt,VU,Vxt)(t)\\2+ [\l+T)2\\(Vtt,Vxt)(r)\\2dT
Jo

<c(||v0|l2 + M + <y),
provided N(T) + i5<Cl-

Finally, by using f*( 1 + r)s(3.53) dr, by (3.54), (3.57) and by

f (1 + r)3(1 + r)~(J;ii+73^(log(2 + r))2 dr < C,
Jo

since 73 > 3/4, we obtain
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Lemma 3.8. It follows that

(l+t)3\\(Vxt,Vtt,Vxtm\\2+ f(l + Tf\\Vtt{T)\\2dT
Jo ^O.OOJ

<c-(||y0|li + ||vi||? + (5))
provided N(T) + i5<1.

A combination of the Lemmas 3.7 and 3.8 yields the optimal decay rates, namely,

Lemma 3.9. Under the previous hypotheses, one has

(1 + i)2||Vt(t)||2 + (1 + t)3\\{Vtt, Vxt)(t)\\2

+ A(1 + r)2\\Vxt{T)\\2 + (1 + r)3||ytt(r)||2] dr (3.59)
Jo

<C(\\Vo\\22 +11^111 +6),
provided N(T) + S -C 1.

Step 5. The decay rate for Vxxt and VxU ■ By similar procedures as in Steps 2-4, since
the boundary integration for the higher-order case can also be treated like Step 3, we
can prove

Lemma 3.10. Under the previous hypotheses, one has

(i+tn\\vxxt(t)\\2+\\vxttm2)

+ [ [(I + T)S\\Vxxt(T)\\2 + (1 + T^WVxtti^W^dr (3.60)
J o

< c-(||(Vb||§ + IIV0II1 + tf),
provided N(T) + & -C 1.

Combining Lemmas 3.2, 3.5, 3.9, and 3.10, we prove our estimate (2.8).

4. Concluding remarks. In this section, as concluding remarks, we are going to
discuss two situations. One is the convergence in the special case v+ = f_. Another one
is the case of boundary layer on u.

In the case of v+ = V-, we know that the equations (1.2) have the constant solutions
(v,u)(x,t) = (n+,0). As shown in the Introduction, let

r roo

-»+]^, (Xil)eR+xR+, (4.!)
j(x,t) := u(x,t),

Then the IBVP (1.1), (1.6), and (1.7) is reduced to

'Vt = z,
zt + p'{v+)Vxx + az = Fu (x,t) e K+ x R+,

/ r°° \ (4.2)
{V, z)\t=o = i-J [v0(y)-v+\dy,u0(x)J := {V0,zQ){x), i£l+,

Vx\x=o = g(,t) - v+G(t), te
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where F\ := p(Vx + u+) — p(v+) — p'(v+)Vx. Moreover, substituting z = Vt into the
second equation of (4.2), then (4.2) is rewritten as follows:

Vtt + p'{v+)Vxx + otVt = Fi, (x, t) € R+ x R+,

(V,Vt)\t=0 = (V0,z0)(x), (4.3)
Vx\x=o = g(t) - V+ =: G(t).

Since Vtt decays faster than Vt, also hinted by the previous sections that the equation
Vu + otVt p'(v+)Vxx = F\ is essentially controlled by the part aVt + p'(v+)Vxx, so we
denote it as follows:

Vt + VXX = -(F1- Vtt). (4.4)a a

Thus, let us express formally the Neumann type IBVP (4.4) in the integral form

/•OO 1 ft nOO

V(x,t) = G{x,t;y)V0(y)dy + - / / G(x,t - r-y)(F1 - Vtt) dy dr, (4.5)
Jo Q Jo Jo

where
rz a(x — y)2 a(x + y)2

G(x, t; y) = , =[e "4p'(,'+'t - e -4p'("+)f]
V ^-471p\v+)t[ J

is the Green function of the heat equation in R+ x with Neumann boundary

ut + IL^-uxx = 0, (x, t) £ 1+ x E+,

u|t=o = u0(x), xeR+,

^-x|rc—0 ^l(^)' ^ ^

By the energy method used in the above section and a similar L°°-analysis as in
Nishihara [19], as well as using (4.5), it is possible to state (without any proof) the
following result.

Remark 4.1. Suppose that

G(t) = 0(l)(l + t)-74, 74 >1, (4.6)

and Vo £ H3(R+) n L!(1R+), z0 e H2(R+) ft L1 (R+), when ||Vo||3 + ||^oII2 < 1, then the
IBVP (4.3) has a unique global solution satisfying

\\Vx(;t)\\L~ <C(l + t)~\ \\Vt(;t)\\L°o<C(l + t)-3/2. (4.7)

The above decay rates are almost optimal in the L°°-sense, comparing with the corre-
sponding Cauchy problem studied by Li [10], Zheng [21], and Nishihara [19].

Finally, we deal with the situation of boundary layer.
Remark 4.2. If we put the boundary condition

u\x=0 = b(t) (4-8)

for equations (1.1), instead of the boundary condition (1.7), the corresponding conver-
gence result is similar to Theorem 2.1 and Remark 4.1, under the natural restrictions on
b(t).
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