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This paper is to study the asymptotic behavior of solutions for an initial–boundary
value problem to Jin–Xin’s 2 × 2 relaxation hyperbolic system. When the initial data
are small perturbation of the superposition of two travelling waves at t = 0, subsequent
to the previous work,6 we further show the convergence rates of the IBVP solutions to
the superposition of two waves. Precisely, when the initial perturbations decay in the

exponential or algebraic forms, we prove that the corresponding solutions tend to the
superposition of two waves time-asymptotically in the exponential or algebraic forms,
respectively. The method adopted is the weighted energy method. The use of a shift
function for the forward travelling wave and the special choice of shift functions for
backward travelling plays a key role to overcome the difficulties caused by the boundary
and degeneration.

1. Introduction

The effect of relaxation is often taken into consideration when the physical

situation of an investigated material is in nonequilibrium, such as gases in

thermo-nonequilibrium states, kinetic theory of mono-atomic gases, water waves,

viscoelasticity with memory, chromatography, etc.5,36
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In this paper, we consider the initial boundary value problems (IBVP) for the

relaxation model on the quarter plane (x, t) ∈ R+ ×R+ut + vx = 0 ,

vt + aux = −1

ε
(v − f(u)) ,

(1.1)

with the initial boundary values{
(u, v)|t=0 = (u0, v0)(x), x ≥ 0 , (u0, v0)(+∞) = (u+, v+) ,

v(0, t) = v− , t ≥ 0 ,
(1.2)

where the function f(u) is smooth and nonconvex, v+ = f(u+), a > 0 is a constant.

Equation (1.1) is the simplest form to the general conservation laws with

relaxation proposed by Jin and Xin in Ref. 11, where the systems were used to

numerically approximate a set of corresponding hyperbolic conservation laws with

non-oscillation, which is exactly a local relaxation approximation. Equation (1.1)

is also a simplified form to the general 2 × 2 conservation laws with relaxation

considered by T.-P. Liu in Ref. 20.

As the relaxation time ε goes to 0+, we formally obtain from (1.1) the following

scalar conservation laws

ut + f(u)x = 0 . (1.3)

The relation between 2×2 conservation laws with relaxation and their corresponding

equilibrium equation was studied theoretically by T.-P. Liu20 first. Therein, he

justified the nonlinear stability criteria (the sub-characteristic condition, see also

Ref. 36) for elementary waves and showed the stability of them. For (1.1), the

corresponding sub-characteristic condition is

−
√
a < f ′(u) <

√
a . (1.4)

For the general model, the stability of travelling waves with decay rates for

the Cauchy problem and the stability theory but without decay rate for the initial

boundary problem were studied by Zingano,39 Nishibata,31 and Nishibata and Yu,33

respectively. The problem on the convergence to the diffusion waves was also given

by Chern,4 Yao and Zhu.38 Related results on the relaxation time limit can be

found in Chen and T.-P. Liu,3 Chen, Levermore and T.-P. Liu,2 Natalini,30 Marcati

and Rubino.24

For the simplest model (1.1), the stability of travelling wave solutions for the

Cauchy problem were studied by H. L. Liu, Woo and Yang,17 H. L. Liu, Wang

and Yang,16 Mascia and Natalini,25 and finally Mei and Yang.29 The authors29

improved the algebraic decay rates obtained in Ref. 17 to the optimal one, and also

contributed an exponential decay rate when the initial perturbation decays in a

spatial exponential form. The convergence to the travelling wave solutions, as the

relaxation time goes to zero, was recently considered by Jin and H. L. Liu.10 The

asymptotic relaxation limit for (1.1) with boundary effect was discussed by Wang
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and Xin.35 Furthermore, the numerical computation and the properties of entropy

solution for the model (1.1) were shown by Jin and Levermore,9 Jin.8 For Jin–Xin’s

model in higher space dimensions, the stability of front waves was shown by Luo

and Xin.23

Boundary layer effect is always strong in some sense. Physically, such a

phenomenon (see Ref. 34) occurs, for instance, in describing the interaction of

fluid molecules with the molecules of the solid boundary, and has been modelled

with the scalar viscous conservation laws observed by Xin37 and the Boltzmann

equations investigated by J.-G. Liu and Xin.18,19 In addition, the appearance of

boundary makes it impossible for a travelling wave to be an exact solution to the

IBVP problem.31 Regarding the stability of travelling waves to the IBVP for other

model equations of hyperbolic conservation laws, we refer to those interesting works

in Refs. 14, 21, 22 and 26.

Recently, the IBVP (1.1) and (1.2) was first considered by Mei and Rubino in

Ref. 28 for the stability of travelling waves. Let u− be the other state end piont for

u(x, t) and satisfy

v− = f(u−) . (1.5)

If the Rankine–Hugoniot condition

s =
v+ − v−
u+ − u−

=
f(u+)− f(u−)

u+ − u−
and the Oleinik’s entropy condition

f(u)− f(u±)− s(u− u±)

{
< 0 , u+ < u < u−

> 0 , u+ > u > u−

hold, then there exists a unique (up to shift) travelling wave solution (Us, Vs)(x−st)
for (1.1) with (Us, Vs)(±∞) = (u±, v±). In the case of s ≥ 0, the authors28 showed

the convergence with decay rates for the IBVP solutions to the corresponding

travelling waves. However, in another case of s < 0, since there appears a really

large boundary layer

|v(0, t)− Vs(0− st)| = |v− − Vs(−st)| → |v− − v+| , as t→ +∞ ,

the stability of waves was not clear and proposed as an open question therein. Very

recently, Hsiao and Li6 answered the question. It is found that, the wave with the

speed s < 0 alone is not the asymptotic state of the IBVP solutions, and some

new front waves should be considered. By suitably extending the flux function f(u)

smoothly from u = u+ to u = u1
−, such that

v− = f(u1
−) (1.6)

and (u1
−, v−) and (u+, v+) with the extended f(u) (we still use the notation f)

on [u1
−, u+] satisfy the Rankine–Hugoniot condition and the Oleinik’s entropy

condition, see Fig. 1.1, one gets a new front wave (Us1 , Vs1)(x − s1t) with s1 > 0
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Fig. 1.1.

and (Us1 , Vs1)(±∞) = (u+/u
1
−, v±). It is proved in Ref. 6 that the superposition of

the two waves

(Us1 , Vs1) + (Us, Vs)− (u+, v+)

can be the asymptotic state of the IBVP (1.1) and (1.2), when the corresponding

initial perturbations are small. However, the decay rates are not discussed in Ref. 6,

in particular, the degenerate case f ′(u+) = s (see Fig. 1.1) is not studied.

In this paper, we first establish the algebraic and exponential decay rates of the

solutions, obtained in Ref. 6, to the superposition of two nondegenerate travelling

waves. We prove that the rate is somehow like O((1 + t)−α/2) or O(e−θt/2) with

some constants α, θ > 0. Here the flux function f(u) can be allowed to be general

nonconvex. To treat the nonconvexity, as in Refs. 6, 28 and 29 we will use two weight

functions. In addition, to obtain the exponential decay rates, we need to study

the structure relations of flux functions at the points u = u1
−, u+ and u−. Then,

we consider the same IBVP in degenerate case. For simplicity, we only consider

the case f ′(u+) = s, to which new difficulty occurs since (Us, Vs) tends to (u+, v+)

in the algebraic form like |x − st|−1 as |x − st| goes to infinity, and this is not

integrable in L1-sense. To overcome this difficulty, we choose a suitable shift function

like ec(x−st) or (x−st)k for the back wave (Us, Vs). Thus, we can show the existence

of global smooth solutions for general nonconvex f(u), and obtain the algebraic and

exponential decay rates by using the weighted energy method. Similarly to that used

by Liu and Yu,22 Liu and Nishihara,21 Matsumura and Mei,26 Mei and Rubino,28

a shift function for the front travelling wave is used to overcome the difficulties

caused by the boundary. To overcome the difficulties caused by the degeneration,

we use two special kinds of shift functions for the backward travelling wave, where

the α in the algebraic decay rate O((1 + t)−α/2) is restrained by the degeneration

and the choice of shift functions for the backward travelling wave.

This paper is organized as follows. In Sec. 2, we give some preliminaries on

the travelling wave solutions to Cauchy problem for (1.1), then we discuss the

nondegenerate case in Sec. 3. We will prove that the solutions (u, v)(x, t) converge,
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with some algebraic and exponential decay rates, to the superposition of two

travelling waves as t goes to infinity. In Sec. 4, we study the degenerate case and

prove the existence of global smooth solutions. The exponential and algebraic decay

rates like O((1 + t)−α/2) and O(e−θt/2) are also obtained.

Notations. L2 denotes the space of measurable functions on R or R+ which are

square integrable with the norm ‖f‖ = (
∫
|f(x)|2dx)1/2. H l(l ≥ 0) denotes the

Sobolev space of L2-functions f on R or R+ whose derivatives ∂jxf, j = 1, . . . , l,

are also L2-functions, with the norm ‖f‖l = (
∑l
j=0 ‖∂jxf‖2)1/2. L2

w denotes the

space of measurable functions on R or R+ which satisfy w(x)1/2f ∈ L2, where

w(x) > 0 is a weight function, with the norm |f |w = (
∫
w(x)|f(x)|2dx)1/2. H l

w

(l ≥ 0) denotes the weighted Sobolev space of L2
w-functions f onR whose derivatives

∂jxf, j = 1, . . . , l, are also L2
w-functions, with the norm |f |l,w = (

∑l
j=0 |∂jxf |2w)1/2.

Denoting 〈x〉 =
√

1 + x2 and

〈x〉+ =

{√
1 + x2 , if x > 0 ,

1 , if x < 0 ,

we will make use of the spaces L2
〈x〉+ and H l

〈x〉+(l = 1, 2) later. If w(x) = 〈x〉α, we

denote L2
w = L2

α. The weighted space L2
w for such weight function w = 〈x〉α〈x〉+ is

denoted as L2
α〈x〉+ , and the corresponding norm is | · |α〈x〉+ . Since we consider x ∈

R+, sometimes we mean 〈x〉 = 〈x〉+. We denote also f(x) ∼ g(x) as x → x0 when

C−1g ≤ f ≤ Cg in a neighborhood of x0, and |(f1, f2, f3)|X ∼ |f1|X+ |f2|X+ |f3|X ,

where | · |X is the norm of space X. Without any ambiguity, we denote several

constants by Ci, or ci, i = 1, 2, . . ., or by C. When C−1 ≤ w(x) ≤ C for x ∈ R, we

note that L2 = H0 = L2
w = H0

w and ‖ · ‖ = ‖ · ‖0 ∼ | · |w = | · |0,w.

Let T and B be a positive constant and a Banach space, respectively. We denote

Ck(0, T ;B) (k ≥ 0) as the space of B-valued k-times continuously differentiable

functions on [0, T ], and L2 (0, T ;B) as the space of B-valued L2-functions on [0, T ].

The corresponding spaces of B-valued function on [0,∞) are defined similarly.

Finally, in this paper, we always assume the relaxation time ε = 1 without loss

of generality, because we can rescale the variable (x, t) to a new one (εx, εt), then

we have Eq. (1.1) with ε = 1.

2. Preliminaries

A travelling wave solution to system (1.1) is a solution (Us, Vs)(η), (η = x − st),
satisfying (1.1) and (Us, Vs)(±∞) = (u±, v±) with v± = f(u±), namely,

−sU ′s + V ′s = 0 ,

−sV ′s + aU ′s = f(U)− V ,
(Us, Vs)(±∞) = (u±, v±) .

(2.1)
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Here ′ = d/dη. Integrating the first equation of (2.1) over (−∞, η] and [η,+∞)

respectively, and noticing (Us, Vs)(±∞) = (u±, v±), we have

−sUs + Vs = −su± + v± = −su± + f(u±) , (2.2)

which shows that, the speed s and the two states (u±, v±) satisfy the Rankine–

Hugoniot condition

s =
v+ − v−
u+ − u−

=
f(u+)− f(u−)

u+ − u−
. (2.3)

Substituting (2.2) into the second equation of (2.1) we obtain

(a− s2)U ′s = f(Us)− f(u±)− s(Us − u±) ≡: h(Us) . (2.4)

It is well known that the ordinary differential equation (2.4) has a smooth solution

if and only if the Rankine–Hugoniot condition (2.3) and the Oleinik’s entropy

condition

h(u) = f(u)− f(u±)− s(u− u±)

{
< 0 , u+ < u < u−

> 0 , u+ > u > u−
(2.5)

hold. This entropy condition implies

f ′(u+) < s < f ′(u−) (2.6)

or

f ′(u+) = s < f ′(u−) or f ′(u+) < s = f ′(u−) or f ′(u±) = s . (2.7)

Condition (2.6) is the well-known Laxian shock condition. Here we will call it the

nondegenerate shock condition and we will refer to each of the possibilities in (2.7)

as the degenerate shock condition, or the contact shock condition.

As shown in Fig. 1.1, there are two waves with different state points. One is the

back wave (s < 0) with the state points (u±, v±), another is the front wave (s1 > 0)

with the state points (u+/u
1
−, v±). Throughout this paper, we mark the extended

flux function on u ∈ [u1
−, u+] still as f(u). Now we first state some preliminaries on

the back wave to (1.1) with (u±, v±) which is given by (1.2), as shown in Fig. 1.1,

and satisfies (2.3) and (2.5) with u+ < u− and f(u+) > f(u−), namely, s < 0.

Lemma 2.1.16 Assume f ∈ C2, and the conditions (2.3) and (2.5) hold. There

exists a unique solution (Us, Vs)(η) (η = x−st) up to a shift to (1.1) with 0 < s2 < a

(s < 0), which satisfies

(a− s2)U ′s = h(Us) < 0 , for u+ < Us < u− .

In addition, as η → ±∞, it holds that for f ′(u±) 6= s

|h(Us)| ∼ |(Us − u±, Vs − v±)| ∼ exp{−c±|η|} ,

and that for f(u) = su+ (u− u±)(n+1), n = 1, 2, 3, . . . ,

|h(Us)|1/(1+n) ∼ |(Us − u±, Vs − v±)| ∼ |η|−1/n ,

where c± = |f ′(u±)− s|/(a− s2) > 0.
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Similarly, we also have some results on the front travelling wave solution to (1.1),

which connects the states (u+/u
1
−, v±), satisfying the Rankine–Hugoniot (R-H)

condition (2.8) and Oleinik’s entropy condition (2.9), i.e.

s1 =
v+ − v−
u+ − u1

−
=
f(u+)− f(u1

−)

u+ − u1
−

> 0 , (2.8)

h1(u) = f(u)− f(u+/u
1
−)− s(u− u+/u

1
−) > 0 , u+ > u > u1

− , (2.9)

where u1
− < u+, v− = f(u1

−) < f(u+) = v+ such that s1 > 0. The symbol

u+/u
1
− implies “u+ or u1

−”. Since the extended part of flux function f(u) on

[u1
−, u+] is suitably chosen, it is possible to make the front wave (Us1 , Vs1)(x− s1t)

nondegenerate, namely, the Laxian entropy condition holds

f ′(u+) < s1 < f ′(u1
−) . (2.10)

Lemma 2.2. Assume f ∈ C2, and the conditions (2.8), (2.9) and (2.10) hold.

There exists a unique solution (Us1 , Vs1)(η) (η = x− s1t) up to a shift to (1.1) with

0 < s2
1 < a (s1 > 0), which satisfies (Us1 , Vs1)(±∞) = (u+/u

1
−, v±) and

(a− s2
1)U

′
s1

= h1(Us1) > 0 , for u1
− < Us1 < u+ .

In addition, as η → ±∞, it holds that

|h1(Us1)| ∼ |(Us1 − u+/u
1
−, Vs1 − v±)| ∼ exp{−c′±|η|} ,

where c′± = |f ′(u+/u
1
−)− s1|/(a− s2

1) > 0.

Define the following weight functions (see Refs. 27 and 29),

Q1(Us1) =
(Us1 − u1

−)(u+ − Us1)
h1(Us1)

, Q2(Us1) =
(Us1 − u1

−)1/2(u+ − Us1)1/2

h1(Us1)
,

(2.11)

for (Us1 , Vs1). There are properties for Q1, Q2 given in Refs. 27 and 29 as follows.

Lemma 2.3.27,29 Let (Us1 , Vs1)(η) be the travelling wave to (1.1) given by

Lemma 2.2, then it holds, as η → ±∞, that

Q1(Us1) ∼ O(1) , Q2(Us1) ∼ ec
′
±|η|/2 (2.12)

and

(Q1h1)
′′(Us1) = −2 ,

∣∣∣∣Qi(Us1)ηQi(Us1)

∣∣∣∣ = O(1)
u+ − u1

−
a− s2

1

, i = 1, 2 , (2.13)

h1(Us1)(Q2h1)
′′(Us1) = O(1)Q2(Us1) . (2.14)
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3. IBVP for Nondegenerate Case

In this section, we consider the IBVP (1.1) and (1.2) when the initial data are

a perturbation of the superposition of the two nondegenerate travelling waves

mentioned before, i.e.

f ′(u1
−) > s1 > f ′(u+) , f ′(u−) > s > f ′(u+) . (ND)

The existence and large time behavior of global smooth solution to IBVP (1.1) and

(1.2) under condition (ND) was proved in Ref. 6. What we expect is to obtain the

exponential and algebraic decay rates for the convergence.

3.1. Main results

For any given but fixed constants x1 and d10 satisfying 0 < −d10 < x1, we first give

the essential assumption on the initial data u0 in this section∫ ∞
0

[u0(x) − Us1(x+ d10)− Us(x+ x1) + u+] dx = 0 . (3.1)

Denote

(Up, Vp)(x, t) = (Us1 , Vs1)(x− s1t+ d1(t) + d10)

+ (Us, Vs)(x− st+ x1)− (u+, v+) , (3.2)

where d1(t) is our desired shift function chosen as the solution of the following

ordinary differential equation:
d′1(t)[u+ − Us1(d10 − s1t+ d1(t))]

= v− − Vs1(d10 − s1t+ d1(t)) + v+ − Vs(x1 − st) ,
d1(0) = 0 .

(3.3)

It will be proved in Lemma 3.4 below that d1(t) ∈ C1(0,+∞), d′1(t) ∈
L1(0,+∞), and d1(t) → d1∞ < +∞ as t → +∞, where the value of d1∞ can

be determined, by using the original idea of Matsumura and Mei to determine their

shift,26 as

d1∞ =
1

u+ − u1
−

{∫ +∞

0

(Us(x+ x1)− u+)dx+

∫ 0

−∞
(u1
− − Us1(x+ d10))dx

}
.

Set

w0(x) = −
∫ +∞

x

(u0(y)− Up(y, 0))dy , z0(x) = v0(x)− Vp(x, 0) .

The authors in Ref. 6 proved the global existence and uniqueness of smooth solution

for the IBVP (1.1) and (1.2) as follows.

Theorem 3.1. (Convergence6) Suppose that f ∈ C3, the conditions (ND), (3.1),

(2.3), (2.5), (2.8) and (2.9) hold. Let a > 0 be a large constant, w0 ∈ H2, and
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z0 ∈ H1. Then there exists a constant ε1 > 0, such that if ‖w0‖2 +‖z0‖2 + |d10|−1 +

x−1
1 < ε1, a global smooth solution (u, v)(x, t) to (1.1) and (1.2) exists uniquely and

satisfies

sup
x∈R+

|(u, v)(x, t) − (Up, Vp)(x, t)| → 0 , as t→ +∞ .

Furthermore, we are going to state the theorems on decay rates. For simplicity,

we define

Q0,2(x) =

{
ec
′
+(x+d10)/2 , if x > −d10 ,

1 , if 0 ≤ x < −d10 .
(3.4)

Due to d10 < 0, we have Q0,2(x) ∼ Q2(Us1(x+ d10)) on x ≥ 0 by Lemma 2.3.

We now state the theorem on the algebraic decay rates.

Theorem 3.2. (Algebraic Rate) Assume the hypotheses of Theorem 3.1 hold.

Suppose w0 ∈ L2
α ∩H2, z0 ∈ L2

α ∩H1 for some α > 0. Then, if (w0, z0) is small

enough in (L2
α ∩ H2) × (L2

α ∩ H1), the IBVP (1.1) and (1.2) has a unique global

solution (u, v)(x, t) satisfying

sup
x∈R+

|(u, v)(x, t)− (Up, Vp)(x, t)| ≤ CN2(1 + t)−α/2 , (3.5)

where N2 = |(w0, z0)|α + ‖w0‖2 + ‖z0‖1 + ec
′
−d10/4 + e−c+x1/4.

To obtain the exponential decay rates, we need the following structure conditions

for f(u) at the points u± and u1
−,

c+ >
1

4
max{c′+, c′−} , 5c′−s1 + 16c+s < 0 , (3.6)

where c+ and c′± are defined in Lemmas 2.1 and 2.2, respectively.

Theorem 3.3. (Exponential Rate) Assume that the hypotheses of Theorem 3.1 and

condition (3.6) hold. Suppose that w0 ∈ H2
Q0,2

, z0 ∈ H1
Q0,2

. There exist ε2 > 0 and

θ = θ(|u+−u1
−|, |u+−u−|, a) > 0 such that if |w0|2,Q0,2 + |z0|1,Q0,2 + |d10|−1+x−1

1 ≤
ε2, then the IBVP (1.1) and (1.2) has a unique global solution (u, v)(x, t) satisfying

u− Up ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

) ,

v − Vp ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

)

and

sup
x∈R+

|(u, v)(x, t)− (Up, Vp)(x, t)| ≤ CN1e
−θt/2 , t ≥ 0 , (3.7)

where N1 = |w0|2,Q0,2 +|z0|1,Q0,2 +ec
′
−d10/4+e−c̃+x1/4 with c̃+ = min{4c+−c′−, c+}.
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Remark 3.1. (a) The restriction of a � 1 means the requirement of a strong

diffusion effect, which was used by H. Liu, Wang and Yang in Ref. 16, H. Liu, Woo

and Yang in Ref. 17 and replaced with |u+ − u−| � 1 by Mei and Yang29 for the

Cauchy problem. For the IBVP (1.1) and (1.2), due to the resolutions on boundary

terms, Mei and Rubino28 also have to use a � 1. But, in this paper, it is not

difficult to find in the proof that for Theorems 3.1–3.3 the condition a� 1 can be

replaced by that, |u+ − u1
−| is small enough such that

−a+(f ′(Up))
2 +Cb

{ |u+ − u1
−|

a− s2
1

(
f ′(Up)−

3

4
s1

)
+
|u+ − u1

−|2
(a− s2

1)
2

(
a− 9

16
s2

1

)}
< 0 ,

and a− s2
1 − Cb|u+ − u1

−| > 0 with Cb > 0 a constant.

(b) For exponential decay rate, a simple example, satisfying R-H conditions (2.3)

and (2.8), Oleinik’s entropy conditions (2.5) and (2.9), (ND) and (3.6), is

min

{
f ′(u1

−), −3

5
f ′(u+)

}
> s1 = −s > 0 ,

16f ′(u+) + 5f ′(u1
−)− 11s < 0, f ′(u−) > s .

(c) The algebraic decay rate seems to be optimal comparing with the corresponding

Cauchy problem studied in Ref. 29 and the IBVP discussed in Ref. 28.

(d) By (3.2), it is not difficult to verify that (Up, Vp)→ (Us1 , Vs1) as t→ +∞ due

to |(Us, Vs)(x− st+ x1)− (u+, v+)| = O(1)e−c+(|s|t+x+x1). Thus, it holds

sup
x∈R+

|(u, v)(x, t)− (Us1 , Vs1)(x− s1t+ d10 + d1(t))| → 0, as t→ +∞ .

3.2. Reformulation of original problems

Let (Us1 , Vs1)(x−s1t) and (Us, Vs)(x−st) be the front and back waves as mentioned

before. Assume that the solution to (1.1) and (1.2) is (u, v)(x, t). Since (Us, Vs)(x−
st) satisfies (2.1) and (Us1 , Vs1)(x− s1t+ d1(t) + d10) satisfies{

∂tUs1 − d′1(t)∂xUs1 + ∂xVs1 = 0 ,

∂tVs1 − d′1(t)∂xVs1 + a∂xUs1 = f(Us1)− Vs1 ,
(3.8)

it follows, by (3.8) and (2.1), that
∂t(u− Up) + d′1(t)∂xUs1 + ∂x(v − Vp) = 0 ,

∂t(v − Vp) + d′1(t)∂xVs1 + a∂x(u− Up)
= f(u)− f(Us1)− f(Us) + f(u+)− (v − Vp) .

(3.9)

Integrating the first equation of (3.9) over [0,+∞) and noticing that v(0, t) = v−,

we obtain

d

dt

∫ +∞

0

(u− Up)dx+ d′1(t)[u+ − Us1(−s1t+ d1(t) + d10)]

− (v− − Vs1(−s1t+ d1(t) + d10) + v+ − Vs(−st+ x1)) = 0 . (3.10)
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Let d1(t) be the solution of the ordinary differential equation (3.3), then the

following holds:

d

dt

∫ +∞

0

(u− Up)(x, t)dx = 0 , t ≥ 0 . (3.11)

Integrating it with respect to t and noting the essential assumption (3.1), it follows∫ ∞
0

(u− Up)(x, t)dx =

∫ ∞
0

[u0(x)− Up(x, 0)]dx

=

∫ ∞
0

[u0(x)− Us1(x+ d10)− Us(x+ x1) + u+]dx

= 0 .

Thus, we may define

w(x, t) = −
∫ ∞
x

[u(y, t)− Up(y, t)]dy , z(x, t) = v(x, t) − Vp(x, t) , (3.12)

to obtain
∂tw + d′1(t)[Us1(x+ η1)− u+] + z = 0 ,

∂tz + d′1(t)∂xVs1(x+ η1) + a∂2
xw + z

= f(Up + wx)− f(Us1(x+ η1))− f(Us(x+ η2)) + f(u+) ,

where η1 =: −s1t+ d1(t) + d10 and η2 =: −st+ x1.

Therefore, w(x, t) satisfies the following equation

wtt + wt − awxx + f ′(Up)wx = g1(x, t) + g2(x, t) , (3.13)

where 
g1(x, t) = d′1(t)V

′
s1(x+ η1) + (s1 − d′1(t))d′1(t)U ′s1(x+ η1)

+ (d′1(t) + d′′1(t))[u+ − Us1(x+ η1)] ,

g2(x, t) = −{f(Up + wx)− f(Us1(x+ η1))

− f(Us(x+ η2))− f ′(Up)wx + f(u+)} ,

(3.14)

with the initial and boundary values
w(x, 0) = w0(x) ,

wt(x, 0) = −z0(x) + z0(0)
u+ − Us1(x+ d10)

u+ − Us1(d10)
=: w1(x) , x ≥ 0 ,

w(0, t) = 0 , t ≥ 0 .

(3.15)

We reformulate Theorems 3.2–3.3 as follows.

Theorem 3.4. (Algebraic Rate) Assume that the hypotheses of Theorem 3.2 hold.

Then, the IBVP (3.13) and (3.15) has a unique global solution w(x, t) satisfying

sup
x∈R+

|(w,wx, wt)(x, t)| ≤ CN2
2 (1 + t)−α/2 . (3.16)
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Theorem 3.5. (Exponential Rate) Assume that the hypotheses of Theorem 3.3

hold. Then the IBVP (3.13) and (3.15) has a unique global solution w(x, t) satisfying

w ∈ C0(0,∞;H2
Q2

) ∩ L2(0,∞;H2
Q2

) , wt ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

) ,

and

|w(·, t)|22,Q2
+ |wt(·, t)|21,Q2

+ θ

∫ t

0

[|w(·, τ)|22,Q2
+ |wt(·, τ)|21,Q2

]dτ ≤ CN2
1 , (3.17)

namely,

sup
x∈R+

|(wx, wt)(x, t)| + |w(·, t)|22,Q2
+ |wt(·, t)|21,Q2

≤ CN2
1 e
−θt , t ≥ 0 . (3.18)

The proofs of Theorems 3.4 and 3.5 will be carried out in Sec. 3.3. First, we will

prove the exponential decay rate, then show the algebraic decay rate in Sec. 3.4.

3.3. Exponential decay rate

Let T > 0. Define the work spaces for (3.13) and (3.15) as

X1(0, T ) = {(w,wt) ∈ C0(0, T ;H2 ×H1) ∩ L2(0, T ;H2 ×H1)} ,

X2(0, T ) = {(w,wt) ∈ C0(0, T ;H2
Q2
×H1

Q2
) ∩ L2(0, T ;H2

Q2
×H1

Q2
)}

and denote

N1(T ) = sup
0≤t≤T

{|w(·, t)|2 + |wt(·, t)|1} , t ∈ [0, T ] .

N2(T ) = sup
0≤t≤T

{|w(·, t)|2,Q2 + |wt(·, t)|1,Q2} , t ∈ [0, T ] .

Now, we prove Theorem 3.5, for which we have to establish the a priori estimates

in Lemmas 3.5 and 3.6 below.

First, we have more accurate estimates on d1(t).

Lemma 3.4. Let |d10|−1 +x−1
1 � 1. Then d1(t) ∈ C3(0,+∞), d′1(t) ∈ L1(0,+∞),

and |d1(t)| ≤ C for some constant, and

d1(t)− s1t ≤ −
1

2
s1t , t ∈ [0,+∞) (3.19)

and

|d′1(t)| ∼ |d′′1 (t)| ∼ |d′′′1 (t)| ∼ {e−c′−(s1t−d10) + e−c+(|s|t+x1)} , t ∈ [0,+∞) (3.20)

and

d1(t)→ d1∞ , as t→ +∞ , (3.21)

where

d1∞ =
1

u+ − u1
−

{∫ ∞
0

[Us(x+ x1)− u+]dx+

∫ 0

−∞
[u1
− − Us1(x+ d10)]dx

}
.
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Proof. By Lemma 2.2 and d10 < 0, we get

u+ − Us1(d10) > 0 , (3.22)

which means, in terms of Lemmas 2.1–2.2 and (3.3), that

|d′1(0)| = 1

u+ − Us1(d10)
|v− − Vs1(d10) + v+ − Vs(x1)| ≤

1

4
s1 , (3.23)

provided that |d10|−1 + x−1
1 � 1.

Therefore, it holds, for some t0 > 0, that

|d′1(t)| ≤
1

2
s1 , 0 ≤ t ≤ t0 , (3.24)

which yields, with d1(0) = 0, that

|d1(t)| =
∣∣∣∣∫ t

0

d′(τ)dτ

∣∣∣∣ ≤ 1

2
s1t , 0 ≤ t ≤ t0 (3.25)

and

d1(t)− s1t ≤ −
1

2
s1t ≤ 0 , 0 ≤ t ≤ t0 . (3.26)

By Lemma 2.2 and (3.26), it follows that

u+ − Us1(−s1t+ d1(t) + d10) ≥ u+ − Us1(d10) , 0 ≤ t ≤ t0 . (3.27)

Then, by (3.3), (3.27) and Lemmas 2.1–2.2, we obtain

|d′1(t)| ≤
1

4
s1 , 0 ≤ t ≤ t0 . (3.28)

Repeating the above procedure, we can verify that (3.26) and (3.28) hold for all

t ∈ [0,∞), namely, we have proved (3.19).

To prove (3.20), we first note that,

|v− − Vs1(−s1t+ d1(t) + d10)| ≤ Ce−c
′
−( 1

2 s1t+|d10|)

and

|u+ − Us1(−s1t+ d1(t) + d10)| ∼ |u+ − u1
−|

which means, due to (3.19) and Eq. (3.3), that

|d′1(t)| ≤ C{e−c
′
−( 1

2 s1t+|d10|) + e−c+(|s|t+x1)} .

This implies that d′1(t) ∈ L1(0,∞). Further, we get the boundedness of |d1(t)|

|d1(t)| ≤ |d1(0)|+
∫ t

0

|d′1(τ)|dτ ≤ C .

Thus, based on |d1(t)| ≤ C, Eq. (3.3) and Lemmas 2.1 and 2.2, we obtain (3.20).

Finally, d1∞ can be calculated as shown by Matsumura and Mei in Ref. 26, and

we can prove d1(t) → d1∞ by the continuity as t → ∞. We omit the details. The

proof is complete.
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Now, we are going to prove the basic energy estimate.

Lemma 3.5. Under the assumptions of Theorem 3.5, it holds, for any solution

w(x, t) of (3.13) and (3.15) with w ∈ X2(0, T ), that

|(w,
√
awx, wt)(·, t)|2Q2

+ θ1

∫ t

0

|(w,
√
awx, wt)(·, τ)|2Q2

dτ

≤ C(e−c̃+x1/2 + ec
′
−d10/2 + |(w0, w0x, w1)|2Q2

) , (3.29)

provided that N2(T ) + |d10|−1 + x−1
1 � 1.

Proof. Let us denote L(w) := wtt+wt−awxx+f ′(Up)wx and consider the equality

Q2(w + 2wt) · L(w) = Q2(w + 2wt)(g1 + g2) . (3.30)

The left-hand side of (3.30) can be reduced to

Q2(w + 2wt)L(w)

= ∂t

{
Q2

(
w2
t + wwt +

1

2
(1−Q2t/Q2)w

2

)
+ aQ2w

2
x

}
+Q2

{
w2
t (1−Q2t/Q2) + 2(f ′(Up) + aQ2x/Q2)wwt + a(1−Q2t/Q2)w

2
x

}
− ∂x

{
aQ2wwx −

1

2
aQ2xw

2 − 1

2
Q2f

′(Up)w
2 + 2aQ2wtwx

}
+

1

2
w2 {Q2tt −Q2t − aQ2xx − (Q2f

′(Up))x}

= ∂t

{
Q2

(
w2
t + wwt +

1

2
(1 + (s1 − d′1(t))Q2x/Q2)w

2

)
+ aQ2w

2
x

}
+Q2

{
w2
t (1 + (s1 − d′1(t))Q2x/Q2) + 2(f ′(Up) + aQ2x/Q2)wxwt

+ (1 + (s1 − d′1(t))Q2x/Q2)aw
2
x

}
− ∂x

{
aQ2wwt −

1

2
aQ2xw

2 − 1

2
Q2f

′(Up)w
2 + 2aQ2wtwx

−1

2
Q2xd

′
1(t)(2s1 − d′1(t))w2

}
− 1

2
w2(Q2h1)

′′U ′s1

+

{
Q2xd

′
1(t)(2s1−d′1(t))wwx−

1

2
w2∂x{Q2(f

′(Up)− f ′(Us1)) + d′1(t)Q2}
}

= ∂t {G1(w,wt) +G2(wx)}+G3(wt, wx)− ∂xG4(w,wt, wx)

+G5(w) +G6(w,wx) . (3.31)
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As a > 0 is big enough, it holds |Q2x/Q2| = O(1)
u+−u1

−
a−s21

� 1. With a similar

argument as in Refs. 17, 28 and 29, we have

∆1 =: 1−2

[
1+(s1 − d′1(t))

Q2x

Q2

]
=−

[
1+2(s1 − d′1(t))

Q2x

Q2

]
≤ −C < 0 , (3.32)

∆3 =: 4

(
f ′(Up) + a

Q2x

Q2

)2

− 4a

(
1 + (s1 − d′1(t))

Q2x

Q2

)2

≤ −C < 0 , (3.33)

provided that |d10|−1 +x−1
1 � 1, where ∆1 and ∆3 are the discriminates of G1 and

G3 respectively. Thus, we have

G1(w,wt) +G2(wx) ≥ C−1(w2 + w2
t + aw2

x) , (3.34)

G3(w,wt) ≥ C−1(w2
x + w2

t ) . (3.35)

By (2.14) and Lemma 2.2, we have

G5(w) = O(1)Q2(Us1)w
2 . (3.36)

By Lemmas 2.1–2.2 and Lemma 3.4, the term G6(w,wx) can be estimated as

|G6(w,wx)| ≤
1

2
C−1Q2(Us1)

(
w2
x + w2

)
, (3.37)

provided that |d10|−1 + x−1
1 � 1.

Interagting (3.30) over [0,+∞) × [0, t], using (3.34)–(3.37), and the zero-

boundary conditions w|x=0 = w|x=∞ = wt|x=0 = wt|x=∞ = 0 which implies

G4(w,wt, wx)|x=0= G4(w,wt, wx)|x=∞ = 0, we obtain

|(w,
√
awx, wt)(·, t)|2Q2

+ 2θ1

∫ t

0

|(w,
√
awx, wt)(·, τ)|2Q2

dτ

≤ C1

(∣∣∣∣∫ t

0

∫ +∞

0

Q2(w + 2wt)(g1 + g2)dxdτ

∣∣∣∣ + |(w0, w0x, w1)|2Q2

)
, (3.38)

for some positive constants θ1 and C1.

Due to the Taylor’s formula and the Cauchy inequality, the second equality of

(3.14) can be reduced to

|g2(x, t)| = |f ′(Us1)(Us − u+ + wx) +O(1)(Us − u+ + wx)
2 − f ′(Up)wx

− f ′(u+)(Us − u+)−O(1)(Us − u+)2|

= |[f ′(Us1)− f ′(Up)]wx + [f ′(Us1)− f ′(u+)](Us − u+)

+O(1)(Us − u+ + wx)
2 −O(1)(Us − u+)2|

= |O(1)(Us − u+)wx +O(1)(Us − u+)|

+ |O(1)(Us − u+ + wx)
2 −O(1)(Us − u+)2|

≤ O(1)w2
x +O(1)|Us − u+|+O(1)|Us − u+|2 .
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Thus, using the above estimate, the Cauchy inequality and the Sobolev inequality,

we can control the first term in the right-hand side of (3.38) on g2(x, t) as follows:

C1

∣∣∣∣∫ t

0

∫ +∞

0

Q2(w + 2wt)g2dxdτ

∣∣∣∣
≤ CN2(T )

∫ t

0

∫ +∞

0

Q2w
2
xdxdτ +

1

2
θ1

∫ t

0

∫ +∞

0

Q2(w
2 + w2

t )dxdτ

+Cθ1

∫ t

0

∫ +∞

0

Q2(Us1(x+ η1))(Us(x+ η2)− u+)2dxdτ , (3.39)

where Cθ1 is a positive constant depending on θ1. Using Lemmas 2.1–2.3, it can be

shown that

Q2(Us1(x+ η1))(Us(x+ η2)− U+)2

∼


C exp

{
1

2
c′+(x+ η1)− 2c+(x+ η2)

}
, for x > −η1 ,

C exp

{
−1

2
c′−(x+ η1)− 2c+(x+ η2)

}
, for x < −η1 ,

∼


C exp

{
−1

2
(4c+ − c′+)x+ 2c+st− 2c+x1 + c′−d10/2

}
, for x > −η1 ,

C exp

{
−1

2
(4c+ + c′−)x+

5

8

(
c′−s1 +

16

5
c+s

)
t− 1

2

(
4c+ +

d10

x1
c′−

)
x1

}
,

for x < −η1 .

This yields

C

∫ t

0

∫ +∞

0

Q2(Us1(x+ η1))(Us(x+ η2)− u+)2dxdτ

≤ C
∫ t

0

(∫ −η1

0

exp

{
−1

2
(4c+ − c′+)x+ 2c+sτ − 2c+x1 + c′−d10/2

}

+

∫ +∞

−η1

exp

{
−1

2
(4c+ + c′−)x+

5

8

(
c′−s1 +

16

5
c+s

)
τ

− 1

2

(
4c+ +

d10

x1
c′−

)
x1

})
dxdτ

≤ C(e−c̃+x1/2 + ec
′
−d10/2) . (3.40)

Therefore, we have, in terms of (3.39)–(3.40), that

C1

∣∣∣∣∫ t

0

∫ +∞

0

Q2(w + 2wt)g2dxdτ

∣∣∣∣
≤ CN2(T )

∫ t

0

∫ +∞

0

Q2w
2
xdxdτ +

1

2
θ1

∫ t

0

∫ +∞

0

Q2(w
2 + w2

t )dxdτ

+C(e−c̃+x1/2 + ec
′
−d10/2) . (3.41)



September 10, 2001 13:36 WSPC/103-M3AS 00099

Hyperbolic Conservation Laws with Relaxation 1159

Similarly, we can prove∣∣∣∣∫ t

0

∫ +∞

0

Q2(w + 2wt)g1dxdτ

∣∣∣∣
≤ 1

4
θ1

∫ t

0

∫ +∞

0

Q2(w
2 + w2

t )dxdτ

+C

∫ t

0

∫ +∞

0

Q2(Us1(x+ η1))(|d′1(τ)U ′s1(x+ η1)|+ |d′1(τ)(Us1(x+ η1)− u+)|

+ |U ′s1(x+ η1)(Us1(x+ η1)− u+)|)2dxdτ

≤ 1

4
θ1

∫ t

0

∫ +∞

0

Q2(w
2 + w2

t )dxdτ + C(e−c+x1/2 + ec
′
−d10/2) . (3.42)

With the help of (3.41) and (3.42), we obtain Lemma 3.5 from (3.38), provided that

N2(T ) + |d10|−1 + x−1
1 � 1.

Similarly, consider the equality

Q2(wt + 2wtt)∂tL(w) = Q2(wt + 2wtt)(g1t + g2t) . (3.43)

Integrating (3.43) over [0,+∞) × [0, t], using the similar argument as used in

Lemma 3.5 and the zero-boundary condition w|x=0 = w|x=∞ = wt|x=0 = wt|x=∞ =

0, we get the higher order energy estimate:

Lemma 3.6. Under the assumptions of Theorem 3.5, it holds, for any solution

w(x, t) of the IBVP (3.13) and (3.15) with w ∈ X2(0, T ), that

|(wt,
√
awxx, wxt)(·, t)|2Q2

+ θ3

∫ t

0

|(wt,
√
awxx, wxt)(·, τ)|2Q2

dτ

≤ C(e−c̃+x1/2 + ec
′
−d10/2 + |(w0, w0x, w1)|21,Q2

)

provided that N2(T ) + |d10|−1 + x−1
1 � 1.

3.4. Algebraic decay rate

Here, we prove the algebraic decay rates. Let us define ū := (u++u1
−)/2. Since Us1 is

strictly increasing in R, there exists a unique number η∗ ∈ R such that Us1(η
∗) = ū.

Denote K(x, t) = (1 + t)γ〈(η− η∗)/a〉βQ1(Us1(η)), K̄(x, t) = (1 + t)γ〈(η− η∗)/a〉β ,
i.e. K(x, t) = K̄(x, t)Q1(Us1(x+ η1)), where η = x+ η1. Multiplying Eq. (3.10) by

2K(x, t)w and 2K(x, t)wt, respectively, we have

2K(x, t)w · L(w) = 2K(x, t)w(g1 + g2) , (3.44)

2K(x, t)wt · L(w) = 2K(x, t)wt(g1 + g2) . (3.45)
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Combining (3.44)× 1
2 + (3.45), we obtain, by a straightforward but tedious calcu-

lation as was made in Refs. 17 and 28, that{
Kw2

t +Kwtw +
1

2
(K + (s1 − d′1(t))Kx)w

2 + aKw2
x

}
t

− γ

1 + t

[
Kw2

t +Kwwt +
1

2
(K + (s1 − d′1(t))Kx)w

2 + aKw2
x

]
+ {(K + (s1 − d′1(t))Kx)w

2
t + 2(f ′(Up)K + aKx)wxwt

+ a(K + (s1 − d′1(t))Kx)w
2
x}

+ {(a− (s1 − d′1(t))2)K̄xQ1(Us1) + K̄Q1(Us1)x(2s1 − d′1(t))d′1(t)}wwx

+
1

2
Pβw

2 − ∂xB(x, t) = K(w + 2wt)(g1 + g2) , (3.46)

where

B(x, t) =

{
aK̄Q1wwx −

1

2
a(K̄xQ1 + K̄Q1x)w

2 − 1

2
K̄Q1f

′(Up)w
2

+
1

2
w2K̄Q1x(s1 − d′1(t))d′1(t) +

1

2
w2K̄xQ1(a− (s1 − d′1(t))2)

+ 2aK̄Q1wtwx

}
(3.47)

and

Pβ(z) := −K̄x(Q1h1)
′(Us1)− K̄(Q1h1)

′′(Us1)U
′
s1

+ (d′′1 (t)− d′1(t))K̄xQ1

− d′1(t)K̄Q1x − ((f ′(Up)− f ′(Us1))K)x . (3.48)

It is clear that∣∣∣∣Kx

K

∣∣∣∣ = ∣∣∣∣K̄Q1x + K̄xQ1

K̄Q1

∣∣∣∣ ≤ ∣∣∣∣Q1x

Q1

∣∣∣∣+ ∣∣∣∣βa (x+ η1 − η∗)/a
〈(x+ η1 − η∗)/a〉2

∣∣∣∣ ≤ C

a
� 1 (3.49)

for a� 1. Denoting by D7 and D8 the discriminates of G7 and G8 respectively, we

have, due to (3.49), that

D7 = −1− 2(s1 − d′1(t))Kx/K < 0 , (3.50)

D8 = 4[(f ′ + aKx/K)2 − a(1 + (s1 − d′1(t))Kx/K)2] < 0 . (3.51)

Thus, we get

G7 := Kw2
t +Kwtw +

1

2
(K + (s1 − d′1(t))Kx)w

2 ≥ C−1K(w2 + w2
t ) , (3.52)

G8 := (K + (s1 − d′1(t))Kx)w
2
t + 2(f ′(U)K + aKx)wxwt

+ a(K + (s1 − d′1(t))Kx)w
2
x ≥ C−1K(w2

x + w2
t ) . (3.53)
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By Lemma 2.1, (2.12) and (3.20), (3.49) we have

(d′′1 (t)− d′1(t))K̄xQ1 − d′1(t)K̄Q1x − (f ′(Up)− f ′(Us1)K)x

≤ C(|d′1(t)|+ |Us − u+|+ |U ′s|)K̄

≤ C(e−c+x1/2 + ec
′
−d10/2)(1 + t)γ〈(η − η∗)/a〉β−1 .

Therefore, similarly to that in Ref. 17 we can prove that Pβ(z) satisfies the following

lemma.

Lemma 3.7. Let α be a given positive number. For β ∈ [0, α], there exists a

constant c1 > 0 independent of β such that

Pβ(η) ≥ c1β(1 + t)γ〈(η − η∗)/a〉β−1 for any η ∈ R , (3.54)

provided that x−1
1 + |d10|−1 � 1.

Integrating (3.46) over [0,+∞)× [0, t], and using (3.53) and (3.54), we obtain,

via similar argument in Refs. 17 and 28, the following estimates:

Lemma 3.8. For any t ∈ [0, T ], it holds, for any γ ≥ 0 and β ∈ [0, α], that

(1 + t)γ |(w,wx, wt)(t)|2β +

∫ t

0

(1 + τ)γ(β|w(·, τ)|2β−1 + |(wx, wt)(·, τ)|2β)dτ

≤ C
{
|(w0, w0x, w1)|2β + e−c+x1/2 + ec

′
−d10/2

}
+Cβ

∫ t

0

(1 + τ)γ‖wx(·, τ)‖2dτ + Cγ

∫ t

0

(1 + τ)γ−1|(w,wx, wt)(·, τ)|2βdτ .

(3.55)

Moreover, it holds

(1 + t)γ |(w,wx, wt)(t)|2α−γ + (α− γ)
∫ t

0

(1 + τ)γ |w(·, τ)|2α−γ−1dτ

+

∫ t

0

(1 + τ)γ |(wx, wt)(τ)|2α−γdτ

≤ C
(
|(w0, w0x, w1)|2α + e−c+x1/2 + ec

′
−d10/2

)
(3.56)

for γ integer in [0, α], provided that N1(T ) + |d10|−1 + x−1
1 � 1.

The estimate (3.56) can be derived from (3.55), with a similar argument as

used in the Cauchy problem in Ref. 17 (the original idea can be found in the

work by Kawashima and Matsumura12). Based on this lemma, as in Ref. 29 (see

Lemma 5.2 therein) or in Ref. 32 for the Burger’s equation, we may immediately

get the following optimal decay rate.
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Lemma 3.9. It holds for any ε > 0

(1 + t)α‖(w,wx, wt)(t)‖2 + (1 + t)−ε
∫ t

0

(1 + τ)α+ε‖(wx, wt)(·, τ)‖2dτ

≤ C
(
|(w0, w0x, w1)|2α + e−c+x1/2 + ec

′
−d10/2

)
. (3.57)

For the higher derivatives of the solution, by a similar procedure as used in

Lemmas 3.6 and 3.8, we can have the following estimates.

Lemma 3.10. It holds for any ε > 0

(1 + t)α‖∂x(w,wx, wt)(t)‖2 + (1 + t)−ε
∫ t

0

(1 + τ)α+ε‖∂x(wx, wt)(·, τ)‖2dτ

≤ C(‖(w0, w0x, w1)‖22 + |(w0, w0x, w1)|2α + e−c+x1/2 + e′−d10/2) . (3.58)

Combining Lemmas 3.8 and 3.10, we complete the proof of Theorem 3.4.

4. IBVP for Degenerate Case

Due to Oleinik’s entropy condition, it always holds, from (2.5) and (2.9), that

f ′(u+) ≤ s < 0 < s1. Therefore, we only consider the case when the forward

travelling wave is degenerate, i.e.

f ′(u+) = s < f ′(u−) (DE)

and assume that for an integer n > 0 it holds

f(u) = su+ (u− u+)n+1 , as u approaches u+ . (4.1)

As mentioned in Secs. 1 and 2, the front wave (Us1 , Vs1)(x − s1t) is chosen to be

nondegenerate, namely, which satisfies the Laxian entropy condition

f ′(u+) < s1 < f ′(u1
−) .

The boundary perturbations cannot be well-controlled like the nondegenerate

case f ′(u+) < s < f ′(u−) and f ′(u+) < s1 < f ′(u1
−). In fact, if we still consider

that the initial data are a perturbation of (Up, Vp) denoted by (3.2), we will find

from (3.3) that

|d1(t)| ∼ O(1)

∫ t

0

{e−c′−|s1t+d1(t)+d10| + | − sτ + x1|−1/n}dτ → +∞ ,

as t→ +∞ . (4.2)

Thus, a shift function ds(x, t) should be used for the backward travelling wave to

control the bounds of |d1(t)|. We consider the following two simple cases.

ds(x, t) = (x− st+ α0)
k , k > n , α0 > 0 ,

ds(x, t) = ec0(x−st+α0) , c0 > 0 , α0 > 0 .
(4.3)
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4.1. Main results

We first state our essential assumption of this section. It holds∫ ∞
0

[u0(x)− Us1(x+ d20)− Us(x+ ds(x, 0)) + u+]dx = 0 (4.4)

for either shift

ds(x, t) = (x− st+ α0)
k , k > n , α0 > 0

or

ds(x, t) = ec0(x−st+α0) , c0 > 0 , α0 > 0

under consideration, where d20 and α0 are any given constants satisfying 0 <

−d20 ≤ α0.

Denote

(Up, Vp) = (Us1 , Vs1)(x− s1t+ d2(t) + d20)

+ (Us, Vs)(x− st+ ds(x, t)) − (u+, v+) , (4.5)

with 0 < −d20 ≤ α0, and d2(t) to be chosen as a solution of the following ODE

d′2(t)[u+ − Us1(d20 − s1t+ d2(t))]

= v− − Vs1(d20 − s1t+ d2(t)) + v+ − Vs(x1 − st),

−
∫ +∞

0

(∂tds(x, t)U
′
s(x− st+ ds(x, t))

+ ∂xds(x, t)V
′
s (x− st+ ds(x, t)))dx ,

d2(0) = 0 .

(4.6)

As in the last section, it can be proved that d2(t) ∈ C1(0,+∞), d′2(t) ∈
L1(0,+∞), and d2(t) → d2∞ < +∞ as t → +∞, where the value d2∞ can be

determined by

d2∞ =
1

u+ − u1
−

{∫ +∞

0

(
Us

(
x+ ds

(
0,−y

s

))
− u+

)
dx

+

∫ 0

−∞
(u1
− − Us1(x+ d20))dx

}
.

Set

w0(x) = −
∫ +∞

x

(u0(y)− Up(y, 0))dy , z0(x) = v0(x) − Vp(x, 0) .

Corresponding to Sec. 3.1, we have the following theorem on the existence of

global smooth solutions for the IBVP (1.1) and (1.2).

Theorem 4.1. (Convergence) Let a > 0 be a large constant. Suppose that f ∈ C3,

conditions (DE), (4.4), (2.3), (2.5), (2.8) and (2.9) hold, w0 ∈ H2, and z0 ∈ H1.

Assume that it holds
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(i) k > 2n, α0 > 0, for ds(x, t) = (x− st+ α0)
k,

(ii) c0 > 0, α0 ≥ |d20|, for ds(x, t) = ec0(x−st+α0).

Then there exists a ε1 > 0, such that if ‖w0‖2 +‖z0‖1 + |d20|−1 +α−1
0 < ε1, a global

smooth solution (u, v)(x, t) to (1.1) and (1.2) exists and satisfies

sup
x∈R+

|(u, v)(x, t) − (Up, Vp)(x, t)| → 0 , as t→ +∞ .

To obtain the following theorems on the exponential decay rate, we only consider

the case when ds(x, t) = ec0(x−st+α0) with

c0 >
n

4
max

{
c′−, c

′
+, −

2c′−s1

s

}
. (4.7)

Theorem 4.2. (Exponential Rate) Assume that the hypotheses of Theorem 4.1

and (4.7) hold. Suppose w0 ∈ H2
Q0,2

, z0 ∈ H1
Q0,2

. There exist constants ε2 > 0 and

θ = θ(|u+ − u1
−|, |u+ − u−|, a) > 0 such that if a(|w0|2,Q0,2 + |z0|1,Q0,2 + |d20|−1

+α−1
0 ) ≤ ε2, then the IBVP (1.1) and (1.2) has a unique global solution (u, v)(x, t)

satisfying

u− Up ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

) ,

v − Vp ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

)

and

sup
x∈R+

|(u, v)(x, t)− (Up, Vp)(x, t)| ≤ CN1e
−θt/2 , (4.8)

where N1 = |w0|2,Q0,2 + |z0|1,Q0,2 + ec
′
−d10/4 + e−c̃0α0/4 with c̃0 = min{c0/n, 4

n
c0

− c′−}.

For algebraic decay rates, we are able to deal with the two cases given by (4.6).

We have

Theorem 4.3. (Algebraic Rate) Assume that the hypotheses of Theorem 4.1 hold.

Suppose w0 ∈ L2
α ∩H2, z0 ∈ L2

α ∩H1 for some α > 0 satisfying that

(i) α > 0, for ds(x, t) = ec0(x−st+α0),

(ii) 0 < α < −2 + 2k/n, for ds(x, t) = (x− st+ α0)
k.

Then, if (w0, z0) is small enough in (L2
α ∩ H2) × (L2

α ∩ H1), the IBVP (1.1) and

(1.2) has a unique global solution (u, v)(x, t) satisfying

sup
x∈R+

|(u, v)(x, t) − (Up, Vp)(x, t)| ≤ CN2(1 + t)−α/2 , (4.9)

where N2 = |(w0, z0)|α + ‖w0‖2 + ‖z0‖1 + ec
′
−d10/4 + c̃ with

c̃ =

{
e−c0α0/4n , for ds(x, t) = ec0(x−st+α0) ,

α
(2+α−2k/n)/4
0 , for ds(x, t) = (x− st+ α0)

k .
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4.2. Reformulation of original problems and proofs

The reformulation of the problems is similar to that in Sec. 3.2. Setting

∂xw(x, t) = u(x, t)− Up(x, t), z(y, t) = v(x, t) − Vp(x, t) , t ≥ 0 ,

where (Up, Vp)(x, t) is given by (4.5), we have

∂tw + d′2(t)[Us1(x+ η1)− u+] + z

−
∫ +∞

x

(∂tds(y, t)U
′
s(y − st+ ds(y, t))

+ ∂xds(y, t)V
′
s (y − st+ ds(y, t)))dy = 0 ,

∂tz + d′2(t)∂xVs1(x+ η1) + a∂2
xw + z∂tds(x, t)V

′
s + a∂xds(x, t)U

′
s

= f(Up + wx)− f(Us1(x+ η1))− f(Us(x+ η2)) + f(u+) ,

with η1 =: −s1t + d2(t) + d20 and η2 =: −st + ds(0, t). Where d2(t) satisfies the

ordinary differential equation given in (4.6). Then it holds∫ +∞

0

(u− Up)dx =

∫ ∞
0

[u0(x)− Up(x, 0)]dx = 0 (4.10)

due to the essential assumption (4.4). Thus, w satisfies the following equation

L1(w) =: wtt + wt − awxx + f ′(Up)wx = g3(x, t) + g4(x, t) , (4.11)

where

g3(x, t) = d′2(t)V
′
s1

(x+ η1) + (s1 − d′2(t))d′1(t)U ′s1(x+ η1)

+ (d′1(t) + d′′2 (t))[u+ − Us1(x+ η1)] ,

+ ∂tds(x, t)V
′
s (x+ η2) + a∂xds(x, t)U

′
s(x+ η2)

+

∫ +∞

x

∂t{∂tds(y, t)U ′s(y + η2) + ∂xds(y, t)V
′
s (y + η2)}dy

+

∫ +∞

x

{∂tds(y, t)U ′s(y + η2) + ∂xds(y, t)V
′
s (y + η2)}dy ,

g4(x, t) = −{f(Up + wx)− f(Us1(x+ η1))− f(Us(x+ η2))

− f ′(Up)wx + f(u+)} .

(4.12)

The corresponding initial and boundary values arew(x, 0)=w0(x) , wt(x, 0)=−z0(x)+z0(0)
u+−Us1(x+ d20)

u+−Us1(d20)
=:w1(x), x ≥ 0 ,

w(0, t)=0 , t ≥ 0 . (4.13)

We have the reformulation of Theorems 4.1–4.3 as follows.

Theorem 4.4. (Convergence) Assume that the hypotheses of Theorem 4.1 hold.

Then, the IBVP (4.11) and (4.2) has a unique global solution w(x, t) satisfying

w ∈ C0(0,∞;H3) ∩ L2(0,∞;H3
Q2

) , wt ∈ C0(0,∞;H2
Q2

) ∩ L2(0,∞;H2
Q2

)



September 10, 2001 13:36 WSPC/103-M3AS 00099

1166 L. Hsiao, H. Li & M. Mei

and

sup
x∈R+

|(w,wt)(x, t)| → 0 , as t→ +∞ .

Theorem 4.5. (Exponential Rate) Assume that the hypotheses of Theorem 3.3

hold. Then, the IBVP (3.13) and (3.15) has a unique global solution w(x, t) satis-

fying

w ∈ C0(0,∞;H2
Q2

) ∩ L2(0,∞;H2
Q2

) , wt ∈ C0(0,∞;H1
Q2

) ∩ L2(0,∞;H1
Q2

)

and

|w(·, t)|22,Q2
+ |wt(·, t)|21,Q2

+ θ

∫ t

0

[|w(·, τ)|22,Q2
+ |wt(·, τ)|21,Q2

]dτ ≤ CN2
1 , (4.14)

namely,

sup
x∈R+

|(wx, wt)(x, t)|+ |w(·, t)|22,Q2
+ |wt(·, t)|21,Q2

≤ CN2
1 e
−θt , t ≥ 0 . (4.15)

Theorem 4.6. (Algebraic Rate) Assume that the hypotheses of Theorem 4.3 hold.

Then, the IBVP (3.13) and (3.15) has a unique global solution w(x, t) satisfying

sup
x∈R+

|(w,wx, wt)(x, t)| ≤ CN2
2 (1 + t)−α/2 . (4.16)

The procedure to prove the above theorems on the existence of solution and its

exponential and algebraic decay rates is similar to those in Refs. 6, 17 and 28 and

in Sec. 3 with the help of Lemma 4.11 on d2(t). We omit the details.

Lemma 4.11. Under the assumptions of Theorem 4.1, it holds

d2(t)− s1t ≤ 0 , t ∈ [0, T ] (4.17)

and

(i) for ds(x, t) = (x− st+ α0)
k,

|∂itd′2(t)| ∼ {ec
′
−(−s1t+d2(t)+d20) + (x− st+ α0)

−i−k/n} ,

i = 1, 2 , t ∈ [0, T ] , (4.18)

(ii) for ds(x, t) = ec0(x−st+α0),

|∂itd′2(t)| ∼ {ec
′
−(−s1t+d2(t)+d20)+ e

1
n c0(st−α0)}, i = 1, 2, t ∈ [0, T ] . (4.19)
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