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Abstract This note is devoted to the study on the traveling wavefronts to the Nichol-

son’s blowflies equation with diffusion, a time-delayed reaction-diffusion equation. For the

critical speed of traveling waves, we give a detailed analysis on its location and asymptotic

behavior with respect to the mature age.
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1 Introduction

The study on how to eliminate the blowflies has been being an interesting spot for scientists,

because the flies are usually fatal to sheep a lot. The blowflies lay their eggs on sheep, and

soon the eggs become the maggots, which feed on the host. As the results, the injured sheep

may die. So, in order to eliminate the blowflies, it is interesting to investigate their population.

In 1940s, Nicholson [6,7] had the pioneer study on the distribution of blowflies’ population.

Based on Nicholson’s experimental data, Gurney et al. [1] established a dynamical model, the

so-called Nicholson’s blowflies equation

du(t)

dt
+ du(t) = pf(u(t− r)), (1)
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where u(t) is the total mature population of the blowflies at time t, d > 0 is the death rate of

the mature population, r > 0 is the mature age, the (delayed) time required for a newborn to

become matured, p > 0 is the impact of the death on the immature population, and

f(u(t− r)) = u(t− r)e−au(t−r) (2)

is the Nicholson’s birth function, where a > 0 is a constant. It is necessary to consider the

distribution of blowflies in space. This leads us naturally to study a time-delayed reaction-

diffusion equation as follows:

∂u(t, x)

∂t
− ∂2u(t, x)

∂x2
+ du(t, x) = pu(t− r, x)e−au(t−r,x), (3)

where −uxx(t, x) is the diffusion in space. The first study on eq. (3) was [10] by So and Yang

in 1998. Since then, there were a number of deep research works on this model, for example,

see [2, 3, 4, 5, 8, 9, 11, 13] and the references therein, see also the great textbooks [12, 14, 16].

For other related research, for example, we refer to [17, 18] and so on.

Eq. (3) has two constant equilibria

u− = 0 and u+ =
1

a
ln

p

d
. (4)

When p > d, we have u− < u+. A traveling wavefront is a monotone solution of u(t, x) =

φ(x + ct) to eq. (3) connecting with two states u±, where c > 0 is the speed of the wavefront.

Namely, the traveling wave solution φ(x + ct) satisfies

cφ′(ξ)− φ′′(ξ) + dφ(ξ) = pφ(ξ − cr)e−aφ(ξ−cr), φ(±∞) = u±, (5)

where ξ = x + ct and ′ = d
dξ . In [11], So and Zou proved the existence of the traveling wave

to eq. (5) by means of the method of the upper-lower solutions. For the generalized birth rate

function, the existence of the traveling waves was studied by Liang and Wu in [2].

Lemma 1 [11] If 1 < εp
d ≤ e, then there exists a critical number c∗ ≥ 0, such that for

every c > c∗, eq. (5) has a traveling wavefront solution φ(ξ) connecting with u±, with φ′(ξ) > 0

and u− < φ(ξ) < u+ for all ξ ∈ (−∞,∞). Here, the critical speed c∗ is the unique solution of

Δc∗(λ∗) = 0,
∂

∂λ
Δc∗(λ)

∣∣∣
λ=λ∗

= 0, (6)

where Δc(λ) is defined by

Δc(λ) = pe−λcr − [cλ + d− λ2]. (7)

Regarding the stability of wavefronts, by use the technical weighted energy method, Mei

et al. [4] proved that the wavefront is asymptotically stable in time when the wave speed is

large as c > 2
√

p− d. Later then, Lin and Mei [3] improved the stability of the wavefront to the

case of c >
√

2(p− d). For the nonlocal reaction-diffusion equations, in [15], we investigated

the asymptotic behavior of the critical speed of traveling waves.

In this note, we are particularly interested in the critical wave speed c∗, because the critical

wave is the slowest wave, and plays an important role in the wave study. Usually, when the

wave is faster than the critical wave, it may be proved to be asymptotically stable in time, while
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for the critical wave, it may not be stable anymore. So, to study such a wave like its location

of the speed, and the asymptotic behaviors with respect to the time delay r (the mature age),

is quite significant.

Now we are going to state our main result.

Theorem 1 Let 1 < p
d ≤ e. Then, the critical wave speed c∗ satisfies:

1) Upper and lower bounds of c∗:

0 ≤ c∗ ≤ min
{

2
√

p− d,

√
1

r
ln

p

d

}
. (8)

2) Asymptotic behavior of c∗ with respect to the mature age r:

Let r be free, and the other parameters p, d and a be fixed, then

lim
r→0+

c∗ = 2
√

p− d, (9)

lim
r→+∞

∣∣∣c∗ − A

r

∣∣∣ = 0, (10)

where the positive constant A is given by

pA2e1−√1+A2d = 2
√

1 + A2d− 2. (11)

Remarks 1) Asymptote (9) implies that c∗ = 2
√

p− d is the critical wave speed for the

corresponding reaction-diffusion equation (3) without time-delay (i.e., r = 0).

2) When r → +∞, the decay rate c∗ = O
(

1
r

)
for the local reaction-diffusion equation (3)

is faster than the rate c∗ = O
(√

1
r

)
for the nonlocal reaction-diffusion equation as shown in

[15]. But both of the rates in the local and nonlocal cases are optimal.

2 Proof of Main Theorem

Let

Fc(λ) := pe−λcr, Gc(λ) := cλ + d− λ2, (12)

then Δc(λ) = Fc(λ)−Gc(λ) and the critical point (c∗, λ∗) is the unique tangent point touched

by the two surfaces Fc(λ) and Gc(λ). Obviously, Fc∗(λ) is always above Gc∗(λ) except the

touched point λ∗, see Figure 1.

Fig.1
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Let

λ1 =
c∗
2

, λ2 = c∗, λ3 =
c∗ +

√
c2∗ + 4d

2
, (13)

where λ1 is the point, such that at which Gc∗(λ) arrives at the maximum Gc∗(λ1) = d +
c2
∗

4 ,

λ2 is the non-zero root of the equation Gc∗(λ) = d, and λ3 is the positive root of the equation

Gc∗(λ) = 0 (for the detail, we refer to Figure 1). Since

Fc∗(λ1) ≥ Gc∗(λ1) and Fc∗(λ2) ≥ Gc∗(λ2), (14)

namely,

pe−c∗
2r/2 ≥ c∗2

4
+ d and pe−c∗

2r ≥ d.

This is equivalent to

c∗2 ≤ 4(pe−c∗
2r/2 − d) ≤ 4(p− d) and c∗2 ≤ 1

r
ln

p

d
,

which immediately imply the boundedness of c∗ in (8):

0 ≤ c∗ ≤ min
{

2
√

p− d,

√
1

r
ln

p

d

}
.

To prove (9) as r → 0+, let c∗0 := lim
r→0+

c∗ and λ∗0 := lim
r→0+

λ∗. Since c∗ and λ∗ are bounded

by

0 ≤ c∗ ≤ 2
√

p− d, 0 < λ∗ < λ3,

respectively, and λ3 is bounded by

λ3 =
c∗ +

√
c2∗ + 4d

2
≤ 2

√
p− d +

√
(2
√

p− d)2 + 4d

2
=

√
p− d +

√
p,

then the limits of c∗0 and λ∗0 are also bounded. Thus,

lim
r→0+

e−c∗λ∗r = e−c∗0·λ∗0·0 = 1. (15)

Notice that (c∗, λ∗) satisfies equations (6), namely,

pe−c∗λ∗r = c∗λ∗ + d− λ2
∗, −pc∗re−c∗λ∗r = c∗ − 2λ∗. (16)

Taking limits of the above equations as r → 0+, and applying (15), we then have

p = c∗0λ∗0 + d− λ2
∗0, 0 = c∗0 − 2λ∗0,

which gives

λ∗0 =
c∗0
2

, c∗0 = 2
√

p− d,

i.e.,

lim
r→0+

c∗ = 2
√

p− d.

This proves (9).

Now, we are going to prove the asymptotic behavior (10) as r → +∞. From

0 ≤ c∗ ≤
√

1

r
ln

p

d
,
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we should have c∗ = O(r−α) → 0 as r → +∞, with α ≥ 1
2 . In what follows, we shall determine

that α = 1.

From (16), it is reduced to −c2
∗rλ∗− c∗rd+ c∗rλ2

∗ = c∗− 2λ∗, which can be solved in λ∗ as

λ∗ =
c2
∗r − 2 +

√
(c2∗r − 2)2 + 4c2∗r(rd + 1)

2c∗r

=
c∗
2
− 1

c∗r
+

1

2

√(
c∗ − 2

c∗r

)2

+ 4d +
4

r
.

Notice that c∗ = O(r−α) as r → +∞, then the above equation for λ∗ is reduced to

λ∗ ≈ O(r−α)−O(r−(1−α)) +
1

2

√
[O(r−α)−O(r−(1−α))]2 + 4d + 4r−1

≈ O(1) for α = 1, or

O(rα−1) for α > 1, or

O(1) for 1/2 ≤ α < 1, as r → +∞.

It is also verified that

c∗r ≈ O(1) for α = 1, or

O(r−(α−1)) for α > 1, or

O(r1−α) for 1/2 ≤ α < 1 as r → +∞,

and

c∗λ∗r ≈ O(1) for α = 1, or

O(1) for α > 1, or

O(r1−α) for 1/2 ≤ α < 1 as r → +∞.

Now, letting r → +∞ and applying the above equations to the second equation of (16), we

obtain

| − pc∗re−c∗λ∗r| ≈ O(r−(α−1))→ 0, as r → +∞,

and

|c∗ − 2λ∗| ≈ O(rα−1)→ +∞, as r → +∞.

This proves that the second equation of (16) doesn’t match the order of r for both the left and

right hand sides, so we cannot have α > 1.

Similarly, when 1
2 ≤ α < 1, then

| − pc∗re−c∗λ∗r| ≈ O(r1−αe−O(1)r1−α

)→ 0, as r → +∞,

and

|c∗ − 2λ∗| ≈ O(1), as r → +∞.

This shows also that the orders of r as r → +∞ in both the left and right hand sides of the

second equation of (16) do not match. So, we cannot allow 1
2 ≤ α < 1. Therefore, we prove

that the unique possibility for α is α = 1.
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As shown above, we obtain c∗ = O(r−1) and λ∗ = O(1) as r → +∞. Let us assume

lim
r→+∞

∣∣∣c∗ − A

r

∣∣∣ = 0 and lim
r→+∞

λ∗ = B,

for some positive constants A and B. Now, we are going to determine A and B.

As r → +∞, taking limits of (16), and using that lim
r→+∞

c∗r = A and lim
r→+∞

λ∗ = B, we

obtain

pe−AB = d−B2, −pAe−AB = −2B.

Solving the above equations gives

B =
−1 +

√
1 + A2d

A
,

and A is given by

pA2e1−√1+A2d = 2
√

1 + A2d− 2.
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