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Abstract. In this paper we present a physically relevant hydrodynamic model

for a bipolar semiconductor device considering Ohmic conductor boundary con-

ditions and a non-flat doping profile. For such an Euler-Poisson system, we
prove, by means of a technical energy method, that the solutions are unique,

exist globally and asymptotically converge to the corresponding stationary so-

lutions. An exponential decay rate is also derived. Moreover we allow that the
two pressure functions can be different.

1. Introduction. Following the series of studies [15, 16] on the bipolar hydrody-
namic system of semiconductors, we consider in this paper a more physical case
with non-flat doping profile, different pressure functions, and the Ohmic conductor
boundary to the bipolar hydrodynamic system (the coupled system of Euler-Poisson
equations) 

nt + jx = 0,

jt + ( j
2

n + p(n))x = nφx − j,
ht + kx = 0,

kt + (k
2

h + q(h))x = −hφx − k,
φxx = n− h−D(x),

(x, t) ∈ [0, 1]× R+, (1)

with the initial data

(n, j, h, k)|t=0 = (n0, j0, h0, k0)(x), x ∈ [0, 1] (2)

and the Ohmic contact boundary

(n, h, φ)|x=0 = (nl, hl, 0) and (n, h, φ)|x=1 = (nr, hr, φr), (3)
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provided with n0(x) > 0 and h0(x) > 0 for x ∈ [0, 1], and with some given constants
nl > 0, hl > 0, nr > 0, hr > 0 and φr, which satisfy the compatibility conditions
n0(0) = nl, n0(1) = nr, h0(0) = hl and h0(1) = hr. Here, n(x, t), h(x, t), j(x, t),
k(x, t) and φ(x, t) represent the electron density, the hole density, the current of
electrons, the current of holes and the electrostatic potential, respectively. The
nonlinear functions p(s) and q(s) denote the pressures of the electrons and the
holes, which are usually different and satisfy

p, q ∈ C3(0,+∞), and s2p′(s) and s2q′(s) are strictly increasing for s > 0. (4)

D(x) ∈ C(0, 1) is the doping profile standing for the density of impurities in semi-
conductor devices.

The hydrodynamic models, introduced first by Bløtekjær [3], are used to describe
the charged fluid particles such as electrons and holes in semiconductor devices
[20, 27] and positively and negatively charged ions in plasmas [20, 34].

For the unipolar semiconductor models (i.e., h = k = 0 in (1)), the stationary
solutions were first investigated by Degond and Markowich [6], and later by Fang
and Ito [7], Gamba [8] and Jerome [19]. The stability of these stationary solutions
were then obtained in [11, 17, 18, 21, 24, 31, 32]. Among them, Luo, Natalini and
Xin [24] first proved the convergence to stationary solutions for the Cauchy problem
in the switch-off case (the current at far fields is zero, or say, the difference of electric
field at far fields is zero). Recently, this was ingeniously improved by Huang, Mei,
Wang and Yu [17, 18] for the switch-on case. Regarding in the bounded domain, Li,
Markowich and Mei [21] obtained the stability of stationary waves for flat doping
profile (i.e., the derivative of doping profile D(x) needs to be absolutely small),
which was then successfully improved by Guo and Strass [11] and Nishibata and
Suzuki [31, 32] independently for non-flat doping profile. For the full system of
unipolar hydrodynamic models, the convergence of the smooth solutions to steady-
state solutions were archived by Ali, Bini and Rionero [2] and Zhu and Hattori [37]
in 1-D switch-off case, and Ali [1] in m-D switch-off case, and further improved by
Mei and Wang [29] in m-D switch-on case. For the other interesting studies on the
entropy weak solutions and limit of relaxation times, we refer to [4, 5, 10, 13, 22,
26, 33, 36] and the references therein.

For the bipolar semiconductor models, the related study is very limited so far, due
to the complexity of structure of the system and other technical difficulty points.
In 1996, Natalini [30] first proved the existence of entropy weak solutions of the
bipolar hydrodynamic system and further showed the convergence of the entropy
solutions to the solutions of the corresponding classical drift-diffusion equations,
which was then extended to the bounded domain case by Hsiao and Zhang [12, 13].
In the switch-off case, when the doping profile is completely flat (i.e., D(x) = 0),
and the two pressure-density functions are exactly identical, i.e., p(s) = q(s) for
s > 0, Gasser, Hsiao and Li [9] showed that the smooth solutions of the Cauchy
problem to the bipolar hydrodynamic model converge to the corresponding diffusion
waves, i.e. the self-similar solutions to the corresponding porous media equations.
A similar result for weak entropy solutions was also obtained by Huang and Li in
[14]. When the system is in the switch-on case, there exist some L2-gaps between
the original solutions and their corresponding diffusion waves, by constructing the
correction functions to delete those L2-gaps, Huang, Mei and Wang [15] successfully
solved the L∞-stability of the diffusion waves even in multidimensional space. The
stability of diffusion waves for the bipolar hydrodynamic system with boundary
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effect in half-space was further proved by Huang, Mei, Wang and Yang [16] with a
different method. As we know, the more physically relevant, but challenging case
for the bipolar hydrodynamic model, never treated so far, is the system with non-
flat doping profile, two distinct pressure-density functions, and the physical Ohmic
contact boundary conditions.

When the doping profile is completely flat: D(x) = 0, and two pressure functions
are identical: p(s) = q(s), the authors [9, 15, 16], by the variable scaling method
[23, 25, 28], observed that the diffusion waves (n̄, j̄, n̄, j̄, 0)(x/

√
1 + t) are the kind

of asymptotic profiles for the original solutions (n, j, h, k, E)(x, t) to (1), where
(n̄, j̄)(x/

√
1 + t) are the solutions to the following nonlinear diffusion (porous media)

equations {
n̄t + j̄x = 0,

p(n̄)x = −j̄,
or equivalently,

{
n̄t − p(n̄)xx = 0,

p(n̄)x = −j̄.

In those papers, (n, j)(x, t) and (h, k)(x, t) behave very similarly, and share the
same asymptotic profiles (n̄, j̄)(x/

√
1 + t). However, when the doping profile is

non-zero: D(x) 6= 0, and two pressure functions are different: p(s) 6= q(s), one can
observe from (1)5 that the behavior of n(x, t) and h(x, t) are totally different, and
E(x, t) 6→ 0 as t→∞, so it is clear that the diffusion waves (n̄, j̄, n̄, j̄, 0)(x/

√
1 + t)

are no long the asymptotic profiles of the original solutions (n, j, h, k, E)(x, t) for the
impure bipolar semiconductor device with two different pressures. So, what will the
asymptotic profiles be for the original solutions in this case? Inspired by the study
on the unipolar case [11, 17, 18, 21, 24, 31, 32], we expect also the corresponding
stationary solutions as the asymptotic profiles. In fact, let us scale the time variable
with arbitrary small number ε > 0 as

x→ x, t→ t/ε, (n, j, h, k, φ)→ (n̄, j̄, h̄, k̄, φ̄),

then from (1) we get

εn̄t + j̄x = 0,

εj̄t + ( j̄
2

n̄ + p(n̄))x = n̄φ̄x − j̄,
εh̄t + k̄x = 0,

εk̄t + ( k̄
2

h̄
+ q(h̄))x = −h̄φ̄x − k̄,

φ̄xx = n̄− h̄−D(x).

If we neglect the small terms with ε, we then obtain the asymptotic profiles to (1)
as follows 

j̄x = 0,

( j̄
2

n̄ + p(n̄))x = n̄φ̄x − j̄,
k̄x = 0,

( k̄
2

h̄
+ q(h̄))x = −h̄φ̄x − k̄,

φ̄xx = n̄− h̄−D(x)

(5)

with the Ohmic contact conditions

(n̄, h̄, φ̄)|x=0 = (nl, hl, 0) and (n̄, h̄, φ̄)|x=1 = (nr, hr, φr), (6)

which are the steady-state solutions, the so-called stationary waves.
In this paper, in order to prove that the IBVP solutions of (1)-(3) exponentially

converge to the stationary solutions of (5) and (6) for the case with the non-flat
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doping profile and two distinct pressure functions, we will adopt the elementary
energy method with some technical skill. In fact our approach differs from the one
used for the unipolar semiconductor model in [17, 18, 21, 24, 31, 32, 37], where the
major working equation after perturbation is a single damped wave equation, which
makes us easily establish the a priori energy estimates. But it also differs from the
bipolar model studied in [9, 15, 16] for D(x) = 0 and p(s) = q(s), which ensures
the asymptotic profiles for both (n, j) and (h, k) to be exactly the same, and leads
that the major working equation after perturbation can be a single Klein-Gordon
equation, so then the a priori energy estimates can be also easily established. In
this paper the major working equations after perturbation will be a system of two
damped wave equations and one Poisson equation with the linear parts all involving
three unknown variables, which makes that the energy estimates cannot be directly
obtained in the usual way. By a heuristic observation, we technically modify the
two damped wave equations and suitably combine them with the Poisson equation
to delete all negative terms, so that we can establish the a priori energy estimates
(see Lemma 3.4 later). This is our key point to prove the exponential convergence.

The paper is organized as follows. In section 2, we are going to state the main
theorems: the first establishes the existence and uniqueness of the stationary so-
lutions of (5) and (6), and the other states the existence and uniqueness of the
original IBVP solutions of (1)-(3) as well as the exponential convergence to the
stationary solutions. Section 3 is devoted to the proof of the convergence theorem
by a technical energy method.

In what follows, C always denotes a generic positive constant, and Ci for i =
1, 2, · · · stand for some specific constants. L2(0, 1) is the space of square-integrable
real-valued functions defined on [0, 1], and its norm is denoted by ‖ · ‖. H l(0, 1)
is the usual Sobolev space with the norm ‖ · ‖l, so in particular ‖ · ‖0 = ‖ · ‖.
For simplicity, we also denote ‖(f, g, h)‖2 = ‖f‖2 + ‖g‖2 + ‖h‖2 and ‖(f, g, h)‖2l =
‖f‖2l + ‖g‖2l + ‖h‖2l . Let T > 0 and B be a Banach space. C0([0, T ];B) is the
space of B-valued continuous functions on [0, T ], and L2([0, T ];B) is the space of
B-valued L2-functions on [0, T ]. The other spaces of B-valued functions on [0,∞)
can be defined similarly.

2. Main results. In this section, we state the existence and uniqueness of the
stationary solutions of (5) and (6) and the convergence of the IBVP solutions (1)-
(3) to the stationary solutions.

Clearly, dividing (5)2 by n and (5)4 by h, and integrating the resultant equations
over [0, 1] with respect to x, we get, from the equation (5)5 and the boundary
condition (6),

φ̄(x) =

∫ x

0

∫ y

0

(n̄− h̄−D)(z)dzdy +
(
φr −

∫ 1

0

∫ y

0

(n̄− h̄−D)(z)dzdy
)
x. (7)

Dividing the second and the fourth equation of (5) by n̄ and h̄ and differentiating
them with respect to x, respectively, we have

j̄ = C1,((
p′(n̄)
n̄ − j̄2

n̄3

)
n̄x

)
x

= n̄− h̄−D(x) + j̄ n̄x

n̄2 ,

k̄ = C2,((
q′(h̄)

h̄
− k̄2

h̄3

)
h̄x

)
x

= h̄− n̄+D(x) + k̄ h̄x

h̄2 ,

(8)
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where C1 and C2 are some constants.
To keep the ellipticity of the system (8), we need

1

n̄
p′(n̄)− j̄2

n̄3
> 0 ⇔ n̄2p′(n̄) > j̄2, (9)

1

h̄
q′(h̄)− k̄2

h̄3
> 0 ⇔ h̄2q′(h̄) > k̄2, (10)

which imply that the velocities of electrons and holes must satisfy

|(ū, v̄)| :=
∣∣∣( j̄
n̄
,
k̄

h̄

)∣∣∣ < ∣∣∣(√p′(n̄),
√
q′(h̄)

)∣∣∣ =: c(n̄, h̄) ( the speed of sound),

namely, the system describes a fully subsonic flow. Since both s2p′(s) and s2q′(s)
are increasing for s > 0 (see (4)), we can conclude that there is a minimum value
(n̄m, h̄m) > 0 such that (9) and (10) hold for (n̄, h̄) > (n̄m, h̄m). Thus, initially we
need to assume

min
x∈[0,1]

(
n2

0(x)p′(n0(x))− j2
0(x)

)
> 0, min

x∈[0,1]

(
h2

0(x)q′(h0(x))− k2
0(x)

)
> 0. (11)

Notice that, when p(s) = q(s) = s, nl = nr and hl = hr, Tsuge [35] proved the
existence and uniqueness of the stationary solutions for non-flat doping profile. In a
similar way as in [31, 32, 35], we can also prove it as follows for p(s) 6= q(s), nl 6= nr
and hl 6= hr. The detail is omitted.

Theorem 2.1 (Existence of stationary solutions). Let δ := |nl − nr|+ |hl − hr|+
|φr| be small enough. Then there exist the unique classical stationary solutions
(n̄, j̄, h̄, k̄, φ̄)(x) to the system (5) with the boundary conditions (6), such that

p′(n̄)− j̄2

n̄2
> 0, x ∈ [0, 1], (12)

q′(h̄)− k̄2

h̄2
> 0, x ∈ [0, 1], (13)

C1m ≤ n̄(x) ≤ C1M , x ∈ [0, 1], (14)

C2m ≤ h̄(x) ≤ C2M , x ∈ [0, 1], (15)

sup
x∈[0,1]

{ 2∑
i=1

[|∂ixn̄|+ |∂ixh̄|] +

2∑
i=0

[|∂ixj̄|+ |∂ixk̄|+ |∂ixφ̄|]
}
≤ Cδ, (16)

where

C1m = inf
x∈[0,1]

{nl, nr, |D(x)|}, C1M = sup
x∈[0,1]

{nl, nr, |D(x)|}, (17)

C2m = inf
x∈[0,1]

{hl, hr, |D(x)|}, C2M = sup
x∈[0,1]

{hl, hr, |D(x)|}. (18)

Now we state our main theorem, the convergence result of the original IBVP
solutions of (1)-(3) to the stationary solutions of (5) and (6).

Let 
N0(x) := n0(x)− n̄(x),

J0(x) := j0(x)− j̄(x),

H0(x) := h0(x)− h̄(x),

K0(x) := k0(x)− k̄(x).

(19)
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Theorem 2.2 (Convergence to stationary solutions). Let (N0, J0, H0,K0) ∈ H2(0, 1).
Then there exists a number ε0 > 0 such that, when ‖(N0, J0, H0,K0)‖2+δ < ε0, then
the solutions (n, j, h, k, φ)(x, t) of (1)-(3) uniquely and globally exist and converge
to the stationary solutions (n̄, j̄, h̄, k̄, φ̄)(x) of (5) and (6) in the form of

max
x∈[0,1]

|(n, j, h, k, φ)(x, t)− (n̄, j̄, h̄, k̄, φ̄)(x)| ≤ Ce−µt, (20)

where µ > 0 is a constant.

3. Proof of convergence. This section is devoted to the proof of Theorem 2.2.
Let 

N(x, t) := n(x, t)− n̄(x),

J(x, t) := j(x, t)− j̄(x),

H(x, t) := h(x, t)− h̄(x),

K(x, t) := k(x, t)− k̄(x),

Φ(x, t) := φ(x, t)− φ̄(x).

(21)

From (1)-(3) and (5)-(6), we have

Nt + Jx = 0,

Jt +
(

(j̄+J)2

N+n̄ −
j̄2

n̄ + p(N + n̄)− p(n̄)
)
x

= (N + n̄)Φx + φ̄xN − J,

Ht +Kx = 0,

Kt +
(

(K+k̄)2

H+h̄
− k̄2

h̄
+ q(H + h̄)− q(h̄)

)
x

= −(H + h̄)Φx − φ̄xH −K,

Φxx = N −H,

(22)

with the initial data

(N, J,H,K)|t=0 = (N0, J0, H0,K0)(x), x ∈ [0, 1] (23)

and the null Dirichlet boundary conditions

(N,H,Φ)|x=0 = (0, 0, 0) and (N,H,Φ)|x=1 = (0, 0, 0). (24)

First of all, for T > 0, let us define the solution space

X(0, T ) := { (N, J,H,K,Φ) | N, H ∈ C0(0, T ;H2(0, 1)) ∩ L2(0, T ;H2(0, 1)),

Nt, Ht ∈ C0(0, T ;H1(0, 1)) ∩ L2(0, T ;H1(0, 1))

J, K ∈ C0(0, T ;H2(0, 1)), Jt, Kt ∈ C0(0, T ;H1(0, 1))

Φ ∈ C0(0, T ;H3(0, 1),Φxx ∈ L2(0, T ;H3(0, 1))},

and

M(T ) := sup
t∈[0,T ]

{‖(N, J,H,K)(t)‖2 + ‖(Nt, Jt, Ht,Kt)(t)‖1 + ‖Φ(t)‖3}.

We now state the following convergence theorem.

Theorem 3.1. Let (N0, J0, H0,K0) ∈ H2(0, 1). Then there exists a number ε0 >
0 such that, when ‖(N0, J0, H0,K0)‖2 + δ < ε0, then the solutions of (22)-(24)
uniquely and globally exist, with

(N, J,H,K,Φ) ∈ X(0,∞),
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and satisfy

‖(N, J,H,K)(t)‖2 + ‖(Nt, Jt, Ht,Kt)(t)‖1 + ‖Φ(t)‖3

+

∫ t

0

e−µ(t−s)[‖(N,H)(s)‖22 + ‖(Nt, Ht,Φxx)(s)‖21]ds

≤ Ce−µt. (25)

Clearly, Theorem 2.2 can be immediately obtained once Theorem 3.1 is proved.To
prove it, we will apply the energy method with the continuation argument based
on the local existence result and the a priori estimates. The local existence can be
obtained by the standard energy estimates with the iteration skill, so we omit it in
detail. To establish the a priori estimates is crucial, and this will be our aim in the
rest of the section.

Differentiating (22)2 and (22)4 in x and substituting Jx = −Nt, Kx = −Ht and
Φxx = N −H, respectively, then we have

Ntt +Nt − F1(N, J)xx + n̄(N −H) = F2(N,H,Φx), (26)

and

Htt +Ht −G1(H,K)xx + h̄(H −N) = G2(N,H,Φx), (27)

where

F1 :=
(j̄ + J)2

N + n̄
− j̄2

n̄
+ p(N + n̄)− p(n̄), (28)

F2 := −(Nx + n̄x)Φx −N(N −H)− φ̄xNx −Nφ̄xx, (29)

G1 :=
(K + k̄)2

H + h̄
− k̄2

h̄
+ q(H + h̄)− q(h̄), (30)

G2 := (Hx + h̄x)Φx +H(N −H) +Hxφ̄x +Hφ̄xx. (31)

Lemma 3.2. Under the hypotheses of Theorem 3.1, it holds

‖(N,H)(t)‖ ≤ 2‖(Nx, Hx)(t)‖, (32)

‖Φ(t)‖ ≤ 2‖Φx(t)‖ ≤ 4‖Φxx(t)‖ ≤ C‖(N,H)(t)‖. (33)

Proof. Since N |x=0 = Nx=1 = 0, H|x=0 = Hx=1 = 0 and Φ|x=0 = Φ|x=1 = 0, by
the Poincaré inequality we immediately obtain

‖N(t)‖ ≤ 2‖Nx(t)‖, ‖H(t)‖ ≤ 2‖Hx(t)‖, ‖Φ(t)‖ ≤ 2‖Φx(t)‖.

For the second inequality of (33), although the boundary of Φx may not be zero,
we can still prove it from the equation (22)5. In fact, multiplying (22)5 by Φ and
integrating it by parts with respect to x over [0, 1], and applying Hölder inequality,
we have ∫ 1

0

Φ2
xdx = −

∫ 1

0

(N −H)Φdx ≤
(∫ 1

0

(N −H)2dx
)1/2(∫ 1

0

Φ2dx
)1/2

=
(∫ 1

0

Φ2
xxdx

)1/2(∫ 1

0

Φ2dx
)1/2

≤ 2
(∫ 1

0

Φ2
xxdx

)1/2(∫ 1

0

Φ2
xdx

)1/2

,

where, in the last step we used ‖Φ(t)‖ ≤ 2‖Φx(t)‖, which then gives

‖Φx(t)‖ ≤ 2‖Φxx(t)‖.

From the equation Φxx = N −H, the third inequality of (33) is obvious.
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Lemma 3.3. Under the hypotheses of Theorem 3.1, it holds

‖J(t)‖2 ≤ Ce−2µ0t‖J0‖2 + C‖(N,Nt, H,Ht)(t)‖2, (34)

‖K(t)‖2 ≤ Ce−2µ0t‖H0‖2 + C‖(N,Nt, H,Ht)(t)‖2, (35)

‖Jt(t)‖2 ≤ Ce−2µ0t‖J0‖2 + C‖(N,Nx, Nt, H,Hx, Ht)(t)‖2, (36)

‖Kt(t)‖2 ≤ Ce−2µ0t‖H0‖2 + C‖(N,Nx, Nt, H,Hx, Ht)(t)‖2, (37)

for some constant µ0 > 0.

Proof. Multiplying (22)2 by J and integrating it with respect to x over [0, 1], we can
obtain (34). Since this can be done as exactly showed in [21], we omit the details.

Similarly, multiplying (22)4 by H and integrating it over [0, 1], we then prove
(35).

From the equation of (22)2, we have

J2
t =

{
−
( (j̄ + J)2

N + n̄
− j̄2

n̄
+ p(N + n̄)− p(n̄)

)
x

+ (N + n̄)Φx + φ̄xN − J
}2

.

Integrating it over [0, 1] and applying (34), gives (36). In a way similar to (22)4

plus the estimate (36) then yields (37).

Lemma 3.4 (Key energy estimates). Under the hypotheses of Theorem 3.1, it holds

‖(N,Nx, Nt, H,Hx, Ht,Φxx)(t)‖2

+

∫ t

0

e−µ(t−s)‖(N,Nx, Nt, H,Hx, Ht,Φxx)(s)‖2ds

≤ Ce−2µt[‖(N0, H0)‖21 + ‖(J0,K0)‖21] (38)

provided with M(T ) + δ � 1.

Proof. By a heuristic observation to (26) and (27), we ingeniously take the following
procedure:

(26) · h̄(N + 2Nt) + (27) · n̄(H + 2Ht), (39)

that is, {
h̄
(
NNt +

1

2
N2 +N2

t

)}
t

+
{
n̄
(
HHt +

1

2
H2 +H2

t

)}
t

+h̄N2
t + n̄H2

t + n̄h̄Φ2
xx +

{
n̄h̄Φ2

xx

}
t

−
{
F1x · h̄(N + 2Nt)

}
x
−
{
G1x · n̄(H + 2Ht)

}
x

+F1xh̄(Nx + 2Nxt) + F1xh̄x(N + 2Nt)

+G1xn̄(Hx + 2Hxt) +G1xn̄x(H + 2Ht)

= F2h̄(N + 2Nt) +G2n̄(H + 2Ht). (40)
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Integrating (40) over [0, 1], we have

d

dt

∫ 1

0

h̄
(
NNt +

1

2
N2 +N2

t

)
dx

+
d

dt

∫ 1

0

n̄
(
HHt +

1

2
H2 +H2

t

)
dx

+

∫ 1

0

[h̄N2
t + n̄H2

t + n̄h̄Φ2
xx]dx+

d

dt

∫ 1

0

n̄h̄Φ2
xxdx

+

∫ 1

0

F1xh̄(Nx + 2Nxt)dx+

∫ 1

0

F1xh̄x(N + 2Nt)dx

+

∫ 1

0

G1xn̄(Hx + 2Hxt)dx+

∫ 1

0

G1xn̄x(H + 2Ht)dx

=

∫ 1

0

F2h̄(N + 2Nt)dx+

∫ 1

0

G2n̄(H + 2Ht)dx. (41)

Applying (34) and (36), by a straightforward but tedious computation, we have∫ 1

0

F1xh̄(Nx + 2Nxt)dx

=

∫ 1

0

( (j̄ + J)2

N + n̄
− j̄2

n̄
+ p(N + n̄)− p(n̄)

)
x
h̄(Nx + 2Nxt)dx

≥
∫ 1

0

h̄
(
p′(n̄)− j̄2

n̄2

)
N2
xdx+

d

dt

∫ 1

0

h̄
(
p′(n̄)− j̄2

n̄2

)
N2
xdx

+
d

dt

∫ 1

0

h̄(N2
x +NxJ0x)

(
p′(N + n̄)− p′(n̄)− (j̄ + J)2

(N + n̄)2
+
j̄2

n̄2

)
dx

−O(1)[δ +M(T )]‖(N,Nx, Nt, J, Jt)(t)‖2

≥
∫ 1

0

h̄
(
p′(n̄)− j̄2

n̄2

)
N2
xdx+

d

dt

∫ 1

0

h̄
(
p′(n̄)− j̄2

n̄2

)
N2
xdx

+
d

dt

∫ 1

0

h̄(N2
x +NxJ0x)

(
p′(N + n̄)− p′(n̄)− (j̄ + J)2

(N + n̄)2
+
j̄2

n̄2

)
dx

−O(1)[δ +M(T )]‖(N,Nx, Nt, H,Hx, Ht)(t)‖2

−O(1)e−2µ0t‖(J0, H0)‖2. (42)

Similarly, we have∫ 1

0

G1xn̄(Hx + 2Hxt)dx

≥
∫ 1

0

n̄
(
q′(h̄)− k̄2

h̄2

)
H2
xdx+

d

dt

∫ 1

0

n̄
(
q′(h̄)− k̄2

h̄2

)
H2
xdx

+
d

dt

∫ 1

0

n̄(H2
x +HxK0x)

(
q′(H + h̄)− q′(h̄)− (k̄ +K)2

(H + h̄)2
+
k̄2

h̄2

)
dx

−O(1)[δ +M(T )]‖(N,Nx, Nt, H,Hx, Ht)(t)‖2

−O(1)e−2µ0t‖(J0, H0)‖2. (43)
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On the other hand, from (28)-(31) and (33), it is easy to see∣∣∣ ∫ 1

0

F1xh̄x(N + 2Nt)dx
∣∣∣ ≤ C[δ +M(T )]‖(N,Nx, Nt)(t)‖2, (44)∣∣∣ ∫ 1

0

G1xn̄x(H + 2Ht)dx
∣∣∣ ≤ C[δ +M(T )]‖(H,Hx, Ht)(t)‖2, (45)∣∣∣ ∫ 1

0

F2h̄x(N + 2Nt)dx
∣∣∣ ≤ C[δ +M(T )]‖(N,Nx, H)(t)‖2, (46)∣∣∣ ∫ 1

0

G2n̄x(H + 2Ht)dx
∣∣∣ ≤ C[δ +M(T )]‖(N,H,Hx)(t)‖2. (47)

Substituting (42)-(47) to (41), we have

d

dt

∫ 1

0

E1(N,Nx, Nt, H,Hx, Ht,Φxx)dx

+
d

dt

∫ 1

0

E2(N,Nx, J,H,Hx,K)dx

+

∫ 1

0

E3(N,Nx, Nt, H,Hx, Ht,Φxx)dx

≤ Ce−2µ0t‖(N0, N0x, J0, H0, H0x,K0‖2

+C[δ +M(T )]‖(N,Nx, Nt, H,Hx, Ht)(t)‖2, (48)

where

E1(N,Nx, Nt, H,Hx, Ht,Φxx)

= h̄
(
NNt +

1

2
N2 +N2

t

)
+ h̄
(
p′(n̄)− j̄2

n̄2

)
N2
x

+n̄
(
HHt +

1

2
H2 +H2

t

)
+ n̄

(
q′(h̄)− k̄2

h̄2

)
H2
x + n̄h̄Φ2

xx, (49)

and

E2(N,Nx, J,H,Hx,K)

= h̄(N2
x +NxJ0x)

(
p′(N + n̄)− p′(n̄)− (j̄ + J)2

(N + n̄)2
+
j̄2

n̄2

)
+n̄(H2

x +HxK0x)
(
q′(H + h̄)− q′(h̄)− (k̄ +K)2

(H + h̄)2
+
k̄2

h̄2

)
, (50)

and

E3(N,Nx, Nt, H,Hx, Ht,Φxx)

= h̄N2
t + n̄H2

t + n̄h̄Φ2
xx + h̄

(
p′(n̄)− j̄2

n̄2

)
N2
x + n̄

(
q′(h̄)− k̄2

h̄2

)
H2
x. (51)

Notice that,

C̄1(N2 +N2
t ) ≤ NNt +

1

2
N2 +N2

t ≤ C̄2(N2 +N2
t ), (52)

and

C̄1(H2 +H2
t ) ≤ HHt +

1

2
H2 +H2

t ≤ C̄2(H2 +H2
t ) (53)
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for some positive constants C̄1 and C̄2. From (52), (53), (12) and (13), we then
obtain

C1(N2 +N2
x +N2

t +H2 +H2
x +H2

t + Φxx)

≤ E1(N,Nx, Nt, H,Hx, Ht,Φxx)

≤ C2(N2 +N2
x +N2

t +H2 +H2
x +H2

t + Φxx), (54)

and

C3(N2 +N2
x +N2

t +H2 +H2
x +H2

t + Φxx)

≤ E3(N,Nx, Nt, H,Hx, Ht,Φxx)

≤ C4(N2 +N2
x +N2

t +H2 +H2
x +H2

t + Φxx), (55)

and

|E2(N,Nx, J,H,Hx,K)|
≤ C[δ +M(T )]‖(N,Nx, J,H,Hx,K)(t)‖2

≤ C[δ +M(T )]
(
e−2µ0t‖(J0, H0)‖2 + ‖(N,Nx, Nt, H,Hx, Ht)(t)‖2

)
, (56)

for some positive constants C1, C2, C3 and C4.
Multiplying (48) by e2µt for a positive constant µ which will be determined later,

and integrating the resultant equation over [0, t], we get

e2µt

∫ 1

0

E1(N,Nx, Nt, H,Hx, Ht,Φxx)dx

+e2µt

∫ 1

0

E2(N,Nx, J,H,Hx,K)dx

+

∫ t

0

e2µs

∫ 1

0

E3(N,Nx, Nt, H,Hx, Ht,Φxx)dx

−2µ

∫ t

0

e2µs

∫ 1

0

E1(N,Nx, Nt, H,Hx, Ht,Φxx)dx

−2µ

∫ t

0

e2µs

∫ 1

0

E2(N,Nx, J,H,Hx,K)dx

≤
∫ 1

0

E1(N,Nx, Nt, H,Hx, Ht,Φxx)|t=0dx

+

∫ 1

0

E2(N,Nx, J,H,Hx,K)|t=0dx

+
C

2(µ0 − µ)
(1− e−2(µ0−µ)t)‖(N0, N0x, J0, H0, H0x,K0‖2

+C[δ +M(T )]

∫ t

0

e2µs‖(N,Nx, Nt, H,Hx, Ht)(s)‖2ds. (57)
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Applying (54)-(56) to (57), we have

C1e
2µt‖(N,Nx, Nt, H,Hx, Ht,Φxx)(t)‖2

−Ce2µt[δ +M(T )]‖(N,Nx, Nt, H,Hx, Ht)(t)‖2

+C3

∫ t

0

e2µs‖(N,Nx, Nt, H,Hx, Ht,Φxx)(s)‖2ds

−2µC2

∫ t

0

e2µs‖(N,Nx, Nt, H,Hx, Ht,Φxx)(s)‖2ds

−2µC[δ +M(T )]

∫ t

0

e2µs‖(N,Nx, Nt, H,Hx, Ht)(s)‖2ds

≤ C‖(N,Nx, Nt, H,Hx, Ht,Φxx)(0)‖2

+C[δ +M(T )]
(
‖(J0, H0)‖2 + ‖(N,Nx, Nt, H,Hx, Ht)(0)‖2

)
+

C

2µ0 − 2µ
(1− e−2(µ0−µ)t)‖(N0, N0x, J0, H0, H0x,K0‖2

+C[δ +M(T )]

∫ t

0

e2µs‖(N,Nx, Nt, H,Hx, Ht)(s)‖2ds. (58)

Let

0 < µ < min
{
µ0,

C3

2C2

}
, (59)

and

δ +M(T )� 1,

then (58) yields the desired estimate

‖(N,Nx, Nt, H,Hx, Ht,Φxx)(t)‖2

+

∫ t

0

e−2µ(t−s)‖(N,Nx, Nt, H,Hx, Ht,Φxx)(t)‖2ds

≤ Ce−2µt[‖(N0, H0)‖21 + ‖(J0,K0)‖21].

The proof is complete.

Lemma 3.5. It holds

‖(Nxx, Nxt, Hxx, Hxt,Φxxx)(t)‖2

+

∫ t

0

e−2µ(t−s)‖(Nxx, Nxt, Hxx, Hxt,Φxxx)(s)‖2ds

≤ Ce−2µt[‖(N0, H0)‖22 + ‖(J0,K0)‖22] (60)

provided that M(T ) + δ � 1.

Proof. By taking∫ t

0

e2µs

∫ 1

0

{
∂x(26) · h̄(Nx + 2Nxt) + ∂x(27) · n̄(Hx + 2Hxt)

}
dxds,

as showed in Lemma 3.4, we can similarly prove (60). The detail is omitted.

Combining Lemma 3.2-Lemma 3.5, we immediately obtain the following estimate.



BIPOLAR HYDRODYNAMIC MODEL OF SEMICONDUCTORS 549

Lemma 3.6. It holds

‖(N, J,H,K)(t)‖2 + ‖(Nt, Jt, Ht,Kt)(t)‖1 + ‖Φ(t)‖3

+

∫ t

0

e−µ(t−s)[‖(N,H)(s)‖22 + ‖(Nt, Ht,Φxx)(s)‖21]ds

≤ Ce−µt. (61)

provided that δ +M(T )� 1.
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[21] H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of solutions of the hydrodynamic

model of semiconductors, Proc. Royal Soc. Edinburgh, Sect. A, 132 (2002), 359–378.
[22] H.-L. Li, P. Markowich and M. Mei, Asymptotic behavior of subsonic entropy solutions of the

isentropic Euler-Poisson equations, Quart. Appl. Math., 60 (2002), 773–796.

[23] C.-K. Lin, C.-T. Lin and M. Mei, Asymptotic behavior of solution to nonlinear damped p-
system with boundary effect, Int. J. Numer. Anal. Model. Ser. B, 1 (2010), 70–92.

[24] T. Luo, R. Natalini and Z. Xin, Large time behavior of the solutions to a hydrodynamic model

for semiconductors, SIAM J. Appl. Math., 59 (1998), 810–830.
[25] P. Marcati, M. Mei and B. Rubino, Optimal convergence rates to diffusion waves for solutions

of the hyperbolic conservation laws with damping, J. Math. Fluid Mech., 7 (2005), suppl. 2,

S224–S240
[26] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and

relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129–145.
[27] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, “Semiconductor Equations,” Springer-

Verlag, Vienna, 1990.

[28] M. Mei, Best asymptotic profile for hyperbolic p-sytem with damping, SIAM J. Math. Anal.,
42 (2010), 1–23.

[29] M. Mei and Y. Wang, Stability of stationary waves for full Euler-Poisson system in multi-

dimensional space, Commun. Pure Appl. Anal., 11 (2012), 1775–1807.
[30] R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equa-

tions, J. Math. Anal. Appl., 198 (1996), 262–281.

[31] S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic
model of semiconductors, Osaka J. Math., 44 (2007), 639–665.

[32] S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a thermal hy-

drodynamic model for semiconductors, Arch. Rational Mech. Anal., 192 (2009), 187–215.
[33] F. Poupaud, M. Rascle and J.-P. Vila, Global solutions to the isothermal Euler-Poisson system

with arbitrarily large data, J. Differential Equations, 123 (1995), 93–121.
[34] A. Sitenko and V. Malnev, “Plasma Physics Theory,” Applied Mathematics and Mathematical

Computation, 10. Chapman & Hall, London, 1995.

[35] N. Tsuge, Existence and uniqueness of stationary solutions to one-dimensional bipolar hy-
drodynamic model of semiconductors, Nonlinear Analysis, 73 (2010), 779–787.

[36] B. Zhang, Convergence of the Godunov scheme for a simplified one-dimensional hydrody-
namic model for semiconductor devices, Comm. Math. Phys., 157 (1993), 1–22.

[37] C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic

model of semiconductors of two species, J. Differential Equations, 166 (2000), 1–32.

[38] C. Zhu and H. Hattori, Asymptotic behavior of the solution to a nonisentropic hydrodynamic
model of semiconductors, J. Differential Equations, 144 (1998), 353–389.

Received March 2012, revised May 2012.

E-mail address: ming.mei@mcgill.ca

E-mail address: bruno.rubino@univaq.it

E-mail address: rosella.sampalmieri@univaq.it

http://www.ams.org/mathscinet-getitem?mr=MR2812591&return=pdf
http://dx.doi.org/10.1016/j.jde.2011.04.007
http://dx.doi.org/10.1016/j.jde.2011.04.007
http://www.ams.org/mathscinet-getitem?mr=MR2671993&return=pdf
http://dx.doi.org/10.1016/j.na.2009.04.042
http://dx.doi.org/10.1016/j.na.2009.04.042
http://www.ams.org/mathscinet-getitem?mr=MR1818867&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1899826&return=pdf
http://dx.doi.org/10.1017/S0308210500001670
http://dx.doi.org/10.1017/S0308210500001670
http://www.ams.org/mathscinet-getitem?mr=MR1939010&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2837401&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1661255&return=pdf
http://dx.doi.org/10.1.1.55.4600
http://dx.doi.org/10.1.1.55.4600
http://www.ams.org/mathscinet-getitem?mr=MR2192850&return=pdf
http://dx.doi.org/10.1007/s00021-005-0155-9
http://dx.doi.org/10.1007/s00021-005-0155-9
http://www.ams.org/mathscinet-getitem?mr=MR1328473&return=pdf
http://dx.doi.org/10.1007/BF00379918
http://dx.doi.org/10.1007/BF00379918
http://www.ams.org/mathscinet-getitem?mr=MR1063852&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2596544&return=pdf
http://dx.doi.org/10.1137/090756594
http://dx.doi.org/10.3934/cpaa.2012.11.1775
http://dx.doi.org/10.3934/cpaa.2012.11.1775
http://www.ams.org/mathscinet-getitem?mr=MR1373540&return=pdf
http://dx.doi.org/10.1006/jmaa.1996.0081
http://dx.doi.org/10.1006/jmaa.1996.0081
http://www.ams.org/mathscinet-getitem?mr=MR2360944&return=pdf
http://dx.doi.org/10.1007/BF01210792
http://dx.doi.org/10.1007/BF01210792
http://www.ams.org/mathscinet-getitem?mr=MR2486595&return=pdf
http://dx.doi.org/10.1007/s00205-008-0129-1
http://dx.doi.org/10.1007/s00205-008-0129-1
http://www.ams.org/mathscinet-getitem?mr=MR1359913&return=pdf
http://dx.doi.org/10.1006/jdeq.1995.1158
http://dx.doi.org/10.1006/jdeq.1995.1158
http://www.ams.org/mathscinet-getitem?mr=MR1368631&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2653748&return=pdf
http://dx.doi.org/10.1016/j.na.2010.04.015
http://dx.doi.org/10.1016/j.na.2010.04.015
http://www.ams.org/mathscinet-getitem?mr=MR1244856&return=pdf
http://dx.doi.org/10.1007/BF02098016
http://dx.doi.org/10.1007/BF02098016
http://www.ams.org/mathscinet-getitem?mr=MR1779253&return=pdf
http://dx.doi.org/10.1006/jdeq.2000.3799
http://dx.doi.org/10.1006/jdeq.2000.3799
http://www.ams.org/mathscinet-getitem?mr=MR1616897&return=pdf
http://dx.doi.org/10.1006/jdeq.1997.3381
http://dx.doi.org/10.1006/jdeq.1997.3381
mailto:ming.mei@mcgill.ca
mailto:bruno.rubino@univaq.it
mailto:rosella.sampalmieri@univaq.it

	1. Introduction
	2. Main results
	3. Proof of convergence
	Acknowledgments
	REFERENCES

