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1. Introduction

In this work, we are interested in the best time-asymptotic behavior of the solution to the p-
system with linear damping on the quarter plane R x Rt (RT =[0, c0)), given by

(x,t) eRT x RT. (1.1)

Vi —uy=0,
Ur +p(v)xy = —ou,

Eq. (1.1) models the compressible flow through porous media in Lagrangian coordinates. Here, v > 0 is
the specific volume, u is the velocity, the pressure p(v) is a smooth function of v such that p(v) > 0,
p’(v) <0, and « > 0 is the damping constant.
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In this work, we mainly consider the IBVPs for the p-system with linear damping in two different
boundary conditions, respectively:

Ve —uy =0,
ur+pW)x=—au, (xt)eRT xR, (12)
(v, u)(x,0) = (vo, up)(x) > (V4,Uy) asx—> oo, ’
v(0,t)=v_,

and
Ve —uy =0,
ur+pWv)x=—au, (x,t)eRT xR, (13)

(v,u)(x,0) = (vo, ug)(X) > (v4,uy) asx— oo,
u(0,t)=0.

Here, for the system (1.2), we need vy > 0 because v denotes the specific volume, but u can be any
because it denotes the velocity. The compatibility condition is vo(0) = v_, and the corresponding
boundary condition for u, from the first equation, is uy|x—o = 0. While, for the system (1.3), the
compatibility condition is ug(0) = 0, and the corresponding boundary condition for v, from the second
equation, is vx|x—o = 0.

For the corresponding Cauchy problem (CP), the solution was first shown by Hsiao and Liu [4,5] to
time-asymptotically behave like the so-called diffusion waves of Darcy’s law,

‘_/t - l_lx = O, + +

{ P(¥)y = —aril, x,t) e R™ x R™, (1.4)
in the form v(x,t) = v(x/+/1+1t) (i.e., the self-similar solution, whose existence and properties had
been studied by van Duyn and Peletier [3] in 1970), with the convergence rates ||[(v—V,u—u)(t)||;~ =
0(1)(t~1/2,t=1/2), Then, by taking more detailed but elegant energy estimates, Nishihara [22] suc-
ceeded in improving the convergence rates as ||(v — v,u — i) (t)|lzc = O(1)(t~3/4,¢t75/4), which
are optimal in the sense that the initial perturbation around the specified diffusion wave is in L2,
but still less sufficient for the initial perturbation in L!. Furthermore, by constructing an approx-
imate Green function with the energy method together, Nishihara, Wang and Yang [25] (see also
the precise piecewise-rates later than by Wang and Yang [29]) completely improved the rates as
(v — v, u —a)@®)|lrc = O™, t73/2), which are optimal when the initial perturbation around
the diffusion wave is in L. Notice that, for the Darcy’s law, with different initial data, the solution
(v, u)(x,t) is different. In another word, the asymptotic profiles for the p-system with linear damping
are not unique. Based on this observation, Nishihara [24] and Mei [21] found the best asymptotic
profiles for the cases v_ = v and v_ # v respectively, and both of them obtained the convergence
rates as ||(v —v,u—i)(t)|zo = O (1)(t3/2logt, t—2logt), where the slower decay ¢! of the diffusion
wave V; in L! causes the extra term logt.

For the IBVP (1.2) replaced the boundary condition v(0,t) =v_ by v(0,t) = g(t), g(t) — v4, has
been considered by Marcati and Mei [16]. However, the case g(t) =v_(# v4) or g(t) = v_(# v4)
is not treated there. Later on, Nishihara and Yang [26] studied the IBVP (1.2). For the case v_ # v,
they selected asymptotic profile of (1.2) as the diffusion wave (v,u)(x,t) in the form of v(x,t) =

qﬁ("j]‘%)) with some shift function d(t). And for v_ = v, they selected the asymptotic profile of (1.2)

is, obviously, (v,u) = (v4+,0). In both cases, they proved its stability with algebraic decay as ||(v —
V,u — )|l = 0(1)(t3/4,t=>/*). While for the IBVP (1.3), Nishihara and Yang [26] studied the
convergence to diffusion wave, where the selected asymptotic profile of (1.3) is the linear diffusion
wave:

50 X2
«/—4Kﬂ(t+1)exp(_4K(t+l)>’ (x,t) e RT x R™, (15)

UX, t) =k vyg(x, t),

\_/:V++
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with
k=-p'(vy)/a, 50:2</(V0(X)—v+)dx— %)
0

They further showed the convergence rate of (1.3) to the linear diffusion wave (v, u)(x,t) as ||[(v —
V,u — i) ()| = 0(1)(t3/4,t75/4). Observing that the decay rates can be better by eliminate the
slower decay term (p’(V) — p’(vy))Vx in [26], Marcati, Mei and Rubino [17] chose the asymptotic
profile as the nonlinear diffusion wave

Vi — iy =0,
PVx=—al, o 1y R+« RY. (16)
Vx|x=0 =0,

Vlx=co = V4,

Then they improved the convergence rates to be optimal ||(v — V,u — @1)(t)||rc = O (1) (¢t~ 1, t73/2)
when the initial perturbation belongs to L.

We also notice that, recently, Said-Houari [28] claimed that he further improved the convergence

rates for the IBVP (1.3) to [|(v — v, u — i)(t) ||~ = O(1)(t" 1~ %,¢~2~ %) for ¥ € [0, 1], when the initial

perturbation is in the weighted L!--space. However, his result and proof both are incorrect, because
he did not treat with the nonlinear term which also involves the diffusion wave v;. It is just this term
causes a slower decay and we cannot expect to have the faster decay in the weighted space L1 (for

details, see Remark 1.3 in [14]). In fact, as Lin, Lin and Mei [14] showed, even for the linear damping
case, the convergence rate is (v — ¥, u — i) (t)|[;~ = O(1)(t~'"%,t72) for y = 5,and y = 1 is the
best selected number under consideration of the slow decay from v; in the nonlinear term.

In this paper, motivated by Nishihara [24] and Mei [21], by a heuristic analysis, we realize that the
convergence rates can be further improved by constructing the best asymptotic profile, which is the
parabolic solution of the IBVP for the corresponding porous media equation with a specified initial

data (see (2.8)), and we still denote it as (v, u)(x,t). For the IBVP (1.3), we can prove |[(v —V,u —
u)(t)||pee = O(l)(t_% logt, t~%logt), which is same to the rate showed in [24,21]. For the IBVP (1.2),
we get the decay rate as ||[(v — V,u — u)(t)|| 1~ = O(l)(t*%*%,tfz) for y €0, }1] as vy = v_. This
rate is much better than all existing rates obtained in the previous works.

For the other interesting results in different cases, we refer to [1,2,6-15,18,20,23,27,30-33] and the
references therein.

The rest of the paper is organized as follows. In Section 2, we study the initial boundary value
problem (1.2). First, we give a heuristic analysis to find the best asymptotic profile for the system (1.2),
and build up the working system. Then we state the properties of the asymptotic profile and our main
results. In the rest subsections of this section, we will establish the existence and decay properties of
our asymptotic profile and prove our main results. In Section 3, we make an odd extension to u and
an even extension to v respectively to change the IBVP (1.3) to the corresponding Cauchy problem.
Then we make use of the known results of the Cauchy problem to obtain the asymptotic behavior of
the system (1.3).

Notations. Throughout this paper, C > 0 denotes a generic constant which may change its value from
line to line or even in the same line. || - ||;» and | - ||; stand for the L?(R¥)-norm (1 < p < o0) and
H'(R™)-norm and sometimes, without confusion, for L (R)-norm and H'(R)-norm, respectively. The
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L?-norm on R* or R is simply denoted by || - ||. Also, Vp € [1, 00), for ¥ € [0, c0), we define the
weighted function space LP'Y (RT) as follows: f e LP-Y (RT) iff f € LP(R™) and

1fllp.y = /(1 + 07| f0)|" dx < 0.
0

2. Initial boundary value problem (1.2)
2.1. Best asymptotic profile and main results

As analyzed below, the best asymptotic profile for system (1.2) should be the solution to the
following equations

Ve — Uy =0,

p(V)x =—ail, (x,t)eRT xRT,

(v,u)(x,0) = (vo, Ug)(X) > (v4,0) asx— 4oo,
v(0,t)=v_, teRT,

2.1)

where the initial data (v, tig)(x) = (vg, —%p(\?o))(x) will be specified later.
First of all, let us technically construct the correction function (¥, i1)(x, t) as follows
5 1 ’ —at
V(% 0) = ——[usmo(x) + Somo (x) e,

(x,t) = [u4m(x) + Somo(x)]e ",

which is different from what selected in the previous works for the IBVPs [16,26,17]. Here mg(x) is a
smooth and compact supported function mg(x) € C§° (RT) satisfying

o0

mo(0) =mo(c0) =0,  my(0) =0, /mo(Y)dy: 1,
0

and m(x) is defined as

X

m(X)=/mo(y)dy, m(oo) = 1.

0

8o is a constant given by

1 x

soi= o [pv) = pv)] + [ [0t — uymeo] d. (22)
0

Thus, (v, ) (x, t) satisfies

‘A/t - ﬂx = 07

Uy =—oat, (x,t)eRT xR, (2.3)

@, ) (x,t) = (0, ure *) asx— 4oo.
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Now we are going to determine vg(x) such that the corresponding solution (v, u)(x,t) to the sys-
tem (2.1) is the best asymptotic profile for the original solution (v, u)(x,t), and then we derive the
perturbation equations. From (1.2), (2.1) and (2.3), we have

V=V —V)—U—u—1)=0
{ (2.4)

_ . _ . 1 _
(=i = D+ [p0) = pW)] = —or( =i = D) + —p(Phr.

Integrating the second equation of (2.4) with respect to x over R™ and noting the boundary condition
v(0,t) =v(0,t) =v_ and v(4o0,t) = v(4o00,t) = vy yield

di/ [u(x,t) —ii(x, t) — i(x, t)]dx:—a/[u(x, t) —u(x,t) — i(x, t)]dx
0 0

which can be solved as

f[u(x, t) —ax, t) — u(x,t)]dx=e"*" [ [uo(x) — i(x,0) — i(x, 0)] dx
0

—e —at

|:u0(x) +— p(vo(x)) —{i(x, O)] dx

0\8 0\8

iy 1
= eo‘t[/[uo(){) —uim(x)]dx+ 5[17(‘/*) —p(v)] - 80]
0

=0, (2.5)

where &g selected in (2.2) comes from the last step. Now we turn to the first equation of (2.4) to
determine v (x). Integrating (2.4); with respect to x over [x, 00), we obtain

4

m / [vz.t) = V(z.,t) = V(z,t)|dz = (u — 1l — 0)(Z, 1) zm00 — (U — Tl — 0)(2Z, )|

=—[ux,t) —u(x,t) — i(x,0)], (2.6)

then integrate the above equation with respect to x over RT and use (2.5) to have

X

==
o —

/ v(z,t) —V(z,t) — V(z, t) dzdx— / u(x,t)—ﬂ(x,t)—ﬁ(x,t)]dx:O,
0

which gives

X X

/ v(z,t) — V(z,t) — V(z,t)] dzdx ://[vo(z) — Vo(2) — V(2,0)] dzdx. (2.7)
0
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By selecting vo(x) as

Vo(x) = vo(x) — V(x,0), (2.8)
then from (2.7) and (2.8), we obtain
//[v(z, t)—V(z,t) — V(z,t)]dzdx = 0. (2.9)
0 X

Thus, as explained in [21], the solution (v,u)(x,t) for the system (1.2) with the specified initial
data vg in (2.8) is the best asymptotic profile for the original system (1.1). Therefore, let

V(x,t) :=f/(v—\7—\7)(z,t)dzdy,
Xy

U(x,t) = /(u —u—1u)(y,t)dy,

0
Vo(x) := f /(vo(z) — Vo(2) — ¥(2,0)) dzdy =0,
Xy
Vo) 1= / (to(y) — (. 0) — il(y, 0)) dy, (2.10)
0
namely
Vix=V—Vv—1, Uy=u—1u—1.

Then U (oo, t) =0, the original system can be reformulated as

Vi—U=0,

U +p+ 7+ Vi) —p(¥) =—aU +p(¥), (x,t) eRT xRY,
(V,U)|e=0 = (0, Up(»)),

V(0,t)=0,

(2.11)

which can be rewritten as
Vi—U=0,
U+ (p(V)Vy),=—aU —F1 — F, (x,t) eRT xR,

(V, U)le=o = (0, Uo()),
V(0,t) =0,

(2.12)

or

Vt - U = 0,

Ur+p' (v Vix=—aU—F1 —F3, (x,t)eRT xRT,
(V, U)|e=0 = (0, Up(»)),

V(,t)=0,

(2.13)
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where
F1:=—p),
Foi=p(V+ V4 Vi) — p(V) = p'(V)Vix — p'(V)x Vi,
F3:=p(V+ V4 Vi) = p(V) = p'(V4)Vix,

which implies, by Taylor’s formula, that

|F1] = 0(IV¢1),
IF2l = O(IV] + [Vixl? + [VxVil).
IF3] = O(IV] + Vil + [V — vy || Vi) (214)

In this section, we mainly consider the case v_ = v, and for the case v_ # v we will give a remark
at the end of this section. Now we are going to state our convergence results. First of all, we have
the following existence and stability of the solution (v, u)(x,t) (the best asymptotic profile) for the
system (2.1) and (2.8).

Theorem 2.1 (Decay rates of best asymptotic profile). Let v, = v_ and | > 3. Suppose Vo — v, € L'(RT) N
HI(RY) N WIELT(RD), let S5 = | f;° (Vo(x) — v ) dx| be suitably small. Then there exists a unique solution
(v, u)(x, t) to (2.1) and (2.8) satisfying the decay properties
|8{0K @ — v ©|| jp < Coop(1 +6)~A-1/P/2=ki2D)/2,
t>0,1<p<oo, j,k=0,2j+k<I-1,
Jofa©] < Coo(1 + 0y~ 7/PRZOERL2,
t>0,1<p<oo, 0Kkl —2. (2.15)

Moreover, if Vg — vy € L7 (RY), 0 < ¥ < 1, then Va € (0, y), the solution V(x,t) to the system (2.1)
and (2.8) satisfies
[8/8k (@ — v ®)], , < CA+ )~ @tkr—ar2,
t20, j,k>0, 2j+k<2,
||3tfa)l‘<(‘7 —v)(b) ”LP <C(+ l-)—(l—1/17)/2—(k+2]'-‘r3/)/27

t>0,1<p<oo, jk>0,2j+k<2. (2.16)

Now we are going to state the convergence to the best asymptotic profile, the so-called stability of
the nonlinear diffusion waves. Our first main result is as follows.

Theorem 2.2 (Convergence). Let v = v_andl > 3, §py := |f0°°(vo(x) — v4)dx| and 8¢ be defined as before.
Suppose that vo — vy € H'(RT) NW!=11(RT) and Ug(x) € H=(RF). If &) = |Uol|? | + 80 + Sov is suitably
small, then there exists a unique time-global solution (V, U)(x, t) of (2.11)

V(x,t) € C¥([0,00); H'T¥), k=0,1,....1,

U(x,t) € C¥([0,00); HT17K), k=0,1,...,1-1,
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satisfying
A+ 02+ |akalv o] < c, (217)
forj=0,1,...,1—-2andk=0,1,...,1—j,
(1 +o*FD2H=2 5k 1y ()| < cay, (2.18)
fork=0,1, and
a+oalvo| < cu. (2.19)

Furthermore, let | = 4, if Ug(x) € L'(R*) and vg — vy € LY (RT) (0 < y < 1), then the convergence rates
can be further improved as

|95V © < C(ha+ 1Uollp)A+0~F %75 k=0,1.2,
”an(t)”L,,<c(,\4+||Uo||L1)(1+t)‘(%‘ﬁ>‘§, k=0,1, (2.20)
fort>0,2<p< o0

Based on Theorem 2.2, we have the following decay properties of the solution (V,U)(x,t) to the
system (2.11).

Theorem 2.3. Let v, = v_ and a € [0, %). Suppose the conditions in Theorem 2.2 hold, and in addition,
Zl%:o ||8,’on ||%’a < 00. Then the unique time-global solution (V, U)(x, t) of (2.11) satisfies

2 ]
Y a+ofakve s, + Y a+oskuo];,
k=0 k=0

L2 1
+f {Z(l + AV 5, + Y+ akue) ||§,a}ds
o k=t k=0

<C. (2.21)
Finally, we obtain much better decay rates as follows.

Theorem 2.4 (Improved convergence). Let a € (0, }l]. Suppose the conditions in Theorems 2.2 and 2.3 hold.

In addition, we assume that vo — v € LV1(R™) and Ug € LV%(R™). Then the decay rates of the solution V
to (2.11) can be further improved to be optimal as follows

a

kv <ca+o~ -5, k=o0,1,2. (2.22)
X

From Theorems 2.2 and 2.4, noticing that ||8)’f(\7, )|l < Ce™™t, we can easily obtain the following
decay properties for the solution (v, u)(x,t) of (1.2) to the solution (v, u)(x, t) of (2.1).
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Corollary 2.1. Under the conditions in Theorem 2.4, the system (1.2) possesses a unique time-global solution
(v, u)(x, t), which converges to its best asymptotic profile (v, u)(x, t) defined in (2.1) and (2.8) in the form of

Jv—7-0o]<ca+nit,
(v =9 e <CA+07378,

|w—i—-do]<ca+n,
[w—m®)],~ <ca+n2 (2.23)

Remark 2.1. It is easy to see that our new convergence rates obtained are much better than the
existing rates showed in the previous works for the special case v, =v_.

Finally, we give a remark on the case v_ # v,.
Remark 2.2. For the case v_ # v, v(x,t) decays as
[9735 7 = vd @]y = 0D + 0y PmRIHED2,

even if Vo — vy € LV1(RT). As a result, we can only obtain the following decay properties for the
solution (v, u)(x,t) of (1.2),

—0(M(1+074,
|(v =9, =0MA+07",

[(v—v—-1)

=0 +0"4,

|(u—1—i)
=) =00 +073.
These rates are exactly same to those obtained by Marcati, Mei and Rubino [17] for the IBVPs.
2.2. Property of the best asymptotic profile
This section is devoted to the proof of Theorem 2.1, that is, we are going to prove the unique
existence of the particular solution (v, u)(x,t) to (2.1) and (2.8), as well as its optimal decay rates.

From the system (2.1), v satisfies the following IBVP

ave+p(Vx=0, (xt)eRT xRT,

v(x,0) =vo(x) > vy asx— +oo, (2.24)
v(0,t) =v,.
Let
_—p'(vy) p(h+vy)—pvy) —p'(vi)h

hx,t)=v(x,t) — vy, B e Hh) =— a

Then h(x, t) satisfies
ht_ﬂhXX:H(h)xx, (X, t) €R+ XR+,

h(x,0) =vo(x) —v4 :=ho(x) > 0 asx— +oo, (2.25)
h(0,t)=0.
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Denote
Kx y;)=CGx—y,t) —Gx+y,1),
where G(x,t) = ﬁe"‘z/“ﬂt is the heat kernel. Then (2.25) can be expressed in the following inte-
gral form
0 t oo
hx,t) = / K(x, y; ho(y)dy + / / K(x, y;t —s)H(h(y, s))yy dyds. (2.26)
0 00
Let
o0
o, t)=/1<(x,y;t)ho(y)dy-
0

We define the iteration {h"(x,t)} by

t oo
ho(x,t) = p (x, t)+//1<(x,y;t—S)H(qﬁ)yydyds,

00

and
t oo

M l(x, t) = ¢ (x, t)+//K(x,y;t—s)H(h“)yydyds.

00

Similarly, as in [17,24], we can prove that {h"(x,t)} is a Cauchy sequence and converges to a limit,
say h, which is the unique global solution of the IBVP (2.25). Furthermore, by using the Green function
method and the standard energy estimates with the a priori estimates, when the initial perturbation
is small enough, we can have the following decay rates

|8{0kh ||, < Coop(1 + )~ (1=1/P2=@1+0/2, (227)
fork,j >0, 0<k+2j<Il—3,1<p<o0o. Here, the details are omitted. Hence we get (2.15);. Note
that il = — 1 p(¥)y, then (2.27) gives (2.15);.

In order to prove (2.16), we first prove the following two lemmas.

Lemma 2.1. Let y € [0,1].If f e LYY (R) N H'®) (! > 1) and f is an odd function. Then it holds, for 2 <
p < oo,

o0
(11— _kty
ai‘/c(x—y,t)f(y)dy <CA+ 0 P (1 4 Flls).
e v
£>0,k=0,1,2,...,[—1, (2.28)

where G(x, t) is the heat kernel defined as before. In addition, if f € W=1-1, then it holds, for 1 < p < oo,
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o0
_(1— _kt+y
% / Gx—y,00fdy| <CA+60~ VP27 (I fllny + I f lpawi-11),
S Lp
t>0,k=0,1,2,...,1—1. (2.29)

Proof. For the inequality (2.28), we only show the case p = co. The case p =2 can be proved in the
same way, and the other cases can be obtained by using the interpolation inequality based on the L*°
and L%-estimates.

Let u= ffooo G(x—y,t)f(y)dy. Then u is the solution of the following Cauchy problem:

{ut — Buxx =0,

+
u(,0) = fro, %D ERXRET (2.30)

— / . .
where g = %. Using Fourier transform, we have

iafﬂ%z”:& €0 R x R, (2.31)

i€, 0) = f(©),

which solves il = e Pt }.
It is well known that

- 1 1
fllee < I fllLa, —4+-=1, 1<q<2.
p q
Then we have
5] o < K01

Since 9¥u = (i&)*1i, we can get

lokul, = | &)a

_BE2t % _pe2p A
o < Cliele 4 = [[lee e ras,
R
Notice that f is odd, it holds that

1fl= —IXE £ (x) dx

e
R

f(x)sin(x&) dx

- 7]
R

sin (x&)
(x§)Y

dx.

<C/IX%‘I”|f(x)|
R

Since

sin (x&)
(x§)Y

<C forO<y <1,
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we have |f’| < CIENY N fll1,y- Thus, for t > 2, we have

_Re2 A _Re2 y)+1
heke P&t 1] o <c<f|5|”‘+”e pe fds>||f||1,y< £,y
R

and for 0 <t < 2, we have

ligtke P& eF | 0 < 11 1R F < ClLfllksr < C(1+¢

Thus, we obtain

lokul, <ca+e

(||f||1 + 1 fllk1), t=0,

hence,

|oku] . <CO+t

(||f||1 y + 1 fles), =0

Based on (2.34) and (2.35), the interpolation inequality gives (2.28).
For the inequality (2.29), based on (2.28), it suffices to show that

o0

o / G(x—y, 0 f(y)dy

—00

by
<SCA+0" 2 (Ifly + 1 flwk),
L]

fort>0,k=0,1,2,...,1—-1.

We only show (2.36) for the case k =1, the other cases can be proved similarly. If t >

is odd,

oo

x f G(x—y, t)f(y)dy

—0o0

|0xG(x — y, ) f(y)|dy dx

-1

z/ K (x, y: 0| F ()| dy dx
0

/
[

)Y

N oxK t
=2(\/4ﬁt)’yfy’”}f(y)\dy/w x
0 0

(5

In order to show that

o0

/ KGx—y,0)f(y)dy

—00

<MY £,

L1

457

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

2, since f

(2.37)

(2.38)

it is enough to show that fwww < Ct712. since [¢7 0K (x, y; 0)]dx = O (D)~ 1/2, it is

VAapt

easy to see that if F > 1, then [;° ‘f’:K@inydx < Ct~12, Thus we only need to show that

[y
o

I W dx < Ct~'/2 for the case ﬁ — 0. Note that,
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x—y)2 x+y)2
[ 18.K(x, y; D) 1 FI-Ge SR 4 b
YOl /‘ i
_y y
(\/m)y «/4/37Tt g (—\/m)y
o0 X—y Xy x+y _ Xy
1 _4y? |_eZﬂt__e zwl
= /e - 2Pt y 2;.‘: dx
47t J (Tﬁt)
X y X y
s XY o BT VARt — XY o7 g Japi
1 1 22 | oze e |
=z / e w Y 5 /2Bt dx.  (2.39)
Bt JApmt ()
0
Let z= ﬁ. since 0 < ¥ <1, we have
X _ ﬁ'l X —ﬁ-z .
. |(4/4ﬁt 2)e (m +2)e | 0, ifo<y<1,
lim =12 o _ (2.40)
z—0 zv it lf]/ =1.

)
Note also that |ﬁ fooo e‘—4/s{ 1+ %zt)dxl < C, from (2.39) and (2.40), we have proved (2.38) for
t > 2. For the case 0 <t < 2, it obviously holds that

o0
/ WG(x—y,0) f(y)dy
Ll
—00
o0
- / Gx—y, 00, f () dy (2.41)
s L1
<N fllp SCA+D™YFD2Y8, 1. (242)
From the above analysis, we have
o0
A f Gx—y,0fdy| <CA+0" Y2 fll1y +lIcfli}, t=0. (2.43)
o0 L

This completes the proof of Lemma 2.1. O
Based on Lemma 2.1, we have the following result.
Lemma2.2.lety € (0,11.If f e L'V n H' n W=V 1(RY) (1 <1< 3), then it holds that

oo

ok f K y: 0 () dy

0

—(1— _kty
SCA+0 TP (1 Flly + 1 fllgawia), (244)
LP(RT)

fort>0,k=0,1,...,1-1,1<p< o0
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Proof. Let ]‘ be the odd extension of f. Then

o0 o0
fK(x,y;t)f(y)dy: / Gx—y,0)f(y)dy.
0 —00
Hence
o0 o0
3§/I<(x,y;t)f(y)dy = aif/G(X—y,t)f(y)dy
o LP(RY) % LP(R+)
o0
< ai‘/G(x—y,of(y)dy
ks LP(R)
k- ~ ~
<CA+0"VPPZ (1 F Iy, + 1 F lgawira). (245)
Notice that

||f||L1~V = ||f||LW, ”f”H’(R)nWI*H(JR) < C”f”H’(RﬂmW’*l-l(Rer
We can easily get (2.44). Hence we finish the proof of Lemma 2.2. O
Based on (2.27) and Lemma 2.2, we have the following property on v(x, t).

Lemma 2.3. If Vg — vy € LYY n H! N WI=L1(RT) (I > 3), then for any 1 < p < oo, the solution V to the
system (2.24) satisfies

|o{ak @ —vy) |, <CA+0~ATYPRZQIFZ - |4 2j<2. (2.46)

Proof. From (2.25), we have

o0 t oo
V—vy= / K, y;0)(Vo(y) — v4)dy + / / KX, y;t —s)H(V —vy)yydyds.  (2.47)
0 00

Since Vg — vy € LMY N H N WImLY@®RT) (12 3) and (Vg — v4)|x=0 =0, using Lemma 2.2, we have

o0

8§/K(x,y;t)(\70(y)—V+)dy
0

<ca _i_t)—(]—l/P)/z—(k—O—V)/z’ (2.48)
Lp

fort>0,k=0,1,...,1—1,1<p< oo
From the definition of H, by Taylor expansion, we have H(V — v,) ~ (Vv — v,)2. Now we are going
to show that

<ca +t)—(1—1/p)/2—(k+1)/2, (2.49)
LP

t oo
a,lf//K(x,y;t—s)H(\'/—v+)yydyds
00

fort>0,k=0,1,...,1—-1,1<p< o0
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From (2.27), for t > 2, we have

t oo
8,’5//1((x,y;t—s)H(\7—v+)yydyds
0 0

LOO
t/2

<C / 852K (x, 1 = 9) | oo | (7 = vi)2(9)]| 1 ds
0

t
+ [l st 856 - v b

t/2
t/2 t
<ct=F /(1 +5) 12ds+c(1+0)"F /(r—s)—V2 ds
0 t/2
<Cca+n~F, (2.50)
and
t oo
8,’f//1<(x,y;t—s)H(\7—v+)yydyds
00 L

t/2
<C / 052K x, 6 =) | 1| (7 = vi)? ()| ;1 ds
0

t
4 [ ok st =9 |47 (@ = v ?)o) ] ds

t/2
t/2 t

<ct—F /(1 +5) 12ds+Cc(1 4+~ F /(t—s)‘”zds
0 t/2

<ca+n~ 7. (2.51)

Combining these with ||a,’§ fot f0°° Kx,y;t —S)H({V — v4)yydyds|jiqe < C for t <2, the desired es-
timates (2.49) are obtained. Thus, we have proved (2.46) for the case j =0. When j =1, note that
3V = —1p(V)x, we have

o7 — v, = 0 |afp(W) ], < CA+ 1)~ -1/PI/273/2, (2.52)
This completes the proof of Lemma 2.3. O
Lemma24.Ifvo—vy € LV NHINWI=T1(RY) (1 > 3), then Va € (0, 1), the solution v to Eq. (2.24) satisfies
<CA+t)~V2-CiHk=a/2 4 2 <2. (2.53)

l?ai@ —vil,
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Proof. First, we prove that (2.53) holds for the case j =0, k=0. It is verified

19~ velia = [ (4207 [ Kix y:0(F0() - v2) dy ds
0 0
t oo e8]
+/[(1+x)a /K(x,y;t—s)H(\'/(y,s)—v+)yydy dxds
00 0
=:L1(t) + Ly (0).

Now, we estimates Lq(t) for t > 2. In this case, we write L{(t) in the form of

o0

K t
Li(0) = (/4pt) ™! /y|vo(y)—v+|dy/(1+ SILC 7L

o v
If ﬁ — 0, similarly as above, we have

dx < C(1+t)Y2.

X2+2

JBt

For the case that «/W > 1, we have

/(1+ )alK(X y: 0l ,

1+ v4ﬁ z+ y)“
m

i‘_

dz

\/W
(x y)2 (x+y)2
“4pt
[/( +x) dx—/(l—i—x) dx}
45” Jim JiF
. X—y .
[by change of variables: z = ; for the first integral,
and z = Xty for the second integral]
48t
°0 2 o0 2
1 €z €
T{ / (14 4Btz +y)' ——dz— / (A +/4ptz—y) sz]
v apt y Vapt
VAt V4t
v
77
=

y
V4Bt

7| \8

1+ APtz + y)* — (1 + 4Btz — Dy ]

461

(2.54)

(2.55)

(2.56)
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oy
et =)
1 { [ (1+ JaBtw + VABt2"
_ e
A/TT w

w

[ (14 VABEz + JAFEW) — (1 + APtz — VAW 2 dz}

e~ dz [because |z] < w]

%\

1 {/W( +2./4ﬂ w)a

+

w

/oo (1 + APz + JAFEW)S — (1 + AFEz = JAFEWY ‘”}

Since w > 1, we have

(1+274Btw)* _ (1+2/4B0)"(1 + w)"

< <CA+0)Y? for0O<a<1.
w w

And for 0 <a <1, Vz> w, we can easily check that

(14 4Btz + JABtw)* — (1 + 4Btz — /ABtw)? < (1 + /ABtw)* < C(1 + Y% (1 4+ w)",

which implies that

(1 +VAptz + VAPEW)® — (1 + VAPLz = VAPEW)® (1 a2

w
Thus, we have
K, y;
/(1 +x )”de< C(1+1)¥? (2.57)
W

for the case «/‘W > 1. Combining (2.56) and (2.57) gives

/(1 + )"M dx<CA+0D%2, V(y,t) e RT x RT. (2.58)
JiF

Thus, (2.58) and (2.55) imply that
LiO<CA+0" 200 —vif1q, t>2. (2.59)

On the other hand, for t <2, L1(t) is written as
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o0

L1(t)=/{/(1 + 2K (x, y: t)dX}!\'/o(y)—u!dy
0

0
C/(l + ) Vo(y) — vy |dy

<CA+0" 2|0 —vilia
<CA+0)~ 9255 —v |11 for0O<a<1. (2.60)
From (2.59) and (2.60), we can get
L <CA+0" 290 —viflg, t>0. (2.61)
Now we estimate Ly (t). When t > 2, we write Ly(t) in the form of

t/2 o0

Lo(t) = f(\/4ﬁ(t—s))_“{fy"lH(\'f(y,S) —vy)|dy

0

2
/(1+ o K& yit = 9)l _ — 9 gy }ds
o=,

t 00

[T [nn0n v la

t/2 0

x /(1 n x)“w dx} ds. (2.62)
0 Sk

Similarly as above, we can get

18K (x, y;
[(1+ 0 @, Yil T K V=9 1 e — )21 4t — 52, k=12, (2.63)
)

Using (2.15)4, it holds that

o0

[ IHE5 ~ vl dy <3 = vi |y [56) = val,
0
< Cooy(1+9)72[0(s) = v [ o
[ Va9 - v2) dy < Cad© | [76) - v

0

<Cooy(1+95) 7 [7(5) = v | o (2.64)
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From (2.62)-(2.64), for 0 <a < 1, we have

t/2
L(t) < Cdoy /(t —9) A+t =921+ V2| U(s) — v, ds
0

t
+ Cdop /(f =) P A 4t =) (A 97 |U(s) — v, 45

t/2
t/2
< Coopt ™ @21 4 )2 /(1 +5)7 12002 gs s sup{ (1 + )2 V(s) — v |, )
s>0 :
0

t
+ Coy (1 +6)"C0/2(1 4 1y¥/? /(t — )02 ds x sup{(1 + )2 |v(s) — v, }
s>0 ’
t/2

< Cop(1+ 0~ 2 sup{(1+ )92 u(s) — vy |, }- (2.65)
s>0 :

When t < 2, for a € (0, 1), we write Ly(t) as

t o0 0
—a _ oxK(x,y,t—
Lz(t):/(,/4/3(t—s)) {/y“|ayH(v(y,s)—v+)|dy X /(1 +x)“%dx ds
5 ] 5 (e

t

< Cooy / (=)™ 2A+ =921 497 supl 1+ o05) — v )
s>0 ’
0

<t 2 supl (1 + T2 |9(s) — v, )
s3>0 '

=

<CA+072sup{(1+ 5727 (s) — vy |, ). (2.66)

s>0
Then, (2.65) and (2.66) give that

La(t) < Cop (1 4+ 1)~ @D 2sup{(1 + )1~/ v(s) — vif, .} t=o0. (2.67)

s>0
Substituting (2.61) and (2.67) into (2.54) yields

—a

19 = vy o SA+072 190 — vl

+ Coop (140~ 2 sup{(1 + )12 v(s) — vy, }. >0, (268)
s>0 ’

which implies
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l—a,_ -
sup(1+0) 7 V() — v |, , < ClVo—vylia
t>0 ’

+ ooy sup{(1 + T2 v() — vy |, }- (2.69)
t>0 ’

Choose 8y small enough, we can get
1-a_ _
sup(1+6)°Z [7(6) = v4 ||, , < CllYo — villn.1,
t>0 ’

that is,
[9) = vi ], <CA+D7 0 - vi1.

The cases for j =0, 1 <k <I—1 can be proved similarly. Thus we omit the details. For the case j=1,
k+2j <I—1, noticing that v = O(1)p(V)x, using the results obtained for the case j =0, we have

| (V(®) = vi) ||, o S CA+0)7H27C02,
Hence, we finish the proof of Lemma 2.4. O

2.3. Proof of Theorem 2.2

The system (2.11) and the fact that (v — v — ¥)|x—o = O give the following boundary conditions for
the lower and higher order derivatives:

V(0,1) = Vie(0,8) = V¢(0,) = Vi =0, etc. (2.70)

The inequalities (2.17)-(2.19) can be proved similarly as in [21,26], so we omit the details. In what
follows, we will try to prove inequality (2.20).
From (2.13), V(x,t) satisfies the following initial boundary value problem,

1
Ve —BVxx = _E[Vtt + F1 + F3],

(V. Voli=0 = (0, Uo(x)).
V(0,t)=0,

(x,t) eRT x RT, (2.71)

where g = #. Using the Green function of heat equation, we can rewrite (2.71) in the integral
form of

t oo
1
V(x, t)=_a//1<(an§t_S)(vss+F1 + F3)(y,s)dyds, (2.72)
00

where K(x,y;t) =G(x—y,t) — G(x+ y,t) as defined before. Note that
|F1+ F3| = O (1Ve] 4+ [V] + |V * + 17 = v | [Vix]). (2.73)

As in [24], since
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t

//K(X,y;t—S)(—Vss)(y,S)dde
00

[N

o0 o0

=/<—;—S/K(x,y;t—s)Vs(y,s)dy+/Ks(x,y;t—s)vs(y,s)dy> ds
0 0 0
oo ) 5 oo
:/K(x,y;t)Uo(y)dy—/K(x,y; %)w(y, %) dy—//IQ(XJ;t—S)Vs(y,S)dyds,
0 0 00

then we have the following expression for V,

1(7 T t t
Vix,t) = a{/K(X,y; f)Uo(J/)dy—/K<X,}’§ §>Vt(y, 5) dy

0 0

t

2 o0 t oo
—//K[(x,y;t—S)Vs(y,s)dde—//K(x,y;t—S)Vss(y,s)dyds
00 o0

t oo
—//K(x,y;t—S)(ﬂ +F3)(y,5)dyd5}
00

1
::E{Io+11+12+13+14}, (2.74)

with 14 = I41 + a2 + 143 + 144 + 145 from (2.73).
From (2.17), we have

; k+2j
HaﬁagV(t)chaﬁ)*%, t>0,j=0,1,2,3, 0<k<5—]. (2.75)

Using the estimates, for t > 2, we can estimates g, I1, I, I3 as follows,

Hollze < K. 0)] o 0ol < CllUollr (1 4+ 67
il < K@ 5 t/2)] 2 [ Vet/2) ] 2
<CA+0V4A+0' <A +0)74
t/2
Il < [ [Kitx 509 o[V ]2 8

0

t

2
< Ct‘5/4/(1 +5) lds<CA+t)";
0
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t
e </H1<<x,-;t—s)HLz [Vss(s)] 2 ds
t/2

t
<ca+04/@—g4ﬁm<a+oqﬁ (2.76)
t/2

Now we estimate I4 term by term. From (2.75), it holds that

t
a1 <C/||I<(X~;t—5>||m OIS
0

t/2 t
gCt_]/Z/e_ast-i-Ce_at/z (t—s)_l/zds
0 t/2

<CA+t)1/2

t
Ihaatis <€ [ =9 | |Varto)| s
0

t/2 t
< Ct‘l/Z/(l +5)2ds+C(1 +t)_2/(t—s)_1/2 ds
0 t/2
<CA+t)712, (2.77)

Notice that vo — v, € LY (RT) implies that Vg — v, € LY (RT). Using (2.16), we have

t
aalis <€ [[[K0 5= 97 = vV ds

0
t/2 t
gaqﬂ/a+94“4$+ca+n4“4/a—94ﬂw
0 t/2
<C+07"% (2.78)

t
aslis <€ [0 0= 9)] Tl ds
0
t/2 t
gaqﬂ/a+94ﬂm+ca+0%fa—g4ﬂ¢
0 ¢/2
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t/2
ct1/? [(1 +95)2ds+C(1+ )7
<CA+0)712, (2.79)
Substituting (2.76)-(2.79) into (2.74) gives
VO]« <ca+n™2 =2 (2.80)
Similarly, we can get
Vo], <c t=2. (2.81)
Thus for any 1 < p < oo, we have
Vo, <ca+n=0-UP2- >3 (2.82)

The high order terms can also easily estimated. For example,

t/2
62 1as ] < f||a K3 €= )| o Vsl ds+/||1<<x, 1= )] o |0 Vs [ ds
t/2
t/2
<Cr—3/2/(1+s) 3/2as+C(1+r)—2/(r s)"1/2ds
t/2
<Ct3Pyca+073?
<CA+6732 (2.83)

L!-estimates of 83145 and L' and L°-estimates of the other higher order in x estimates are similar
as above. Then using interpolation inequality, we can obtain (2.20); for t > 2. On the other hand,
from (2.17), we can easily get that

185V ©) | oy <CR3, 0<E<2, k=0,1,2.

Thus, we complete the proof of (2.20);.
To get (2.20),, we differentiate (2.74) in t,

1 o0 o0
Vr(x,t)=&{fl<t(x,y; t)UO(Y)dy_/Kt(X v )W(y, )dy
0 0
t t t
K<X’ y; 5) (Vtt<y’ 5) + (F1+ F3) (}’7 5)) dy

o0
/Kn(x,y;t—S)Vs(y,s)dyds
0

O\ N
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oo
—//K(X,y;t—S)Vsss(y,S)dde
0

t/2 co

—//Kt(x,y;t—S)(ﬂ+F3)(y,5)dyds

t oo
—//K(x,y;t—s)as(ﬁ +F3)(y,s)dyds}. (2.84)

t/2 0

Here we have used integration by parts in s. Notice that U = V;. Taking the similar estimates
as (2.20); above, we then get (2.20),. We omit the details for brevity.

2.4. Proof of Theorem 2.3
From (2.12), V (x,t) satisfies

Vie + (p'(V)Vx), +aVe = —F1 = Fy,
(V. Vo)li=o = (0, Uo()), x. 1) €RT xR (2.85)
V(,t)=0,

Based on the decay rates obtained in Theorem 2.2. For any a € (0, %), we first have the following
energy estimates on the [%%-norm of (V, Vi, Vo).

Lemma 2.5. It holds that

t
Mwwwmwa+ﬂwxmwﬁﬂs
0

(VO e + Vs | ) [Var®)[5 o ds. (286)

2
C(l +ZH3§U0H§,G> +C

k=0

o

Proof. Multiplying (2.85); by %V + V¢, we have

{E1(V. V. VO }, + E2(Vi, Vo) + {E3(V, Vi, VD) }, = —(F1 + Fz)( v+ vt>, (2.87)

where
1 o a? _
E1(V, Vi, Vo) = S VE + 2vvf+7v2 p’(v)V§,
o, 1., _
Ex(Vi, Vo) i= S VE + | =2 p'(0) + o p (M) | V3
;- o
E3(V, Vi, V) i=p'(0)Va( SV + Ve ). (2.88)

Notice that —p’(v) > Co for some positive constant Cg, when 8oy < 1, the following estimates hold
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Ci(VZ 4+ Vg + VE) SEi(V, Vi, Vo) S (V2 4+ Vi + V7)),
C3(V§ + V) < Ea(Vy, Vo), (2.89)

for some positive constants C; (i =1, 2, 3). Multiplying (2.87) by (1 + x)? and then integrating it over
R* x [0, t] with respect to x and t, we have

t
[V, Vi Voo 2, + / [V Vo)), ds
0
t oo
<C||U0||§’a+f/a(l+x)“*1E3(V,VX,VS)(x,s)dxds
00

t oo
+//(1 +x)%(F1 + F2)(x, s)(%Wl + |V5|>(x, s)dxds. (2.90)
00

For a € (0, %), we have |(1 4+ x)®!|| < C. From (2.20), for t > 2, we have ||8th(s)||,_oo <

V2018V 2181 V)72 < €1 +5)7 1271, j=0,1, and [[Vx(s)]| < C(1+5)~3/4, we can estimates
the second term on the R.H.S. of (2.90) as

t oo t
ffa(l + %)% TE3(V, Vy, Vs)(x, s)dxds <a/”(l + 0V, VOO | oo | V() | ds
00 0
t
< C/((l +9)72 4+ 1 +972) (1497 ds
2

2
+Cf((1 +9) M+ 1+ (14972 ds
0
<C. (2.91)
For t < 2, we can easily get that

t oo
//a(l +x)TE5(V, Vy, Vo) (x,s)dxds < C.
00

Similarly, for the third term on the R.H.S. of (2.90), it holds that
o0
1

(1+x%(F1 + F2)(x, S)(%IVI + |Vs|>(X, s)dxds

o

0
t oo
< C[ A+0(VI+ V)X )(1Vs] + V] + |Vl + [VxVxl)(x, s)dxds
00
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C/UV(s>HLm(||vs||1,a+ 190110+ 1.0l Vill =) ) ds
t
+C/||vs(s)||m(||vs||1,a+ 1900 + 17xll1.allVallio ) (s) ds
t
€ VO i+ 1V i V)
0
_1 _3-a _ _2-a_3
gc/(1+s) {14977 +e ™ +(1+s)72 "3}ds
+C/(l+s) H+s) 2 4o 4 (14524} ds

+C [{Ive) |~ + ”Vs(S)HLOO}”VXX(S)”z o(8)ds

o\a

t
<€ [Vl + V@ ) Vi) 85
0

Substituting (2.91) and (2.92) into (2.90) yields
t
[V, Ve, Voo 5, + / [V VO ©)]54ds
0

t
CWUoIa+1)+C [ (V@ + [V |p) Vi [ 5
0

The proof is complete. O

Lemma 2.6. It holds that

(1 +0] (Ve VOO 5, + f(l +9)| Vs[5 ,ds

t

1001+ 1)+ (VO + 1+ Ve ) Vo) 05

0

471

(2.92)

(2.93)

(2.94)
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Proof. Multiplying (2.86) by (1 +t)(1 4+ x)*V, and then integrating the resultant equation over R x

[0, t], we have
t
0

t
@400 +92 (Y2 ) dxds + (149 Vs ds
95 \ 2 $N2.0

0

t oo

+ / /(1 + %1 +5)(Vsp'(V)Vy), dxds
0

:

Integrating by parts, we can get

3

1 4+x%1 4+5s)Vs(—=F1 — Fp)dxds. (2.95)

o

t oo
a 9 (Ve

/ (1+4+x) (1+s)a—s<7)dxds
00

t oo t oo

a V2 1 ays2

=//( +X) (1+s)— dxds—E//(l—i-x) V¢dxds

0 0 00

(1+t)

t
VOl = 51000~ 5 [ IV, ds. (2.96)
0

and

oo

t oo t
//(1 +x%01 +5)Vs(p’(\7)Vx)xdxds = —//(1 +x)9(1 4+ 5)Vysp (V) Vydxds
00 00

t oo
—//a(l—i—x)“’l(l +5)Vsp (V) Vydxds
0

= J1— J>. (2.97)

Using Theorem 2.1, we have

t oo 5
_ff(l+x)a§{(1+s)p’(\7)%}dxds

00

t
o
0

oo

t
2
(1401 +95)[p"(@)s] —dxds+/[(1+x)“p’(\7)%dxds
00
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t

> LR+ 005, ¢ [(a+917:0 + 1V [} s
0
‘@) t
> 2040V, ~ ¢ [ Va3 s

0

For t < 2, it easy to get J, > C. For t > 2,

t
< a/(l 49+ 00 Vel Vil dxds
0

2

t
< C/(l £+ i1+ ds—i—a/(] + 9 A+ 0 IVsll Vil dxds < C.
2 0

For the term on the L.H.S. of (2.95), it holds that

t
SC//U+X)a(1+S)|Vs(X,S)|(|\75|+I\7|+|Vxx|2+|\7xVx|)(X,S)dXdS
00

<c/<l + Ve | o (17510 + 19111.0) ) ds
0
t

€ A4V | (V@ o+ 175 | o [Vato)] ) s
0
t
_1 _3=a _ _2-a_3
<C/(1+S) HA+977 +e™™ + A +5)77 4}ds
0
t

€ [+ 9V Va3 ds
0

t
<c+c / A+ 9| Vs o | Var®)]2 , ds.
0

473

(2.98)

(2.99)

(2.100)
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Substituting (2.96)-(2.100) into (2.95) and using (2.93), we can obtain (2.94). This completes the proof

of the lemma. O

Lemma 2.7. It holds that

t 1
| (Vi Vi Vi) O[3 + / | (Vi Vi) ) [ o ds < C<1 + Z||3§Uo||;a>-
0 =0

(2.101)

Proof. Differentiating (2.86) with respect to x and multiplying (2.85); for (1 +x)“(%vx + Vi), and

integrating the resultant equation over RT x [0, t] with respect to x and t, we have

t oo
// Viss + (D' (V) V), + aVis) (%, S)(1+X)“< Vx+sz>(x s) dxds
00

t oo
:/f( F1— F2)(1+x)" ( Vx+sz)dXd5~
00

Integrating it by parts, we have

t oo
// Vixss(1+ X)a< Vx+ sz) dxds
00

o0

t

V2
ff( 402 { ViV + %}dxds—%
00

t
o 2
/<1+x>{ ViV + 22 }dx— ||axuo||%,a—quvxs(s)Hz,ads
0

o0

f (14 x)VZ dxds
0

O~

and

t oo
f/ p'(V)Vy xx(l +x)*(AVx + Vys) dxds
00

{(p/(‘_/)vxx)x + (p//(‘_/)‘-/xvx)x}(l +x)° (%Vx + sz) dxds

I
Ot~

ao

( (V)) Vx(1 +X)a Vixdxds — >

I
Ot~
O\H 0\8 0\8

t oo
//p’(\'f)vxx(l + )%V, dxds
00

o) t oo
/P (V) Vix(1 + %)V yxs dxds —a//p/(‘_/)vxx(l —I—X)a_]sz dxds
0 00

(2.102)

(2.103)
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t oo
- f /{_pm(‘_/)‘-/x‘_/xvx —p" (V) v Vx — (V)vaxx}(l + x)° ( Vx+ sz) dxds
00

=Js—Jat+Js—Js— ]z (2.104)
Now we estimate J; (i=3,4,5,6,7). Note that —p’(v) > Cg for some positive constant Cy, we have

t
C
Sz =5 [ [Va®)]; . (2.105)
0

As showed in Lemma 2.6, we can similarly prove

Ja<C,  Js<C, (2.106)

and
c 1 t oo C
Js> S Va®l5, - 5 / / P14+ Vi dxds > 2 Vi) |5, - C.
00

- — — o
J7 <C | (IxllnallVxlize + [Vxxll1,a) Vil (E”VXHLOO + ||sz||L°°> ds

Ot~

— o
+C/||Vx||l,a||vxx||L°°<§||Vx||L°0+||sz||L°°>dS
0
t
,,,,,, ,;U,Q _3 _2
<C (1+s) 4+(1+s) HA 4971+ +5)"%}ds
0

7 2—a_ 5 3 7
+C/(1 +5)72 “3{(1+s) "4+ (1+5)"4}ds

<C. (2.107)

Substituting (2.105)-(2.108) into (2.104), we have

t oo
f/ p'(V)Vx XX(Hx)”( Vx—i—sz)dxds
00

t
/Taf [Vix(s)[3 g5 + [ Vix® 5, — C. (2108)
0

On the other hand, it holds that
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O~

t
ans(l+x)a(%Vx+sz)dxds_ /Hvxs(s)”Mder [Ve® |5, (2109)
0

From (2.103)-(2.109), we have

o

)
/ szs + P (V)Vx) + Oles] (1 4+ (AVy + Vi) dxds
0

> 61| (Vs Ve, V) O + 2 f |V Ve ()| s = C(1+ [10:UolZ,),  (2110)
0

for some positive constants cq, c3. Similarly, as showed in (2.92), we have

o0

t
//(_Fl = F2)x(1 + %) (AVyx + Vi) dxds
00

t
o
<C+ c/ ||vxx||%,a<5||vxxnm + ||vm||po> ds

< C+C(80 +80v + 1Uo2) / (1492 Vl2 o ds. (2111)

Substituting (2.110) and (2.111) into (2.102) and choosing 8y + 8oy + ||U0||§ small enough, we can
obtain (2.101). O

Similarly, multiplying (2.86) by (1 + t)(%vx + Vx) and using (2.87) and (2.101), we can further
obtain the following energy estimate.

Lemma 2.8. It holds that
2 2
A+0[ (Vi Vi, Vi) O |54 + / [ A+ 5V, Vi) 9)])5 g d5 < C(1+ 10:Uoll3 ). (2112)
0
Again, by taking fot Jo~ 3x(2.86) - (1+$5)*Vysdxds (k=0,1,2), and using (2.94), (2.101) and (2.112),
we can obtain the decay rate for ||Vxx||§.a as follows.
Lemma 2.9. It holds that

t
(1402 (Vi Vi) O[3, + / (1+9?|Vas(®) |3 o ds < C(1+ [xUol3,).  (2113)
0

Combining (2.86), (2.94), (2.112) and (2.113) yields (2.21). This completes the proof of Theorem 2.3.



H. Ma, M. Mei /]. Differential Equations 249 (2010) 446-484 477

2.5. Proof of Theorem 2.4

Now we are going to prove Theorem 2.4. For the system (2.11), by substituting the first equation
U =V, into the second one, we obtain

Vie+aVe+p'(vy)Vix = —F1 — F3,
(V,U)lt=0 = (0, Up(x)), (x,t) e RT x RT. (2114)
V(0,t)=0,

As in [17], since V (x,0) =0, the IBVP (2.114) can be rewritten equivalently in the integral form

Vix.t)= f[I?(X—y,t) - K(x+y,0)]Uo(y)dy
0

t oo
+//[I_<(x—y,t—r)—f((x—i—y,t—r)](—F] — F3)(y, T)dydr, (2.115)
00

where K(x, t) is given by

I?(x,t):J%_n/eing(E,t)dé,

and R(x,t) is defined by

—at
2’ __sinh(YESPE ) gl <2, /9

N
Rt =1 te"%, £1=2,/%,
—at
2e 2 . AapEr—a? o
NI sinh( > v, 1§1>2/%,

with g = =20=),
For the kernel K(x,t), we have the following energy estimates, cf. [19,17,28].

Lemma 2.10. Let a € [0, 1]. If f € LM4(R*) N HI*(R) and f(0) =0, then

#&/mu—%n—kw+wﬂkwwy
0

a

_j_2k+l _a
<CA+07/77a 2{||f||1,a+||f||j+l<—1}, (2.116)
foro< j+k<4.

We also state another auxiliary lemma which is useful to prove the decay rates, see [19].
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Lemma 211.Ifry > 1 and rp € [0, 1], then it holds that
/(1 +t—85) 1145 2ds<C(1+1)"2, (2117)

Now we are going to prove the optimal decay rates for ||3)’fV(t)|| (k=0,1,2).
Differentiating (2.115) k-times (k =0, 1,2) with respect to x and taking its L2-norm, noticing that
Up(0) = (F1 + F3)|x=0 = 0, we obtain

loxvol =

;ﬁfuu_%n_xu+yxmmwmy
0

t
o
0

_2k+1_a
<CA+07"4 " {|[Uollia+ IUolik-1} [by Lemma 2.10]

o0

Bi‘/[I((x—y,t—r)—K(x+y,t—t)](F1 + F3)(y,T)dy|dTt
0

+ Cf(l =D T[4+ F)(@) o + [ F1+ E)@ JdT. (2118)
0

From (2.14), using (2.16), (2.20) and (2.21), the L%-norm for (F; 4+ F3) can be estimated as

[ F1+ F3) (O 10 < C(101a+ [VA] o+ | T = v Vix]y o + 1el1.0)

C(| lh,a+ ||Vxx||2a + [ Vaxllioe H v— V+)||1 a T Vel a)

IN

<CE™ 4+ A+ 2414049241407

C(14+1t)2+%. (2119)
Similarly, we can also prove
7
[(Fi+F3)(@) |, <CA+1t)74. (2.120)
Choose a > 0 such that
2x2+1 7
E——>1 d xot E§§—9<—,
2 4 2 72 2 4
which gives
1
0<a<2. (2.121)

From (2.118) and (2.119), using Lemma 2.11, we can get

a

Fvi| <ca+o- -5, k=o0,1,2. (2.122)
X

This completes the proof of Theorem 2.4.
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479

Remark 2.3. From the procedure of our proof, we can find that, the decay rates for the terms ||8,’(‘V(t)||
with k > 3 are the same as (1 + t)*32;a, and the decay rates for the terms |\8,’§8tV(t)|| with k > 1 are
also same as (1 + t)‘32;a. Thus, using this method, we cannot get better decay rates for the terms

||3)’fV(t)|| with k >3 and ||0x0;V (t)|| with k > 1 than those obtained in Theorem 2.2.

2.6. Proof of Corollary 2.1

Thanks to Theorems 2.2 and 2.4, noticing that Voyy =v — vV — ¥, Uy=u — ii — iI, and |3,’f\7(x, |,

[aki(x, t)| decay like e~*, we have

5+2a

|v =7 =] = [Va® | <CO+077,

| =i - d)®] = U] <Ca+n75,

and

lv=n®]

[CEDI] 1

= || (VXX + O)(t) ||Loo
g ” VXX(t) ||Loo + "}(t) ”Loo

12 Ve t) |

< C|Va(®)| +Ce ™

5

Cl+6)~ 4,

N

< WUx+DO)||
[0 + 2] 1
CA+t)2+ce™

/A

N

<CA+1)72

This completes the proof of Corollary 2.1.

3. Initial boundary value problem (1.3)

(2123)

(2.124)

In this section, we study the initial boundary problem (1.3). The main goal is to improve the
previous stability of diffusion waves and show the best convergence rates. The best asymptotic profile
for the CP of hyperbolic p-system with damping was studied by Mei [21] and Nishihara [24]. The
main idea of arriving our goal is to change the IBVP to CP, then we can obtain the best convergence
rates by making use of the known results in [21,24].

By an odd extension to u(x, t), ug(x) and an even extension to v(x,t), vo(x) in the above IBVP,

s Juxn, o ox=0, oo fuo(®), x>0,

u(x’t)'_{—u(—x,t), x<0, UWI=)Ce, x<o0,
and

B vz, x>0, - _Jvo®, x>0,

V(X’t)'_{v(—x,t), x<0, "0 = -0, x<o.

(3.1)

(3.2)
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We consider its corresponding CP for (v(x,t), ti(x, t)) with the initial data (vo(x), tig(x)) as follows

Ve —1lx=0, (x,t)eRxRT,
fie + p(V)x = —ail, (33)
(7, @)(x, 0) = (V0, o) (X) — (V4, £uuy) asx — oo,

Claim. If the solution of the system (3.3) uniquely exists, then the solution (V(x, t), i(x, t)) satisfies: V(x, t) is
an even function and ti(x, t) is an odd function.

In fact, suppose that (Vq(x,t), ti1(x,t)) is the unique solution to the system (3.3). Set

uq(x,t), x>0,
—u1(=x,1), x<0,

vix,t), x>0,

vi(—=x,t), x<0. (3.4)

ty(x,t) := { Va(x, t) = {

Then we can easily check that (v (x,t), ia(x, t)) is also the solution to the system (3.3). Since v, (x, t)
is even, tiz(x, t) is odd, by the uniqueness, we know that (Va(x,t), ia(x, t)) = (V1(x,t), U1(x,1)).
As in [21], we construct function m(x) as

X

m(x):—u++2u+/mo(J’)d}’ﬂ xeR,

—00

where mg(x) is an even function and satisfies

mo(x) € C°(R), with /mo(x)dx:l.

—00
Then, we have, Vx € R,

X —X

m(x) +m(—x) = —2u, + 2u+< [ mo(y)dy + / mo(y)dy>
X o0
=—2u, +2u+< / mo(y) d}’-i-/mo(—J/) d}’>
=—2u, +2u+< / mo(y)dy +/mo(y)dy>
= —ZU+ + 2Ll+ =0. (35)

This means that m(x) is an odd function. Let (v, il)(x, t) be the solution of the CP

Ve —ilx =0,
p(V)x=—au, &t)eRxRT, (3.6)

= ~ 2u+
v(x,0) =vo(x) + —mop(x) > v4 asx— *oo.
o

As in [24], if |ff°oo(\:/o(x) — v4)dx| suitably small, we can similarly prove that there exists a unique

global solution (\:/, L:t)(x, t) to (3.6) satisfying that \:/(x, t) is even and ﬁ(x, t) is odd.
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The function (\:/, ﬁ)(x, t) is defined by

@, D), t) = (—%mg(x)e_“t, m(x)e“’“), x,t)eRxRT.

Then (¥ — v — 1:/)(x, t) is even, (il — o — \:/)(x, t) is odd. Define

x Yy
Vx,t):= f / (V — v — V) (z, ) dzdy,

—00 —00

O(x,t) = / (@i — il —0)(y, D) dy,

y

Vo) :=/ /(fzo(z)—ﬁo(z)—fz(z,O))dzdy,

—00 —00

X

o) = f (iio(y) — ii(y, 0) — i(y, 0)) dy,

—0o0

namely

Vxx:‘7—

5

-V, Uy=itl—u—

<n

: (3.7)

we can check that Vo(x) =0 and U (oo, t) = 0, then we can finally establish a new working system of
equations

Ve—U=0,
~ = x o = ¥ 1 =
Ur+p(V+V+ Vi) —p(v)=—alU+ Ep(\/)n (x,t) eRT x RT, (3.8)
(V, 0)(x,0)= (0, Up(x)).
Our present goal is to obtain a global solution (V,U)(x,t) to the system (3.8) and its behavior

as t — oo, provided that Ug is suitably small. To do this, it is necessary to know the behavior of
(v, u)(x, t). The diffusion wave (v, it)(x, t) defined in (3.6) enjoys the following properties, cf. [24].

Lemma 3.1. Let [ > 3. Suppose vo — v € L'(RT) N H/(RY) N WHLIRY), let $1y = | [5° (Vo(X) — v4) dx|
be suitably small. Then there exists a unique (weak) solution (v, )(x,t) to (3.6) satisfying the decay properties
|00k 0 — v @] p < Co1y (1 + 0 O7P/2= 0202,
t>0,1<p<oo, j,k=20,2j+k<I-1,
|k |, < Co10 (1 + == VP2=0H0/2

t>0, 1<p<oo, 0<k<I—2. (3.9)

Hence, as in [21,24], the same estimates for the solution (V,U) to (3.8) are obtained. Thus, we
have the following theorem.
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Theorem 3.1. Le~t l = 3 and Ug(x) € HY(R) and 8o = [ugl + 81y + ||L~]0\|l,1 be suitably small. Then the
global solution (V, U)(x, t) of (3.8) uniquely exists and satisfies

V(x,t) e CK(0,00; H*¥(R)), k=0,1,2,3, U(xt)eC*(0,00;H**®)), k=0,1,2,

and

3 2
DA+ AT O 2y + 31+ 0 [HTO e,
k=0 k=0

t
—i—/{Z(l—}—s)k 1Ha’<V(s)HL2(R)+Z(1+s)’<“ HBkU(s)HLZ(R)
0

k=0 k=0
< Céq. (3.10)

Moreover, ifl = 4 and Ug(x) € L'(R), then for 2 < p < oo, the convergence rates can be further improved as
follows

105V @O, < C(80a+ 1Tollpr) (1 +0)~T"VP27K2 102 4 1), k=0,1,2,
[XT©]p < C(S0a+ 100l ) (1 + )~ -VPR=ED2In2 4 6), k=0,1.  (311)

From (3.7), for 2 < p < oo, we can immediately obtain that

|@ =V =D, <cCa+o~VP2 n@ o),

|@—i—i©)], <CA+p~7VPR321n3 ). (312)
Let
VD) =v(x, ), VD) =V(x1t) .
i, 0) =u(x,t), a0 =0, (3.13)

Notice that
[ =7 =D O] oy < NG =V = DO gy
” (u—u—u)) ”LP(]R*) < “(ﬂ —i - () ||LP(R)’ (3.14)
and for any nonnegative integer k, |8,’f\7(x, t)l, |8,’fﬁ(x, )|~ 0(1)e~*, we can easily get
_ A _5
[(v—v—=0) ||L2(R+) <CA+H71In@R+1),
v — V@) <CA+D2In@2 +10),

[(w—u—i) ||L2(R+) <CA+6~7In@+0),

u — il oy < CA+072InQ2 +0). (315)
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Remark. The reason why we have an additional term In(2 +t) is that, in this case, we can only obtain
that ||v¢(t)[|;1 behaves like (1 + t)~! and cannot improve its decay rate since the boundary condition
is Neumann boundary condition.
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