
Irregular Weight One Point with Dihedral
Image

Hao (Billy) Lee

Under the supervision of Professor Henri Darmon

Department of Mathematics and Statistics

McGill University

Montreal, Quebec

April 15 2017

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

Hao Lee 2017



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Professor Henri Darmon for his

guidance and for always being available to provide any form of assistance and advice I may

need. I would like to thank the Department of Mathematics and Statistics, as well as the

National Science and Engineering Research Council of Canada (NSERC) for their financial

support. I thank the many fellow students and post-docs that I have encountered. Their

drive and passion for mathematics have greatly motivated me to work just as hard. I would

especially like to thank Michele Fornea, Alexandre Maksoud, Alice Pozzi, Nicolas Simard

and Jan Vonk for sharing their vast wisdom and extremely valuable insight in various topics

critical to my studies. Last but not least, I would like to thank my amazing family for their

unconditional love and support.

ii



ABSTRACT

Darmon, Lauder and Rotger conjectured that at a classical, ordinary, irregular weight

one point of the eigencurve, the relative tangent space is of dimensional two. Conjecturally,

we can explicitly describe the Fourier coe�cients of the normalized generalized eigenforms

that span the space in terms of p-adic logarithms of algebraic numbers. In this thesis, we

will present a proof of this conjecure in the following special case. The weight one point is

the intersection of two Hida families consisting of theta series attached to Hecke characters

on two imaginary quadratic fields that cut out a D
4

-extension (the dihedral group of order

8).
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ABRÉGÉ

Darmon, Lauder et Rotger ont conjecturé que en un point classique, ordinaire et irrégulier

de poids un de la courbe de Hecke, l’espace tangent relatif est de dimension deux. Con-

jecturalement, nous pouvons décrire explicitement les coe�cients de Fourier des fonctions

propres normalisées généralisées surconvergentes qui engendrent l’espace, en termes de loga-

rithmes p-adiques de nombres algébriques. Dans cette thèse, nous allons présenter une preuve

de cette conjecture dans le cas particulier suivant. Le point de poids un est l’intersection de

deux familles de Hida composées de fonctions thêta attachées à deux caractères de Hecke

sur des corps quadratiques imaginaires qui découpent une D
4

-extension (le groupe diédral

d’ordre 8).
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Introduction

Fix a prime number p. In [20], Hida showed that at the classical ordinary points of weight

at least two, the eigencurve is smooth and étale over the weight space. This led Belläıche

and Dimitrov [2] to study the eigencurve at classical ordinary points of weight one. Let

f(z) =
P

n�1 ane
2⇡inz be a classical cuspidal newform of weight one, level N and nebentypus

�. By the works of Deligne and Serre [15], there exists an odd continuous irreducible Artin

representation

⇢ : GQ ! GL
2

(C)

associated to f . Suppose ↵, � 2 Qp are the roots of the p-th Hecke polynomial x2�apx+�(p).

Suppose ↵ and � are roots of unity, then p-stabilizations of f , defined by

f↵(z) = f(z)� �f(pz) and f�(z) = f(z)� ↵f(pz),

are ordinary at p. We say f is regular at p if ↵ 6= � and f is irregular otherwise.

Belläıche and Dimitrov showed that if the modular form f is regular at p, then the

eigencurve is smooth at f↵. Additionally, the weight map is étale if and only if f is not

the theta series attached to a finite order character on a real quadratic field in which p

splits. In the latter case, Cho and Vatsal [4] showed that the weight map is not étale. In [9],

Darmon, Lauder and Rotger introduced a one dimensional space consisting of overconvergent

generalized eigenforms, which can be naturally identified as the relative tangent space of

the eigencurve at f↵. Furthermore, they were able to explicitly describe the `-th Fourier

coe�cients of a natural basis element in terms of logarithms of `-units. Darmon, Lauder

and Rotger conjectured that in the case where f is irregular at p, the tangent space is of

dimension 2, and we can describe the Fourier coe�cients as logarithms of `-units in a similar

way. These results and conjectures will be explained in greater detail in chapter 4.

The main goal of this thesis is to consider the case where f↵ is the intersection of

two Hida families consisting of theta series attached to two Hecke characters over distinct

1



imaginary quadratic fields that cut out a dihedral group of order eight extension. In chapter

5 of this thesis, we will present an original proof of the aforementioned conjecture of Darmon,

Lauder and Rotger in this scenario. The first three chapters will be dedicated to developing

the theory necessary to explain the conjecture and the proof.
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Chapter 1
Modular Forms

In this chapter, we will give an introduction to the theory of classical modular forms.

Most importantly, we will introduce Hecke operators, Hecke eigenforms and Galois repre-

sentations associated to eigenforms. This theory will be crucial towards motivating p-adic

modular forms in later chapters. We will discuss an important class of modular forms, theta

series attached to Hecke characters, which we will be working with frequently in future

chapters. Finally, the last section will be dedicated towards introducing modular curves and

discussing some basic results. The main reference for this chapter is [16].

1.1 Classical Modular Forms

In this section, we will first introduce congruence subgroups and their action on the

complex upper half plane, followed by the definition of classical modular forms.

Definition 1.1.1. Let N � 1 be an integer. Define the group �(N) to be

�(N) =

( 

a b

c d

!

2 SL
2

(Z) :
 

a b

c d

!

⌘
 

1 0

0 1

!

mod N

)

.

It is called the principal congruence subgroup of level N . More generally, a subgroup � of

SL
2

(Z) is called a congruence subgroup of level N if � contains the group �(N).

Example 1.1.2. There are two special congruence subgroups

�
0

(N) =

( 

a b

c d

!

2 SL
2

(Z) :
 

a b

c d

!

⌘
 

⇤ ⇤
0 ⇤

!

mod N

)

,

�
1

(N) =

( 

a b

c d

!

2 SL
2

(Z) :
 

a b

c d

!

⌘
 

1 ⇤
0 1

!

mod N

)

.

Consider the map

�
1

(N) ! Z/NZ given by

 

a b

c d

!

7! b mod N.

It is easy to check that this is a surjection with kernel �(N). Similarly, the map

3



�
0

(N) ! (Z/NZ)⇤ given by

 

a b

c d

!

7! d mod N

is a surjection with kernel �
1

(N).

There is an action of SL
2

(Z) on the complex upper half plane

H = {⌧ 2 C : im(z) > 0}

given by Möbius transformation. More specifically, given � = ( a b
c d ) 2 SL

2

(Z) and z 2 H,

define the action of � on ⌧ to be

�⌧ =
a⌧ + b

c⌧ + d
.

Furthermore, � acts on Q [ {1} by

�
⇣s

t

⌘

=
as+ bt

cs+ dt
,

where 1 is taken to be 1

0

.

The fundamental domain of the action of SL
2

(Z) on the upper half-plane is “almost”

the set

D =

⇢

⌧ 2 H : |Re(⌧)|  1

2
, |⌧ | � 1

�

.

See Figure 1–1 for a pictural representation of this region. The sketch of the proof is the

following. The group SL
2

(Z) is generated by the matrices T = ( 1 1

0 1

) and S = ( 0 �1
1 0

). The

transformation T acts on the complex upper half plane by sending ⌧ to ⌧ + 1. By applying

T or T�1 a su�cient number of times, ⌧ can be mapped to the region |Re(⌧)|  1

2

. If the

imaginary part of the result is too small, we can apply the transformation S, which sends ⌧

to � 1

⌧
. If |⌧ | < 1, the transformation S will increase the imaginary part of ⌧ . By applying

T or T�1 again to land in the |Re(⌧)|  1

2

region and repeating the whole process, we can

eventually send ⌧ to D. For more details, see Lemma 2.3.1 of [16].

Remark 1.1.3. The region D is not quite the fundamental domain of the action of the

group SL
2

(Z) on H. However, we can show that if ⌧
1

, ⌧
2

2 D are in the same orbit, then

either Re (⌧
1

) = ±1

2

and ⌧
2

= ⌧
1

⌥ 1; or |⌧
1

| = 1 and ⌧
2

= � 1

⌧1
. In other words, with some

boundary identifications, D is the fundamental domain. See Lemma 2.3.2 of [16] for more

details.

4



Figure 1–1: Fundamental Domain, Figure 2.3 of [16]

Remark 1.1.4. Let � be a congruence subgroup. The set of �-equivalent classes of Q[{1}
are called the cusps. These cusps have significant geometric meaning. Let Y

�

be the set

of orbits �\H. We have already seen that we can take D = YSL2(Z). This is commonly

called the modular curve. By giving Y (�) the quotient topology induced from the map

⇡ : H ! �\H = Y (�), the modular curves are in fact Riemann surfaces. However, these

curves are not compact. To compactify them, we need to adjoin the cusps to obtain the

Riemann surface X
�

= �\ (H [Q [ {1}). In the case where � = SL
2

(Z), the modular

curve XSL2(Z) can identified as D⇤ = D [ {1}. See Chapter 2 of [16] for more details. We

will discuss modular curves in greater details in the last section of this chapter.

Given � = ( a b
c d ) 2 SL

2

(Z) and an integer k � 0, define a weight-k operator [�]k acting

on functions f : H ! C in the following way

(f [�]k)(⌧) = (c⌧ + d)�kf (�(⌧)) .

Definition 1.1.5. Let N � 1 and k � 0 be integers. Suppose � is a congruence subgroup

of level N . A holomorphic function f : H ! C is a modular form of weight k and level N

with respect to �, if

f(�⌧) = (c⌧ + d)�kf(⌧) for all � = ( a b
c d ) 2 � and ⌧ 2 H.

5



In addition, the function f has to be holomorphic at infinity. More specifically, (f [�]k)(⌧)

is bounded as Im(⌧) ! 1 for all � 2 SL
2

(Z).

Denote the set of modular forms of weight k with respect to the congruence subgroup

� by Mk(�). By holomorphicity, f has a Fourier series expansion of the form

f(⌧) =
1
X

n=0

an(f)q
n where q = e2⇡i⌧ .

If in addition, a
0

(f [�]k) = 0 for all � 2 SL
2

(Z), then it is called a cusp form. Denote the

space of cusp forms of weight k with respect to the congruence subgroup � by Sk(�).

1.2 Hecke Operators

The space of modular forms of fixed weight and level is a vector space. It is endowed

with some very special endomorphisms called Hecke operators. In this section, we will define

them and show some of their basic properties.

Definition 1.2.1. Let N be a positive integer and suppose d 2 (Z/NZ)⇤. Define the action

of the diamond operator hdi on Mk (�1

(N)) by

hdi f = f [↵]k for any ↵ = ( a b
c � ) 2 �

0

(N) satisfying � ⌘ d mod N.

Let � : (Z/NZ)⇤ ! C⇤ be a Dirichlet character and define

Mk (N,�) = {f 2 Mk (�1

(N)) : hdi f = �(d)f for all d 2 (Z/NZ)⇤} .

Then we have the following decomposition of eigenspaces of hdi:

Mk (�1

(N)) = �
�
Mk (N,�) .

For a modular form f 2 Mk (N,�), � is called the nebentypus character of f . This

decomposition is not important for this thesis, but it is very important for the study of

the space Mk (�1

(N)). We will see that the Hecke operators T` commute with the diamond

operators, which implies that the Hecke operators will preserve this decomposition.

The definition of the diamond operators can be extended to all natural numbers in the

following way. If gcd (d,N) = 1, then define hdi = hd mod Ni. If gcd (d,N) > 1, define

6



hdi = 0. For subsequent chapters, it will be useful to instead use the notation S` = `k�2 h`i
for ` - N to denote the operator acting on Mk (�1

(N)).

Definition 1.2.2. Let N � 1 be an integer and p be a prime number. For each modular

form f 2 Mk (�1

(N)) define the Hecke operator Tp to be

Tpf =

8

>

>

>

<

>

>

>

:

p�1
P

j=0

f
⇥�

1 j
0 p

�⇤

k
if p | N

p�1
P

j=0

f
⇥�

1 j
0 p

�⇤

k
+ f

⇥

(m n
N p )

�

p 0

0 1

�⇤

k
if p - N, where mp� nN = 1.

Remark 1.2.3. Thus far, we have defined the diamond operator hdi and the Hecke operator

Tp to be some maps sending modular forms to some formal power series expansion. However,

their image are in fact still modular forms. That is, they are well-defined endomorphisms

on the space of modular forms Mk (�1

(N)), thus justifying the name “operators”. One can

alternatively define the Hecke operator Tn for any natural number n via some double coset

construction (see Chapter 5 of [16]). In that case, it will be immediately clear that they are

indeed operators. Furthermore, this construction can be used to define Hecke operators for

general congruence subgroups.

Theorem 1.2.4. Suppose p - N , then in terms of q-expansions,

(Tpf) =
1
X

n=0

anp(f)q
n + pk�1

1
X

n=0

an (hpi f) qnp.

Proof. This is just a direct calculation. Alternatively, see Proposition 5.3.1 of [16]. ⇤

Proposition 1.2.5. Let N � 1 be a positive integer, c, d 2 (Z/NZ)⇤ and p, ` be prime

numbers. Then the diamond and Hecke operators satisfy the following identities:

1. hdiTp = Tp hdi
2. hci hdi = hcdi = hdi hci
3. TpT` = T`Tp.

Proof. See Proposition 5.2.4 of [16]. ⇤

Definition 1.2.6. For r � 1, recursively define

7



Tpr = TpTpr�1 � pk�1 hpiTpr�2 for r � 2.

For a natural number n 2 N with prime factorization n =
Q

peii , define Tn =
Q

Tp
ei
i
. In light

of part three of Proposition 1.2.5, this is well-defined.

1.3 Petersson Inner Product

The goal of this section is to introduce an inner product acting on the vector space of

cusp forms Sk (�1

(N)). Most importantly, it will be shown that the Hecke operators are

self-adjoint with respect to this inner product. Only a sketch of the construction will be

given. The reader should consult Section 5.4 and 5.5 of [16] for more details.

Definition 1.3.1. For each ⌧ 2 H, write ⌧ = x + iy where x, y 2 R. Define the hyperbolic

measure to be

dµ(⌧) =
dx dy

y2
.

It can easily be checked that dµ (�(⌧)) = dµ(⌧) for all � 2 SL
2

(Z). In fact, this is

true for all � 2 GL+

2

(R), the group of invertible matrices with positive determinant. Fix a

congruence subgroup � ✓ SL
2

(Z). Since Q[{1} is a countable discrete set when viewed as

a subset of C [ {1} with the usual topology, it is of measure zero. Therefore, dµ naturally

extends to the set H [Q [ {1} and is well-defined on the modular curve X
�

.

Let {�i} ✓ SL
2

(Z) be some chosen set of coset representatives of ±�\SL
2

(Z). Up to

some boundary identification, the modular curve X
�

can be represented by the disjoint union

G

i

�i (D⇤) .

For any continuous bounded function ' : H ! C, and any � 2 SL
2

(Z), we can check that
R

D⇤ ' (�(⌧)) dµ(⌧) converges. Define

Z

X�

'(⌧)dµ(⌧) =
X

i

Z

�i(D⇤
)

' (⌧) dµ(⌧) =
X

i

Z

D⇤
' (�i(⌧)) dµ(⌧),

which converges as well and is well-defined.

Proposition 1.3.2. Suppose f, g 2 Sk(�). Then f(⌧)g(⌧) (Im(⌧))k is bounded on H and is

invariant under the action of �.

8



Sketch of the Proof. The first part can be proven by considering the q-expansion of f and

g and noticing that as Im(⌧) ! 1, the growth rate is O(q1/h) for some positive integer h.

The �-invariance can be checked directly. ⇤

Definition 1.3.3. The Petersson inner product is the Hermitian form h·, ·i : Sk(�) ⇥
Sk(�) ! C defined by

hf, gi
�

=
1

V
�

Z

X�

f(⌧)g(⌧) (Im(⌧))k dµ(⌧),

where V
�

is the volume of the fundamental domain
R

X�
dµ(⌧).

Theorem 1.3.4. As operators on the vector space Sk (�1

(N)), the adjoints of the operators

h`i and T` for ` - N are

h`i⇤ = h`i�1 and T ⇤` = h`i�1 T`.

Proof. See Section 5.5 and Theorem 5.5.3 of [16]. ⇤

1.4 Eigenforms and Newforms

By Theorem 1.3.4, the Hecke operators commute with their adjoints and so they are

normal operators. By the spectral theorem in linear algebra, they are diagonalizable. Since

the operators commute by Proposition 1.2.5, the operators are simultaneously diagonalizable.

Thus, there is a basis of Sk (�1

(N)) consisting of simultaneous eigenvectors for h`i and T`

for all ` 2 N, gcd (`, N) = 1. These eigenvectors are called Hecke eigenforms. If f is an

eigenform with a
1

(f) = 1, we say it is normalized.

Proposition 1.4.1. Suppose � is a congruence subgroup of level N . Let Tk(�) be the Z-

subalgebra of EndZ (Sk(�)) generated by T` for gcd(`, N) = 1 and hdi for d 2 (Z/NZ)⇥.

Then the map given by

Tk(�)⇥ Sk (�) ! C

(T, f) 7! a
1

(Tf)

9



is a perfect C-bilinear pairing, which is also Tk(�)-equivariant. Thus, it induces an isomor-

phism of vector spaces Sk(�) ⇠= (Tk(�))
_.

Proof. See Section 6.6 of [16] for the proof of the weight k = 2 case. The same proof will

also work for general weight k. ⇤

This shows that any algebra homomorphism � : Tk (�1

(N)) ! C is the system of Hecke

eigenvalues attached to some eigenform. In fact, they take values in Z, because the Fourier

coe�cients of normalized eigenforms are algebraic integers (see Section 6.5 of [16]). By fixing

an embedding Q ,! Qp, the Fourier coe�cients can be seen to have values in Qp, which will

be the approach taken in later chapters. Unfortunately, these systems of eigenvalues do not

necessarily correspond to unique eigenvectors. Before we attempt to fix this, we will state a

corollary.

Corollary 1.4.2. A cusp form f of weight k is a normalized eigenform if and only if its

Fourier coe�cients satisfy the following:

1. a
1

(f) = 1.

2. For all primes p, and integers n � 2, we have apn(f) = ap(f)apn�1(f)��(p)pk�1apn�2(f).

3. For all integers m,n satisfying gcd (m,n) = 1, we have amn(f) = am(f)an(f).

Proof. This essentially follows from the fact that the Hecke operators satisfy these properties.

For a more detailed and convincing argument, see Proposition 5.8.5 of [16]. ⇤

Suppose N is a positive integer and suppose d | N . Let

↵d =

 

d 0

0 1

!

.

Define the map

id : Sk

�

�
1

(Nd�1)
�⇥ Sk

�

�
1

(Nd�1)
� ! Sk (�1

(N))

(f, g) 7! f + g [↵d]k .

10



By checking the necessary properties, it is easy to see that there is a natural inclusion

Sk (�1

(Nd�1)) ✓ Sk (�1

(N)). It is also an easy exercise to show that g [↵d]k 2 Sk (�1

(N)).

These show that id is well-defined.

Definition 1.4.3. The space of oldforms is the subspace of Sk (�1

(N)) given by

Sold
k (�

1

(N)) =
X

primes p|N
ip
⇣

Sk

�

�
1

(Np�1)
�

2

⌘

,

Let

Snew
k (�

1

(N)) = Sold
k (�

1

(N))?

be the orthogonal complement of the space of oldforms with respect to the Petersson inner

product.

By Atkin-Lehner Theory (see [1] and Sections 5.6-5.8 of [16] for more details), we have

the following important theorem.

Theorem 1.4.4.

1. The spaces Snew
k (�

1

(N)) and Sold
k (�

1

(N)) are stable under the Hecke operators Tn and

hni for all n 2 N.

2. The spaces both have an orthogonal basis of Hecke eigenforms for the Hecke operators

Tn and hni for all n 2 N with gcd (n,N) = 1.

3. Suppose f, f 0 2 Snew
k (�

1

(N)) are non-zero eigenforms for the Hecke operators Tn and

hni, for all n 2 N with gcd (n,N) = 1. If f and f 0 have the same system of eigenvalues

then f, f 0 di↵er by some constant scalar.

Proof. See Proposition 5.6.2, Corollary 5.6.3 and Theorem 5.8.2 of [16] for the proofs of part

1, 2, and 3 respectively. ⇤

Definition 1.4.5. A normalized eigenform in Snew
k (�

1

(N)) is called a newform.

1.5 Galois Representations

Now we are ready to introduce one of the most important results in the theory of

modular forms. Every eigenform has an associated Galois representation that satisfies some

11



special properties. The study of these Galois representation is a very important and active

part of number theory. Additionally, the basis of the proof of Fermat’s Last Theorem, was

determining when a certain class of Galois representations (coming from elliptic curves) are

modular (coming from modular forms).

Theorem 1.5.1. Let f be an eigenform of weight k, level N and nebentypus �. Suppose p

is a prime number and fix a finite extension K of Qp. Let Kf denote the K-algebra over Qp

generated by all the Fourier coe�cients an(f) and the values of �.

1. Suppose k � 2. Then there exists an irreducible Galois representation

⇢f : GQ ! GL
2

(Kf ),

such that for all primes ` - Np, the representation ⇢f is unramified at ` and the char-

acteristic polynomial of ⇢f (Frob`) is x2 � a`(f)x+ �(`)`k�1.

2. Suppose k = 1. Then there exists an irreducible Artin representation

⇢f : GQ ! GL
2

(C),

of conductor N , such that for all ` - N , the characteristic polynomial of ⇢f (Frob`) is

x2 � a`(f)x+ �(`).

Proof. For the original proofs, see [13] for part 1 and [15] for part 2. Other good references,

but only for the case where the weight is 2, are Chapter 1 of [7] and Chapter 9 of [16]. ⇤

1.6 Hecke Character and Theta Series

In this section, we will introduce Hecke characters. From these characters, we can define

and study a special class of modular forms called Hecke theta series. References for these

topics include Chapter 8 of [3], Chapter 5 of [25], Section 3.2 of [30], Lecture 1 of [32], [37]

and [39].

1.6.1 Hecke Character

Let K/Q be a finite field extension of degree n. Let n = r
1

+2r
2

, where r
1

is the number

of real embeddings K ,! R and r
2

is the number of complex embeddings K ,! C, up to

12



complex conjugation. Let OK be its ring of integer, IK be the group of idèles of K, and PK

the group of principal idèles. Let CK = IK/PK denote the idèle class group of K.

Definition 1.6.1. A continuous character � : CK ! C⇥ is called a Hecke character.

Suppose a = (ap) 2 IK is an idèle, then it determines an ideal A =
Q

p-1 pvp(↵p). This

assignment determines a surjective group homomorphism CK ! ClK of the idèle class group

to the ideal class group. There is an absolute norm on idèles given by

N(a) =
Y

p

|ap|p,

where if p is an infinite place corresponding to an embedding i : K ! C, then

|ap|p =

8

>

>

<

>

>

:

|i(ap)| if i is a real embedding.

|i(ap)|2 if i is a complex embedding.

By the product formula, N is trivial on PK , and so N is a well-defined map on CK (see

Chapter 3, Proposition 1.3 of [31]). Given a Hecke character �, there exists a character

�
1

: CK ! C⇥, such that for all a 2 CK , �(a) = �
1

(a)N(a)� for some � 2 R, where �
1

takes values in the unit circle of C (see Proposition 1.1 of [32] for the proof). Such a Hecke

character �
1

is called unitary.

Recall that a basis of open sets of 1 of the idèle class group is

Y

p2S
Up ⇥

Y

p/2S
O⇥p ,

where S is a finite set of places that includes all the infinite ones, and Up is some basic

open set of K⇥p . Since � is required to be continuous, its kernel is a closed subgroup. It is

then immediate that the kernel must contain O⇥p for all but finitely many p - 1. Fix such

a place p, and consider the induced character �p : K⇥p ! C⇥. Since O⇥p ✓ ker�p, �p is

uniquely determined by its value on a uniformizer. This analysis shows that �p is given by

�p(↵) = |↵|up for some u 2 C. We say �p is unramified in this scenario, and its conductor is

Op.

13



Now, consider the ramified case (p - 1 such that O⇥p is not contained in the kernel of

�). Take a small neighbourhood U ✓ C⇥ of 1 that contains no nontrivial subgroups. Since

the sets 1+ pn form a basic neighbourhood of 1 in K⇥p , �
�1
p (U) must contain 1+ pe for some

e 2 N. Then �p(1 + pe) must be a subgroup of U , but there is none by our choice of U .

Hence, 1 + pe ✓ ker�p. Let ep be the smallest such number. Then the local conductor of �

at p is defined to be pep . Piecing all the local conductors together, we say the conductor of

� is m =
Q

p p
ep (only finitely many of these terms are not Op).

Now, we will introduce the definition of a classical Hecke character. Let I be the group

of fractional ideals and P the group of principal ideals. Fix a non-zero ideal m of OK and

denote

I(m) = {I 2 J : gcd (I,m) = 1} ,

P (m) = P \ I(m),

Km =
�

↵ 2 K⇥ : ↵ ⌘ 1 mod ⇥m
 

,

Pm = {↵OK : ↵ 2 Km} ,

where mod ⇥ denotes multiplicative congruence. That is, for all prime ideals p | m,

ordp (a� 1) � ordp(m).

Definition 1.6.2. A Hecke character of modulus m is a group homomorphism � : I(m) !
C⇥, such that there exists a continuous group homomorphism,

�1 : (R⌦Q K)⇥ ⇠= Rr1 ⇥ Cr2 ! C⇥,

such that if ↵ 2 Km, then � ((↵)) = ��11 (1 ⌦ ↵) = ��11 (↵). The character �1 is called the

infinity type character of �.

Proposition 1.6.3. Let µn denote the n-th roots of unity of C. Then there exists n � 1 and

a finite order character ✏ : (OK/m)⇥ ! µn such that

� ((↵)) = ✏(↵)��11 (1⌦ ↵) for all ↵ 2 K⇥ prime to m.

Proof. See Proposition 1.2 of [32]. ⇤

14



Now, we will like to show how to obtain a classical Hecke character from an idèlic Hecke

character �. Define �̃ : I(m) ! C⇥ in the following way. For each place p, let ⇡p denote a

choice of uniformizer. For each ideal A 2 I(m), define

�̃(A) =
Y

p

�p(⇡
ordpA
p ).

The goal now is to determine the infinity type character of �̃. Suppose a 2 Km and suppose

at each prime p, ap = ⇡ordpa
p up for some unit up 2 O⇥p . By the definition of the conductor,

for all primes p - m, we have �p(up) = 1. It follows that �p(ap) = �p(⇡
ordpa
p ). For the primes

p | m, by the definition of a ⌘ 1 mod ⇥m, it must be that ap 2 ker�p. Combining everything

together, we obtain the identity

1 = �(a) =
Y

p

�p(ap) =
Y

p-m

�p(⇡
ordpa
p )

Y

p|1
�p(ap) = �̃ ((a))

Y

p|1
�p(ap).

Define �̃1(a) =
Q

p|1 �p(ap). From the identity above, we can deduce that �̃ ((a)) = �̃�11 (a)

for all a 2 Km as required. See [37] and [39] for more details and the converse (constructing

an idèlic Hecke character from a classical Hecke character).

Up to scaling by a power of the norm map, we can assume that �̃1 is unitary. Then,

for each 1  p  r
1

+ r
2

, there exists up, vp 2 R such that for each principal ideal (a) 2 Pm

�̃1 ((a)) =
r1+r2
Y

p=1

✓

ap
|ap|

◆up

|ap|ivp ,

where
8

>

>

<

>

>

:

up 2 {0, 1} if p  r
1

up 2 Z if p > r
1

and
r1+r2
X

p=1

vp = 0.

If up = 0 for all complex embeddings (r
1

< p  r
1

+ r
2

) and vp = 0 for all infinite places,

then we call �̃1 a class character. It is easy to see that class characters have finite orders.

1.6.2 Hecke Theta Series

This subsection will be dedicated to introducing theta series attached to Hecke charac-

ters. The main reference for this material is Chapter 5 of [25] and Section 4.8 of [30].
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First, consider the case where K = Q(
p
d) is a quadratic imaginary field, so that r

1

= 0

and r
2

= 1. Let D be the discriminant of K. Suppose � is a unitary Hecke character with

modulus m. Then � is given by

�1 ((a)) =

✓

a

|a|
◆u

for all (a) 2 P (m),

for some u 2 Z�0. We can extend � to all fractional ideals, by declaring �(A) = 0 for all

A /2 I(m).

Definition 1.6.4. Let k be a positive integer. Define the weight k Hecke theta series

associated to the character � to be

✓k(�, z) =
X

IEOK

�(I)N(I)
k�1
2 qN(I),

where N is the absolute norm.

Theorem 1.6.5. The Hecke theta series ✓k (�, z) is a modular form of weight k and level

N 0 = |D|N(m) with nebentypus �f ·
�

D
·
�

. Here,
�

D
·
�

is the Kronecker symbol. The character

�f is defined by �f (n) = �((n))
�1(n)

for all integers n 2 (Z/N 0Z)⇥. The theta series is a cusp

form, unless k = 1 and � =  � N , where  is some Dirichlet character. If � is primitive

(its conductor is m), then ✓k is a newform.

Proof. See Theorem 4.8.2 of [30]. ⇤

Suppose K = Q(
p
d) is a real quadratic field of discriminant D. In this case, r

1

= 2

and r
2

= 0. Let � be a unitary Hecke character of modulus m. Suppose that v
1

= v
2

= 0,

and (u
1

, u
2

) = (1, 0) or (0, 1). That is, if a0 is the conjugate of some a 2 K, then

� ((a)) =
a

|a| = sign(a) or
a0

|a0| = sign(a0) for all a 2 P (m).

Such a character � is said to be of mixed signature, because it is even at one of the

archimedean places and odd at the other. The abelian extension F of K corresponding

to the kernel of the idèlic character � will have both real and complex places.

Definition 1.6.6. Define the Hecke theta function associated to � to be
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✓ (�, z) =
X

IEOK

�(I)qN(I).

Theorem 1.6.7. The theta series ✓ (�, z) is a cusp form of weight 1 of level D ·N(m), with

nebentypus character  (t) =
�

D
t

�

� ((t)). If � is primitive (if m is its conductor) then ✓ is a

newform.

Proof. See Theorem 4.8.3 of [30]. ⇤

The importance of these theta series is the equality between the L-function attached to

its corresponding Artin representation (via Theorem 1.5.1) and the L-function attached to

the Hecke character. We will briefly explain this result.

Let � be a unitary Hecke character. Define the Hecke L-function attached to � to be

L (�, s) =
X

IEOK

�(I)N(I)�s =
Y

p

�

1� �(p)N(p)�s
��1

.

It converges absolutely and uniformly for Re(s) � 1 + � for any � > 0.

Let ⇢ be a finite dimensional representation on some Galois group G. Then the Artin

L-function associated to ⇢ is defined to be

L (⇢, s) =
Y

p

1

det (1�N(p)�s⇢Ip (Frobp))
.

It is the product of the inverses of the characteristic polynomials of Frobenius elements

evaluated at N(p)�s. Here, Ip is the inertia subgroup of p, and ⇢Ip is the restriction of ⇢ to

the subspace of elements fixed by Ip. This construction is made so that it does not matter

which choice of the Frobenius element is picked, even if p is ramified.

Let K be a quadratic field (real or imaginary) and suppose � is a class character. By

global class field theory, we can view � as a character on Gal
�

Kab/K
�

where Kab is the

maximal abelian extension of K (inside some separable closure). Since � is a finite order

character, it factors through some finite field extension L/K. Let ⇢ = Ind� be the induced

representation of � to Gal (L/Q). Then the Galois representation ⇢ is in fact the associated

Artin representation of the Hecke theta series given by Theorem 1.5.1. Furthermore, there
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is an equality of L-functions,
L (�, s) = L (⇢, s) .

See Section 4.8 of [30] for more details.

1.7 Modular Curve

In this section, we will return to discuss the theory of modular curves. Another con-

struction of these objects will be given when we introduce representable functors in the next

chapter.

Definition 1.7.1. Let � be a congruence subgroup. Define the modular curve to be Y (�) =

�\H. For the following special congruence subgroups, we will use the following special

notations:

Y (1) = Y (SL
2

(Z)) , Y
0

(N) = Y (�
0

(N)) , Y
1

(N) = Y (�
1

(N)) , and Y (N) = Y (�(N)) .

Theorem 1.7.2. We have the following bijections of the complex points of the modular

curves.

1. Y
0

(N) (C) is in bijection with the set of isomorphism classes of pairs (E,C), where E

is an elliptic curve over C and C is an order N cyclic subgroup of E.

2. Y
1

(N) (C) is in bijection with the set of isomorphism classes of pairs (E,P ), where E

is an elliptic curve over C and P 2 E (C) is a point of exact order N .

3. Y (N) (C) is in bijection with the set of equivalent classes of triples (E,P,Q), where E

is an elliptic curve over C and P,Q 2 E (C) generate E [N ] ⇠= (Z/NZ)2, the N-torsion

subgroup of E. We also require that eN (P,Q) = e2⇡i/N , where eN is the Weil pairing.

Proof. See Section 1.5 and most importantly, Theorem 1.5.1 of [16]. ⇤

Corollary 1.7.3. Since Y
0

(1) = Y (1), the complex points of the curve Y (1) is in bijection

with the isomorphism classes of elliptic curves over C.

In the next chapter, we will see that these results are easy corollaries, because these

modular curves are coarse moduli spaces that represent some functor classifying isomorphism

classes of elliptic curves with some level N structure.
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Chapter 2
Deformation Theory

Let n be a positive integer and let

⇢ : GQ ! GLn(Fp)

be a Galois representation. The goal of this chapter is to study the possible lifts of ⇢ to a

Galois representation

⇢ : GQ ! GL
2

(Zp),

with the property that ⇢ = ⇢ mod p. Later, we will apply this theory to our study of

representations associated to modular forms. In this chapter, we will introduce representable

functors and criterions for obtaining representability. Finally, we will discuss tangent spaces

of a deformation functor and several important additional conditions that can be imposed

on representable functors and still remain representable. The main references for this theory

are the works of Mazur from [28] and [29]. Another good reference is the 2009-2010 seminar

at Stanford University on modularity lifting from [26] and [27].

2.1 Representable Functors

Definition 2.1.1. Let C be a locally small category. That is, for all a, b 2 Object(C),
Hom (a, b) is a set. A functor F : C ! Sets is called representable if there exists an object

R 2 Object(C) and a natural isomorphism � : Hom (R, ·) ! F . Such an R is called

universal. If F is contravariant, then the natural isomorphism is with Hom (·,R).

By Yoneda’s Lemma, natural transformations � : Hom (R, ·) ! F are in one to one

correspondence with elements in F(R). That is, given a natural transformation �, we get a

special element in F(R) which is � (IdR). This shows that if F is representable by (R,�),

then there is an universal element c 2 F(R) which uniquely determines �.

We will encounter two types of representable functors in this thesis.

1. In the first case, the functor F maps certain subcategories of rings to isomorphism

classes of framed elliptic curves. That is, every element of F(A) is some isomorphism
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class of elliptic curves with some additional structure over some base ring A. The

universal space SpecR is called the moduli space and the universal element c is called

the universal elliptic curve.

2. In the next scenario, F(A) will be the set of deformations of some given base repre-

sentation to the ring A, up to strict equivalence. The object R is called the universal

deformation ring, and c is the universal representation.

Let A,B 2 Object (C). Since � is a natrual isomorphism, it induces an isomorphism

of sets �A : Hom (R, A) ! F(A). Additionally, for all f : A ! B, we have the following

commutative diagram.

Hom (R, A) Hom (R, B)

F(A) F(B)

f

�B �A

F(f)

Suppose B = R. Let a 2 F(A) and let f = �A(c) 2 Hom (R, A). Since ��1R (IdR) = c is

the universal element, our commutative diagram maps the following elements to one another.

Id 2 Hom (R,R) Hom (R, A) 3 f

c 2 F(R) F(A) 3 a

f

�R �A

F(f)

The interpretation of this result in scenario one is that every framed elliptic curves on any

base space SpecA comes about as a pull-back of the universal framed elliptic curve in a

unique way. Similarly, in the second scenario, we can also say that any deformation arises

from the universal deformation in a unique way.

2.2 Modular Curve Revisited

In this section, we will introduce some moduli problems of classifying isomorphism

classes of framed elliptic curves. The standard references for this section are [14] and [24].
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Let Z be a ring, and let CZ be the set of Z-algebras. Often times, we will just take

Z = Z, but this theory applies in positive characteristics as well.

Definition 2.2.1. Define the functor FZ : CZ ! Sets by

FZ (A) = {isomorphism classes of elliptic curves over SpecA} .

An elliptic curve E over a scheme S, is a scheme E with a smooth proper morphism p : E !
S, whose geometric fibres are smooth curves of genus one, together with a section e : S ! E

called the zero section. The zero section e identifies the point at infinity of each fibre in the

classical definition of elliptic curves.

Given a Z-algebra homomorphism from f : A ! B, the morphism F(f) : F(A) !
F(B) is given by base extension. That is, given an elliptic curve E over A,

F(f)(E) = E ⇥
SpecA SpecB.

Remark 2.2.2. If we view an elliptic curve as a variety defined by a Weierstrass equation

in the classical sense, FZ(A) is the set of families of elliptic curves over a base space SpecA.

Instead of considering the category of elliptic curves over a ring A, it is also possible to

consider the category of elliptic curves over a general scheme S.

This functor is not representable in general. The problem is that there are elliptic

curves E
1

and E
2

that are not isomorphic over some ring, say a field K, but they may be

isomorphic over some base extension, such as an algebraic closure K̄. To salvage this, we

can add additional structures in the definition of our functor, which we will do. Another

approach is to settle with a coarse moduli space, which is a unique universal space whose

points are in bijection with the isomorphism classes of elliptic curves, but does not have an

universal element. See [24] for more details on the theory of coarse moduli spaces.

Definition 2.2.3. For an elliptic curve E over a scheme S, with smooth proper morphism

p : E ! S, let !E/S denote the invertible sheaf p⇤
⇣

⌦1

E/S

⌘

on S.

Consider the functor

FZ(A) = {isomorphism classes of (E,!) over SpecA} ,
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where E is an elliptic curve over SpecA, and ! is a basis of !E/A. Here, ! can be thought

of as a nowhere vanishing section of ⌦1

E/A on E. This functor is then representable (see [24]

for more details).

Definition 2.2.4. A framed elliptic curve over a ring A with level N -structure is a triple

(E,!,↵N), where ↵N is of one of the following types.

1. Type 0, ↵N is a subgroup scheme of order N on E/A.

2. Type 1, ↵N : Z/NZ ,! E[N ]/A, where ⇠(1) is a section of order N on E/A.

3. Type 2, ↵N = (P,Q) where (P,Q) is a Z/NZ basis for E[N ].

If N is invertible in A, then the functor FZ parametrizing isomorphism classes of framed

elliptic curves over A is representable, for any of the above types (see [24] for more de-

tails). Suppose R is the universal Z-algebra and denote M = SpecR, which is called

the moduli space. By representability, every framed elliptic curve (E,!,↵N) 2 FZ(A) for

some A 2 CZ corresponds to a morphism in Hom (R, A), which is the same as a morphism

Hom (SpecA,M). This says that the A-valued points on this moduli space are exactly the

isomorphism classes of framed elliptic curves. The similarity of this result and Theorem 1.7.2

is due to the fact that the modular curves Y (�) we defined in Chapter 1, are coarse moduli

spaces that represent the functor of framed elliptic curves (E,↵N). The moduli space M is

naturally a cover of Y (�).

Remark 2.2.5. It is possible to consider another moduli problem so that the resulting

moduli space corresponds to the compact modular curves X(�). To do so we will need to

replace elliptic curves with generalized elliptic curves and replace the level N -structures with

Drinfeld structures. See [6] for more details.

Remark 2.2.6. The coarse moduli spaces Y (�) are fine moduli spaces (they are universal

spaces that represent the functor) in the following cases:

1. the congruence subgroup � is �(N) for N � 3.

2. the congruence subgroup � is �
1

(N) for N � 4.
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Additionally, when � = �
0

(N), the moduli space is never fine. See [17] for a deeper discussion

and see [14] for the proofs of these facts.

2.3 Deformation Functors

For the rest of the chapter, let G be a profinite group and k be a finite field of charac-

teristic p. Let k [✏] /✏2 denote the ring of dual numbers over k. Let ⇤ be a complete discrete

valuation ring with residue field k, such as the ring of Witt vectors W (k).

Let C
⇤

be the category of local Artinian ⇤-algebras with residue field k, along with local

morphisms between the objects. Let Ĉ
⇤

denote the category of complete local Noetherian

⇤-algebras with residue field k.

Definition 2.3.1. The group G is said to satisfy the p-finiteness condition �p if for every

open subgroup G
0

of finite index, it satisfies one of the following equivalent definitions (see

[28] for more details).

1. The pro-p completion of G
0

is topologically finitely generated.

2. The abelianization of the pro-p completion of G
0

is of finite type over Zp.

3. There are only a finite number of continuous homomorphisms G
0

! Fp.

Example 2.3.2. Let K be a number field and S be a finite set of primes of K. Then GK,S,

the Galois group associated to the maximal extension of K unramified outside S, satisfies

the p-finiteness condition.

Example 2.3.3. Suppose L is some finite extension of Qp. Then GL = Gal(L̄/L) also

satisfies �p.

Suppose ⇢ : G ! GLn(k) is a continuous representation, which we will refer to as a

residual representation. Suppose A 2 Ĉ
⇤

. We say a continuous representation ⇢ : G !
GLn(A) is a lift or a deformation of ⇢ if ⇢ mod mA = ⇢, where mA is the maximal ideal

of A. Two lifts ⇢, � are strictly equivalent, denoted by ⇠, if they di↵er by an element of

ker (GLn(A) ! GLn(k)) by conjugation. Now consider the following two functors:

Def⇤ (⇢̄) (A) = {⇢ : G ! GLn(A) : ⇢ mod mA = ⇢̄}.
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Def (⇢) (A) = Def⇤ (⇢) (A)/ ⇠.

The former is called the framed deformation functor, while the latter is called the deformation

functor. In essence, we have “framed” some basis of ⇢ and the deformation is considering

the set of pairs (⇢, �) where ⇢ is a lift of ⇢ and � is a lift of the chosen basis. There is a

canonical forgetful functor Def⇤ ! Def defined by forgetting the chosen basis.

We can prove that for each A 2 Ĉ
⇤

,

Def⇤ (⇢) (A) = lim
 
i

Def⇤ (⇢)
�

A/mi
A

�

.

The same result holds for the deformation functor under strict equivalence. This shows that

for a lot of results, we only need to study the deformations on the category C
⇤

. In particular,

if the functors are representable over C
⇤

, then they are pro-representable over Ĉ
⇤

.

2.4 Schlessinger’s Criterion and Representability

Our first goal is to show that these functors are representable (or pro-representable).

To do this we need the Schlessinger’s Criterion.

Definition 2.4.1. Suppose A,B 2 C
⇤

. A morphism f : A ! B is called small if it is

surjective and its kernel is principal and annihilated by mA.

Theorem 2.4.2. (Schlessinger’s Criterion) Suppose D : C
⇤

! Sets is a covariant functor,

with the property that D(k) is a point. Suppose A,B,C 2 C
⇤

, and we have morphisms

A ! C and B ! C. Canonically, we have a map

' : D (A⇥C B) ! D(A)⇥D(C)

D(B).

Suppose D satisfies the following properties.

1. ' is a surjection whenever B ! C is a small morphism.

2. ' is a bijection when C = k and B = k [✏] /✏2.

3. D (k [✏] /✏2) is finite dimensional.

4. ' is a bijection whenever A ! C and B ! C are equal and small.

Then D is representable.
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Proof. See [33] for the proof of this result. ⇤

Theorem 2.4.3. Suppose G satisfies �p then Def⇤ (⇢) is representable in Ĉ
⇤

. If, in addition,

EndG (⇢) = k, then Def (⇢) is representable as well.

Proof. See Proposition 1.6 of [26]. ⇤

The additional condition, EndG (⇢) = k can be satisfied if ⇢ is absolutely irreducible,

or if n = 2 and ⇢ is a non-split extension of distinct characters. Note, these are not the

only scenarios in which the additional condition can be satisfied, but they will su�ce for this

thesis. For the rest of the chapter, we will assume that these conditions are satisfied so that

Def (⇢̄) is representable.

2.5 Tangent Space

Definition 2.5.1. For a functor D : Ĉ
⇤

! Sets, define its tangent space to be tD =

D (k [✏] /✏2).

Notice that given ⇢ 2 tD and g 2 G, we have ⇢(g) = ⇢̄(g) (1 + ✏c(g)) for some c 2 Ad (⇢).

Since ⇢(gh) = ⇢(g)⇢(h) for all g, h 2 G, by applying the previous identity, we find that

c(gh) = ⇢̄�1(h)c(g)⇢̄(g) + c(h).

This shows that c is a 1-cocycle and so c 2 Z1 (G,Ad⇢). By considering ⇢ up to strict

equivalence, it can be deduced that c 2 H1 (G,Ad⇢). Hence, tD = H1 (G,Ad⇢).

In the case where D is representable, by a ⇤-algebra R, we have the following isomor-

phism of k-vector spaces

tD ⇠= tR/D = Homk

�

⌦R/⇤ ⌦R k, k
�

= Homk

�

mR/
�

m2

R +m
⇤

R� , k� ,

which justifies the name tangent space. For a proof of this fact, see Section 17 of [29].
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2.6 Deformation Conditions

In this section, we will discuss some subfunctors of Def(⇢̄) obtained by imposing some

conditions on the possible lifts and explore their representability. The main reference for

this material is Section 23 of [29].

Let Fn = Fn(⇤, G) be a category defined in the following way. The objects of Fn are pairs

(A, V ), where A 2 C
⇤

and V is a free A-module of rank n with a continuous A-linear action

of G on V . For example, we can take V to be the representation space of ⇢ : G ! GLn(A).

A morphism (A, V ) ! (A0, V 0) consists of a morphism A ! A0 in the category C
⇤

and a

A-module morphism V ! V 0 that induces a G-compatible isomorphism V ⌦A A0 ⇠= V 0.

Definition 2.6.1. Let V̄ be a representable space of ⇢̄ (say V̄ = kn viewed as a G-module

by the action of ⇢̄). A deformation condition D for ⇢̄ is a full subcategory DFn that contains
�

k, V̄
�

, and satisfies:

1. Suppose there is a morphism between two objects of FN , (A, V ) ! (A0, V 0). If (A, V )

is an object of DFn, then so is (A, V ).

2. With the same set up, if A ! A0 is injective and (A0, V 0) is an object of DFn then so

is (A, V ).

3. Suppose we have morphisms
A B

C

for some A,B,C 2 C
⇤

. Let

pA : A⇥C B ! A and pB : A⇥C B ! B

be the natural projections. Suppose (A⇥C B, V ) 2 Object(Fn). Let VA = V ⌦pA A

and VB = V ⌦PB
B. Then

(A⇥C B, V ) 2 Object(DFn) if and only if (A, VA) , (B, VB) 2 Object(DFn).

Given a deformation condition D, define a subfunctor DefD(⇢̄) of Def(⇢̄) in the following

way. For all A 2 C
⇤

, define DefD(⇢̄)(A) to be the subset of Def(⇢̄)(A) that are in the category
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DFn, up to strict equivalence. By extending DefD(⇢̄) through limits, we can also view it as

a functor on Ĉ
⇤

.

Theorem 2.6.2. If D is a deformation condition, then DefD(⇢̄) is also representable on C
⇤

and pro-representable on Ĉ
⇤

.

Proof. Check that it still satisfies Schlessinger’s criterion. See Section 23 of [29] for more

details. ⇤

Suppose Def(⇢̄) is represented by R and DefD(⇢̄) is represented by RD. Since R is

universal, there is a natural morphismR ! RD. This morphism is in fact surjective, because

the induced map on cotangent spaces coming from DefD(⇢̄) (k[✏]/✏2) ✓ Def(⇢̄) (k[✏]/✏2) is

injective. This tells us that by picking the conditions nice enough, the ring RD is a quotient

of R. Geometrically, the space SpecRD is a closed subscheme of SpecR.

We will now consider three very important examples of deformation conditions.

Example 2.6.3. Let DefD(⇢̄)(A) be the set of ⇢ : G ! GLn(A) where det ⇢ = det ⇢̄. It is

not hard to show that the tangent space tD = DefD(⇢̄)(k[✏]/✏2) is isomorphic to

tD ⇠= H1

�

G,Ad0⇢̄
�

,

where Ad0⇢̄ is the trace zero adjoint representation.

Let �univ : G ! R be the determinant of the universal representation of the full

deformation functor. Let �̄ be the determinant of ⇢̄ , and let

� : G
¯�! ⇤⇤ ! R⇤,

where the last morphism is just the one giving R the structure of an ⇤-algebra. Then

RD = R/I where I is the ideal generated by �(g) � �univ(g) 2 R for all g 2 G. For more

details, see Section 25 of [29].

Example 2.6.4. Suppose K is a global field and S is a finite set of primes of K. Let GK,S

be the Galois group of the maximal extension of K unramified outside S. Recall that GK,S

still satisfies the p-finiteness condition �p. If ⇢̄ is unramified at some p 2 S, then the set of

lifts of ⇢̄ that are still unramified at p is a deformation condition.
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Example 2.6.5. Let K be a local field with residue field characteristic p. Let IK ✓ GK be

its inertia subgroup. A representation ⇢ : GK ! GLn(A) is ordinary if

⇢ |IK⇠=

0

B

B

B

B

@

 
1

⇤ ⇤
0 ... ⇤
0 0  n

1

C

C

C

C

A

,

where  n : GK ! A⇥ is unramified. Then the set of ordinary lifts of ⇢̄ is a deformation

condition. See Section 30 of [29] for a proof of this fact. The ordinary condition will be very

important for this thesis, as the Galois representations associated to modular forms that we

will encounter are ordinary.

The field K does not necessarily have to be a local field. By picking an embedding Q ,!
Qp, there is a canonical embedding Gal

�

Q̄p/Qp

�

,! Gal
�

Q̄/Q
�

that identifies Gal
�

Q̄p/Qp

�

as the decomposition group of Gal
�

Q̄/Q
�

at p. Then we say a representation ⇢ : GQ !
GLn(A) is ordinary at p if ⇢ |GQp

is ordinary. Similarly, we can extend this definition to

Galois groups of number fields.
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Chapter 3
p-adic Modular Forms

In this chapter, we will survey several important topics in the theory of p-adic modular

forms in order to set up for the rest of this thesis. We will start with Serre’s original definition

[34] to motivate p-adic modular forms. Our next goal will be to define Katz’s overconvergent

modular forms [22]. To do so, we will give an alternate definition of classical modular forms

in terms of a moduli problem, and introduce the Hasse invariant. Furthermore, we will

introduce generalised p-adic modular functions as defined by Katz in [23] from the point

of view of Emerton [18]. The advantage of taking Emerton’s point of view is that we can

naturally introduce the eigencurve. Finally, we will introduce Hida families and give an

important example of a family of theta series.

3.1 Serre’s p-adic Modular Forms

We will first introduce Serre’s p-adic modular forms as defined in [34]. Fix a prime p.

Let vp denote the standard p-adic valuation on Qp, normalized so that vp(p) = 1. For a

formal power series f(q) =
P1

n=0

anqn 2 QpJqK, we define the valuation of f to be

vp(f) = inf
n
vp(an).

Say that a sequence of power series fi 2 QpJqK converges to f 2 QpJqK if vp (fi � f) ! 1 as

i ! 1.

Let m � 1 be a positive integer (m � 2 if p = 2). Let

Xm =

8

>

>

<

>

>

:

Z/(p� 1)pm�1Z ⇠= Z/pm�1Z⇥ Z/(p� 1)Z if p 6= 2

Z/2m�2Z if p = 2

Let

X = lim
 

Xm =

8

>

>

<

>

>

:

Zp ⇥ Z/(p� 1)Z if p 6= 2

Z
2

if p = 2

There is a natural injection Z ,! X whose image will be a dense subgroup of X.
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Definition 3.1.1. A p-adic modular form is a formal power series

f(q) =
1
X

n=0

anq
n 2 QpJqK,

such that there exists a sequence fi consisting of classical modular forms of weight ki with

coe�cients in Q such that lim fi = f .

Theorem 3.1.2. Suppose f is a non-zero p-adic modular form, which is the limit of a se-

quence of classical modular forms fi of weight ki with rational coe�cients. Then the sequence

of ki’s converge in X. The limit is called the weight of f and does not depend on the choice

of the fi’s.

Proof. See Theorem 2 of Chapter 1 of [34] for the proof. ⇤

3.2 Alternate Definition of Classical Modular Forms

In the next few sections, we will explore an important class of p-adic modular forms

called overconvergent modular forms. However, before we define these objects, we will need

to introduce an alternative way to define classical modular forms in order to motivate the

construction of overconvergent modular forms. The main references for this section are [14]

and [24].

Let Z = Z
⇥

1

6

⇤

and let C be the category of Z-algebras. Here, we can also let C be

the category of R-algebra for some fixed ring R where 6 is invertible, or the category of

S-schemes, for some fixed scheme S. Everything below can be defined in the exact same

way, by replacing Z with R or S. Let F : C ! Sets be the functor sending A 2 Object(C)
to the set F(A) of framed elliptic curves (E,!,↵N) over A, up to isomorphism. Here, ! is

a basis element of !E/A and ↵N is some level N structure (ignore ↵N if N = 1). Recall that

this functor is representable, by some Z-algebra R.

Definition 3.2.1. A weakly holomorphic modular form f over Z is an element of R. Alter-

natively, a modular form f over Z is a rule, that sends a framed elliptic curve (E,!,↵N)/A

over a Z-algebra A to an element f (E,!,↵N) 2 A, satisfying:
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1. f only depends on the isomorphism class of (E,!,↵N)/A.

2. f commutes with base change. More specifically, given a Z-algebra homomorphism

g : A ! B , we have a map F(g) : F(A) ! F(B) given by base change of the framed

elliptic curves. Then

f
�F(g)

�

(E,!,↵N)/A
��

= g
�

f
�

(E,!,↵N)/A
��

.

Proposition 3.2.2. These definitions are equivalent.

Sketch of the Proof. First, let’s view f as an element a 2 R. Suppose (E,!,↵N)/A is some

framed elliptic curve over a Z-algebra A. By representability, this gives rise to a morphism

� 2 Hom (R, A). Then �(a) gives rise to an element in A, which we define to be f (E,!,↵N).

It is not hard to check that f satisfies the above properties.

Conversely, suppose we view f as a rule described above. Let a = f (Euniv,!univ,↵N, univ) 2
R be the value of f evaluated at the universal framed elliptic curve. ⇤

Definition 3.2.3. A weakly holomorphic modular form f is of weight k if it satisfies the

additional property that

f
�

(E,�!,↵N)/A
�

= ��kf
�

(E,!,↵N)/A
�

for all � 2 A⇥.

To get the “q-expansion” of f , we will draw some intuition from the case of complex

numbers. Recall that all elliptic curves over C is isomorphic to C modulo a lattice. More

specifically, the lattice can be chosen to be of the form h1, ⌧i = Z + Z⌧ for some ⌧ 2 H.

The exponential map gives us an identification C/ h1, ⌧i exp! C⇥/qZ where q = e2⇡i⌧ , and the

map is z 7! e2⇡iz = t. A canonical choice of di↵erential for this elliptic curve is given by

dt
t
= 2⇡idz. Given a modular form f , we can define f(q) = f

�

C⇥/qZ, dt
t

� 2 CJqK. It can

checked that the modular property of the classical modular form definition follows directly

from the properties defined by viewing f as a rule.

Definition 3.2.4. For all x 2 C, define the divisor function to be

�x(n) =
X

d|n
dx.
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For a positive integer k, define the series sk(q) to be

sk(q) =
X

n�1
�k(n)q

n.

Furthermore, define

a
4

(q) = �5s
3

(q), and a
6

(q) = �5s
3

(q) + 7s
5

(q)

12
.

The series a
4

(q) and a
6

(q) converges for all q 2 K⇥ and |q| < 1, where K is the field of

complex numbers C or K is a p-adically complete field. Otherwise, we can just view these

series as formal power series.

Theorem 3.2.5. Let Eq be the elliptic curve defined by the Weierstrass equation y2 + xy =

x3 + a
4

(q)x+ a
6

(q) defined over Z((q)). Then
⇣

Eq,
dx

2y+x

⌘

is isomorphic to
�

C⇥/qZ, dt
t

�

over

C and
�

Q⇥p /qZ, dtt
�

over Qp.

Proof. See Theorem 1.1 and Theorem 3.1 in Chapter 5 of [38]. ⇤

The elliptic curve Eq is called the Tate curve and dx
2y+x

is called its canonical invariant

di↵erential. Since a
4

(q) and a
6

(q) have integral q-expansions, the Tate curve can be defined

over fields of positive characteristics as well. However, it only has good reduction if p � 5.

For a weakly holomorphic modular form f , the finite tailed Laurent series f (Eq,!can) 2
Z((q)) is called the q-expansion of f when the level is 1. For a general Z-algebra A, we

define the q-expansion of f over A to be the series f
�

(Eq,!can)/A
� 2 Z((q))⌦Z A.

For general level N , the level N structure ↵N is defined over Z[⇣N ]((q
1
N )). However,

it is not unique, but there are only finitely many of them, called the cusps. For each ↵N

structure, we have a finite tailed Laurent series

f
�

(Eq,!can,↵N)/A
� 2 Z [⇣N ] ((q

1
N ))⌦Z A.

The cusp that we canonically took to get a classical q-expansion is the cusp at infinity. A

weakly holomorphic modular form f is called a modular form if all of its q-expansions at

all cusps are power series in Z[⇣N ]Jq
1
N K. A modular form f is called a cusp form if its q

expansions at all cusps are in q1/NZ[⇣N ]Jq
1
N K.
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3.3 Hasse Invariant

Fix a prime p 6= 2, 3, and suppose R is a Fp-algebra. For an elliptic curve E/R, we have

the p-th power absolute Frobenius map Fabs. More specifically, since every open a�ne subset

U = SpecA of E is an Fp-algebra, we have a Frobenius endomorphism on U . By piecing

these together, we obtain the absolute Frobenius Fabs. This endomorphism also induces a

p-linear endomorphism of H1 (E,OE), where OE is the structure sheaf. By picking a base !

of !E/R, we have also picked a dual base ⌘ of H1 (E,OE). Then

F ⇤abs (⌘) = A (E,!) ⌘

for some A (E,!) 2 R. We also have the following identity,

F ⇤abs
�

��1⌘
�

= A (E,�!)��1⌘ for all � 2 R⇥.

On the other hand,

F ⇤abs
�

��1⌘
�

= ��pF ⇤abs(⌘) = ��pA (E,!) ⌘.

Combining the two identities, we find that

A (E,�!) = �1�pA (E,!) .

This shows that A is a weakly holomorphic modular form mod p of weight p � 1 and level

1. In fact, it is a modular form, with q-expansion A
�

(Eq,!can)/Fp

�

= 1 2 FpJqK (see Section

2.0 of [22]). We call A the Hasse invariant.

Since this construction is not very enlightening to what we want to do next, we will

present another construction of the Hasse invariant, following the works of Serre [36]. The

motivation here, is to study modular forms over Fp. Let Z = Z
(p) the localization of Z at

(p), and define modular forms over Z of level 1 the same way we have in this chapter.

Definition 3.3.1. Define the Ramanujan delta function to be

�(q) = q
1
Y

n=1

(1� qn)24 2 qZJqK,

which is a weight 12 cusp form. For a positive integer k, define the Eisenstein series of

weight 2k to be
E

2k(q) = 1� 4k

B
2k

1
X

n=1

�
2k�1(n)qn,
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where B
2k is the 2k-th Bernoulli number.

Proposition 3.3.2. Let Mk(Z) denote the ring of modular forms over Z of weight k. Then

Mk is free over Z, and generated by
�

Ea
4

Eb
6

: 4a+ 6b = k
 

.

Proof. This is a standard result. See Section 1.1 of [16]. ⇤

Corollary 3.3.3. Mk(Fp) = Mk (Z)⌦ Fp is then a Fp-vector space, generated by Ea
4

Eb
6

.

By mapping each modular form to its corresponding q-expansion, we get a mapMk(Fp) !
FpJqK.

Proposition 3.3.4. The above map is injective.

Proof. Suppose
P

4a+6b=k �a,bE
a
4

Eb
6

(q) = 0 for �a,b 2 Fp. For each a, b, pick �̃a,b 2 Z to be a

lift of �a,b. Then we must have

X

4a+6b=k

�̃a,bE
a
4

Eb
6

(q) 2 pZJqK.

Since Mk(Z) is free with basis Ea
4

Eb
6

, p | �̃a,b and so �a,b = 0 in Fp. ⇤

While the weight k q-expansion map is injective, the map M(Fp) = �kMk(Fp) ! FpJqK

is not. There can be modular forms of di↵erent weights with the same q-expansion over Fp.

Let M̄(Fp) denote the image of M(Fp) in FpJqK, whose elements we call modular forms mod

p . To understand this space, we can study the kernel,

I = ker (Fp[E4

, E
6

] ! FpJqK) . (3.1)

It turns out to be a principal ideal, generated by A(x, y) � 1 2 Fp[x, y], where A is an

irreducible homogenous polynomial of degree p�1 satisfying the identity A (E
4

, E
6

) = Ep�1.

By showing that Ep�1 mod p = 1 (has q expansion 1 in FpJqK), A is exactly the Hasse

invariant we had previously defined. The construction we have described only works if

p 6= 2, 3. However, when p = 2 or 3, there are other methods of lifting the Hasse invariant.

See [36] for more details.

Theorem 3.3.5. An elliptic curve E/¯Fp
is supersingular if and only if A (E,!) = 0 for all

!.
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3.4 Overconvergent Modular Form

Now, we will define overconvergent modular forms following the definition of Katz [22].

The main idea is that we cut out a disk of radius r around each supersingular elliptic curve

from the modular curve, and define modular forms on the resultant space.

Definition 3.4.1. Let R
0

be a p-adically complete ring. Let r 2 R
0

, N � 1 be an integer

prime to p. A weakly holomorphic p-adic modular form f of level N , weight k and growth r

is a rule that to any quadruples (E/R,!,↵N , Y ), gives an element f (E/R,!,↵N , Y ) 2 R,

subjecting to the requirements that

R is an R
0

-algebra where p is nilpotent (pn = 0 for some n > 0).

E/R is an elliptic curve.

! is a base of !E/R.

↵N is some level N -structure.

Y 2 R satisfies the property that Y · Ep�1 (E,!) = r.

Similar to the definition of classical modular forms, we also require that f only depends on

the isomorphisms classes of the quadruple, and commutes with base change. Additionally,

f satisfies the identity

f
�

E/R,�!,↵N ,�
p�1Y

�

= ��kf (E/R,!,↵n, Y ) for all � 2 R⇥.

A weakly holomorphic modular form f is holomorphic if at all level N structures ↵N ,

the value of f at
�

Eq,!can,↵N , r (Ep�1(Eq,!can))
�1�

is in ZJqK ⌦ �

R
0

/pNR
0

�

[⇣N ]. Similarly, f is a cusp form if its value at the same quadruple

is in qZJqK ⌦ �

R
0

/pNR
0

�

[⇣N ]. Denote by Mk (R0

, N, r), the space of holomorphic p-adic

modular forms over R
0

of weight k, level N and growth r. Similarly, denote the space of

p-adic cusp forms of weight k, level N and growth r by Sk (R0

, N, r). If r is not a p-adic

unit, we call these modular forms overconvergent.

We will now give some motivation for this construction. To define p-adic modular

forms, we would like the congruences of the q-expansions of modular forms to be congruences
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themselves. For example, since

Ep�1(q) ⌘ 1 mod p,

we would like to to have the identity Ep�1 � 1 = pf for some modular form f defined over

R. However, this will not hold for the following reason. Let (E,!)/R be a supersingular

elliptic curve. Since Ep�1 is a lift of the Hasse invariant, by Theorem 3.3.5, we must have

Ep�1(E,!) = 0 mod p.

LetM(N) denote the modular curve associated to �
1

(N)-type framed elliptic curves over

Zp, and M̄(N) its compactification. Another definition of classical modular forms, is that

they are sections of bundles on the modular curve. Let M̄(N)�r denote the resulting modular

curve after we have removed a disk of radius r around every elliptic curve with supersingular

reduction. In essence, we still allow elliptic curves that are not “too” supersingular. By

defining p-adic modular forms to be the sections of some bundles on M̄(N)�r, we will have

the desired congruence property (see [19] for a deeper discussion of this fact). The earlier

definition of overconvergent modular forms is equivalent to this construction. If there exists

Y 2 R such that Y ·Ep�1 (E,!) = r, then |Ep�1 (E,!)|p � |r|p. This shows that the elliptic
curve (E,!) is at least |r|p away from supersingular elliptic curves. When r is a p-adic unit,

the resultant modular curve consists only of ordinary elliptic curves.

Another extremely important motivation to studying the space of overconvergent mod-

ular forms is that the Up operator is better behaved on this space. We will now briefly

describe this result. We can define the Hecke operators T` and diamond operators hdi acting
on the space Mk (R0

, N, r). Their action on q-expansions will coincide with their action in

the classical case. Since this result su�ces for the purposes of this thesis, we will take this

to be the definition. See Chapter II, Section 2.1 of [19] for more details. By examining the

acting of the Frobenius, we can define another important continuous operator on the space

of overconvergent modular forms, called the Up operator. On q-expansions, Up is given by

the map

Up :
X

anq
n 7!

X

anpq
n,
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which we will take to be the definition. The space of overconvergent modular formsMk(R0

, N, r)

is a p-adic Banach space (see Section 2.6 of [22]). The action of Up on this space has the

following nice property.

Theorem 3.4.2. Let K denote the field of fractions of R
0

. Suppose N � 3 and p - N .

Assume that k 6= 1 or N  11. Then the map

Up : Mk(R0

, N, r)⌦K ! Mk(R0

, N, rp)⌦K

is a bounded homomorphism of p-adic Banach spaces. In other words, Up improves overcon-

vergence.

Proof. See Proposition II.3.6 and Corollary II.3.7 of [19]. ⇤

Corollary 3.4.3. With the same assumptions as the previous theorem. Assume in addition

that R
0

is a p-adically complete discrete evaluation ring such that R
0

/pR
0

is finite and

0 < ordp(r) <
p

p+1

. Then Up is a completely continuous operator on the space Mk(R0

, N, r)

in the sense of [35].

Proof. See Proposition II.3.15 of [19]. ⇤

This corollary allows us to study the spectral theory of Up on the space of overconvergent

modular forms. In particular, for all ↵ � 0, the set of eigenvalues � of Up satisfying ordp(�) =

↵ is finite and its generalized eigenspace is finite dimensional (see Section II.3 of [19]).

Meanwhile, the kernel of Up is infinite dimensional.

3.5 The Hecke Algebra

In this section, we will introduce the space of generalized p-adic modular functions as

defined by Katz [23]. This space contains the space of overconvergent modular forms defined

in the previous section, and still satisfy nice congruence properties between modular forms

of di↵erent weights. Similar to the classical case, we also have a duality between the space of

generalized p-adic modular functions with the Hecke algebra acting on it (technically, only

true for the parabolic case and with slight modifications for the non-parabolic functions, see
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Chaper 3, Section 1.2, 1.3 of [19]). In light of this duality, we will instead study the Hecke

algebra following the approach of [18] instead. An advantage of this is the ability introduce

the eigencurve more easily later in this chapter.

Let N be a positive integer. For each k � 1, let Tk(N) be the Z-subalgebra of

End (Mk (�1

(N))) generated by the Hecke operators T` and S` = `k�2 h`i, where ` - N

are primes. By definition, we will also have Tn for all n 2 N with gcd(n,N) = 1. If the level

N is understood, we will denote Tk(N) by just Tk.

Recall that a Hecke eigenform can be viewed as an algebra homomorphism � : Tk ! C,

where � is the system of eigenvalues attached to f , given by Tf = �(T )f for all T 2 Tk.

Additionally, the values of � are in fact algebraic integers, ie. in Z̄. This means that by

fixing a prime p - N and an embedding Q ,! Qp, � can be viewed as taking values in Qp,

still denoted by �. By reducing modulo the maximal ideal of Z̄p, we get a homomorphism

� : Tk ! Fp.

Definition 3.5.1. Let T(p)
k denote the subalgebra of Tk generated by T` and S` for primes

` - Np. The restriction of some system of eigenvalue � to T(p)
k will be denoted �(p) and called

a p-deprived system of eigenvalues.

Proposition 3.5.2. Suppose �
1

, �
2

: Tk ! C or Qp agree on T` for all but finitely many

` - N , then they must be equal. Hence, T(p)
k has finite index inside Tk.

Proof. See Proposition 1.26 and Corollary 1.27 of [18]. ⇤

Definition 3.5.3. Let T(p)
k(N), or T(p)

k if the level is understood, be the Z-subalgebra of the

endomorphisms of
k�

i=1

Mi (�1

(N)) generated by T` and S` for primes ` - Np. Here, the action

of T` and S` is the diagonal action on each direct summand by the Hecke operators of the

same name.

Suppose k0 � k. Then we have a surjection

T(p)
k0 ! T(p)

k
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obtained by restriction on the spaces in which the Hecke operators act. By tensoring, we get

another surjection

Zp ⌦Z T(p)
k0 ! Zp ⌦Z T(p)

k.

By taking projective limits with respective to the above surjections, we obtain the p-adic

Hecke algebra

T = T(N) = lim
 
k

Zp ⌦Z T(p)
k.

The space of modular forms that T acts on is called the space of generalized p-adic modular

functions, defined by Katz [23]. Furthermore, there is a canonical injection T(p)
k ,!

k
Q

i=1

Ti.

By passing through limits, we obtain an injection

T ,!
Y

k�1
(Zp ⌦Z Tk) .

Theorem 3.5.4. T is a product of finitely many complete Noetherian local Zp-algebras.

Proof. See Theorem 2.7 of [18]. ⇤

Definition 3.5.5. A Zp-algebra homomorphism ⇠ : T ! Zp is called a p-adic system of

Hecke eigenvalues.

We can canonically construct a p-adic system from a classical system of eigenvalues

�(p) : T(p)
k ! Zp in the following way. The p-deprived system of eigenvalues �(p) extends

to a Zp-algebra homomorphism Zp ⌦Z T(p)
k ! Zp. By precomposing with the surjection

T ⇣ Zp ⌦Z T(p)
k , we have obtained the desired homomorphism.

Theorem 3.5.6. Let ⇠ : T ! Zp be a p-adic system of Hecke eigenvalues. Then there is a

continuous, semisimple representation

⇢⇠ : GQ ! GL
2

�

Qp

�

,

that is unramified at all primes ` - Np. For such a prime `, the characteristic polynomial of

Frob` is of the form x2 � ⇠(T`)x+ ⇠(S`).

Sketch of the Proof. If ⇠ is classical, originating from some classical system of eigenvalues �,

then set ⇢⇠ = ⇢� coming from Theorem 1.5.1. The rest follows from the fact that classical

systems are “dense”. See Theorem 2.11 of [18] for more details. ⇤
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3.6 Weight Space

Our goal is to construct a “weight” associated to p-adic system of Hecke eigenvalues

that generalizes the classical notion. That is, if ⇠ : Tk ! Zp is a p-adic system of Hecke

eigenvalues coming from a classical system of weight k, then ⇠ should have weight k.

Let q = 4 if p = 2 and q = p otherwise. Denote the group 1 + qZp by �. Define L to be

the set
L = {` prime : ` ⌘ 1 mod Nq} ✓ �.

We claim that L is dense in �. Suppose ↵ = 1 + qa 2 � for some a 2 Zp. Let n be a

positive integer. Since p - N , we can let c = a
N

mod pn. Since 1 + Nqc and Nqpn are

trivially coprime, Dirichlet’s theorem on primes in arithmetic progression tell us that there

are infinitely many positive integers m such that 1 + Nqc + Nqpnm is a prime. Suppose

` = 1 +Nqc+Nqpnm 2 L is such a prime. From the identity

`� ↵ = q (Nc� a+ pnm) ⌘ 0 mod pn,

we can deduce that `� ↵ has p-adic valuation greater than n as required.

Proposition 3.6.1. Let ZpJ�K = lim
 
n

Zp

⇥

�/�pn
⇤

denote the completed group ring of � over

Zp. The map L ! T⇥ given by ` 7! S`, extends to a continuous Zp-algebra homomorphism

! : ZpJ�K ! T⇥.

Proof. Suppose � is a classical system of eigenvalues of weight k. Since ` ⌘ 1 mod Nq,

then trivially ` ⌘ 1 mod N . This means h`i = h1i acts trivially on modular forms and so

�(`) = `k�2 h`i = `k�2. Since the map

L ! Zp ⌦Z T(p)
k given by x 7! xk�2

is continuous on �, it naturally extends to a continuous map � !
⇣

Zp ⌦Z T(p)
k

⌘⇥
. By

passing through inverse limits, we get a continuous map � ! T⇥, which uniquely extends to

a Zp-algebra homomorphism as required. ⇤

A Zp-valued point of ZpJ�K is a morphism SpecZp ! SpecZpJ�K, which is equivalent to

a character � : � ! Z⇥p . In this way, SpecZpJ�K can be viewed as “the space of characters
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of �”. Let k 2 N be a positive integer. Consider the character �k : � ! Z⇥p given by

�k(x) = xk�2. The Zp-point �k is called the point of weight k on SpecZpJ�K. The set

{�k}k�1 is Zariski dense in SpecZpJ�K. In this way, SpecZpJ�K can be viewed as the “weight

space”.

To justify these names, suppose � : k ! Zp is a classical system of Hecke eigenvalue,

and ⇠ : T ! Zp is its associated p-adic system. Notice that for all ` 2 L, the map ⇠ � ! is

given by
⇠ (!(`)) = ⇠(S`) = `k�2.

Since L is dense in �, the map ⇠ � ! is given by x 7! xk�2 on all of �. That is, ⇠ � ! = �k

is the point of weight k. Hence, the map !, can be thought of as sending a p-adic system of

eigenvalue to its corresponding weight.

Remark 3.6.2. Recall that in the definition of Serre’s p-adic modular form, the weight

space is p� 1 number copies of �. Here, we are just taking one of these disks.

Remark 3.6.3. There is a natural isomorphism ZpJT K ⇠= ZpJ�K by sending 1 + T to the

topological generator [1 + q]. This is commonly called the Iwasawa algebra of the group �.

3.7 The Eigencurve

Let Gm denote the group scheme SpecZp [T, T�1]. Suppose f is a classical eigenform of

level N and weight k with system of eigenvalues �f . We can associate a Qp-valued point of

SpecT⇥Zp Gm to f in the following way. The first coordinate will be ⇠ : SpecT ! Z̄p, the

associated p-adic system of eigenvalues that we have constructed in the last section, and the

second coordinate is ↵, a root of the p-th Hecke polynomial of f ,

x2 � �f (Tp)x+ pk�1�f (hpi) = x2 � �f (Tp)x+ p�f (Sp).

Let X be the set of such Q̄p-valued points. Let X ord be the subset of X whose Q̄p-valued

points (⇠,↵) satisfies the additional constraint that ↵ 2 Z⇥p .

Definition 3.7.1. Let C be the rigid analytic Zariski closure of X inside
�

SpecT⇥Zp Gm

�an
.

It is called the eigencurve of tame level N . Let Cord be the Zariski closure of X ord inside
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SpecT ⇥Zp Gm. Denote the analytification of Cord the same way. It is called the ordinary

part of the eigencurve.

Theorem 3.7.2. The eigencurve C is one-dimensional, thus justifying the name eigencurve.

More specifically, the map

C ,! �

SpecT⇥Zp Gm

�an ! (SpecZpJ�K)an

is flat with discrete fibres. The last map is given by projection onto SpecT followed by the

weight map !.

Proof. See [5] for more details. ⇤

Let T⇤ be the quotient of T[Up] that acts faithfully on the space of generalized p-adic

modular functions. Let f be a classical modular form, and suppose ↵ and � are the roots of

its p-th Hecke polynomial. Then the p-stabilizations of f , defined to be

f↵(⌧) = f(⌧)� �f(p⌧), or f�(⌧) = f(⌧)� ↵f(p⌧)

are Up eigenvectors with eigenvalues ↵ and � respectively. Therefore, SpecT⇤ contains X
and its Zariski closure. However, due to the infinite dimensional kernel of Up as remarked

earlier in the chapter, SpecT⇤ is much bigger than C and Cord.

Define the ordinary projector to be e = lim
n!1

Un!
p , which exists and is well-defined (see

Section 7.2 of [21]). Suppose f is an eigenvector of Up with eigenvalue ↵, then

e(f) =

8

>

>

<

>

>

:

f if |↵|p = 1

0 if |↵|p < 1

.

This shows that e projects the space of generalized p-adic modular functions to the space

of ordinary generalized p-adic modular functions. Let Tord be the quotient of T⇤ that acts

faithfully on the space of ordinary functions. Then, in fact, Cord = SpecTord and is finite

over ZpJ�K. This shows that we can view Cord as the union of many families of modular

forms parametrized by the weight. It is the union of Hida families, which we will introduce

in the subsequent section. See [18] for a deeper discussion into this result.
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3.8 Hida Families

In this section, we will introduce Hida families. They can be viewed as a family of Galois

representations, parametrized by the weight. Instead of taking the geometric approach to

constructing these families, as Hida originally did, we will define them as ⇤-adic forms

following Chapter 7 of [21].

Fix a prime p. Recall that Z⇥p = (1 + qZp)⇥ µ = �⇥ µ where q = 4 if p = 2 and q = p

otherwise; and µ is the group of (p� 1)-ths roots of unity for p odd and {±1} for p = 2. We

will now define the two natural projections of Z⇥p in this decomposition.

Definition 3.8.1. Let ! be the Teichmuller character Z⇥p ! Z⇥p defined by

!(x) = lim
n!1

xpn .

The image of !(x) is µ ✓ Z⇥p . Let h·i : Z⇥p ! � be the map given by hxi = !(x)�1x.

Let u = 1 + q 2 �. For each x 2 �, define s(x) =
logp(x)

logp(u)
2 Zp. The map s induces an

isomorphism s : � ⇠= Zp. Hence, we can write x = us(x).

Definition 3.8.2. Suppose K/Qp is a finite field extension, and OK its ring of integers. Let

⇤ = OKJXK. Fix a character � with modulus p↵q for some ↵ 2 Z (not necessarily primitive).

Say that a formal power series

F (X, q) =
1
X

n=0

an(X)qn 2 ⇤JqK

with an(X) 2 ⇤ is a ⇤-adic form of character �, if for all but finitely many positive integers

k,

F (uk � 1, q) =
1
X

n=0

an(u
k � 1)qn 2 OKJqK

is the q-expansion of a classical modular form in Mk

�

�
0

(p↵q),�!�k,OK

�

. If almost all of

the F
�

uk � 1, q
�

’s are cusp forms (resp. ordinary), then we say F is a ⇤-adic cusp (resp.

ordinary) form.

Since uk � 1 = (1 + q)k � 1, we get that
�

�uk � 1
�

�

p
< 1. Hence, the evaluations an(uk �

1) do converge for all n � 0. From the isomorphism ZpJ�K ⇠= ZpJXK, we see that the
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parametrization by ⇤ agrees with the parametrization over the weight space from the previous

chapter.

Let M (�,⇤) and Mord (�,⇤) denote the space of ⇤-adic forms and ordinary ⇤-adic

forms respectively. Similarly, let S (�,⇤) and Sord (�,⇤) denote the subspace of cuspidal

⇤-adic forms.

3.8.1 Hecke Operators on ⇤-adic Forms

In this section, we will define Hecke operators acting on the space of ⇤-adic forms.

Naturally, we can demand that the action fo the Hecke operators on ⇤-adic forms should

agree with the action of the classical Hecke operators after taking the weight k specialization

map. Suppose  is the character

 : � ! ⇤⇥ given by x 7! (1 +X)s(x).

By applying the weight k specialization, we obtain the identity

�

1 + (uk � 1)
�s(x)

= uks(x) = xk.

In particular, for an integer n coprime to p,

(hni)(uk � 1) = hnik = !�k(n)nk.

Definition 3.8.3. Let F be a ⇤-adic form with character �, with coe�cients a`(F )(X) 2 ⇤

for all ` � 0. For all integers n coprime to p, define

a` (TnF ) (X) =
X

b|gcd(`,n)
 (hbi) (X)�(b)b�1a `n

b2
(F )(X),

where the summation is over all divisors of gcd (`, n) that is also prime to p.

By computation, we find that at any weight k specialization,

a` (TnF ) (uk � 1) =
X

b|gcd(`,n)
!�k(b)�(b)bk�1a `n

b2
(F )(uk � 1)

= a`
�

Tn

�

F (uk � 1)
��

.

This is exactly our desired property for the Hecke operator on ⇤-adic forms.
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Let Hord (�,⇤) and hord (�,⇤) be the subalgebra of the endomorphisms of Mord (�,⇤)

and Sord (�,⇤) respectively, generated by Tn for all positive integers n. The reason why we

are restricting ourselves to the ordinary case, is beacause of the following theorem.

Theorem 3.8.4. There is a perfect ⇤-bilinear pairing

h·, ·i : Hord (�,⇤)⇥Mord (�,�) ! ⇤

and similarly for the cuspidal forms.

Proof. See Theorem 5 of Section 7.3 of [21]. ⇤

This shows that by considering the ordinary forms, we have a duality between the Hecke

algebra and the ⇤-adic forms, just like in the classical case. In fact, both of these algebras

are free of finite rank over ⇤ as well (see Theorem 1 of Section 7.3 of [21]). Similar to the

classical case, there is a basis of Mord (�,⇤) and Sord (�,⇤) consisting of eigenforms for Tn

for all positive n (see Theorem 6 of the same section in [21]). In fact, F is an eigenform i↵

almost all of its specializations are. Finally, we also have Galois representations associated

to normalized eigenforms.

Theorem 3.8.5. Let F be a ⇤-adic normalized eigenform in Sord (�,⇤), and let L be the quo-

tient field of ⇤. Suppose � : hord (�,⇤) ! ⇤ is its corresponding ⇤-algebra homomorphism.

Then there exists a unique Galois representation

⇢ : GQ ! GL
2

(L),

such that ⇢ is continuous, absolutely irreducible and unramified oustide p. Additionally, for

all primes ` 6= p, the `-th Hecke polynomial is given by

det (T � ⇢ (Frob`)) = T 2 � �(T`)T + �(q) (hqi) q�1.

Sketch of the Proof. Idea: for almost all the weight k specializations, we have a Galois rep-

resentation associated to the classical eigenforms. Glue these representations together by

going through the theory of pseudo-representations. See Theorem 1 of Section 7.5 of [21] for

more details. ⇤
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Note that the image of � and  are in ⇤, and so this representation is truly one that

parametrizes the family of Galois representation associated to classical eigenforms.

Theorem 3.8.6. (Hida’s Control Theorem) Let k � 1 be a positive integer, and let ✏

be a primitive finite order character of �/�p↵. Then for all classical modular form f

in Mord

k

�

�
0

(p↵p), ✏�!�k;OK [✏]
�

, there exists a ⇤-adic form F of character � such that

F
�

✏(u)uk � 1
�

= f . In the case where k � 2, the map F 7! F
�

✏(u)uk � 1
�

induces isomor-

phisms

Mord (�,⇤) /Pk,✏M
ord (�,⇤) ⇠= Mord

k

�

�
0

(p↵p), ✏�!�k;OK [✏]
�

Sord (�,⇤) /Pk,✏S
ord (�,⇤) ⇠= Sord

k

�

�
0

(p↵p), ✏�!�k;OK [✏]
�

where Pk,✏ is the ideal generated by X � �

✏(u)uk � 1
�

.

Proof. See [20] or Theorem 3 of Section 7.3 of [21]. ⇤

3.9 The Hida Family of Theta series

In this section, we will compute an explicit example of a Hida family, which will be a

family of theta series. This example will be very important for the actual thesis problem.

The presentation of this section will follow the example in Section 7.6 of [21].

Let K/Q be a quadratic imaginary field with ring of integers OK . Fix a prime p that

splits in K into distinct primes p and p̄. By fixing an embedding Q ! Qp, it determines a

prime ideal p above p in K. Let OK,p denote the completion of OK at p. Suppose  is a

Hecke character of K with conductor cp where c is an ideal prime to p, satisfying

 ((↵)) = ↵ for all ↵ ⌘ 1 mod cp.

Let M = Qp( ) and let OM be its ring of integers. Write O⇥M = WM ⇥ µM where WM is

Zp-free and µM is a finite group. Similar to the notations used early, we will denote the

projections of O⇥M to WM and µM by h·i and ! respectively.

Let U be the subgroup of WM topologically generated by h (I)i for all ideals I coprime

to p. The natural inclusion of � = 1 + qZp into M = Qp( ) is given in the following way.
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The group � is naturally a subgroup of OK,p and the natural inclusion into M is given by

the map z 7! h (z)i. From the construction, we see that we have a natural injection

� ,! U
z 7! h (z)i .

Suppose [U : �] = p� < 0. Since p splits, we can pick a generator � of U such that �p
�
=

u = 1 + q.

Let I = OMJY K ◆ ⇤ = OMJXK where Y satisfies the identity (1 + Y )p
�

= (1 + X).

Consider the I-adic form

F (Y, q) =
X

a

 (a) h (a)i�2 (1 + Y )s(a) qN(a),

where the summation is over all ideals a of K prime to p. By s (a), we mean log(h (a)i)
log �

, so

that �s(a) = h (a)i. By definition,
�

1 + (�k � 1)
�s(a)

= �ks(a) = h (a)ik .
This calculation shows that the weight k specializations of F are

F 
�

�k � 1, q
�

=
X

a

 (a) h (a)ik�2 qN(a).

They are precisely the theta series attached to the character  h ik�2.
Remark 3.9.1. If we took our Hecke character  to be unitary, then a cuspidal family of

theta series is given by
X

a

 (a)�(a)k�1qN(a)

where � is a character induced from composing a p-adic embedding with a Hecke character

�1 on the idèle class group of K satisfying

�1 ((↵)) = ±↵

for all ↵ ⌘ 1 modulo the conductor of �1. This �1 called a canonical Hecke character.
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Chapter 4
Classical Weight One Points on the Eigencurve

In this chapter, we will introduce the main conjecture tackled in this thesis, as well as

known results that motivate the conjecture.

4.1 Known Results

Let g(q) =
P

n�1 anq
n be a newform of weight one, level �

1

(N) with nebentypus �. By

Theorem 1.5.1, there exists an odd continuous irreducible Artin representation

⇢g : GQ ! GL
2

(C)

which is unramified outsideN . Additionally, for all primes ` - N , ⇢g (Frob`) has characteristic

polynomial x2 � a`x+ �(`).

Fix a prime number p - N . Since the eigenvalues of g are in Q, by fixing an embedding

ip : Q ! Qp, we can assume that ⇢g takes values in Qp. Suppose ↵p, �p 2 Qp are the roots

of the p-th Hecke polynomial x2 � apx + �(p). The newform g is said to be regular at p if

↵p 6= �p, and irregular at p if ↵p = �p.

Let C be the eigencurve of tame level N induced by the Hecke operators Up and T` with

primes ` - Np as described in Chapter 3. Suppose ! : C ! W is the weight map.

Theorem 4.1.1. In the case where g is regular at p, the eigencurve C is smooth at g↵.

Additionally, ! is étale at g↵ if and only if there does not exists a real quadratic field K in

which p splits and ⇢ |GK
is reducible.

Proof. See the work of Belläıche and Dimitrov in [2]. ⇤

Let K be a real quadratic field of discriminant D > 0, where p = pp0 splits. Suppose ⌧

is the non-trivial involution of Gal (K/Q). Suppose

 : GK = Gal
�

K̄/K
� ! C⇥

is a ray class character of mixed signature of order m with conductor f and central character

� . Let L = Q(µm), where µm is the set of m-ths roots of unity. Let  0 denote the character

48



 � ⌧ and  ̂ denote the character  / 0. Let H be the ring class field of K fixed by the kernel

of  ̂.

Let g = ✓ , the theta series associated to  . By Theorem 1.6.7, it is a newform of

weight one, level N with nebetypus � where N = D ·NK/Qf and � = ⌧� . Fix a prime p,

and assume that g is regular at p. In this scenario, it is expected that the ramification index

of the weight map ! at g↵ is exactly 2, so ! is not étale. Darmon, Lauder and Rotger [9]

described the Fourier coe�cients of the generalized overconvergent modular forms that span

the relative tangent space. We will now present the details of this result.

Let S
1

(Np,�) and S(p)
1

(N,�) denote the space of classical and p-adic overconvergent

modular form of weight k, level N with nebentypus character � and coe�cients in Q̄p. Let

T be the Hecke algebra of level Np spanned over Q by T` for primes ` - Np and U` for primes

` | Np. The p-stabilization g↵ gives us an algebra homomorphism �g↵ : T ! L. More

specifically, �g↵ satisfies

�g↵ (T`) = a` (g↵) for ` - Np and �g↵ (U`) =

8

>

>

<

>

>

:

aq (g↵) if ` | N

↵ if ` = p

.

Definition 4.1.2. Let Ig↵ denote the kernel of �g↵ . Let

S
1

(Np,�) [g↵] = S
1

(Np,�) [Ig↵ ]

be the Ig↵-torsion elements of S
1

(Np,�) . Similarly, define

S(p)
1

(N,�) Jg↵K = S(p)
1

(N,�)
⇥

I2g↵
⇤

to be the I2g↵-torsion elements of S(p)
1

(N,�) .

The elements of the latter space are called overconvergent generalized eigenforms at-

tached to g↵. An element in this space is called normalised if its first coe�cient is equal to

0. There is a natural inclusion

S
1

(Np,�) [g↵] ,! S(p)
1

(N,�) Jg↵K.

49



In our scenario, S(p)
1

(N,�) Jg↵K is two dimensional, so it contains an eigenform that is not a

multiple of g↵. Denote the unique normalised generalized eigenform relative to g↵ by

g[↵ =
1
X

n=2

an
�

g[↵
�

qn.

The Hecke operators act on g[↵ in the following way:

T`g
[
↵ = a` (g↵) g

[
↵ + a`

�

g[↵
�

g↵ for all primes ` - Np,

Uqg
[
↵ = aq (g↵) g

[
↵ + aq

�

g[↵
�

g↵ for all primes q | Np.

Suppose ` - N is a prime that is inert in K/Q. Since H is a ring class field of conductor

prime to `, the prime ` splits completely in H/K. Let ⌃` denote the set of these primes

in H above `, which is naturally a principal Gal (H/K)-set. Fix � 2 ⌃` and suppose

u� 2 OH [1/�]⇥ ⌦Q is a �-unit of H where ord�u� = 1. Let

u( ̂,�) =
X

�2Gal(H/K)

 ̂�1(�)⌦ �u� 2 L⌦OH [1/`]
⇥.

This construction is invariant of the choice of u�, but it does depend on the choice of � 2 ⌃`

(see [9] for details). In the article, the authors defined a special map ⌘ : ⌃` ! µm. With it,

we can define

u( ̂, `) = ⌘(�)⌦ u
⇣

 ̂,�
⌘

2 L⌦OH [1/`]
⇥,

which will no longer depend on the choice of � 2 ⌃`.

With the fixed embedding ip : Q ,! Qp, we have a p-adic logarithm on H⇥, which we

can extend to a map logp : L⌦H⇥ ! Qp by declaring it to be L-linear.

Theorem 4.1.3. After some scaling, the Fourier coe�cients of the normalized generalised

eigenform g[↵ attached to g↵ can be described in the following way. For all ` - N ,

a`
�

g[↵
�

=

8

>

>

<

>

>

:

0 if �K(`) = 1

logp u( ̂, `) if �K(`) = �1

.

Then, for n � 2, gcd (n,N) = 1,
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an
�

g[↵
�

=
1

2

X

`|n
logp u( ̂, `) (ord` n+ 1) an/` (g↵)

where the sum is over all primes that are inert in K.

Proof. See the work of Darmon, Lauder and Rotger in [9]. ⇤

4.2 Conjecture

Having now established some motivation and background, we are now able to state the

main conjecture of this thesis project. The statement of the conjecture comes from [8]. We

will restrict ourselves in the scenario where g is irregular at p, and so the p-stabilization g↵

is unique. The conjecture is essentially an alternative version of Theorem 4.1.3 in the irreg-

ular case. It describes the Fourier coe�cients of the normalized generalized overconvergent

eigenforms in terms of logarithms of algebraic numbers.

Suppose g 2 S
1

(N,�) is a newform, and let g↵ be its unique p-stabilization. The Hecke

operators T` for ` - Np and Uq for q | N act semi-simply on the space

S
1

(Np,�) [g↵] = Q̄pg↵ � Q̄pĝ,

where ĝ(q) = g(qp). However, the action of Up on this space is not semi-simple. By con-

struction, Upg↵ = ↵g↵. If g(q) =
P1

n�1 anq
n, then we can write

ĝ(q) = g(qp) =
1
X

n�1
anq

np =
1
X

`�1
b`q

` where b` =

8

>

>

<

>

>

:

an = a`/p if ` = np for some n 2 N

0 else

.

By applying the Up operator, we get

Upĝ(q) =
1
X

`�1
b`pq

` =
1
X

`�1
a`q

` = g(q) = g↵(q) + ↵ĝ(q).

Notice that the first and p-th Fourier coe�cients of g and ĝ are

(a
1

(g↵), ap(g↵)) = (1,↵) and (a
1

(ĝ), ap(ĝ)) = (0, 1) .
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This suggests that we can find a natural linear complement of S
1

(Np,�) [g↵] in S(p)
1

(N,�) Jg↵K,

consisting of generalized eigenforms g̃ with the property that (a
1

(g̃), ap(g̃)) = (0, 0). Let

S(p)
1

(N,�) Jg↵K0 denote the space of these forms, and call the elements in this space normal-

ized.

Let T be the Hecke algebra of level Np over Q̄p generated by T` for ` - Np and U` for

` | Np. By duality of eigenforms and Hecke algebras, as discussed in the previous chapters,

we have identifications

S
1

(Np,�) [g↵] ⇠= Hom
�

T/Ig↵ , Q̄p

�

, and S(p)
1

(N,�) Jg↵K ⇠= Hom
�

T/I2g↵ , Q̄p

�

.

To get the first isomorphism, we also need S
1

(Np,�) [g↵] = S(p)
1

(N,�) [g↵]. We can prove

this by checking the q-expansions and finding that all the forms in S(p)
1

(Np,�) [g↵] are in

fact classical. There is also a natural exact sequence

0 ! Ig↵/I
2

g↵ ! T/I2g↵ ! T/Ig↵ ! 0.

By passing the above exact sequence through duality with the Hom
�·, Q̄p

�

functor, we obtain

the following proposition.

Proposition 4.2.1. There is a natural isomorphism of vector spaces

S(p)
1

(N,�) Jg↵K0 ⇠= Hom
�

Ig↵/I
2

g↵ , Q̄p

�

. (4.1)

The proposition shows that the space of normalized generalized eigenforms can be iden-

tified with the tangent space of the eigencurve at g↵, relative to the weight space. We can

then study the space of normalized generalized eigenforms by studying the tangent space of

modular deformations with constant determinant.

Suppose
⇢g : GQ ! Aut

¯Qp
(Vg) ⇠= GL

2

�

Q̄p

�

is the 2-dimensional Artin representation associated to g by Theorem 1.5.1. Since ⇢g is

an Artin representation, it factors through a finite quotient Gal(L/Q). With the fixed

embedding ip : Q̄ ! Q̄p, we can assume that L ✓ Q̄p. Let W̃g = Ad⇢g = End(Vg) denote

the space of endomorphisms of Vg, also called the adjoint representation of ⇢g. An element

� 2 Gal(L/Q) acts on an element w 2 W̃g by conjugation in the following way:
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� ? w = ⇢g(�) � w � ⇢�1g (�).

Let Wg = Ad0⇢g denote the subspace of W̃g consisting of trace zero endomorphisms. The

adjoint representation also factors through a finite quotient G = Gal (H/Q). Since ker ⇢g ✓
kerAd⇢g, H is a subfield of L.

There is a canonical exact sequence of G-modules

0 ! Wg ! W̃g ! Q̄p ! 0,

with a canonical G-equivariant splitting given by

p : W̃g ! Wg where p(A) = A� 1

2
Tr (A) · I.

By enlarging L, we can assume that ⇢g (L[GQ]) ⇠= M
2

(L) to get a two dimensional

L-vector space V �g and an identification ◆ : V �g ⌦L Q̄p ! Vg. Similarly, we have G-stable

L-vector spaces
W̃ �

g = AdV �g and W �
g = Ad0V �g

with identifications

◆ : W̃ �
g ⌦L Q̄p ! W̃g and ◆ : W �

g ⌦L Q̄p ! Wg.

Let [·, ·] and h·, ·i denote the Lie bracket and the symmetric non-degenerate pairing on

the spaces W̃g,Wg, W̃ �
g ,W

�
g given by

[A,B] = AB � BA, and hA,Bi = Tr (AB) respectively.

It is easy to check that these maps are compatible with the G-action. That is, for all � 2 G,

[� ? A, � ?B] = � ? [A,B] , and h� ? A, � ?Bi = hA,Bi .
From Section 2.5, we recall that the tangent space associated to the deformation of ⇢g

with constant determinant can be identified with the set H1

�

Q,Ad0(Vg)
�

= H1 (Q,Wg).

Since G = Gal(H/Q) = GQ/GH , the inflation-restriction exact sequence is given by

0 ! H1

�

G,WGH
g

� ! H1 (GQ,Wg) ! H1 (GH ,Wg)
G ! H2

�

G,WGH
g

�

.

Since G is a finite group, and WGH
g is a characteristic zero representation, H1

�

G,WGH
g

�

=

0 = H2

�

G,WGH
g

�

. By the definition of H, the action of GH on Wg is trivial. Thus, we have

an isomorphism
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H1 (GQ,Wg) ⇠= H1 (GH ,Wg)
G = HomG (GH ,Wg) .

Now we will describe elements in HomG (GH ,Wg). Since Wg is an abelian group, a homomor-

phism from GH to Wg passes through Gab
H the Galois group of the maximal abelian extension

of H. By class field theory, these correspond to continuous homomoprhisms from the idèle

class group. By respecting the p-adic topology, we see that

H1 (GQ,Wg) ⇠= HomG

✓

(OH ⌦ Zp)
⇥

O⇥H ⌦ Zp

,Wg

◆

(4.2)

⇠= ker
⇣

HomG

�

(OH ⌦ Zp)
⇥ ,Wg

� res! HomG

�O⇥H ⌦ Zp,Wg

�

⌘

.

We will now study the space HomG

�

(OH ⌦ Zp)
⇥ ,Wg

�

following Section 3.1 of [2]. Let logp :

Q̄⇥p ! Q̄p denote the standard logarithm sending p to 0. Notice that OH ⌦ Zp =
Q

p|p OHp

where Hp is the completion of H with respect to p. Every continuous homomorphism in

Hom(O⇥Hp
,Qp) is given by

u 7!
X

�p2Jp
a�p�p

�

logp u
�

=
X

�p2Jp
a�p

�

logp (�pu)
�

for some a�p 2 Qp, where Jp is the set of all embeddings Hp ,! Qp. From the fixed embedding

ip : Q ,! Qp, we have the following commutative diagram

Q⇥ Q⇥p

H Hp

ip

� �p

which gives us a partition G = qp|pJp. Hence, Hom
�

(OH ⌦ Zp)⇥,Qp

�

is spanned by

�

logp ((ip � �)⌦ 1)
�

�2G

and the action of �0 2 G on this basis is given by

�0
�

logp ((ip � �)⌦ 1)
�

�2G =
�

logp ((ip � �0�)⌦ 1)
�

�2G .

Therefore, we have an isomorphism of G-representations

Q̄p [G] ⇠= Hom
�

(OH ⌦ Zp)
⇥,Qp

�

X

�2G
a� 7!

 

u⌦ v 7!
X

�2G
a� logp

�

ip(�
�1(u))v

�

!

.
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By Schur’s lemma we find that

dim
¯Qp

HomG

�

(OH ⌦ Zp)
⇥,Wg

�

= dim
¯Qp

�

Hom
�

(OH ⌦ Zp)
⇥, Q̄p

�⌦Wg

�G
(4.3)

= dim
¯Qp

�

Q̄p [G]⌦Wg

�G
= 3.

By Dirichlet’s unit theorem (see Appendix), O⇥H ⌦ Zp
⇠= IndG

hciZp � 1G where c is a

complex conjugation, and 1G is the trivial representation. By simple computation, we can

show that complex conjugation acts on Wg with eigenvalues 1,�1 and �1. By Frobenius

reciprocity,
dim

¯Qp
HomG

�O⇥H ⌦ Zp,Wg

�

= 1. (4.4)

To summarize, we have proved the following proposition.

Proposition 4.2.2. The space H1(GQ,Wg) is two dimensional as a Q̄p vector space.

Proof. Apply equation (4.3) and equation (4.4) to equation (4.2). ⇤

By the irregularity of g, the prime p splits completely in H. With the fixed embedding

H ,! Q̄p, and a chosen prime p
0

of H above p, let logp0 : Hp ! Qp denote the p
0

-adic

logarithm that factors through logp. By equation (4.4),

dimL

�O⇥H ⌦W �
g

�G
= 1.

For all u 2 O⇥H , ! 2 W �
g , let

⇠ (u,!) =
1

|G|
X

�2G
(�u)⌦ (� ? !) 2 �O⇥H ⌦Wg

�G
.

Then the elements

⇠p0 (u,!) =
�

logp0 ⌦id
�

⇠ (u,!) =
1

|G|
X

�2G
logp0 (�u) · (� ? !) 2 Wg

spans a 1-dimensional L-vector subspace of Wg. Let !(1) be any generator of this space.

For each prime ` - Np, choose a prime � in H above `. Suppose h is the class number

of H. Let ũ� be a generator of the principal ideal �h, and let

u� = ũ� ⌦ h�1 2 �OH [1/`]⇥
�⌦Z L.

Let �� 2 G denote Frobenius map associated to �. Set

!̃� = ⇢g(��) 2 W̃ �
g and !� = p(!̃�) 2 W �

g .
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With this notation, denote

⇠ (u�,!�) =
1

|G|
X

�2G
(�u�)⌦ (� ? !�) 2

�OH [1/`]⇥ ⌦W �
g

�G

!(`) = ⇠p0 (u�,!�) =
1

|G|
X

�2G
logp0 (�u�) · (� ? !�) 2 Wg.

Finally, let
M(`) = [!(1),!(`)] 2 Wg.

Since u� is well-defined up to some non-zero scalar multiple of O⇥H , the above elements are

well-defined up to an element of
�O⇥H ⌦W �

g

�G
and L · !(1), respectively. Additionally, the

image of !(`) inside Wg/ (L · !(1)) does not depend on the choice of � above `. Hence, M(`)

is independent of all the choices made to define it.

We are now able to state the conjecture.

Conjecture 4.2.3. (Theorem 5.3 of [8], whose proof depends on Conjecture 4.1) Given any

! 2 Wg, there is an associated g[! 2 S(p)
1

(N,�) Jg↵K0 given by

a`
�

g[!
�

= h!,M(`)i

for all primes ` - Np. The map ! 7! g[! induces an isomorphism between Wg/ (L · !(1)) and
S(p)
1

(N,�) Jg↵K0.

Corollary 4.2.4. S(p)
1

(N,�) Jg↵K0 is two dimensional.

4.3 Conjecture in the CM Case

We will discuss some special choices we can make in the case g is a CM form to simplify

the conjecture. Suppose there exists an imaginary quadratic field K/Q and a finite order

character
 g : GK = Gal

�

K̄/K
� ! L⇥

such that g = ✓ g the theta series attached to  g. The associated Artin representation is

then V �g = IndQ
K g. Fix ⌧ 2 GQ\GK . Let  0g be the character  0g(�) =  g(⌧�⌧�1) for all

� 2 GK . Since ⇢g is irreducible,  g and  0g must be distinct. The action of GK on V �g and

Vg decomposes into two GK-stable lines

V �g = L� g
� L� 0

g
and Vg = L g � L 0

g
,

56



where GK acts as  g and  0g respectively. Then W̃ �
g and W̃g decomposed into four GK-stable

lines in the following way

W̃ �
g =

⇣

Hom(L� g
,L� g

)� Hom(L� 0
g
,L� 0

g
)
⌘

�
⇣

Hom(L� g
,L� 0

g
)� Hom(L� 0

g
,L� g

)
⌘

,

W̃g =
�

Hom(L g ,L g)� Hom(L 0
g
,L 0

g
)
�� �

Hom(L g ,L 0
g
)� Hom(L 0

g
,L g)

�

,

where the two dimensional spaces in the brackets are GQ-stable. They are isomorphic to

IndQ
K1 and IndQ

K , where  =  g/ 0g. To summarize, we have

W �
g = L (⌧K)� IndQ

K and Wg = Q̄p (⌧K)� IndQ
K .

Recall that the adjoint representation factors through a finite quotient Gal(H/K). By the

analysis above, we see that H is the ring class field of K attached to  .

By choosing some appropriate basis (e
1

, e
2

) of L� g
⇥ L� 0

g
which induces a natural basis

e
11

, e
12

, e
21

, e
22

of W̃ �
g , we can assume that L (�K) is identified with the space of diagonal

matrices that have trace zero, and IndQK is the space of o↵-diagonal matrices. By scaling

our basis, we can additionally assume that

⇢g(⌧) =

 

0 t

t 0

!

,

where the determinant �t2 = �(⌧) (recall that � is the nebentypus character, and so this

has to be satisfied).

Let G
0

= Gal (H/K) be the maximal abelian normal subgroup of the dihedral group

G = Gal (H/Q). Let

e =
1

|G|
X

�2G0

 �1(�)� 2 L [G
0

] .

Pick a unit u 2 O⇥H , and define

u = e (u) and ⌧u = e 0(⌧u).

It is easy to see they are elements of O⇥H ⌦ L such that G
0

acts via the characters  and

 0 =  �1. Let ! = ( 0 1

0 0

). By our choice of basis, for all � 2 G
0

, ⇢g(�) is a diagonal matrix
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and of the form
 

 g(�) 0

0  0g(�)

!

.

The action of conjugation then gives us

� ? ! =

 

0  (�)

0 0

!

, and (�⌧) ? ! =

 

0 0

 �1(�) 0

!

.

Since G acts on O⇥H ⌦Wg diagonally, we find that

⇠ (u,!) =
1

|G|
X

�2G
(�u)⌦ (� ? !)

=
1

|G|

 

X

�2G0

(�u)⌦ (� ? !) +
X

�2G0

((�⌧)u)⌦ ((�⌧) ? !)

!

=
1

|G|

 

X

�2G0

 (�)(�u)⌦ ! +
X

�2G0

 �1(�) (�(⌧u))⌦ (⌧ ? !)

!

=
1

2

 

0 ⌧u 

u 0

!

.

Hence, we can naturally pick w(1) to be

w(1) =
�

logp0 ⌦id
�

(2⇠(u,!)) =

0

B

@

0 logp0(⌧u )

logp0(u ) 0

1

C

A

.

Similarly, we can make some simplications to !(`) and M(`) as well. This will depend

on whether ` is split or inert in K.

4.3.1 ` is split in K

Suppose that the prime (`) = ��0 is split in K. Assume that g is regular at `, so that

 g(��) 6=  0g(��). By Dirichlet’s Unit Theorem,

OK [1/`]
⇥ ⌦ L ⇠= IndGal(K/Q)

G�
L� IndGal(K/Q)

hci L� 1
Gal(K/Q)

,

where c is a complex conjugation and G� is a decomposition group of � in Gal(K/Q).

The group G� is trivial, because ` splits in K. Since K/Q is imaginary quadratic, hci =

Gal (K/Q). Hence
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OK [1/`]
⇥ ⌦ L ⇠= IndGal(K/Q)

1

L� 1
Gal(K/Q)

.

Similarly, we have an isomorphism

OH [
1

`
]⇥

O⇥H
⌦ L ⇠= IndG

G!
L,

where ! is any fixed prime above ` in H. Since g is regular at `, we can let ↵` and �` be the

distinct roots of the characteristic polynomial of Frob!. Then on the adjoint representation

Frob! acts with eigenvalue 1, ↵`

�`
and �`

↵`
. Since the roots are distinct, ↵`

�`
6= 1 6= �`

↵`
. By

Frobenius reciprocity, we find that

dimL

�OK [1/`]
⇥ ⌦W �

g

�G
= 1 and dimL

✓OH [
1

`
]⇥

O⇥H
⌦W⇥

g

◆G

= 1.

Therefore, the following natural inclusion induces an isomorphism of L-vector spaces.

�OK [1/`]
⇥ ⌦W �

g

�G
,!

✓O⇥H [1/`]⇥
O⇥H

⌦W �
g

◆G

This suggests that we can construct u� from O⇥K [1/`]⌦ L instead.

Following the general construction, first pick ũ� to be a generator of �h, where h is the

class number of K. Let u� = ũ�⌦h�1. Let ��, ��0 2 G
0

be the Frobenius elements associated

to � and �0. With these choices, we compute and find that

!̃� = ⇢g(��) =

 

 g(��) 0

0  g(��0)

!

, and !� = p(!̃�) =
 g(�)�  g(�0)

2
·
 

1 0

0 �1

!

.

Since ⇢g(�) is a diagonal matrix, it is easy to check that for all � 2 G
0

� ?

 

1 0

0 �1

!

=

 

1 0

0 �1

!

and (�⌧) ?

 

1 0

0 �1

!

=

 

�1 0

0 1

!

.

Combined this with the fact that for all � 2 G
0

= Gal (H/K), K is fixed,

!(`) =
1

|G|
X

�2G
logp0(�u�) (� ? !�)

=
 g(�)�  g(�0)

2 · |G|

 

X

�2G0

logp0(�u�)

 

1 0

0 �1

!

+
X

�2G0

logp0(�⌧u�)

 

�1 0

0 1

!!
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=
 g(�)�  g(�0)

2 · |G|

 

|G
0

| · logp0(u�)
 

1 0

0 �1

!

+ |G
0

| logp0(⌧u�)
 

�1 0

0 1

!!

=
 g(�)�  g(�0)

4

�

logp0(u�)� logp0(⌧u�)
�

 

1 0

0 �1

!

=
 g(�)�  g(�0)

4
logp0

✓

u�
u0�

◆

 

1 0

0 �1

!

.

Finally,

M(`) = [!(1),!(`)]

=
 g(�)�  g(�0)

4
logp0

✓

u�
u0�

◆

 

0 �2 logp0(⌧u )

2 logp0(u ) 0

!

=
 g(�)�  g(�0)

2
logp0

✓

u�
u0�

◆

 

0 � logp0(⌧u )

logp0(u ) 0

!

.

4.3.2 ` is inert in K

Now assume ` is inert in K. Since ⇢g(�`) has trace zero, �` has distinct eigenvalues, so

g must be regular at `. Choose a prime � of H above `, and suppose �� is the Frobenius

element associated to �. Then with respect to our basis,

!̃� = !� = ⇢g (��) =

 

0 b�

c� 0

!

.

As usual, pick ũ� to be a generator of the ideal �h, where h is the class number of H. Recall

that OH [1/`]⇥/O⇥H ⇠= �
�|`

Z ·�. Using the latter notation, pick û� 2
�OH [1/`]⇥/O⇥H

�⌦L such

that it has prime factorization
(û�) = b��+ c� (⌧�) .

Furthermore, let
u (`) = e (û�) =

1

|G
0

|
X

�2G0

 �1(�)� (û�) .

Similar to the calculations in the previous section, for all � 2 G
0

,

� ? !� =

 

0  (�)b�

 �1(�)c� 0

!

, and (�⌧) ? !� =

 

0  (�)c�

 �1(�)b� 0

!

.
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This can easily be seen by the fact that the o↵-diagonal matrices is given by IndQ
K . With

these calculations, we find that

!(`) =
1

|G|

 

X

�2G
logp0 (�u�) ? (� ? !�)

!

=
1

|G|

 

X

�2G0

logp0(�u�)

 

0  (�)b�

 �1(�)c� 0

!

+
X

�2G0

logp0 (�⌧u�)

 

0  (�)c�

 �1(�)b� 0

!!

=
1

2

 

0 logp0 u �1(`)

logp0 ⌧u (`) 0

!

.

Hence,

M(`) =
1

2

 

R (`) 0

0 �R (`)

!

where

R (`) = det

 

logp0 u logp0 u (`)

logp0 ⌧u logp0 ⌧u (`)

!

.

Now, we are ready to state the specialized version of conjecture 4.2.3 in the CM case.

Conjecture 4.3.1. There exists a canonical basis (g
1

, g
2

) of S(p)
1

(N,�) Jg↵K0 where

1. the Fourier coe�cients a`(g1) are supported on primes ` - Np that are split in K.

Additionally, if (`) = ��0 then

a`(g1) = ( g(�)�  g(�
0)) · logp0(u�/u0�).

2. the Fourier coe�cients a`(g2) are supported on primes ` - Np that are inert in K. More

specifically,
a`(g2) = R (`).

If we assume the general case conjecture is correct, this is a simple corollary. Let

w
1

= 2 ·
 

0 a

b 0

!

where a, b satisfies a logp0(u )� b logp0(⌧u ) = 1, and let

w
2

=
1

2
·
 

1 0

0 �1

!

.

61



Then under the isomorphism of the general conjecture, w
1

gives rise to g
1

and w
2

gives rise

to g
2

. This is exactly Theorem 6.1 of [8].
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Chapter 5
Special Case of the Conjecture

We will now give a proof of the conjecture in a special scenario, where the Artin repre-

sentation associated to g has image isomorphic to the dihedral group of order 8.

5.1 Introduction

The special case we will describe in this section is same scenario that is considered in

[11]. Let F/Q be a totally real field of degree r + 1, with embeddings v
0

, ..., vr.

Definition 5.1.1. A quadratic extension F
1

/F is an almost totally real extension of F if

F
1

⌦F,v0 R ⇠= C, and F
1

⌦F,vj R ⇠= R� R for all 1  j  r.

In particular, consider the case where F = Q(
p
N) for some N > 0 is a real quadratic

field. Since F
1

has two real places and one imaginary place, it is not Galois over Q. Let

L be its Galois closure. By construction, L = F
1

F
2

where F
2

is the Galois conjugate of

F
1

over Q and Gal (L/Q) ⇠= D
4

the dihedral group of order 8. Additionally, the Galois

group Gal (L/F ) is isomorphic to (Z/2Z)2 the Klein 4-group. The field F
1

is of the form

Q
⇣

p

a� b
p
N
⌘

where a, b 2 Z are such that d = a2�Nb2 < 0. To summarize, we have the

following diagram mapping out all the subextensions of L/Q.

L

F
1

F
2

H K
1

K
2

F = Q
⇣p

N
⌘

M = Q
⇣p

Nd
⌘

K = Q
⇣p

d
⌘

Q

Here, every line indicates an extension of degree 2. Although, we can explicitly write down

the generators of all these fields, it will not be necessary for the rest of the thesis. Moreover,

there are additional properties that characters of these fields satisfy that may be of great
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use for future work, but not for the rest of the thesis, so we will not mention them. See

Proposition 3.2 of [11] for more details.

Let
 K : GK ! {±1}

be the Galois character of K that cuts out the extension K
1

. That is, ker K = GK1 .

Similarly, let
 M : GM ! {±1,±i}

be the Galois character that cuts out the extension L.

By viewing these Galois characters as idèle class characters, they are Hecke characters

of types we have seen in earlier chapters. Let ✓ K
and ✓ M

denote the weight one Hecke theta

series associated to  K and  M . Let ⇢K = Ind
GQ
GK
 K denote the associated Artin represen-

tation attached to ✓ K
, and similarly for the field M . Since D

4

only has one irreducible two

dimensional representation, ⇢K ⇠= ⇢M . This implies that ✓ K
= ✓ M

. By Theorem 3.8.6, we

have two Hida families attached to each theta series and the families intersect at a classical

weight one point corresponding to the p-stabilization of ✓ K
.

By the irregularity assumption, the prime p has to be split in both K and M . Therefore,

we can apply the theory established in Section 3.8 to explicit describe the Hida families

attached to ✓ K
and ✓ M

. In the next section, we will use these two explicit families to

compute the tangent space of the eigencurve at this particular weight one point and prove

Conjecture 4.2.3.

Remark 5.1.2. The fields L and H are named specifically to match the notations used

to define the conjecture. That is, we can show that GL = Gal(L̄/L) = ker ⇢F and GH =

Gal(H̄/H) = ker (Ad⇢F ).

5.2 Explicit Fourier Coe�cients

Let g = ✓�K
= ✓�M

. We know from Section 3.9 that the Galois representations associated

to the cuspidal family of ordinary theta series at weight k is given by

Ind
GQ
GK
 K⌫

k�1
K ,
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where ⌫K is a canonical Hecke character. By letting k be a “weight variable” that we can

manipulate analytically,
d

dk

�

�

�

�

k=1

⌫k�1K = logp ⌫K .

We find that the `-th Fourier coe�cient of the generalized eigenform is

Tr
⇣⇣

Ind
GQ
GK

( K logp ⌫K)
⌘

(��)
⌘

where � is a prime of K above `, and �� is a Frobenius of �. When ` is inert, the represen-

tation has trace 0, so the eigenform is supported on split primes.

Suppose ` is split in K and let h be the class number of K. Suppose ũ� is a generator

of �h. Then
logp ⌫K(��)

h = logp vK ((ũ�)) = logp (ũ�) ,

which implies that
logp vK(��) = h�1 logp(ũ�) = logp u�,

where u� = ũ� ⌦ h�1 2 OK [1/`]⇥ ⌦ L. Using this dictionary, and the previously defined

basis, we find that

⇣

Ind
GQ
GK

( K logp ⌫K)
⌘

(��) =

 

 K(��) logp u� 0

0  K(��0) logp u
0
�

!

.

Since we are considering the deformations consisting of constant determinants, we need to

apply the canonical projection p : Wg ! W̃g given by A 7! A � 1

2

Tr(A)I. Hence the `-th

Fourier coe�icient of the generalized eigenform is

1

2
Tr

 

 K(��) logp(u�/u
0
�) 0

0  K(��0) logp(u
0
�/u�)

!

=
1

2
logp(u�/u

0
�) ( K(��)�  K(�

0
�)) .

This is exactly the eigenform described by part 1 of Conjecture 4.3.1. Denote this normalized

generalized eigenform by gK . By the same construction, we also have gM coming from the

other imaginary quadratic field M .

By construction H = KM is a biquadratic field. If ` splits completely in H, then the

Frobenius map �� = 1 for all primes � in H above `. This implies both a`(gK) and a`(gM)

are zero, because  K(��) =  K(��0). Hence, the Fourier coe�cients of gK are supported on
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the primes ` that are split in K, but are inert in M . For such a prime `,  K(��) = � K(��0),

which shows that a`(gK) is non-zero.

Theorem 5.2.1. In the scenario described above, the dimension of S(p)
1

(N,�) Jg↵K0, the

space of normalized generalized eigenforms, is two.

Proof. We showed that the Fourier coe�cients of gK are supported on primes ` that are split

in K and inert in M . Similarly, the Fourier coe�cients of gM are supported on primes ` that

are split in M and inert in K. Since these sets of primes are distinct, gK and gM are linearly

independent. ⇤

Let gK,1 and gK,2 denote the two normalized generalized overconvergent modular form

constructed from Conjecture 4.3.1. We already know that gK,1 = 2gK . An interesting

problem would be to describe gM as a linearly combination of gK,1 and gK,2.

Suppose !K,1,!K,2 2 Wg are a choice of pre-images of gK,1 and gK,2 under the isomor-

phism described in Conjecture 4.2.3. Recall that the construction of the general conjecture

purely works with the field H and the representation ⇢g. To obtain !K,1,!K,2 2 Wg through

the construction described in Section 4.3, we made a choice of basis {eK,1, eK,2} of Vg and

similarly for the field M .

Let A 2 End(Vg) be the endomorphism of Vg sending eM,1 to eK,1 and eM,2 to eK,2. Then

A induces an endomorphism of Wg. Suppose

!M,1 = a
1

!K,1 + a
2

!K2 + a
3

!(1)K for some a
1

, a
2

, a
3

2 L,

where !(1)K denotes the choice of !(1) with respect to the field K. Since !(1)K and !(1)M

span the same one dimensional L-vector space, a
1

and a
2

are not both zero. By applying

the isomorphism given by Conjecture 4.2.3, we find that

gM =
1

2
gM,1 =

1

2
a
1

gK,1 +
1

2
a
2

gK,2.
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Chapter 6
Conclusion

Let g be an ordinary newform of weight one that is irregular at a prime p. Suppose g↵ is

its unique p-stabilization. In this thesis, we studied the relative tangent space of the eigen-

curve at g↵. More specifically, by Proposition 4.2.1, the elements of the tangent space can

be naturally identified with the space of normalized generalized eigenforms S(p)
1

(N,�) Jg↵K0.

Following the general R = T philosophy, we hope to produce an isomorphism between the

tangent space of all ordinary deformations with constant determinants, with the relative

tangent space of the eigencurve at g↵. This led Darmon, Lauder and Rotger to conjecture

that we should be able to describe the Fourier coe�cients of the normalized generalized

eigenforms in terms of logarithms of algebraic numbers, via this conjectural isomorphism.

The explicit statement of this conjecture was given in Conjecture 4.2.3. In the case where g

was a theta series attached to a Hecke character on an imaginary quadratic field, we made

a reduction of the conjecture, described in Conjecture 4.3.1.

In the special scenario the thesis considered, we obtained two Hecke characters  K and

 M on imaginary quadratic fields K and M that cut out a D
4

-extension (the dihedral group

of order 8). Additionally, the weight one theta series attached to the two characters are

equal by construction. This implies that the two Hida families of theta series attached to

the character as described in Section 3.9, intersect at weight one. By explicitly computing

the tangent space attached to the Hida families, we proved Conjecture 4.3.1. That is, the

relative tangent space of the eigencurve at g↵ is of dimension two, and the Fourier coe�cients

of the normalized generalized eigenforms can be described explicitly in terms of logarithms

of global units, as conjectured.

Let E be an elliptic curve over Q. By modularity, there exists a normalized newform of

weight 2 satisfying L(f, s) = L(E, s). Suppose

⇢ : GQ ! Aut(V⇢) ⇠= GLn(L)
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is an Artin representation with coe�cients in come finite extension L ✓ C of Q. Suppose

⇢ factors through a finite extension Gal(H/Q). The Birch and Swinnerton-Dyer conjecture

predicts that the analytic rank of the Hasse-Weil-Artin L-function L(E, ⇢, s) is the same as

the algebraic rank defined to be

dimL HomGQ(V⇢, E(H)⌦ L).

Let g and h be weight one newforms with associated Artin representations ⇢g and ⇢h. Assume

that ⇢ is an irreducible constituent of ⇢gh = ⇢g ⌦ ⇢h and assume that ⇢gh is self-dual. In

[10], the authors proposed the elliptic Stark conjecture, which gives a formula describing a

p-adic iterated integral attached to (f, g, h), which is a p-adic avatar of the special value of

L(E, ⇢gh, 1), in terms of formal group logarithms of global points on E(H).

In the statement of the elliptic Stark conjecture, there is an underlying hypothesis that

the space of overconvergent generalized eigenforms S(p)
1

(N,�)Jg↵K consists of only classi-

cal forms. This hypothesis is expected to not hold when g is irregular at p. However, if

Conjecture 4.2.3 holds true, we can explicitly describe the Fourier coe�cients of normalized

generalized eigenforms, which forms a natural linear complement S(p)
1

(N,�)Jg↵K0 of the space

of classical forms inside S(p)
1

(N,�)Jg↵K. This will allow us to define and study an alternative

version of the elliptic Stark conjecture. Furthermore, in [10], the authors are able to prove

the elliptic Stark conjecture in the case where g and h are theta series associated to a com-

mon imaginary quadratic field K in which p splits. This result gives us great hope that the

conjecture can also be proven in the irregular case if we assume g is as described in Section

5.1 and h is a theta series associated to K.
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Appendix A- Dirichlet’s Unit Theorem

Theorem. (Dirichlet’s S-Unit Theorem). Let K be a number field. Suppose S is a finite set

of places of K, that includes all the infinite ones. Let KS be the multiplicative group given

by

KS =
n

↵ 2 K⇥ : |↵|p = 1 for all p /2 S
o

.

Then KS is the direct sum of a cyclic group with a free group of rank |S|� 1.

More specifically, the map

� : KS !
Y

p2S
R

a 7! (log |a|p)p2S
has kernel µ(K) (the roots of unities of K) and its image is a complete lattice

(

(ap) 2
Y

p2S
R :

X

p2S
ap = 0

)

of dimension |S|� 1.

Proof. See Chapter VI, Proposition 1.1 of [31] or Chapter II, Section 18 of [3]. ⇤

In this thesis, we will need to know more than the rank of KS as a group, but also its

structure as a Galois module. Let G = Gal (K/Q). We will consider the special case where

T is a set of place of Q containing the infinite places, and S is the set of places of K lying

above those in T . Let YS be free abelian group generated by S. We have a natural action

of G on YS by permuting the places � 2 S above p 2 T . By fixing a place � 2 S above each

p 2 T , we can additionally say that

YS
⇠= �p2T Ind

G
G�

Z,

where G� is the decomposition group of �, and acts trivially on Z. Let

XS =

(

X

�2S
a�� 2 YS :

X

�2S
a� = 0

)

.
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Then we have a natural exact sequence of G-modules

0 ! X ! Y
e! Z ! 0,

where e :
P

a�� ! P

� is the augmentation map. With this exact sequence, we can then

show that by viewing CXS and CYS as C [G]-modules, their associated characters satisfy

�YS
= �XS

+ 1G

where 1G is the trivial character. See Section 3.2 of [12] for the proof and more details. In

this thesis, we are most interested in the cases where K is an imaginary quadratic field, and

1. S is the set of infinite places

2. S is the set of infinite places and the primes above some rational prime p 2 Q that

splits completely

In the first case, KS = O⇥K , which is just the normal Dirichlet unit theorem. Furthermore,

as G-modules, we have the isomorphism

O⇥K ⌦ C ⇠= IndG
hciC� 1C,

where c is a complex conjugation, and 1C is the trivial representation. In the latter case,

KS = OK [
1

p
]⇥. We have an isomorphism of G-modules

OK [1/p]
⇥ ⌦ C ⇠= IndG

hciC� IndG
G�

C� 1C,

where � is a prime in K above p and G� is its decomposition group.
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