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ABSTRACT

In the early 20th century, Erich Hecke attempted to find a further generalization of the

Dirichlet L-series and the Dedekind zeta function. In 1920, he [14] introduced the notion of

a Grössencharakter, an ideal class character of a number field, and established the analytic

continuation and functional equation of its associated L-series, the Hecke L-series. In 1950,

John Tate [27], following the suggestion of his advisor, Emil Artin, recast Hecke’s work.

Tate provided a more elegant proof of the functional equation of the Hecke L-series by using

Fourier analysis on the adeles and employing a reformulation of the Grössencharakter in

terms of a character on the ideles. Tate’s work now is generally understood as the GL(1) case

of automorphic forms [2]. The thesis provides a thorough analysis of the approach taken by

Tate in his own thesis. Background information is furnished by theory concerning topological

groups, Pontryagin duality, the restricted-direct topology, and the adeles and ideles.

iv



ABRÉGÉ

Au début du 20ème siècle, Erich Hecke a essayé de trouver une nouvelle généralisation

de la série L de Dirichlet et de la fonction zêta de Dedekind. En 1920, il [14] a introduit la

notion de Grössencharakter, un caractère des classes d’idéaux d’un corps de nombres, et

établi le prolongement analytique et l’équation fonctionnelle de sa série L associée, la série

L de Hecke. En 1950, John Tate [27], suivant la suggestion de son directeur de thèse, Emil

Artin, a remanié le travail de Hecke. Tate a fourni une preuve plus élégante de l’équation

fonctionnelle de la série L de Hecke en employant l’analyse de Fourier sur les adèles et en

utilisant une reformulation du Grössencharakter en termes de caractère sur les idèles. Le

travail de Tate est maintenant généralement compris comme le cas de GL(1) de la théorie des

formes automorphes [2]. Cette thèse donne un apercu de l’approche adoptée par Tate dans sa

propre thèse. Ceci inclut une introduction à la théorie des groupes topologiques, la dualité de

Pontryagin, la topologie des produits restreints, et les adèles et les idèles.
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Introduction

Most students of mathematics have some familiarity with the Riemann zeta function

�(s), which is defined by the absolutely convergent series

�(s) =
∑
n=1

1

ns

for complex numbers s such that ℜ(s) > 1. In letting s = 1, the series that results, �(1),

is the Harmonic series, which diverges. Despite being named the Riemann zeta function,

Leonhard Euler was the first to study the function �(s) for s ∈ ℝ. He established the Euler

product expansion,

�(s) =
∏
p

1

1− p−s
,

which is valid in the domain ℜs > 1. In the third century B.C.E., Euclid understood that

there are infinitely many primes. Since the Riemann zeta function is divergent at s = 1, then

by the Euler product expansion we obtain

∏
p

1

1− p−1
>∞,

which provides an alternate proof of the infinitude of primes. By analyzing the Laurent

expansion of � cot �z, it can be determined that

∞∑
n=1

1

n2
=
�2

6
.

The Euler product expansion then yields

∏
p

(
1− 1

p2

)
=

6

�2
= 0.607927102 ⋅ ⋅ ⋅ .

In a non-rigorous fashion, the probability that a natural number, chosen at random, is

divisible by a fixed prime p is 1/p. More rigorously, one should choose random natural

number from the first N numbers and then let N approach infinity. The probability that two

natural numbers, chosen at random, are divisible by p is 1/p2. Then 1 − (1/p2) represents
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the probability that two natural numbers chosen at random are either both relatively prime

to p or, at most, one is not relatively prime to p. For distinct primes p and q, the probability

that a natural number chosen at random is divisible by both p and q is 1/pq. Hence, the

divisibility events are independent and the product

∏
p

(
1− 1

p2

)
represents the probability that two natural numbers, chosen at random, are relatively prime.

It can be determined, by applying the Euler product of the Riemann zeta function, that this

probability is 6
�2 .

In 1859, Georg Friedrich Bernhard Riemann [25] showed that the function �(s) can be

analytically continued to the complex plane to a function that is holomorphic for s ∕= 1. The

residue at the simple pole s = 1 is 1. He also proved the functional equation

�(s) = �(1− s), (1)

where �(s) = �−s/2Γ( s
2
)�(s) and where

Γ(s) =

∫ ∞
0

e−tts−1dt.

It can be shown that Γ(s) is absolutely convergent for ℜ(s) > 1 and can be meromorphically

continued to the whole s plane with simple poles at negative integers. Further, Γ(s) ∕= 0 for

s > 0. Dividing both sides of equation 1 by �−(1−s)/2Γ(1−s
2

), we obtain

�(1− s) = (2�)−s2 cos(
�

2
s)Γ(s)�(s).

This functional equation shows that in the domain ℜs < 0, the function �(s) has simple

zeroes at −2,−4,−6, ⋅ ⋅ ⋅ . In addition to proving the functional equation, Riemann showed

that �(s) has infinitely many zeros on the critical strip 0 ≤ ℜs ≤ 1 and hypothesized that all

these zeroes lie on the line ℜs = 1/2. This is known today as the Riemann hypothesis, which

has not yet been proved. It is also interesting to note that when evaluating the Riemann zeta

2



function at positive even integer points and at negative integer points, one obtains

�(2n) = (−1)n−1 (2�)2n

2(2n)!
B2n,

and

�(−n) = −Bn+1

n+ 1
,

respectively, where Bm for m ∈ ℤ are the Bernoulli numbers. The prime number function

�(x) is defined for x ∈ ℝ to be the number of primes p such that p ≤ x. Riemann provided

an explicit formula for �(x) that depended on the location of the zeros of �(s). See [15],

Chapter 27, for the formula. Riemann also proved the prime number theorem, which states

that

lim
x→∞

(
x

log x

)
�(x)

= 1.

This can be proved by analyzing the Riemann zeta function and two other functions:

�(s) =
∑
p

log p

ps
and �(x) =

∑
p≤x

log p.

As a consequence of Tate’s thesis, we now are able to realize that the factor of �−s/2Γ( s
2
),

appearing in the functional equation of �(s), “originates from” the infinite prime of ℚ. Let

Z∞(s) =

∫
ℝ−{0}

e−�x
2∣x∣s dx
∣x∣
.

Making the change of variable u = �x2, we obtain

Z∞(s) =

∫
ℝ−{0}

e−�x
2∣x∣s dx
∣x∣

= 2

∫ ∞
0

e−�x
2

xs−1dx = �−s/2
∫ ∞

0

e−uus/2−1du = �−s/2Γ(s/2).

By the definition of �(s) and the Euler product of �(s), we obtain

�(s) = �−s/2Γ(
s

2
)�(s) = Z∞(s)

∏
p

1

1− p−s
.
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Now, let Zp(s) =
∑∞

n=0 1/pns. The function Zp(s) is a geometric series and converges to

1/(1− p−s). As such, we obtain by the Riemann zeta functional equation that

�(s) = Z∞(s)
∏
p

Zp(s),

and hence

Z∞(s)
∏
p

Zp(s) = Z∞(1− s)
∏
p

Zp(1− s).

Later it will be shown that Zp(s) can be realized as the integral

Zp(s) =

∫
ℚp−{0}

∣x∣sp
dxp
∣x∣p

=

∫
ℚp−{0}

∣x∣s−1
p dxp,

where ℚp is the p-adic numbers and where dxp is the p-adic Haar measure.

Let � : (ℤ/mℤ)× → ℂ× be a homomorphism. Such a map is called a Dirichlet character.

Since a�(m) = 1, where � is the Euler totient function, then �(a)�(m) = 1, which implies

that the image of � must lie in S1 and, moreover, in the �(m)th roots of unity. If the group

(ℤ/mℤ)× is cyclic, then any character � is determined uniquely by its value at the generator.

Note that (ℤ/mℤ)× is cyclic if m = pi or m = 2pi, where p is some odd rational prime. It is

possible to lift a Dirichlet character to ℤ by redefining �:

�(a) :=

⎧⎨⎩
0 if gcd(a,m) > 1

�(a mod m) otherwise

for all a ∈ ℤ∗ so that �(a) = �(b) whenever a ≡ b mod m. Later it will be shown that

� actually can be lifted to the projective limit ℤ̂× =
∏

p ℤ×p , where ℤ×p is the ring of

p-adic units. One defines the Dirichlet L-function, associated to a Dirichlet character

� : (ℤ/mℤ)× → ℂ× for s ∈ ℂ with ℜs > 1, to be

L(s, �) :=
∑

(n,m)=1

�(n)

ns
.

4



Since ∣�(n)∣ = 1, then the sum converges absolutely for ℜs > 1. The Dirichlet L-function also

has an Euler product and it is given by

L(s, �) =
∑

(n,m)=1

�(n)

ns
=
∏
p ∕∣m

1

1− �(p)p−s
.

A Dirichlet character � is called odd if �(−1) = 1 and even if �(−1) = 1. If � is a Dirichlet

character modulo m and m∣m′, then � can be lifted to a Dirichlet character modulo m′ by

pulling back using the projection. A Dirichlet character � is called primitive if it cannot be

lifted from Dirichlet character character of smaller modulus. Let

a =

⎧⎨⎩
0 if �(−1) = 1

1 if �(−1) = −1.

Let � be a primitive character modulo m. Let

Λ(s, �) = (�/m)−(s+a)/2Γ(
s+ a

2
)L(s, �).

The Dirichlet L-function satisfies the following functional equation:

Λ(1− s, �) =
iak1/2

�(�)
Λ(s, �),

where

�(�) =
m∑
n=1

�(n)e2�in/m.

This is a special case of the functional equation of the Hecke L-function. The sum �(�) is a

called a Gauss sum. We will see below that John Tate, in his thesis, introduced the concept

of a generalized Gauss sum, which subsumes the definition of � . These sums will appear in

the functional equation of the Hecke L-function. The Generalized Riemann Hypothesis states

that the for every Drichlet character �, the zeroes of L(�, s) = 0 in the critical strip lie on

the line ℜ(s) = 1/2. Dirichlet’s prime number theorem [8] states that for any two positive

coprime integers a and d, there are infinitely many primes of the form a + nd, where n ≥ 0.

That is, there exist infinitely many primes that are congruent to a modulo d. This theorem

was proved using the Dirichlet L-series. Let �(x, a, d) denote the number of prime numbers

5



in this progression, which are less than or equal to x. If the Generalized Riemann Hypothesis

is assumed true, then

�(x, a, d) =
1

�(d)

x∫
2

1

log t
dt+O(x1/2+�)

as x → ∞, where O(x1/2+�) is a function f(x) such that ∣f(x)∣ ≤ M ∣x1/2+�∣ for large

enough x. This is even stronger than the prime number theorem. As can be seen, studying

L-functions over the field K = ℚ reveals strong results about the distribution of rational

prime numbers.

Much of algebraic number theory is the result of the study of the diophantine equation

xn + yn = zn. This diophantine equation led scholars to investigate cyclotomic extensions

and, more generally, to the study of unique factorization of elements in number fields.

Indeed, note that

xp + yp = zp =⇒
p−1∏
n=0

(x+ ye2�in/p) = zp

leads us to a multiplicative problem in the number field ℚ(e2�i/p) and, more specifically,

in the number ring ℤ
[
e2�i/p

]
. It can be shown that if cyclotomic extensions were unique

factorization domains, then there would be no non-trivial integer solutions to xp + yp = zp

for p > 2, almost proving Fermat’s Last Theorem. However, this is not true; it first fails

when ℚ(e2�i/23). Since the ring of integers of a number field is a Dedekind domain, then

fractional ideals uniquely factor into prime ideals. Ernst Kummer was the first to investigate

the ideals of a number field [10]. If the ring of integers of a number field is a principal ideal

domain (i.e. every ideal is generated by a single element), then the ring of integers is a

unique factorization domain. So, in a sense, it is precisely the failure of the ring of integers

of a number field to be a principal ideal domain that prevents the ring of integers from

being a unique factorization domain. The fractional ideals of a number field form a group

under multiplication. The ideal class group of the number field is the quotient group of all

fractional ideals by principal ideals, and thus is an object that measures how badly unique

factorization fails. Studying the prime ideals of a number ring can help us to understand

the ideal class group , and hence the failure of unique factorization. As the Riemann zeta
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function encodes information about the distribution of rational primes, Dedekind most

likely generated the Dedekind zeta function [7] for a number field K hoping to gain a better

understanding of the primes in a number ring, and thus make progress on solving Fermat’s

Last Theorem.

Let K be a number field with the ring of integers oK . Define for ℜs > 1 the Dedekind

zeta function

�K(s) =
∑
a∕=(0)

1

Nas
,

where the sum runs over all nonzero ideals a of oK and where Na is the order of the group

oK/aoK . We will show later that �K has the Euler product formula given by

�K(s) =
∑
a∕=(0)

1

Nas
=
∏
p

1

1−Np−s
,

where p runs over all nonzero prime ideals p of oK . The function �K(s) converges absolutely

for ℜs > 1 and satisfies a functional equation and can be meromorphically continued to the

whole complex plane with a simple pole at s = 1. Suppose K has r1 real embeddings and r2

non-conjugate complex embeddings. Then the residue at s = 1 is given by

Ress=1�K(s) =
2r1(2�)r2ℎKRK

wK
√
∣dK ∣

,

where ℎk is the class number of K and where RK is the regulator of K. Immediately we can

see that the abundance of information encoded within Dedekind’s zeta function. Again, there

is an extended Riemann hypothesis which states that the zeroes that lie in the critical strip

lie on the line ℜs = 1/2. Much more can be said about the value of �(s) at integer points,

and this connection is studied in algebraic K-theory. Before we move on, let us given an

example of how the Dirichlet L-functions appear as irreducible pieces of the Dedekind zeta

function.

Example 0.0.1. An element a ∈ ℤ, such that he congruence x2 ≡ a mod p has a solution,

is called a quadratic residue modulo p. If p is an odd prime, then the Legendre symbol
(
a
p

)
is defined to be 1 if a is a quadratic residue, −1 if a is a quadratic nonresidue modulo p, and

7



0 if p∣a. Note that
(
a
p

)
is multiplicative. Define �5 on (ℤ/5ℤ)× using the Legendre symbol:

�5(a) =
(
a
5

)
. It can be shown that

(
a
p

)
= ap−1/2 mod p. And so,

�5(a) =

⎧⎨⎩
1 if a2 ≡ 1 mod 5

−1 if a2 ≡ −1 mod 5.

After doing some work, one can prove the following facts for distinct rational primes p and q:

(
−1

p

)
= (−1)(p−1)/2 and

(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4 and

(
2

p

)
= (−1)(p2−1)/8. (2)

The middle equation from the list above is called the law of quadratic reciprocity ;

it was conjectured by Euler and proved by Gauss [13] in 1801. One can generalize the

Legendre symbol to the Jacobi symbol
(
a
m

)
, where m is not necessarily a prime. The symbol

is multiplicative and satisfies the same relations (2) as the Legendre symbol. These symbols

have deep connections with quadratic and cyclotomic number fields. However, we simply will

note that for the number field K = ℚ(
√

5) and the ring of integers oK = ℤ
[

1+
√

5
2

]
that one

obtains the following result about the splitting of rational prime ideals, (p), in oK :

(p) splits in oK ⇐⇒
(a

5

)
= 1

(p) remains prime in oK ⇐⇒
(a

5

)
= −1

(p) ramifies in oK ⇐⇒
(a

5

)
= 0.

Applying the Euler product of �K(s), we obtain

�K(s) =
∏
p

1

1−Np−s
=
∏
p

∏
p∣p

1

1−Np−s
,

where p is a rational prime and the notation p∣p means that p lies over p. If �5(p) = 1, then

p splits. As such, there are two primes lying above p and both of their norms are equal to p.

If �5(p) = −1, then one prime lies above p and its norm is equal to p2. The discriminant of a

quadratic number field ℚ(
√
d) is d if d ≡ 1 mod 4 and otherwise it is 4d. Furthermore, it can

8



be shown that a rational prime is ramified if and only if it divides the discriminant. Since

5 ≡ 1 mod 4, then 5 is the only ramified prime and
√

5 is the prime lying above. The norm of
√

5 is 5. As such, we obtain

�K(s) =
1

1− 5−s
⋅
∏

�5(p)=1

1

(1− p−s)2
⋅
∏

�5(p)=−1

1

1− p−2s

=
1

1− 5−s
⋅
∏

�5(p)=1

1

(1− p−s)2
⋅
∏

�5(p)=−1

1

(1 + p−s)(1− p−s)

=
∏
p

1

1− p−s
∏
p

1

1− �5(p)p−s

= �(s)L(s, �5).

Analogous to the way that Dirichlet generalized the Riemann zeta-function, Hecke

wanted to generalize the Dedekind zeta function to an L-function of a character on a number

field. Hecke did so by creating a very specific multiplicative function on the ideals of oK ,

called a Grössencharakter. Constructing a character on the ideals is difficult because an ideal

need not have a principal generator. In addition, even if the ideal is principal, there may

be infinitely many generators from which to choose. Is the correct analogue of (ℤ/mℤ)×

in K given by (oK/moK)× for an ideal m in oK? Hecke eventually figured out the correct

construction; he defined the Hecke L-function, associated to a Grössencharakter �, to be

L(s, �) :=
∑
a

�(a)

Nas
.

Just as with the previous L-functions, this function has a Euler product and it is given by

L(s, �) =
∑
a

�(a)

Nas
=
∏
p

1

1− �(p)Np−s
.

The correct analogue of (ℤ/mℤ)× is the Ray class group of module m. Hecke [14] proved

that the function L(s, �) has meromorphic continuation to the whole s-plane and satisfies

a functional equation. However, he was not able to explicitly describe the factors that

arise in the functional equation. In 1940, Chevalley [3] introduced the notion of the idele-

class group. In 1950, John Tate [27] used the idele-class group to define a refined notion
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of a Grössencharakter; his definition eliminated many of the difficulties associated with

constructing a Grössencharakter. As the Grössencharakter subsumes the definition of a

Dirichlet character in the case K = ℚ, the idele-class character does, too. In addition to

creating this new type of character, Tate completely revolutionized the approach to proving

the functional equation. He did so by using a “local to global” type of method.

The following thesis attempts to provide a working understanding of the underlying

prerequisites for studying Tate’s work. It is intended for use by first or second year graduate

students, or even serious undergraduates, in their studies of Tate’s thesis. The background

knowledge and prerequisite information necessary for learning and studying Tate’s thesis

is dense and complicated; surmounting the information is a challenging task. It is a task,

however, that is achievable and will prove useful, particularly for a graduate student who

has a course in analysis, algebra or algebraic number theory. But beyond comprehending the

background knowledge, lays the more difficult job of understanding how all of the details fit

together and work in harmony within Tate’s thesis.

The fields of research within mathematics are plentiful and it is useful to categorize

them to allow students to navigate the mathematical web. However, to become an adept

practicing mathematician, a student must understand how the various fields and subjects

of mathematics connect to one another. Tate’s thesis is a paramount piece of mathematical

work to demonstrate the interconnectivity of mathematical fields, as it draws upon ideas

from both algebra and analysis in order to achieve a very specific goal, namely a proof of the

meromorphic continuation and functional equation of the Hecke L-function.

As specific as his goal was, Tate’s work both inspired and led to the study of automor-

phic forms and representations and, more generally, to the Langland’s Program, itself one

of the most overarching theories in mathematics and number theory. As such, Tate’s thesis

represents an excellent starting point for a beginning graduate student in number theory.

To facilitate an investigation into Tate’s work, the following thesis will provide a thorough

investigation into the necessary background knowledge, starting with an introduction to

topological groups, the Haar measure, Pontryagin Duality, and the Fourier inversion formula

10



in Chapter 1. In the section devoted to topological groups we will define and develop the

theory needed for understanding these groups throughout the remainder of the thesis. A

short introduction to the p-adic numbers and profinite groups is included in this section

as well. In the section on Haar measures, a quick review of basic measure theory, a partial

proof of the existence of the Haar measure for locally compact groups, and a proof of the

uniqueness of the Haar measure in the abelian case is provided. Useful properties of the Haar

measure also are discussed. In the final section of Chapter 1, an introduction will be provided

to the Pontryagin dual of a topological group and its topology, the compact-open topology.

Included also will be a statement of the Fourier inversion theorem for a locally compact

group, although a proof will not be provided. Lastly, Pontryagin duality and its functorial

properties will be discussed.

Provided in chapter two is a brief overview of global and local fields. The local fields

section contains a short summary of how the existence and uniqueness of the Haar measure,

explicitly the module of automorphism, can be used to classify locally compact fields. It is

recommended highly that the reader consult other sources if he/she requires a more thorough

introduction to global and local fields (locally compact non-discrete fields). Nonetheless, an

effort is made to include at least statements of the theorems necessary for understanding the

material found in Chapters 3 and 4.

The first part of Chapter 3 supplies an introduction to the restricted direct product

and its topology; results about the quasi-characters, characters, the dual group, and the

Haar measure of the restricted product also are proved. Furthermore, the integration and

Fourier transform of functions defined on a restricted direct product is discussed in detail.

The section on the restricted direct product is heavily reliant upon the material found in

Chapter 1. In the second section of Chapter 3, there is found an introduction to the adeles

and ideles of a number field K, denoted AK and IK , respectively. The results concerning

adeles and ideles that are required for understanding Tate’s thesis are discussed in this

section; the absolute value on the ideles is introduced and a proof of Artin’s product formula

11



also is provided. Furthermore, the idele-class group and the norm one idele-class group are

introduced also.

The final chapter addresses the main subject - Tate’s thesis. The chapter begins with a

proof of the factorization of quasi-characters of local fields (i.e. elements of Hom(F×,ℂ×),

where F is a local field). In the second section, a construction of non-trivial additive char-

acters for Archimedean and non-Archimedean local fields of characteristic zero is provided.

This section also includes a proof of the Pontryagin self-duality of local fields. The section

that follows discusses the Haar measure on the multiplicative group F×, where F is a local

field. The fourth section provides a proof that the Fourier transform is an automorphism of

the vector space of Schwartz-Bruhat functions of a local field. The following section, section

five, contains a proof of the meromorphic continuation and functional equation of the local

zeta function. Exactly how the local epsilon factor is affected by a change of measure, addi-

tive character, and quasi-character is contained in a proposition found in the sixth section.

In addition, local root numbers are discussed for non-Archimedean and Archimedean local

fields. In the seventh section, the Schwartz-Bruhat functions on the adeles of a number

field are introduced. The standard adelic character of a number field K is constructed from

the standard additive local field characters previously discussed in section two. Further

on in section seven is a proof of the self-duality of the adeles and a description of the dual

group of a number field K, especially the case K = ℚ, is provided in section seven. Also

contained in this section is a proof that the Fourier transform is an automorphism of the

adeles and is, moreover, an isometry of L2(AK). The rest of section seven is dedicated to

a proof of the Poisson summation formula and its extension, the Riemann-Roch theorem.

The seventh section is heavily dependent on the restricted direct product section found in

Chapter 3. Introduced in the eighth section are the idele-class quasi-characters of number

fields. In section eight, we will show how the idele-class character factors into a product of

both a unitary character on the norm-one idele-class group and a character on ℝ×+, the set of

positive nonzero reals. An explanation of how the definition of an idele-class quasi-characters

subsumes the definition of a Dirichlet characters for K = ℚ is provided. Further in this

12



chapter, in the ninth section, is the establishment of the meromorphic continuation and

functional equation of the global zeta. The main content of the tenth section is the proof

of the meromorphic continuation and functional equation of the Hecke L-function attached

to an idele-class quasi character. Also stated and proven is the functional equation for the

Dedekind zeta function. In the final section, we compute the volume of the norm-one idele-

class group and thereby provide the residues of the Hecke and Dedekind zeta function at

s = 1.
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CHAPTER 1
Topological Groups, the Haar Measure, and Pontryagin Duality

In this chapter, we primarily follow chapters 1, 2 and 3 of Ramakrishnan and Valenza’s

Fourier Analysis on Number Fields [24]. Also used was chapter 11 of Folland’s book, Real

Analysis: Modern Techniques and Their Applications for the section on the Haar measure

and chapter 4 of Folland’s [11] book, A course in abstract harmonic analysis, for the section

on Pontryagin duality and the Fourier inversion formula. Many short proofs will be given.

The reader will be referred to the source text when proofs are omitted for brevity.

1.1 Topological Groups and Fields

1.1.1 Definitions and Examples

Definition 1.1.1. A topological group is a group G with a topology such that the maps

(g, ℎ) 7→ gℎ from G × G (with the product topology) to G and g 7→ g−1 from G to G are

continuous. The identity of G is denoted e.

For any set S ⊆ G, let S−1 = {x ∈ G : x−1 ∈ S}. If S is open in G, then S−1 is open

since inversion is continuous. In what follows, a neighborhood U ⊆ X of x ∈ X is a subset

of X of which x lies in the interior. Most importantly, U need not be open. The following

proposition is an equivalent definition of a topological group.

Proposition 1.1.2. A group G is a topological group if and only if for all g, ℎ ∈ G and

any neighborhood W of gℎ−1, there exists open neighborhoods U of g and V of ℎ, such that

UV −1 ⊆ W .

Proof. (⇒) Assume that G is a topological group as defined above. Let W be a neighbor-

hood of gℎ−1. Without loss of generality, we make take W to be open, since, by definition of

a neighborhood, there exists an open set W ′ containing gℎ−1 and contained in W . Let M be

the multiplication map from G × G to G defined by (g, ℎ) 7→ gℎ. Since M−1(W ) is open and

{U × V : U, V open in G} constitutes a basis of G× G, then there exists open sets U and V ′
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of G, containing g and ℎ−1, respectively, such that U × V ′ ⊆ M−1(W ). Note that V ′−1 is an

open set containing ℎ since inversion is continuous. Define V = V ′−1 so that V −1 = V ′ is an

open neighborhood of ℎ−1. Therefore, there exists an open neighborhood U of g and V of ℎ

such that UV −1 ⊆ W .

(⇐) Let W be an open set in G. Let g−1 ∈ W−1. Since g = e ∗ g ∈ W , then there exists

open neighborhoods U and V of e and g−1, respectively, such that UV −1 ⊂ W . Since U is

a neighborhood of the identity, then V −1 ⊆ UV −1 ⊆ W . So, V is an open neighborhood

containing g−1 that is contained in W−1. This shows that inversion is continuous. Again, let

W be an open set in G. Let (g, g′) ∈ M−1(W ). Then, gg′ ∈ W ; hence, there exists open

neighborhoods U of g and V −1 of g′−1 such that UV ⊂M−1(W ). Note that if V −1 is an open

neighborhood of g′−1, then V is an open neighborhood of g′ by what was shown above. In

other words, U × V ⊂ M−1(W ). Therefore, M−1(W ) is open in G × G, since every point is

an interior point.

If we impose the discrete topology on the group G, which we will often do, then G is

obviously a topological group. It is also clear then that a topology is translation invariant.

That is, if we consider left or right translation by a fixed element, which is a homeomorphism

from G to G, then ∀g ∈ G and U ⊆ G the following are equivalent:

(i) U is open.

(ii) gU is open.

(iii) Ug is open.

Definition 1.1.3. Let X be a topological space and let S be a subset of Homeo(X), the set

of all homeomorphisms from X to itself. Then X is said to be a homogeneous space under

S if ∀x, y ∈ X, there exists f ∈ S such that f(x) = y. If the subset S is the full set of

homeomorphisms, then we simply say that X is a homogeneous space.

Proposition 1.1.4. Every topological group is translation invariant and homogeneous under

itself (S = G). Furthermore, a local neighborhood base at the identity determines a local base

at all g ∈ G.

Proof. For all g ∈ G let Lg : G → G × G be the continuous map defined by ℎ 7→ (g, ℎ).

We know that M : G × G → G defined by (g, ℎ) 7→ gℎ is continuous, since G is a
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topological group. Therefore, M ∘ Lg is a continuous map from G to G and is defined by

ℎ 7→ gℎ. Furthermore, M ∘ Lg−1 is a continuous map and is defined by ℎ 7→ g−1ℎ. Since

M ∘ Lg ∘ M ∘ Lg−1 is the identity, then M ∘ Lg is a homeomorphism. Consequently, left

multiplication by g is a homeomorphism. More specifically, left translation by a fixed element

induces an injection of G into Homeo(G) ∩ Aut(G). For all g, ℎ ∈ G, left translation by gℎ−1

sends ℎ to g. This shows that G is homogeneous under itself.

Let V (g) be a neighborhood filter of g in G, a collection of all neighborhoods of g, and

{Ei}i∈I be a local base of e ∈ G. Let V ∈ V (g). Then g−1V is a neighborhood of e, and so

there exists E∗ ∈ {Ei}i∈I such that E∗ ⊂ g−1V ⇒ gE∗ ⊂ V . Therefore, {gEi}i∈I is a local

neighborhood base of g. Thus, a local neighborhood base at the identity e ∈ G determines a

local base at all g ∈ G and, consequently, G. This is one of the most important properties of

topological groups.

Some examples of topological groups will follow. It is advantageous to use the topolog-

ical structure to uncover facts about the algebraic structure, and vice versa. Many of the

traditionally difficult theorems of algebraic number theory are proven easily using the adelic

and idelic (topological) approach to algebraic number theory. These advantages enabled

Tate to apply abelian harmonic analysis to establish the functional equation of the Hecke

L-Functions. The following examples should serve as a stimulus to continue reading and,

more importantly, to begin to think about topological groups. We provide the examples

before the abstract theory so that the reader may have examples in mind before launching

into the general theory.

Examples 1.1.5.

(i) Any group G endowed with the discrete topology is a topological group.

(ii) Any group G endowed with the trivial topology is a topological group.

(iii) Every subgroup of a topological group, endowed with the subspace topology, is a

topological group.

(iv) With the Euclidean topology, (ℝ,+) is a topological group. Consider first the addition

map (a, b) 7→ a + b. For all � > 0 and a, b, c, d ∈ ℝ, ∣(a + b) − (c + d)∣ < � whenever

∣a − c∣ < �/2 and ∣b − c∣ ≤ �/2. Second, consider the inversion map a 7→ −a. For all � > 0
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and a, b ∈ ℝ, we see that ∣ − a − (−b)∣ < � whenever ∣b − a∣ ≤ �. From this example, we

can see exactly when a metrizable group is a topological group. The result is stated in the

following proposition.

(v) With the Euclidean topology, (ℝ×, ⋅) is a topological group. Note that ℝ× = ℝ − {0}.

Consider the multiplicative function M : ℝ × ℝ → ℝ defined by (x, y) 7→ xy. Pick

(a, b) ∈ ℝ× ℝ. Then

∣xy − ab∣ = ∣(x− a)y + (y − b)a∣ ≤ ∣x− a∣∣y∣+ ∣y − b∣∣a∣.

For a fixed � > 0, consider the neighborhood ball N�(a, b) ⊂ ℝ2 of (a, b), where � =

min (1, �/(2(1 + ∣b∣)), �/(2(1 + ∣a∣))). Then

∣xy − ab∣ ≤ ∣x− a∣(∣y − b∣+ ∣b∣) + ∣y − b∣∣a∣ < �

2(1 + ∣b∣)
(1 + ∣b∣) +

�

2(1 + ∣a∣)
< �

whenever (x, y) ∈ N�(a, b). Since (a, b) and � > 0 were arbitrarily chosen, then the

multiplicative function is continuous. For all � > 0 and a, b ∈ ℝ× we have ∣a−1 − b−1∣ =

∣(b − a)(ab)−1∣ < � whenever ∣b − a∣ < �/∣ab∣ (a ∕= 0 and b ∕= 0). Therefore, inversion is

continuous.

(vi) The groups (ℤ,+), (ℚ,+), with the subspace topology induced by the Euclidean

topology on ℝ are topological groups. Also, the group (ℚ∗, ⋅) is a topological group with the

subspace topology induced by the Euclidean topology on ℝ×.

(vii) The groups (ℂ,+) and (ℂ×, ⋅) with the complex norm topology are topological groups.

(viii) The groups ℝm =
∏m

i=1 ℝ with m ∈ ℕ are topological groups with vector addition and

the product topology, or equivalently, the Euclidean topology.

As a generalization of the above examples, the following theorem provides necessary and

sufficient conditions for a group G with a topology induced by a metric to be a topological

group.

Proposition 1.1.6. Let G be a group and assume the topology on G is induced from a met-

ric, d. Then G is a topological group if and only if the following two conditions hold:

(i) For all � > 0 and g1, g2 ∈ G there exists � > 0 such that d(g1g2, ℎ1ℎ2) < � whenever

d(g1, ℎ1) < � and d(g1, ℎ2) < �.
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(ii) For all � > 0 and g ∈ G there exists � > 0 such that d(g−1, ℎ−1) < � whenever

d(g, ℎ) < �.

Proof. The proof is trivial.

We also have the following general theorem about the direct product of two topological

groups.

Proposition 1.1.7. Let G1 and G2 be topological groups. The direct product G1 × G2

endowed with the product topology and componentwise group operation is a topological group.

Proof. Let W be a neighborhood of

(g1, g2) ⋅ (ℎ1, ℎ2)−1 = (g1, g2) ⋅ (ℎ−1
1 , ℎ−1

2 ) = (g1ℎ
−1
1 , g2, ℎ

−1
2 ).

Since

{W1 ×W2 : W1 open in G1 and W2 open in G2}

constitutes a basis of G1 × G2, then there exists open neighborhoods W1 ⊆ G1 and W2 ⊆ G2

of g1ℎ
−1
1 and g2ℎ

−1
2 , respectively, and W1 ×W2 ⊆ W . Since G1 and G2 are topological groups,

then there exists open sets U1, V1, U2, V2 of g1, ℎ1, g2, ℎ2, respectively, such that U1V
−1

1 ⊆ W1

and U2V
−1

2 ⊆ W2. In other words, U1 × U2 is a neighborhood of (g1, g2) and V1 × V2 is a

neighborhood of (ℎ1, ℎ2) such that (U1×U2)(V1×V2)−1 ⊆ (W1×W2) ⊆ W. Therefore, G1×G2

is a topological group.

Probably the most important examples of topological groups are Lie groups. A Lie

group is a group that is also a finite-dimensional differentiable manifold, in which the group

operations are smooth maps. Since smooth implies continuous, Lie groups are examples

of topological groups. However, not all topological groups are Lie groups. For example,

ℚ endowed with the subspace topology inherited from the Euclidean topology on ℝ, is a

non-discrete countable topological group that is not a Lie group.

Examples 1.1.8.

(i) Recall that GL(n,ℝ) and GL(n,ℂ) are the multiplicative group of invertible n × n

matrices with entries in ℝ and ℂ, respectively. So, we have that GL(n,ℝ) ⊂ M(n,n)(ℝ)

and GL(n,ℂ) ∼= GL(2,ℝ) ⊂ M(2n,2n)(ℝ), where M(n,n)(ℝ) is the set of n × n matrices.
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It readily is apparent that M(n,n)(ℝ) and M(2n,2n)(ℝ) are differential manifolds via their

identification with ℝn2
and ℝ4n2

, respectively. As such, both GL(n,ℝ) and GL(n,ℂ) can

be given the Euclidean topology from their identification with vectors in ℝn2
and ℝ4n2

.

Consider det : M(n,n)(ℝ)→ ℝ, the determinant of an n× n matrix, defined by

det(A) =
∑
�∈Sn

sgn(�)
n∏
i=1

ai,�(i).

Since the determinant of an n × n matrix is a polynomial in the matrix coefficients,

then it is a continuous function , and hence det−1(0) is closed. Using the fact that

GL(n,ℝ) = M(n,n)− det−1(0) and that GL(n,ℂ) = M(2n,2n)− det−1(0), we can see that

both general linear groups are open. Since open subsets of differentiable manifolds are

themselves differential manifolds (restriction of charts to open subset), then GL(n,ℝ) and

GL(n,ℂ) are real differential manifolds. Multiplication of matrices is a polynomial in ma-

trix coefficients , and hence is a smooth map from GL(n,ℝ) × GL(n,ℝ) → GL(n,ℝ) (same

for ℂ). By Cramer’s rule, we can see that every entry of the matrix A−1 is a polynomial in

matrix coefficients. Therefore, matrix inversion is continuous. Consequently, GL(n,ℝ) and

GL(n,ℂ) are real Lie groups and, thus, topological groups.

(ii) All subgroups of GL(n,ℝ) and GL(n,ℂ) are topological groups. However, by Cartan’s

Theorem, only closed subgroups of Lie groups are guaranteed to be Lie groups. This does

not preclude open subgroups of Lie groups from being Lie groups. It can be shown that

both O(n,ℝ) and O(n,ℂ), the subgroups of orthogonal matrices (AAT = I), are real Lie

groups. In addition, SL(n,ℝ) and SL(n,ℂ), the special linear groups (detA = 1), are real

Lie groups. Also, SO(n,ℝ) and SO(n,ℂ), the subgroups of special orthogonal matrices,

are real Lie groups. Lastly, U(n,ℂ), the complex unitary matrices (AA∗ = I), is a real lie

group. This list is not exhaustive.

(iii) There are complex Lie groups and, of course, GL(n,ℂ) is the prototypical example. A

complex Lie group is a complex manifold whose group operations are analytic. SL(n,ℂ),

O(n,ℂ), SO(n,ℂ) are complex Lie groups. However, U(n,ℂ) is not a complex lie group.
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1.1.2 Some Theory of Topological Groups

Now that we have provided a sufficient number of examples of topological groups,

we develop some general theory of topological groups. A subset of S of G is symmetric if

S−1 = S.

Proposition 1.1.9. Let G be a topological group. Then the following assertions hold:

(i) Every neighborhood U of the identity contains a neighborhood V of the identity such that

V V ⊆ U .

(ii) Every neighborhood U of the identity contains a symmetric neighborhood V of the

identity.

(iii) If H is a subgroup of G, so is its closure.

(iv) Every open subgroup of G is also closed.

(v) If K1 and K2 are compact subsets of G, so is K1K2.

Proof.

(i) If we can prove this statement for U is open, then we are done because int(U) ⊆ U .

There exists open subsets V1 and V2 of U such that (e, e) ∈ V1 × V2 and V1V2 ⊂ U . Let

V = V1 ∩ V2. Therefore, V is neighborhood of the identity such that V V ⊂ U.

(ii) It is clear that U ∩ U−1 is a symmetric neighborhood of e that is contained in U .

(iii) Consider g, ℎ ∈ H. So, g = lim g� and ℎ = limℎ� where g� and ℎ� are nets in H.

Since G is a topological group, then gℎ is the limit of the convergent net ℎ�g�. Therefore,

gℎ ∈ H.

(iv) Since H is a subgroup, then g is a disjoint union of cosets of H–G =
∐
gHG . We

know that in the disjoint union, one of the g′s is the identity. And so,

H = G−
∐
g ∕=e

gH.

If H is open, then so are the gH in the union, and hence so is the union. Thus, H is closed

because it is the complement of an open set.

(v) Under the continuous multiplicative map, K1K2 is the image of K1 ×K2. Since K1 and

K2 are compact, then K1 × K2 is compact in the product topology. Therefore, K1K2 is

compact because it is the image of a compact set under a continuous mapping
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Corollary 1.1.10. From 1 and 2 above, every neighborhood U of the identify contains a

symmetric neighborhood V such that V V ⊆ U .

Let f be a function on a group G. We define left and right translates of f by Lℎf(g) =

f(ℎ−1g) and Rℎf(g) = f(gℎ), respectively. If f is a continuous function from G to ℝ or ℂ,

then we say that f is left uniformly continuous if, for all � > 0, there exists a neighborhood

V of the identity such that

∣∣Lℎf − f ∣∣u < � ∀ℎ ∈ V

where ∣∣ ∣∣u is the uniform, or supremum, norm. And right uniform continuity is defined

similarly. Let Cc(G) be the space of continuous functions on G with compact support.

Proposition 1.1.11. Let G be a topological group. Every function f ∈ Cc(G) is both left and

right uniformly continuous.

Proof. Let K = supp(f) and pick � > 0. Since f is continuous, then for all g ∈ K, there

exists an open neighborhood, Ug, of the identity such that for all ℎ ∈ Ug

∣f(gℎ)− f(g)∣ < �.

Alternatively, ∣f(g′) − f(g)∣ < � if g−1g′ ∈ Ug. By the corollary above we know that there

exists a symmetric neighborhood, Vg, of the identity such that VgVg ⊆ Ug. Consider the cover

{gVg}g∈K of K, which we can reduce to a finite subcover, {giVgi}i=1,2,...n, by compactness. Let

V = ∩ni=1Vgi . Let ℎ ∈ V and g ∈ K. If g ∈ K, then there exists an i ∈ {1, . . . , n} such that

g ∈ giVgi . From the triangle inequality we get

∣f(gℎ)− f(g)∣ ≤ ∣f(gℎ)− f(gi)∣+ ∣f(gi)− f(g)∣.

Both terms on the right are bounded by � because g−1
i g ∈ Vgi ⊆ VgiVgi ⊆ Ugi and g−1

i gℎ ∈

VgiVgi ⊆ Ugi . Thus, f is right uniformly continuous in K. If g is not in K, then we need

to bound ∣f(gℎ)∣. If f(gℎ) ∕= 0, then gℎ ∈ supp(f) , and hence gℎ ∈ gjVj for some

j ∈ {1, . . . , n}. Therefore, ∣f(gℎ) − f(gj)∣ < �. Also, g−1
j g = g−1

j (gℎ)ℎ−1 ∈ VgjVgj ⊆ Ugj , so

∣f(gj)∣ < �. Finally, ∣f(gℎ)− f(g)∣ ≤ 2�. This completes the proof.
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Proposition 1.1.12. Let G be a topological group. Then the following assertions are

equivalent:

(i) G is T1.

(ii) G is Hausdorff.

(iii) The identity e is closed in G.

(iv) Every point of G is closed in G.

Proof. (i)⇒(ii) If G is T1, then for all g, ℎ ∈ G, g ∕= ℎ, there exists an open neighborhood

U of e such that gℎ−1 ∕∈ U . From Corollary 1.1.10, there exists V, a symmetric open

neighborhood of the identity, such that V V ⊆ U . Consider the open neighborhoods of g and

ℎ, V g and V ℎ, respectively. Suppose there exists g′ ∈ V g ∩ V ℎ. Then g′ = v1g and g′ = v2ℎ,

which implies

v1g = v2ℎ⇒ gℎ−1 = v−1
1 v2 ∈ V −1V = V V ⊆ U.

Contradiction. Therefore, G is Hausdorff.

(ii)⇒(iii) Suppose not the above, then G− {e} would not be open. So, there exists some

point g ∈ G− {e} such that every open neighborhood U of g intersects e. Contradiction.

(iii)⇒(iv) Let x ∈ G. Left multiplication by x−1 is a homeomorphism from x to e. So, if

e is closed, then x is closed.

(iv)⇒(i) Let g, ℎ ∈ G. Since {g} is closed, then G− {g} is open, so there exists an open

neighborhood U ⊂ G − {g} of ℎ. We similarly can find an open neighborhood V ⊂ G − {ℎ}

of g.

Let H be a subgroup of G, a topological group. Let G/H, the set of left cosets, have

the quotient topology. The quotient topology is the finest topology such that � : g 7→ gH

is continuous. In other words, U is open in G/H if and only if �−1(U) is open in G. Under

coset multiplication, G/H is a group if and only if H is a normal subgroup of G. In this case,

G/H is a topological group with respect to the quotient topology.

Proposition 1.1.13. Let G be a topological group and let H be a subgroup of G. Then the

following assertions hold:

(i) The quotient space G/H is homogeneous under G.
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(ii) The canonical projection � : G→ G/H is an open map.

(iii) The quotient space G/H is T1 if and only if H is closed.

(iv) The quotient space G/H is discrete if and only if H is open. Moreover, if G is com-

pact, then H is open if and only if G/H is finite.

(v) If H is normal in G, then G/H is a topological group with respect to coset multiplication

and the quotient topology.

(vi) Let H be the closure of {e} in G. Then H is normal in G, and the quotient group G/H

is Hausdorff with respect to the quotient topology.

Proof.

(i) It is clear that any element g ∈ G acts on G/H by left translation. Following this,

we need to show that G, acting by left translation, is a subset of Homeo(G/H). Since the

inverse map has a similar form, then it suffices to show that the left translation map is

open in the quotient topology. Let U be an open subset of G/H. By the definition of the

quotient topology, U = �−1(U) is open in G. Also, �−1(gU) = g�−1(U) = gU is open in

G. Therefore, gU is open in G/H, and thus left translation by G is an open map. Then,

for any xH, yH ∈ G/H , x ∕= y, left translation by yx−1 sends xH to yH. This shows that

G/H is homogeneous under H.

(ii) Let V be open in G. We need to show that �(V ) is open in G/H; i.e. that �−1(�(V )) is

open in G. We know that �−1(�(V )) = V H. Let x ∈ V H. So, x = vℎ for some v ∈ V and

ℎ ∈ H. Since V is open, there exists U , an open neighborhood of v in V . Then Uℎ is an

open subset of V H that contains x. Thus, V H is open, and consequently, �.

(iii) As we saw in the above proposition, G/H is T1 if and only if every point of G/H is

closed. We know that �−1(H) = H, so each coset of G/H is closed if and only if each coset

is a closed subset of G. From the homogeneity of G is G/H, we know that this is true if

and only if H is a closed subset of G.

(iv) From part (ii) we know H is an open subset of G if and only if H is an open coset of

G/H. From homogeneity, H is an open coset of G/H if and only if every point of G/H

is open (G/H discrete). Assume that G is compact. Since � is continuous, then G/H is

compact. By what was just shown, H is open if and only if G/H is discrete, and G/H
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is discrete if and only if G/H is finite since G is compact. Note that G/H finite implies

discreteness only by convention.

(v) If H is normal, then G/H is a group. By part (ii) we have that � is an open map. We

also have

G
Tg

> G

G/H

�
∨ T�(g)

> G/H

�
∨

and

G
inv(g 7→ g−1)

> G

G/H

�
∨ inv

> G/H.

�
∨

Therefore, G/H is a topological group.

(vi) Since {e} is a subgroup, then so is its closure, denoted H, by Proposition 1.1.9. It is

also the smallest closed subgroup containing {e}. Consider gHg−1. Note that e ∈ gHg−1

and that gHg−1 is closed. And gHg−1 has the same number of elements of H or less.

Therefore, gHg−1 = H, and H is normal. By part (iii) we know that G/H is T1, and by

part (v) we know that G/H is a topological group with respect to coset multiplication and

the quotient topology. Therefore, G/H is Hausdorff. Thus, we see that every topological

group G projects onto a Hausdorff topological group.

Proposition 1.1.14. Let G∘ be the connected component of the identity of some topological

group G. That is, G∘ is the maximal connected subset of the identity, e, in G. Then G∘ is a

normal subgroup of G. Moreover, the quotient space G/G∘ is totally disconnected (every point

of G is its own connected component).

Proof. Let x ∈ G∘. Then x−1G∘ is connected, since G is homogeneous. Also, e ∈ x−1G∘.

Since G∘ is the maximal connected component of e, then x−1G∘ ⊆ G∘. This shows that G∘ is

closed under inversion. Let y ∈ G∘. We see that xG∘ is connected and contains the identity

since x−1 ∈ G∘. Consequently, xy ∈ G∘. Similarly, yG∘y−1 ⊆ G∘, proving that G0 is a normal

subgroup of G. By the previous proposition, G/G∘ is a topological group with respect to the
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quotient operation and quotient topology. From the homogeneity of G, the elements of G/G∘

are exactly the connected components of G. Suppose F is a connected component of G/G∘

that contains more than one element. Consider �−1(F ) where � is the canonical projection

� : G → G/G∘, which is continuous by definition of the quotient topology. Let ℎ ∈ �−1(F ).

Let H be the connected component of ℎ.

Proposition 1.1.15. Let G be a Hausdorff topological group. Then:

(i) The product of a closed subset F and a compact subset K is closed.

(ii) If H is a compact subgroup of G, then � : G→ G/H is a closed map.

Proof.

(i) Let z ∈ FK. So, z is the limit of a convergent net {fjkj}j∈I ⊂ FK, where {fj}j∈I ∈ F

and {kj}j∈I ∈ K. Since K is compact, there exists a convergent subnet {�j} ∈ K that

converges to a point k ∈ K. Note that since {fjkj} converges, then we can replace {fjkj}

with {fj�j}. Consider U an open neighborhood of e in G. As shown above, there exists

an open neighborhood V of e such that V V ⊆ U . The nets {z−1fj�j} and {�−1
j k} both

converge to e and thus lie in V . Since V V ⊆ U , then the product of the nets,{z−1fjk},

eventually lie in U . Consequently, lim fj = zk−1 and z = zk−1k ∈ FK.

(ii) The first part of the proof mimics part (ii) of the previous proposition. Let C be

closed in G. Then we must show that �(C) is closed in G/H. However, under the quotient

topology, this reduces to showing that �−1(�(C)) = CH is closed in G. By part (i), CH is

closed in G since H is compact and C is closed.

Remark 1.1.16. Compactness is necessary in the above theorem. Let G = ℝ2 and H be the

y axis. Then G/H ∼= ℝ and, under this identification, �(x, y) = x. If we let C be the graph of

y = 1/x, obviously closed, then the projection onto the x-axis is ℝ×, which is open, but not

closed.

1.1.3 Locally Compact Groups and Fields

Before discussing locally compact groups, we will quickly define the notion of topological

ring and field, since locally compact fields are of the utmost importance in Tate’s thesis.
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Definition 1.1.17. A ring R with operations “ + ” and “ ⋅ ” such that (R,+) is a topological

group and such that M : R × R → ℝ defined by (r, s) 7→ r ⋅ s is continuous is called a

topological ring. A field F with operations “ + ” and “ ⋅ ” such that (F,+) and (F×, ⋅) are

topological groups is called a topological field.

Definition 1.1.18. A topological space is locally compact if every point of the space admits

a compact neighborhood. A topological group G that is both locally compact and Hausdorff

is called a locally compact group. A topological field F that is both locally compact and

Hausdorff is called a locally compact field.

Examples 1.1.19.

(i) The topological fields ℝ, ℂ with the Euclidean topology are locally compact fields.

Furthermore, they are both non-discrete. A non-discrete locally compact field is called a

local field.

(ii) The topological field ℚ is a discrete locally compact field.

(iii) The topological group ℤd is a discrete locally compact group.

(iv) The topological group S1 is a locally compact group with the subspace topology

induced by the Euclidean topology.

Proposition 1.1.20. Any locally compact subset of a Hausdorff space is the set theoretic

difference of two closed sets or, equivalently, is the intersection of an open and closed set .

Consequently, any locally compact dense subset of a Hausdorff space is open.

Proof. Let S be a compact subset of a Hausdorff space X. We can find an open neighbor-

hood U in S of s ∈ S such that ClsU is compact in S. Since U is open in S, then there exists

V , open in X, such that U = V ∩ S. Then ClX(V ∩ S) ∩ S = ClXU ∩ S = ClsU is compact.

So, Clx(S ∩ V ) ∩ S is closed in X and contains S ∩ V , and thus ClX(S ∩ V ). Therefore,

ClX(S ∩ V ) ⊂ S ⇒ ClX(S) ∩ V ⊂ S. Hence, ClXS ∩ V is a neighborhood of s in ClXS,

which is contained in S. Therefore, S is open in ClX(S). Any open set in ClX(S) has the

form B ∩ CLX(S) where B is open in X. Therefore, S = S ∩ ClX(S) = B ∩ ClX(S), where B

is open in X. Also, S = (Bc)c ∩ ClX(S) = ClX(S) − Bc. If S is dense and locally compact,

then, as shown, S = O ∩ C, where O and C are, respectively, open and closed in X. Since

S = A − T where A, T are closed in X, then pick x ∈ Ac, which is open. Let U be an open
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neighborhood of x in Ac. This, however, contradicts the density of S. Therefore, Ac = ∅ and

A = X, which implies S = X − T . Consequently, S is open.

Proposition 1.1.21. Let G be a Hausdorff topological group. Then a subgroup H of G is

locally compact (in the subspace topology) if and only if H is closed. In particular, every

discrete subgroup of G is closed.

Proof. Let K be compact neighborhood of e in H. Since H is also Hausdorff, then K is

closed in H. Being closed in H implies the existence of C, a closed neighborhood of e in

G, such that K = C ∩ H. Also, C ∩ H is compact in G and hence closed. There exists a

neighborhood V of the identity such that V V ⊆ C by Proposition refTopGroup. We know

that H is a subgroup of G by Proposition 1.1.9. So, if x ∈ H, then every neighborhood

of x−1 intersects H non-trivially. Hence, there exists y ∈ V x−1 ∩ H. If we can show that

yx ∈ C ∩ H, then both y and yx lie in H and, consequently, x ∈ H. Since C ∩ H is closed,

then we only need to show that every neighborhood of yx meets H. If W is a neighborhood

of yx, then clearly y−1W contains x. So, y−1W ∩ xV is a neighborhood of x. Since x ∈ H,

then there exists z ∈ y−1W ∩ xV ∩H. Now, the product yz lies in W and H and y ∈ V x−1

and z ∈ xV . Therefore, yz ∈ V V ⊆ C and so yz ∈ W ∩ (C ∩H). Finally, every neighborhood

of yx meets H, which implies y and yx lie in H, which then implies x ∈ H. This proves

H ⊆ H , consequently, H = H. Let H be a closed subgroup of G. Let x ∈ H. Let K be a

compact neighborhood of x in G. Then K ∩ H is a compact neighborhood of x in H. This

completes the proof.

Proposition 1.1.22. Let {Gi}i ∈ I be a set of locally compact groups such that Gi is

compact for all but finitely many i ∈ I. Then∏
i∈I

Gi

is locally compact.

Proof. Let S = {i ∈ I : Gi not compact}. By hypothesis, this set is finite. By Tychonoff’s

theorem, the possibly infinite product
∏

nu∕∈S Gi is compact. See Chapter 5 of Munkres [22]

for a proof of Tychonoff’s theorem. Furthermore, since Gi, i ∈ S is locally compact, then

the finite product
∏

i∈S Gi is locally compact. Indeed, let (gi)i∈S be a point in
∏

i∈S Gi. Since
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Gi, i ∈ S is locally compact, then for all i ∈ S, there exists a locally compact neighborhood

Ki ⊂ Gi of gi. Let K =
∏

i∈SKi. Then K is compact neighborhood of (xi)i∈S in the direct

product
∏

i∈S Gi since a product of finitely many compact sets is compact. As such, the full

product
∏

i∈I Gi is locally compact.

Proposition 1.1.23. If G is locally compact group and H is a closed subgroup, then G/H is

a locally compact group.

Proof. If K is a compact neighborhood of 1 in G, then �H(xK) is a compact neighborhood

of �(x) in G/H since �H is continuous. Part (iii) of Proposition 1.1.13 and Proposition 1.1.13

show that G/H is Hausdorff. This completes the proof.

1.1.4 P-adic Numbers and Topology

We will now examine and investigate the p-adic numbers, non-discrete topological

fields, which are important examples to have in mind when working with the completions

of global fields at primes. Many of the integrals in Tate’s Thesis involve integration over

locally compact non-Archimedean fields, of which the p-adic numbers are an example. The

completion of a number field at a finite place is a finite extension of the p-adic numbers.

Such a completion is also a non-Archimedean field. For this reason, it is important to develop

an intuition and understanding of the p-adic numbers and their topology. Although a quick

summary of the p-adic numbers will be given below, a more detailed exposition can be found

in Govêa’s book An introduction to the p-adic numbers. We will follow Vladimirov and

Zelenov’s [28] text, p-Adic Analysis and Mathematical Physics.

For p, a rational prime, and x ∈ ℚ, define ∣ ⋅ ∣p by

∣0∣p = 0 ∣x∣p = p−�p ,

where �p = �p(x) is defined from the representation

x = p�p
m

n

with (m, p) = (n, p) = 1.
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Proposition 1.1.24. ∣ ⋅ ∣p satisfies the following characteristics:

(i) ∣x∣p ≥ 0, ∣x∣p = 0⇔ x = 0.

(ii) ∣xy∣p = ∣x∣p∣y∣p.

(iii) ∣x+ y∣p ≤ max(∣x∣p, ∣y∣p) ≤ ∣x∣p + ∣y∣p and ∣x+ y∣p = max(∣x∣p, ∣y∣p) when ∣x∣p ∕= ∣y∣p.

Proof. Let us prove (c) because (a) and (b) are clear. Let x = p m
m

and y = p
′m′

n′
be the

given where m,n,m′, n′ are not divisible by p. Thus, ∣x∣p = p− and ∣y∣p = p−
′
. Without loss

of generality let  = min(, ′). Then

x+ y = p
m

n
+ p

′m′

n′
= p

mn′ + nm′p
′−

nn′
.

The integer nn′ is not divisible by p, but it is possible that the numerator, mn′ + nm′p
′−, is

divisible by p. Consequently, (x+ y) ≥  = min(, ′). This implies that

∣x+ y∣p = p−(x+y) ≤ p−min(,′) = max(p−, p−
′
) = max(∣x∣p, ∣y∣p).

Suppose that ′ > , then mn′ + nm′p
′− is not divisible by p. Therefore, (x + y) =  and

∣x+y∣p = max(∣x∣p, ∣y∣p). For p = 2 and ∣x∣2 = ∣y∣2, we see that nn′ is odd and that mn′+m′n

must be even because an odd number plus an odd number is even. So, (x + y) ≥  + 1,

which implies that ∣x+ y∣2 ≤ 1/2∣x∣2.

From these three properties, we see that ∣ ⋅ ∣p is a norm and takes the countable set of

values p,  ∈ ℤ. We call ∣x∣p the p-adic norm.

Definition 1.1.25. A field F with a norm ∣ ⋅ ∣F is said to be Archimedean if, for any nonzero

x ∈ F , there exists an n ∈ ℕ such that

∣x+ ⋅ ⋅ ⋅+ x∣F > 1,

where x is being summed n times.

Definition 1.1.26. The field ℚp of p-adic numbers is defined as the completion of ℚ with

respect to the p-adic norm. The unit disc, {� ∈ ℚp : ∣�∣p ≤ 1}, denoted ℤp is called

the p-adic integers. Note that ℚp is a non-Archimedean field by part (iii) of the previous

proposition.
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With the p-adic topology induced by the p-adic norm, (ℚp,+) is an abelian topological

group. Indeed, for a, b, c, d ∈ ℚp, we have ∣a + b − (c + d)∣p ≤ max{∣a − c∣p, ∣b − d∣p∣} < �

whenever ∣a− c∣p < � and ∣b− d∣p < �. Also, we have ∣ − a− (−b)∣p < � whenever ∣b− a∣p < �.

Furthermore, the group ℚ∗p forms a topological group under multiplication. As such, ℚp is a

topological field.

Endowing ℤp with the subspace topology, we see that ℤp is a topological ring. Every

ideal of ℤp is of the form pmℤ×p . The ideal {x : ∣x∣p < 1} in ℤp is the principal ideal generated

by p. Furthermore, (p) is the unique maximal ideal of ℤp. A principal ideal domain having

exactly one nonzero prime ideal is called a discrete valuation ring. The set of units of ℤp,

denoted ℤ×p , is precisely the set {x : ∣x∣p = 1} = ℤp − (p). Also, one can show that ℕ is a

dense subset of ℤp.

Theorem 1.1.27. Every p-adic number � ∈ ℚp has a unique p-adic expansion

� = �−rp
−r + �1−rp

1−r + ⋅ ⋅ ⋅+ �−1p
−1 + ⋅ ⋅ ⋅�0 + �1p+ ⋅ ⋅ ⋅

with �n ∈ ℤ and 0 ≤ �n ≤ p− 1. Also, � ∈ ℤp if and only if �−r = 0 whenever r > 0.

Proof. See Proposition 2.23 in Chapter 2 for a more general result and a reference for the

proof.

The residue field ℤp/pℤp ∼= ℤ/pℤ consists of p elements. We see this because, by the

above theorem, every element of � ∈ ℤp has the form � = a0 + p(a1 + a2p + a3p
2 + ⋅ ⋅ ⋅ ) with

0 ≤ a0 ≤ p− 1.

Definition 1.1.28. Let  ∈ ℤ. The closed disc centered at � of radius p is

B


(�) = {� ∈ ℚp : ∣� − �∣p ≤ p}.

Note that the closed disc centered at � of radius p is also an an open disc centered at � of

radius p+1. Finally, the circle centered at � of radius p is

S


(�) = {� ∈ ℚp : ∣� − �∣p = p}.
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The following proposition is a direct consequence of the p-adic absolute value being

non-Archimedean.

Proposition 1.1.29. If � ∈ B(�), then

B


(�) = B


(�).

Therefore, every element of Bo,(�) is a center.

Proof. Let �′ ∈ B(�). Then

∣� − �′∣p = ∣(� − �) + (�− �′)∣p ≤ max{∣� − �∣p, ∣�− �′∣p} ≤ p.

This shows that B(�) ⊆ B(�). Since � ∈ B(�), then the same argument shows that

B(�) ⊆ B(�). Therefore, B(�) = B(�).

The following facts are useful and can be proven easily:

(i) S(�) = B(�)−B−1(�).

(ii) B(�) = ∪′≤ S′(�).

(iii) ∩∈ℤB(�) = {�}.

(iv) ∪∈ℤB(�) = ∪ S(�) = ℚp.

Because of (i), B(�) is both open and closed. The following are corollaries of the above

proposition.

Corollary 1.1.30.

(i) The discs B(�) and S(�) are both open and closed sets in ℚp.

(ii) Every point of the disc B(�) is its center.

(iii) Any two discs in ℚp are either disjoint or one is contained in another.

(iv) Every open set in ℚp is a union of, at most, a countable set of disjoint discs.

Proposition 1.1.31. If a set M ⊆ ℚp contains two points � and � and � ∕= �, then it can

be represented as a union of disjoint closed and open sets M1 and M2, both in M , such that

� ∈M1 and � ∈M2.

Proof. We prove this proposition by considering three separate cases.
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(i) � = 0, ∣�∣p = p. For M1 and M2, we can take sets M1 = M ∩ B and M2 =

M ∩ (ℚp − B).

(ii) ∣�∣p = p, ∣�∣p = p
′
, ′ > . Then we may take M1 = M ∩B and M2 = M ∩ (ℚp−B).

(iii) ∣�∣p = p = ∣�∣p. Using the representation of p-adic numbers, we may express � and �

as follows:

� = p−(�0 + �1p+ �2p
2 + ⋅ ⋅ ⋅ ), � = p−(�0 + �1p+ �2p

2 + ⋅ ⋅ ⋅ ),

where �0 = �0, �1 = �1, ⋅ ⋅ ⋅ , �k−1 = �k−1, �k ∕= �k. Thus, ∣� − �∣p = p−k. Set

M1 = M ∩ B−k−1(�), and M2 = M ∩ (ℚp − B−k−1(�)) .

Remark 1.1.32. It follows from the above proposition that any set that contains more than

one point is disconnected, making the p-adic numbers, ℚp, totally disconnected.

Proposition 1.1.33. A set K ⊆ ℚp is compact in ℚp if and only if it is closed and bounded

in ℚp.

Proof. Let K be a compact set in ℚp. Let y ∈ ℚp − K. Since ℚp is Hausdorff, then for all

k ∈ K there exist open neighborhoods Uk of k and Vk of y such that Uk ∩ Vk = ∅. The

collection {Uk}k∈K is an open covering of K. Since K is compact, then there exist elements

k1, k2, . . . kn such that K ⊆ ∪ni=1Uki . Also, ∩ni=1Vki is disjoint from ∪ni=1Uki . If z ∈ ∪ni=1Uki ,

then z ∈ Uki for some i, implying that z ∕∈ Vki , and further that z ∕∈ ∩ni=1Vki . So V = ∩ni=1Vki

is an open neighborhood of y disjoint from K. Therefore, K is closed. Consider the collection

of open sets {Bpn}n∈ℕ, whose union is ℚp. Since K is compact, then some finite subcollection

covers K. Thus, K ⊂ Bpm for some m ∈ ℕ. This shows that K is bounded. So far we have

proven the necessity of the above condition. Since ℚp is a complete metric space, then it

is sufficient to show that every infinite set M ⊆ K contains at least one limit point. See

Munkres [22], Theorem 28.2, for a proof of this fact. Let x ∈ M . Then ∣x∣p = p−(x) ≤ C

because K is bounded, which implies that (x) is bounded from below. If (x) is not

bounded from above on M , then there exists a sequence {xk} ⊆ M such that (xk) → ∞

as k → ∞. In other words, 0 ∈ ℚp and is a limit point of K. On the other hand, if (x) is

bounded from above on M , then there exists a number 0 such that M contains an infinite
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set of points of the form

p0(x0 + x1p+ ⋅ ⋅ ⋅ ), 0 ≤ xj ≤ p− 1, x0 ∕= 0.

This follows from the assumption that M is infinite and that there are only a finite number

of  that are possible since (x) is bounded above and below. Since x0 takes only p − 1

values, then there exists an integer a0, 1 ≤ a0 ≤ p − 1, such that M contains an infinite

set of points of the form p0(a0 + x1p + ⋅ ⋅ ⋅ ), and so on. Hence, we obtain a sequence

{aj}j∈ℕ, 0 ≤ aj ≤ p − 1, a0 ∕= 0. The limit point is the p-adic number represented by

p0(a0 + a1p + a2p
2 + ⋅ ⋅ ⋅ ). Since K is closed, then this point is in K. This completes the

proof.

Corollary 1.1.34.

(i) Every disc B(�) and circle S(�) is compact.

(ii) Every compact set in ℚp can be covered by a finite number of disjoint discs of fixed

radius.

(iii) The Heine-Borel Lemma is valid for ℚp.

Definition 1.1.35. Two absolute values ∣ ⋅ ∣ and ∣ ⋅ ∣′ on a field F are equivalent if there is a

positive constant t such that ∣a∣′ = ∣a∣t for all a ∈ F . A place of F is an equivalence class of

absolute values.

Recall that when completing ℚ with respect to the usual absolute value, we obtain ℝ.

Theorem 1.1.36. Otrowski’s Theorem Every nontrivial place of ℚ is represented by either

the usual absolute value or a p-adic one for some rational prime p.

Proof. See Ramakrishnan and Valenza [24], Chapter 4, Section 4.

A similar statement holds for number fields. We will say more about this in Chapter 2.

1.1.5 Profinite Topology

Let I be a nonempty set. We say that I is preordered with respect to the relation ≤ if

the given relation is reflexive and transitive. We say that a preordered set is a directed set if

every finite subset of I has an upper bound in I. As an example, the integers are preordered

and directed with respect to division. Note that a finite collection of integers is bounded by
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its least common multiple. The antisymmetric property (i.e., i ≤ j and j ≤ i implies i = j)

does not hold for the integers because 1∣ − 1 and −1∣1, but 1 ∕= 1. Thus, the integers under

divisibility are not partially ordered. Now, fix I, a preordered set of indices, and let {Gi}i∈I

be a family of groups with the discrete topology. Furthermore, for each pair of indices i, j ∈ I

with i ≤ j let �ij : Gj → Gi be given subject to the following conditions:

(i) �ii = 1Gi for all i ∈ I

(ii) �ij ∘ �jk = �ik for all i, j, k ∈ I, i ≤ j ≤ k.

The above system (Gi, �ij) is called a projective or inverse system.

Definition 1.1.37. Let (Gi, �ij) be a projective system of groups. Then we define the

projective or inverse limit of the system, denoted lim
←

Gi, by

lim
←

Gi = {(gi) ∈
∏
i∈I

Gi : i ≤ j ⇒ �ij(gj) = gi}.

Since the identity element of the direct product lies the projective limit, then the

projective limit of groups is non-empty and a group with respect to the componentwise group

operation. Since lim
←
Gi ⊂

∏
i∈I Gi, then for each group Gi there exists a projection map

(hence the name projective limit) pi : lim
←

Gi → Gj. One can remember the “inverse” part

because the association i 7→ Gi is a contravariant functor. The projective limit satisfies the

following universal property:

Let H be a nonempty set and let ( i : H → Gi)i∈I be a system of maps such that for

each pair of the indices i, j ∈ I with i ≤ j, the following diagram commutes:

H

Gj

�ij
>

 j

<
Gi.

 i
>

Then there exists a unique map Ψ : H −→ lim
←
Gi such that for each i ∈ I the diagram

H
Ψ
> lim
←
Gi

Gi

pi
∨

 i
>
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also commutes. The map  is defined by ℎ 7→ ( i(ℎ))i∈I . We could have constructed the

projective limit in the category of sets, replacing homomorphisms with set mappings and

replacing groups with sets (forgetting the group structure). Similarly, one can take the

projective limit of a projective system of topological spaces, replacing homomorphisms with

continuous mappings. However, one does not know that the projective limit is non-empty

in the category of sets and topological spaces. However, the projective limit is non-empty in

the category of topological groups , and hence is a topological group. Consider a projective

system of finite groups endowed with the direct topology. Their projective limit will acquire

the subspace topology induced by the product topology on the full direct product.

Definition 1.1.38. A topological group that is isomorphic to the projective limit of a

projective system of finite groups is a called a profinite group.

Proposition 1.1.39. Let G b e profinite group, given as a projective limit of the projective

system (Gi, �ij). Then the following assertions hold.

(i) G is Hausdorff with respect to the profinite topology.

(ii) G is a closed subset of the direct product
∏
Gi.

(iii) G is compact.

Proof.

(i) Every element of a discrete topological group is closed. By Proposition 1.1.12, a discrete

group is Hausdorff. The direct product of Hausdorff spaces is Hausdorff, and subspaces of

Hausdorff spaces are Hausdorff. Since the projective limit is a subset of the direct product

of discrete groups, then the projective limit is Hausdorff.

(ii) In order to show that the projective limit is closed, we will show that its complement in

the direct product is open. We see that

Gc =
∪
i

∪
j≥i

{(gk) ∈
∏

Gk : �ij(gj) ∕= gi}.

For a fixed i and j in I, {(gk) ∈
∏
Gk : �ij(gj) ∕= gi} is open since any homomorphism

of finite groups is continuous with respect to the discrete topology. Therefore, Gc is open,

proving that G is closed.
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(iii) The direct product of compact groups is compact by Tychonoff’s theorem, and a closed

subset of a compact space is compact. A discrete finite group is itself compact. Hence, the

direct product of discrete finite groups is compact by Tychonoff’s. Applying 2., we get that

G is compact since it is a closed subset of the compact direct product.

Theorem 1.1.40. Let G be a topological group. Then G is profinite if and only if G is

compact and totally disconnected.

Proof. See Theorem 1-14 in Ramakrishnan and Valenza [24].

Theorem 1.1.41. Let G be a profinite group and let H be a subgroup of G. Then H is open

if and only if G/H is finite. Moreover, the following are equivalent to one another:

(i) H is closed.

(ii) H is profinite.

(iii) H is the intersection of a family of open subgroups.

If (i), (ii), or (iii) are satisfied, then G/H is compact and totally disconnected.

Proof. See Theorem 1-18 in Ramakrishnan and Valenza [24].

Examples 1.1.42.

(i) For a rational prime p, set Gm = ℤ/pmℤ, m ≥ 1. There exists the canonical projection

�mn : ℤ/pnℤ→ ℤ/pmℤ

whenever m ≤ n. The system (ℤ/pmℤ, �mn) is a projective system of topological groups,

where we endow the groups with the discrete topology. We then form the projective limit to

obtain the ring

ℤp = lim
←

ℤ/pmℤ = {(gi) ∈
∏
m≥1

ℤ/pmℤ : m ≤ n⇒ �mn(gj) = gi}.

This ring is called the p-adic integers and is isomorphic to the p-adic integers defined above.

This follows from Proposition 1.1.27. In our discussion of p-adic numbers we discovered

that ℚp, with the p-adic topology, is totally disconnected. As such, ℤp ⊆ ℚP is totally

disconnected. This fact agrees with the above theorem about profinite groups.
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(ii) Let Gn = ℤ/nℤ, n ≥ 1. There exists the canonical projection

�mn : ℤ/nℤ→ ℤ/mℤ

whenever m ≤ n. We endow the groups with the discrete topology The system (ℤ/mℤ, �mn)

is a projective system of topological groups. The projective limit

ℤ̂ = lim
←

ℤ/mℤ

is a topological ring. It can also be shown that ℤ̂ ∼=
∏

p ℤp. This fact follows directly from

that fact that a commutative profinite group is the direct product of its Sylow subgroups.

See Corollary 1.24 in Ramakrishnan and Valenza [24].

(iii) Similarly, we can define the profinite groups

ℤ̂× = lim
←

(ℤ/mℤ)× and ℤ̂×p = lim← (ℤ/pmℤ)× .

Again, one finds that ℤ̂× ∼=
∏

p ℤ̂×p . This isomorphism in combination with the decom-

position of the idele-class group of ℚ will enable us to show that Dirichlet characters are

subsumed in the definition of idele-class characters.

1.2 Haar Measure

Recall that the Borel �-algebra for a topological space X is the smallest �-algebra

containing all open sets. A positive measure � on a measure space (X,ℳ) is a function

� :ℳ→ ℝ+ ∪ {∞} that is countably additive. Note that ℝ+ is the set of nonnegative reals.

That is,

�

(
∞∪
n=1

An

)
=
∞∑
n=1

�(An),

for {An}, a collection of disjoint sets in ℳ. Let � be a Borel measure on a X, a locally

compact Hausdorff space, and let E be a Borel subset of X. We say that � is outer regular

on E if

�(E) = inf{�(U) : E ⊆ U,U open}
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and that � is inner regular on E if

�(E) = sup{�(K) : K ⊆ E,K compact}.

A measure � is regular if every Borel set in X is both outer and inner regular.

Definition 1.2.1. A Radon measure on a X, a locally compact Hausdorff space, is a Borel

measure that is finite on compact sets, outer regular on all Borel sets, and inner regular on

all open sets.

Let G be a locally compact topological group and � be a Borel measure on G. A mea-

sure � is said to be left (respectively, right) translation invariant if, for all Borel measurable

sets E in G,

�(s ⋅ E) = �(E) (respectively, �(E ⋅ s) = �(E))

for all s ∈ G.

Definition 1.2.2. A left Haar measure (respectively, right Haar measure) on a locally com-

pact group G is a nonzero Radon measure �, which is left translation invariant (respectively,

right translation invariant). A bi-invariant Haar measure on a locally compact group G is a

nonzero Radon measure that is both right and left invariant.

Examples 1.2.3.

(i) The Lebesgue measure on ℝ or ℝn is a bi-invariant Haar measure with respect to

addition.

(ii) If G is discrete, then the counting measure is a bi-invariant Haar measure.

(iii) Let � be the Lebesgue measure on ℂ. Let f : [0, 2�) → S1 be defined by f(�) = ei�.

Then � ∘ f−1 is a left and a right Haar measure on S1.

The following proposition will highlight a few important properties of the Haar measure.

The third property is particularly useful. Also, recall that since a Haar measure is a Radon

measure, then it is finite on compact sets, which is another property that will be used often.

Proposition 1.2.4. Let G be a locally compact group with nonzero Radon measure �. Then

the following assertions are true:
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(i) The measure � is a left Haar measure on G if and only if the measure �̃, defined by

�̃(E) = �(E−1), is a right Haar measure on G.

(ii) The measure � is a left Haar measure on G if and only if∫
G

Lsfd� =

∫
G

fd�

for all f ∈ C+
c and for s ∈ G.

(iii) If � is a left Haar measure on G, then � is positive on all nonempty open subsets of G.

Furthermore, ∫
G

fd� > 0 ∀ f ∈ C+
c .

(iv) If � is a left Haar measure on G, then �(G) is finite if and only if G is compact.

Proof. (i) Since inversion is a homeomorphism, then E−1 is Borel if and only if E is Borel.

Then we have that �̃(Es) = �̃(E) for all s ∈ G and for all Borel sets E if and only if

�(s−1E−1) = �(E−1) for all s ∈ G and all Borel sets E.

(ii) If � is a Haar measure on G, then for all characteristic functions 1U , U compact and

U ⊆ G, we obtain ∫
G

Ls1Ud� = �(sU) = �(U) =

∫
G

1Ud�.

The same is true for all finite linear combinations of compactly supported characteristic

functions on G. Since simple functions of compact support are dense in C+
c , then passing to

the limit and using the linearity property of the integral, we obtain that the above relation

is true for all f ∈ C+
c . Conversely, suppose that the integral equality holds. Consider the

linear functional defined by Λ(f) =
∫
G

fd� on Cc(G). From this positive linear functional,

we can, via the Riesz representation theorem, recover the Radon measure of any open set

U ⊆ G as follows:

�(U) = sup{
∫
G

fd� : f ∈ Cc(G), ∣∣f ∣∣u ≤ 1, and supp(f) ⊆ U}.
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Since ∣∣f ∣∣u = ∣∣Lsf ∣∣u and since supp(Lsf) ⊆ sU if and only if supp(f) ⊆ U , then

�(U) = sup{
∫
G

Lsfd� : Lsf ∈ Cc(G), ∣∣Lsf ∣∣u ≤ 1, and supp(Lsf) ⊆ sU}

= sup{
∫
G

gd� : g ∈ Cc(G), ∣∣g∣∣u ≤ 1, and supp(g) ⊆ sU}

= �(sU).

The result then extends to all Borel sets by outer regularity of the radon measure �.

(iii) Since � ∕= 0, then �(G) > 0. As such, there exists a K ⊆ G such that �(K) > 0

by inner regularity. Let U be an open set in G. Since K is compact, then there exists

s1, s2, . . . , sn in G such that K ⊆ ∪ni=1siU . The idea that a compact set is covered

by finitely many translates of an open set is a key idea in the proof of existence

of the Haar measure on a locally compact group. Also, � is left invariant, so

�(siU) = �(U), which implies that �(U) > 0. If f ∈ C+
c , then there exists a compact set K ′

such that f > 0. Furthermore, there exits a set U ′ ⊆ K with �(U) > 0 such that f > R for

some constant R > 0. Then ∫
G

fd� ≥ R�(U) > 0.

(iv) If G is compact, then, since � is a Radon measure, we have that �(G) < ∞. Con-

versely, assume that �(G) < ∞. Suppose, by contradiction, that G is not compact. Let K

be a compact set whose interior contains e. If there were a finite number of translates of K

that cover G, then G would be compact. Therefore, there exists an infinite sequence {sj} in

G such that

sn ∕∈
∪
j<n

sjK.

From Proposition 1.1.10, we have that there exists a symmetric neighborhood U of e such

that UU ⊂ K. Suppose that there exists a u, v ∈ U such that siu = sjv for i < j. Then

sj = siuv
−1 ∈ siUU−1 = siUU ⊆ siK
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for i < j, which is contradiction. Therefore, the translates sjU are disjoint and �(siU) =

�(U) > 0 by part (iii). Then

�(G) ≥ �(
∞∪
j=1

sjK) ≥
∞∑
j=1

�(sjUU) ≥
∞∑
j=1

�(sjU) =
∞∑
i=1

�(U) >∞,

which is a direct contradiction.

Theorem 1.2.5. Every locally compact group G admits a left (or right) Haar measure.

Furthermore, this measure is unique up to multiplication by a positive real constant.

Remark 1.2.6. The uniqueness of the Haar measure is just as important as the existence.

Indeed, let � be a continuous automorphism of G. Then � ∘ � is also a Haar measure on

G. As such, there is a unique positive real constant, call it modG(�), such that � ∘ � =

modG(�) ⋅ �. In fact, modG(⋅) is a homomorphism from Aut(G) to ℝ×+, where the domain

is a group under composition. This construction can be used to classify all locally compact

fields. Every element of a locally compact field defines an automorphism of the additive

group of the field. Let l ∈ K. The automorphism associated to l is the map Tl : a 7→ la. In

addition to the map modk(⋅) : k → ℝ×+ being a homomorphism, it can also be shown that the

map is continuous. Identifying n ⋅ 1k with n, one can study how modk acts on ℕ. One can

completely uncover classify all types of locally compact fields using this construction. We will

say more about this in Chapter 2.

We will state below the Riesz Representation Theorem, as taken from Rudin [26],

Chapter 2; it is the essential ingredient in the proof of the existence of a Haar measure for

locally compact groups.

Theorem 1.2.7. Let X be a locally compact Hausdorff space and let Λ be a positive linear

functional on Cc(X). Then there exists a �-algebra ℳ in X which contains all Borel sets

in X, and there exists a unique positive measure � on ℳ, which represents Λ in the sense

that:

(i) Λf =
∫
X

fd� ∀ f ∈ Cc(X),

and which satisfies the following properties:

(ii) �(K) <∞ for all compact sets K ⊂ X.
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(iii) � is outer regular on E ∈ℳ.

(iv) � is inner regular on all open sets and all E ∈ℳ such that �(E) <∞

(v) If E ∈ ℳ, A ⊂ E and u(E) = 0, then A ∈ ℳ. We say a measure is complete if it

satisfies this property.

A set E in a topological space is called �-compact if it is a countable union of compact

sets. A set E in a measure space is said to have �-finite measure if E is a countable union of

sets Ei with �(Ei) <∞. A measure � is �-finite if X is of �-finite measure with respect to �.

Corollary 1.2.8. Let � and ℳ be as above.

(i) � is a Radon measure.

(ii) Every �-compact set has �-finite measure.

(iii) If E ∈ℳ and E has �-finite measure, then E is inner regular.

(iv) If X is �-compact, then � is regular.

(v) If � is �-finite, then � is regular.

Proof.

(i) This follows directly from the definition of a Radon measure.

(ii) Since compact sets are of finite measure, then every �-compact set E is of �-finite

measure.

(iii) If �(E) <∞, then we are done. Suppose �(E) =∞. Since E has �-finite measure, then

E is an increasing union of sets Ei with �(Ei) <∞ and �(Ei)→∞. That is, for all N ∈ ℕ

there exists an M > 0 such that �(Ej) > N for all i > M . Since the Ei are inner regular,

then there exists compact sets K ⊂ Ei with �(K) > N . Therefore, � is inner regular on sets

of �-finite measure.

(iv) If X is �-compact, then X has �-finite measure. Furthermore, all E ∈ ℳ have �-finite

measure. Therefore, by part (ii), � is inner regular on ℳ and hence a regular measure.

(v) If � is �-finite, then X has �-finite measure and so any set in ℳ has finite measure.

Thus, � is regular.

Proof. (Theorem 1.2.5) Let C+
c (G) = {f ∈ Cc(G) : f(s) ≥ 0 ∀s ∈ G and ∣∣f ∣∣u > 0}. Note that

f ∈ C+
c (G) must be real valued. Let f, � ∈ C+

c . Let U = {s ∈ G : �(s) > ∣∣�∣∣u/2}. Clearly
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U is an open set since � is continuous. Since the support of f is compact, then a finite

number of translates of U will cover the support of f . That is supp(f) ⊆ ∪ni=1siU ,

where si ∈ G for i = 1, . . . , n. Consider g = 2
∣∣�∣∣u

∑n
i=1 Lsi�. Let u ∈ U . Then

g(sju) =
2

∣∣�∣∣u

n∑
i=1

Lsi�(sju) =
2

∣∣�∣∣u

n∑
i=1

�(s−1
i sju)

>
2

∣∣�∣∣u

(
∣∣�∣∣u/2 +

j−1∑
i=1

�(s−1
i sju) +

n∑
i=j+1

�(s−1
i sju)

)

= 1 +

j−1∑
i=1

�(s−1
i sju) +

n∑
i=j+1

�(s−1
i sju) ≥ 1,

for all u ∈ U and si, i = 1, . . . , n. Therefore,

f ≤ ∣∣f ∣∣u ≤ g∣∣f ∣∣u =
2∣f ∣∣u
∣∣�∣∣u

n∑
i=1

Lsi�,

for some s1, s2, ⋅ ⋅ ⋅ , sn ∈ G. As such, we can define (f : �), the Haar covering number of f

with respect to �, to be

(f : �) = inf{
n∑
i=1

cj : 0 < c1, . . . , cn and f ≤
n∑
j=1

cjLsj� for some s1, . . . , sn ∈ G}.

Note that (f : �) > 0 since ∣∣f ∣∣u > 0.

The following assertions easily are verified:

(i) (f : �) = (Lsf : �) for all s ∈ G

(ii) (f1 + f2 : �) ≤ (f1 : �) + (f2 : �)

(iii) (cf : �) = c(f : �) for any c > 0

(iv) (f1 : �) ≤ (f2 : �) whenever f1 ≤ f2

(v) (f : �) ≥ ∣∣f ∣∣u/∣∣�∣∣u
(vi) (f1 : �) ≤ (f1 : f0)(f0 : �)

The Haar covering yields an invariant approximate functional–in the sense that it is only

subadditive–defined as follows: fix f0 ∈ C+
c and define

I�(f) =
(f : �)

(f0 : �)
(f, � ∈ C+

c ).
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By property (vi), we get that

(f0 : f)−1 ≤ I�(f) ≤ (f : f0).

To finish the proof, one shows that I� is an approximate functional and that it becomes more

linear as the support of � shrinks. More specifically, as an application of Urysohn’s lemma

for locally compact Hausdorff spaces, one can prove that given f1, f2 ∈ C+
c , for every � > 0

there is a neighborhood V of the identity e of G such that

I�(f1) + I�(f2) ≤ I�(f1 + f2) + �,

whenever the support of � lies in V . A bona fide invariant linear functional I is obtained as a

limit in the space

X =
∏
f∈C+c

[(f0 : f)−1, (f : f0)].

Indeed, every point of the compact set X is a nonzero positive real valued function I� defined

onC+
c . See Folland [12], Chapter 11, Lemma 1.7 for the complete proof.

We will provide only a proof for uniqueness in the case that G is an abelian locally

compact group. See Folland [12] for a full proof of uniqueness. Let dx, dy be two left Haar

measures on G. Let f ∈ Cc(G) and let g ∈ C+
c (G). Then∫

G

f(x)dx

∫
G

g(y)dy =

∫
G

∫
G

f(x)g(y)�(dx)dy =

∫
G

∫
G

f(x+ y)g(y)dxdy,

by Fubini’s theorem and property (ii) of the above Proposition 1.2.4. Since both functions

are of compact support, then we can exchange the order of the integral and apply part (ii) to

obtain ∫
G

fd�

∫
G

gd� =

∫
G

∫
G

f(x+ y)g(y)dydx =

∫
G

∫
G

f(y)g(y − x)dydx

=

∫
G

∫
G

f(y)g(−x)dxdy =

∫
G

fd�

∫
G

g ∘ (−1)d�

Define c by c =
∫
G

gd�/
∫
G

g ∘ (−1)d�. Since g ∈ ℂ+
c , then c ∈ ℝ×+. Furthermore, c

∫
G

fd� =∫
G

fd� for all f ∈ Cc(G). Appealing to the Riesz Representation theorem, we obtain � =

c�.
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It follows that if G is an abelian locally compact group, then G admits a bi-invariant

Haar measure.

Proposition 1.2.9. Let G be a locally compact group. For f ∈ Cc(G) the functions from G

to ℂ, defined by

ℎ 7→
∫
G

Lℎfd�

and

ℎ 7→
∫
G

Rℎfd�,

are continuous.

Proof. Let K=supp(f). Then ℎK=supp(Lℎf) and∣∣∣∣∣∣
∫
G

Lℎfd�−
∫
G

Lefd�

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
G

(Lℎf − f)d�

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

K∪ℎK

(Lℎf − f)d�

∣∣∣∣∣∣
≤

∫
K∪ℎK

∣∣Lℎf − f ∣∣ud� = �(K ∪ ℎK)∣∣Lℎf − f ∣∣u

= M ∣∣Lℎf − f ∣∣u

since K compact implies �(K ∪ ℎK) = M <∞. Since f ∈ Cc(G), then by Proposition 1.1.11

we know that for all � > 0 there exists a neighborhood of the identity V ⊂ G, such that

M ∣∣Lℎf − f ∣∣u < M� whenever ℎ ∈ V Therefore, the function is continuous. The proof for

ℎ 7→
∫
G

Rℎ is similar.

1.3 Pontryagin Duality and the Fourier Inversion Theorem

In this section we will discuss the topological group of continuous homomorphisms

from a group G into S1. We call such a homomorphism a continuous character of G. The

group of continuous characters form a group under multiplication and this group is called

the Pontryagin dual of G and is denoted Ĝ. The content of Pontryagin Duality is that

G and Ĝ are mutually dual. This construction is analogous to the dual vector space of a

finite-dimensional vector space. A vector space and its dual are not naturally isomorphic,

but their endomorphism algebras are anti-isomorphic via the transpose. In a similar way, we

45



will see that G is not always naturally isomorphic to Ĝ, however, the group algebra C(G) is

isomorphic to C(Ĝ), if one correctly specifies the group algebras, via the Fourier transform.

The canonical isomorphism of G to
ˆ̂
G given by evaluation of a character of G at an element

is the same as the canonical isomorphism of a finite dimensional vector space to its double

dual.

Let us now restrict our attention to an abelian topological group G. We will

write the group operation multiplicatively. Define Ĝ, the multiplicative group of continuous

complex characters of G, to be the set of all continuous homomorphisms of G into the circle

group, S1 := {z ∈ ℂ : ∣z∣ = 1}, of the complex numbers. That is, Ĝ = Homcont(G,S
1). We

also call Ĝ the Pontryagin dual of G. Let us compute the dual groups of a few well-known

abelian groups.

Proposition 1.3.1.

(i) ℝ̂ ∼= ℝ, with the pairing < x, � >= e2�i�x

(ii) Ŝ1 ∼= ℤ, with the pairing < �, n >= �n.

(iii) ℤ̂ ∼= S1, with the pairing < n, � >= �n

(iv) ℤ̂/nℤ ∼= ℤ/nℤ, with the pairing < m, k >= e2�imk
n

Note that when speaking about the Pontryagin dual of a field, such as ℝ, we mean the dual

group of the additive group of the field (< ℝ,+ >).

Proof.

(i) If � ∈ ℝ̂, then �(0) = 1. Since � is continuous, then there exists an a ∈ ℝ such that

A =

a∫
0

�(t)dt ∕= 0.

Since � is a group homomorphism, we have

�(x)A =

a∫
0

�(t+ x)dt =

a+x∫
x

�(t)dt.

By the fundamental theorem of calculus, � is differentiable and

�′(x) = A−1(�(a+ x)− �(x)) = A−1(�(a)�(x)− �(x)) = A−1(�(a)− 1)�(x).
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Letting c = A−1(�(a) − 1), we obtain �(t) = ect. However, since ∣�(x)∣ = 1, then we know

c = 2�i� for some � ∈ ℝ.

(ii) First, we identify S1 with ℝ/ℤ via the topological group isomorphism e−2�i(⋅) : ℝ/ℤ 7→

S1. To compute the dual group of S1, we can simply compute the dual group of ℝ/ℤ.

The main idea is that the dual group of ℝ/ℤ is, in fact, isomorphic to the subgroup of

characters of ℝ that are trivial on ℤ. It is certainly clear that the subgroup of characters

of this type induce a character on ℝ/ℤ, but what is not immediately clear is that all

characters on ℝ/ℤ are of this form. For now, we will assume that there is a one-to-one

correspondence, but we will say more about that is later in this section. In part (i), we

found that all continuous characters on ℝ can be written in the form �(x) = e2�i�x for a

some fixed � ∈ ℝ. The characters of the form �(x) = e2�inx for some fixed n ∈ ℤ are

precisely the characters of ℝ that are trivial on ℤ. As such, Ŝ1 = ℤ.

(iii) It is unfortunate, but the dual group of ℤ, denoted ℤ̂, is the same notation used for the

projective limit ℤ̂ = lim
←

ℤ/nℤ. For � ∈ ℤ̂, let �� = �(1) ∈ S1. Since ℤ is a cyclic group

generated by 1, then �(n) = �(1)n = �n�. Every character of ℤ is completely determined by

its value at 1. As such, to generate a character of ℤ, we simply pick an element � ∈ S1 and

define �(1) = �. Therefore, ℤ̂ ∼= S1.

(iv) As explained in part (ii), the dual group of ℤ/nℤ is isomorphic to the subgroup of

character of ℤ that are trivial on the ideal nℤ. From part (iii), we see that the characters �

of ℤ such that �(1) is an nth root of unity are the only characters of ℤ that are trivial on

nℤ. The set of kth roots of unity are isomorphic to ℤ/nℤ. Therefore, ℤ̂/nℤ ∼= ℤ/nℤ. In

fact, for all finite abelian groups G, one has Ĝ ∼= G. We direct the reader to Keith Conrad’s

expository paper on the Characters of finite abelian groups [4] for a basic proof of this fact.

Secondly, the dual group of the locally compact field ℝ is isomorphic to itself. We

will see in chapter 4 that locally compact non-discrete fields (local fields) are self-dual. For

example, the dual group (with respect to addition) of the locally compact field ℚp is ℚp.

In fact, ℝ and ℚp, in some sense, make up the ”majority” of local fields. We will say more

about this is in chapter 2. We will prove below that the dual group of a locally compact

group is a locally compact group. Thirdly, the dual group of the compact group S1 is the
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discrete group ℤ, and the dual group of the discrete group ℤ is the compact group S1. This

is true in general and will also be proved below.

Proposition 1.3.2. The Pontryagin dual of G1 ×G2 is isomorphic to Ĝ1 × Ĝ2.

Proof. This is obvious.

Let G be a group and X a subset of G. For n ∈ ℕ define X(n) ⊆ G as follows:

X(n) = {
n∏
j=1

xj : xj ∈ X, j = 1, . . . , n}.

This is certainly different than the n-fold Cartesian product of X with itself.

We will endow Ĝ with compact-open topology. In this topology, sets of the form

W (K,V ) = {� ∈ Ĝ : �(K) ⊆ V }, (1.1)

where K is a compact subset of G and V is a neighborhood of the identity in S1, constitute a

neighborhood base of the trivial character in Ĝ. Since Ĝ is homogeneous, then a basis at the

identity defines basis for the topology of Ĝ. Since S1 is metrizable, then the compact-open

topology coincides with the topology of compact convergence. That is, �n converges to �

in Ĝ if and only if for each compact set K in G �n∣K converges uniformly to �K . If G is

compact, then the compact open topology coincides the topology of uniform convergence.

If G is finite, then the compact-open topology coincides with the topology of pointwise

convergence. Lastly, if G is a separable locally compact abelian group, then Ĝ is metrizable.

Recall that the universal covering space of S1 is ℝ with the continuous surjective map

� : ℝ→ S1

x 7→ e2�ix.

The kernel of � is ℤ. For � ∈ ℝ such that 0 < � ≤ 1 define N(�) ⊆ S1 by

N(�) = � ((−�/3, �/3)) .
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The following technical lemma will be important in establishing key properties about the

compact-open topology on Ĝ.

Lemma 1.3.3. Let m be a positive integer and suppose that x ∈ ℂ such that x, x2, . . . , xm

lie in N(1). Then x ∈ N(1/m). Consequently, if U is a subset of G containing the identity

and � : G → S1 is a group homomorphism (not necessarily continuous) such that �(U (m)) ⊆

N(1), then �(U) ⊆ N(1/m).

Proof. We prove this by induction. For m = 1 the statement is obvious. Let r be a positive

integer and suppose that xr ∈ N(1). Then xr = e2�ix for some x ∈ (−1/3, 1/3), which implies

that there exists a y ∈ N(1/r) such that xr = yr. Hence, the quotient x/y is an rth root of

unity. Since �(q/r) = e2�iq/r is an rth root of unity for all q ∈ ℤ such that 0 ≤ q < r, then

x ∈ N(1/r)�(q/r). Let us investigate sets of the form N(1/r)�(q/r). We claim that for all

r > 0,

N

(
1

r

)
∩N

(
1

r + 1

)
�

(
q

r + 1

)
∕= ∅ =⇒ q = 0.

By definition, we have that

N

(
1

r + 1

)
�

(
q

r + 1

)
= {e2�it/3 : t ∈

(
3q − 1

r + 1
,
3q + 1

r + 1

)
}

and

N

(
1

r

)
= {e2�i/3 : t ∈

(
−1

r
,
1

r

)
}.

The above sets have no intersection unless

1

r
>

3q − 1

r + 1
⇐⇒ 1 +

1

r
> 3q − 1⇐⇒ 2r + 1 > 3qr,

which cannot not hold unless q = 0.

Suppose x ∈ N(1/r) and xr+1 ∈ N(1). Applying the opening argument again, we obtain

x ∈ N(1/(r+1))�(q/(r+1)) where 0 ≤ q < r+1. Then x ∈ N(1/r)∩N(1/(r+1))�(q/(r+1)),

which implies q = 0 , and hence x ∈ N(1/(r + 1)). Consequently, it follows by induction that

if x, x2, . . . , xm lie in N(1), then x ∈ N(1/m).

Let g ∈ U ⊆ G and e ∈ U . Then g, g2, . . . , gm ∈ U (m) by definition. Therefore, if

�(U (m)) ⊆ N(1), then �(g), �(g)2, . . . , �(g)m lie in N(1). Applying the first part of the

theorem, we obtain �(g) ∈ N(1/m) and thus �(U) ⊆ N(1/m).
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In the remaining chapters, the topological fields and groups that we will consider are

locally compact. Indeed, the completion of global field at place is a locally compact field.

In the following proposition we will prove that the dual group of a locally compact group

is locally compact. Furthermore, we will show that the dual group of a compact group is

discrete and that the dual group of a discrete group is compact. These three facts will be

essential in proving that a local field is isomorphic to its dual.

Proposition 1.3.4.

(i) A group homomorphism � : G → S1 is continuous, and hence a character of G, if and

only if �−1(N(1)) is a neighborhood of the identity in G.

(ii) The family {W (K,N(1))}K , indexed over all compact subsets of G, is a neighborhood

base of the trivial character for the compact-open topology of Ĝ.

(iii) If G is discrete, then Ĝ is compact.

(iv) If G is compact, then Ĝ is discrete.

(v) If G is locally compact, then Ĝ is locally compact.

Proof.

(i) Suppose �−1(N(1)) = U , where U ⊆ G a neighborhood of the identity in G. By

Proposition 1.1.9, there exists an open neighborhood V of the identity in G such that

V (m) ⊆ U . Then we have �(V (m)) ⊂ �(U) ⊆ N(1). From the previous lemma we have that

V ⊆ N(1/m). Therefore, � is continuous. If � is continuous, then �−1(N(1)) = U , where U

is an open neighborhood of the identity.

(ii) Since {N(1/m)}m, m ∈ ℤ∗+, constitutes a neighborhood basis of the identity in S1,

W (K,N(1/m)) constitutes a neighborhood basis of the trivial character in the compact-

open topology. Therefore, we need to show that there exists a compact set K1 of G for

every compact set K of G and every positive integer m such that

W (K1, N(1)) ⊆ W (K,N(1/m)).

Consider K1 = K(m), which is compact because it is the continuous image of the compact

set Km under the multiplication map. Let � ∈ W (K1, N(1)). Then �(x), �(x)2, . . . �(x)m ∈

N(1) for all x ∈ K. From the technical lemma, we have that �(x) ∈ N(1/m) , and hence

� ∈ W (K,N(1/m)).
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(iii) If G is discrete, then Ĝ = Homcont(G,S
1) = Hom(G,S

1). In the case that G is discrete,

compact sets are finite. Thus a neighborhood basis of the trivial character is

W (g, V ) = {� ∈ Ĝ : �(g) ⊂ V },

where V is an open neighborhood of the identity in S1 and where g ∈ G. This basis induces

the topology of pointwise convergence. The space of all maps from G to S1, (S1)G, with the

product topology (topology of pointwise convergence) is compact by Tychonoff’s theorem.

Let {�i}i∈I be a sequence of characters that converge pointwise to some f ∈ (S1)G. Then

�i(s+ t)→ f(s+ t) and �i(s)�i(t)→ f(s)f(t) as i→∞. Since �i(s+ t) = �i(s)�(t) for all i,

then f(s+ t) = f(s)f(t), which implies that f is a homomorphism from G to S1. Therefore,

Ĝ = Hom(G,S1) is a closed subset of the compact set (S1)G and is hence, compact.

(iv) For any character �, �(G) is a compact subgroup of S1. Since any subgroup of S1

cannot be totally contained in N(�), 0 < � ≤ 1, then W (G,N(1)) must consist of only the

trivial character. Therefore, the trivial character is an open set and thus by homogeneity of

the topological group Ĝ, every element of Ĝ is open, making Ĝ discrete.

(v) By part (i) it suffices to check that for any fixed compact neighborhood K of the

identity in G,

W (K,N(1/4))

is a compact neighborhood of the identity in Ĝ. Let G0 be isomorphic as a group to G,

but with the discrete topology. As such, only the finite sets of G0 are compact, and hence

the compact-open topology on Ĝ0 coincides with the topology of pointwise convergence.

Otherwise said, Ĝ0
∼= Hom(G,S1) with the topology of pointwise convergence. By part (iii),

Ĝ0 is compact. Analogous to W , define W0 by

W0 = {� ∈ Ĝ0 : �(K) ⊆ N(1/4)}.

Since Ĝ0 has the topology of pointwise convergence, then W0 is closed and hence compact

in Ĝ0. Let � ∈ W0. Then K ⊆ �−1(N(1/4)) ⊆ �−1(N(1)), where K was chosen as

a compact neighborhood of the identity. By part (i) � is continuous and thus � ∈ W .

However, we also know that W ⊆ W0 since Ĝ0 ignores continuity. Therefore, W = W0.

If we can show that �0, the topology induced on W by Ĝ0, is finer than � , the topology
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induced on W by Ĝ, then the compactness of W in �0 will imply the compactness of W in

� . Since it is also clear that � is finer than �0, it will actually follow that the two topologies

are the same. Indeed, the compact-open topology is finer than the topology of pointwise

convergence. Let K1 be a compact subset of G and let m be a positive integer. Define

W (�) = (�W (K1, N(1/m))) ∩W

for � ∈ W . W (�) is a neighborhood base of � in � . If we can show that W (�) is an open

neighborhood of � with respect to �0, then � has a neighborhood base at � contained in �0.

Since K is a neighborhood of the identity, then there exists an open neighborhood of the

identity, V , in G, such that V (2m) ⊆ K (see first chapter). Note that since K1 is a compact

set of G, then the cover ⊆ ∪g∈GgV of G reduces to a finite cover, implying the existence of

a finite set F of G such that K1 ⊆ FV̇ . Consider the subsets W0 of W defined as follows:

W0(�) = (�W0(F,N(1/(2m)))) ∩W,

where W0(F,N(1/(2m)) is the set of characters in Ĝ0 that map into N(1/(2m)). Clearly

W0(F,N(1/(2m)) is open in Ĝ0. We need to show that W0(�) ⊆ W (�). If so, then W0(�) is

a �0-neighborhood of � contained in W (�), hence proving that W (�) is open in �0.

Let � ∈ W0(�)). Then � = ��0 ∈ W for �0 ∈ G0 such that �0(F ) ⊆ N(1/(2m)). Since

� ∈ W , then �−1 = � ∈ W and hence �0 ∈ W (2). Consequently,

�0(K) = !1(K)!2(K) ⊆ N(1/4)N(1/4) ⊆ N(1/2) ⊂ N(1).

By part (i) we know that �0 is continuous. Also, since V (2m) ⊆ K and �(K) ⊆ N(1), then

by the previous lemma �0(V ) ⊆ N(1/(2m)). Then

�0(K1) ⊆ �0(F ) ⋅ �0(V ) ⊆ N(1/(2m))N(1/(2m)) = N(1/m).

Then �0 ∈ W (K1, N(1/m)), which implies that � ∈ W (�). Therefore, W0(�) ⊆ W (�),

and hence �0 is finer than � . Consequently, W is compact in the compact-open topology,

indicating that Ĝ is locally compact.
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Let G be a locally compact group and let dy be the Haar measure on G. We say a

function f : G→ ℂ is absolutely integrable if

∣∣f ∣∣1 :=

∫
∣f(y)∣dy <∞.

With respect to function addition, the space of absolutely integrable functions forms a

complex vector space. In fact, ∣∣ ⋅ ∣∣1 is a semi-norm of this vector space. To make ∣∣ ⋅ ∣∣1 a

bona fide norm, we identify functions f, g : G → ℂ if ∣∣f − g∣∣1 = 0 and denote the vector

space by L1(G). Let f ∈ L1(G). Then we define f̂ : Ĝ → ℂ, the Fourier transform of f , to

be

f̂(�) =

∫
G

f(y)�(y)dy for � ∈ Ĝ.

Note that

∣∣∣f̂(�)
∣∣∣ =

∣∣∣∣∣∣
∫
G

f(y)�(y)dy

∣∣∣∣∣∣ ≤
∫
G

∣f(y)∣ ∣�(y)∣ dy =

∫
G

∣f(y)∣ dy = ∣∣f ∣∣1 <∞,

so the Fourier transform makes sense for f ∈ L1(G).

Examples 1.3.5.

(i) For G = ℝ, we know that ℝ̂ ∼= ℝ, and hence we can identify each t ∈ ℝ with the

character

x 7→ e2�ixt.

Let dx be the Lebesgue measure on ℝ. Let f ∈ L1(ℝ). In this case, the Fourier transform

reduces to

f̂(t) =

∫
ℝ

f(x)e−2�ixtdx.

Although we are used to thinking of the Fourier transform as a function on ℝ, it is actually

a function defined on ℝ̂. The ′t′ is really representing the character � : ℝ → S1 given by

�(x) = e−2�ixt.

(ii) For G = ℤ/nℤ, we know that ℤ̂/nℤ ∼= ℤ/nℤ, and hence we can identify each m ∈ ℤ/nℤ

with the character

k 7→ e2�imk
n .
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Since G is finite, then the counting measure is the Haar measure on G. Let f ∈ L1(ℤ/nℤ).

In this case, the Fourier transform reduces to

f̂(m) =
n−1∑
k=0

f(k)e−2�imk
n .

(iii) For G = S1, we know that Ŝ1 ∼= ℤ, and hence we can identify each n ∈ ℤ with the

character

� 7→ ein�.

Recall that with g : [0, 2�)→ S1 defined by g(�) = ei�, the measure d� = dx ∘ g1 is the Haar

measure on S1. Let f ∈ L1(S1). In this case, the Fourier transform reduces to

f̂(n) =

2�∫
0

f(�)e−in�d�.

(iv) For G = ℤ, we know that ℤ̂ ∼= S1 and we can identify each ei� ∈ S1 with the character

n 7→ ein�.

Since G is finite, then the counting measure is the Haar measure on G. Let f ∈ L1(ℤ). In

this case, the Fourier transform reduces to

f̂(�) =
∞∑

n=−∞

f(n)e−in�.

Let B(G) denote the set of functions f ∈ L1(G) such that f is continuous and f̂ ∈

L1(Ĝ).

Theorem 1.3.6 (The Fourier Inversion Theorem). There exists a Haar measure d� on Ĝ

such that for all f ∈ B(G),

f(y) =

∫
Ĝ

f̂(�)�(y)d�.

Note the drop of the conjugation on �. That is,
ˆ̂
f(y) = f(−y). In addition, the Fourier

transform f 7→ f̂ identifies B(G) with B(Ĝ).

Proof. See Folland [11], Chapter 4, Theorem 4.32.
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When defining the Fourier transform on a locally compact group, we must fix a Haar

measure. Since the Haar measure is unique up to a positive constant, then any Fourier

transform, no matter what measure is fixed when defining it, will only differ from another

defined Fourier transform by a constant. Suppose we fix a measure dx on a locally compact

group G when defining the Fourier transform. Then the Fourier inversion theorem guarantees

the existence of a measure d� on Ĝ such that the Fourier inversion theorem holds for all

f ∈ B(G). However, if we fix a measure, say c ⋅ dx on G, then the dual measure to this

measure is precisely d�/c.

In addition to the choice of measure, in the above examples, we saw that it was conve-

nient and more consistent with the ’less abstract’ theory to fix the ’form’ of character when

defining the Fourier transform. More precisely, we fixed an isomorphism of the dual group

to another group. For example, in the case G = ℝ, we fixed an isomorphism ℝ → ℝ̂ given

by t 7→ e−2�ixt when defining the Fourier transform. We also chose the standard Lebesgue

measure on ℝ. In this case, the dual measure to the Lebesgue measure on Ĝ = ℝ̂ = ℝ is

precisely the Lebesgue measure. When a locally compact group is isomorphic to its dual

and a Haar measure is the dual of itself in the sense of the Fourier inversion theorem, we

call the measure self-dual. However, if we chose t 7→ e−ixt as our isomorphism , and hence

x 7→ e−ixt as our ’form’ of character, then the dual measure to the Lebesgue measure dx on

ℝ is dx/2�. To check that a given measure is a dual measure to another measure, we only

need check one function, since the Haar measure is unique up to a constant. In chapter 4, we

will construct ’standard’ characters on local fields, show that local fields are self-dual, and

moreover, explicitly show that certain measures on local fields are self-dual when defining

the fourier transform with respect to the ’standard characters’. We will now highlight a few

examples of the Fourier inversion theorem.

Examples 1.3.7.
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(i) Let G = S1. The counting measure on ℤ is dual to the normalized Lebesgue measure

d�/2� on S1. That is, for f ∈ B(S1) and

f̂(n) =

2�∫
0

f(�)e−in�
d�

2�
,

we have

f(�) =
∞∑

n=−∞

f̂(n)ein�.

(ii) Let G = ℤ/nℤ. The dual of the counting measure is the counting measures divided by

n. That is, for f ∈ B(ℤ/nℤ) and

f̂(m) =
n−1∑
k=0

f(k)e−2�i km
n ,

we have

f(k) =
1

n

n−1∑
m=0

f̂(m)e−2� km
n .

With the help of the Fourier inversion theorem and an extension of the Fourier trans-

form to an isometry on L2(G), one can prove Pontryagin duality. We will not prove Pon-

tryagin duality, but will direct the reader to a proof. Pontryagin duality and its derivatives

will be used multiple times in Tate’s thesis and especially in the proof of self-duality of local

fields.

Theorem 1.3.8 (Pontryagin Duality). The map that associates to g ∈ G the character

� 7→ �(g) of Ĝ is an isomorphism of topological groups G and Ĝ. Hence G and Ĝ are

mutually dual.

Proof. See Chapter 3, Section 4, of Ramakrishnan and Valenza [24].

Let H be a closed subgroup of G. We define H⊥ to be the subgroup of characters of G

that restrict to the identity on H:

H⊥ = {� ∈ Ĝ : �∣H = 1}.

Proposition 1.3.9. The subgroup H⊥ of Ĝ is closed. Furthermore, H = (H⊥)⊥.
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Proof. Let U be a neighborhood of 1 in S1 such that U contains no subgroup other than the

trivial subgroup. Then H⊥ = W (H,U), so H⊥ is an open , and hence closed subgroup of Ĝ.

By Pontryagin duality, H ⊆ (H⊥)⊥. Indeed, if ℎ ∈ H and � ∈ H⊥, then �(ℎ)(�) = �(ℎ) = 1,

where � is the isomorphism � : G→ ˆ̂
G. We would now like to show the reverse inclusion.

We show this as an application of the Gelfand-Raikov theorem. The theorem says: if

G is any locally compact group, the irreducible unitary representations of G separate points

on G. That is, if x and y are distinct points on G, there is an irreducible representation

� such that �(x) ∕= �(y). See Chapter 3, Theorem 3.34, of Folland [11] for a proof of the

Gelfand-Raikov theorem. Let x0 ∕∈ H. Since H is closed, then by Proposition 1.1.23, the

quotient group G/H is locally compact. As such, we can apply the Gelfand-Raikov Theorem

to G/H in order to assert the existence of a character (one-dimensional representation) � of

G/H such that �(�H(x0)) ∕= 1, where �H is the projection G → G/H. Then � ∘ �H ∈ H⊥,

and (� ∘ �)(x0) ∕= 1, so x0 ∕∈ (H⊥)⊥. Therefore, (H⊥)⊥ ⊆ H, which completes the proof.

Theorem 1.3.10. Suppose H is a closed subgroup of G. Define Φ : ˆG/H → H⊥ and

Ψ : Ĝ/H⊥ → Ĥ by

Φ(�) = � ∘ �H and Ψ(�H⊥) = �∣H ,

where �H : G → G/H is the canonical projection. Then Φ and Ψ are isomorphisms of

topological groups.

Proof. See Theorem 4.39 in Folland [11].

Corollary 1.3.11. If H is a closed subgroup of G, then every character on H extends to a

character on G.

Proof. This follows from the fact that Ψ is surjective. Notice that this is a sort of Hahn-

Banach theorem for locally compact abelian groups.

We will now briefly discuss some functorial properties of Pontryagin duality. Let G1

and G2 be locally compact abelian groups and � a continuous homomorphism of G1 into G2.

Then

(�̂�)(g) = �(�(g)) for � ∈ Ĝ2, g ∈ G1
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defines a continuous homomorphism �̂ of Ĝ2 into Ĝ1. Consequently, ⋅̂ is a contravariant

functor of the category of locally compact abelian groups onto itself. Since G is locally

compact, then so is every closed subgroup H of G and every quotient group G/H. Applying

the contravariant functor ⋅̂ to the short exact sequence

1 −→ H
inc−→ G

�H−→ G/H −→ 1,

we obtain

1 −→ Ĝ/H ∼= H⊥ −→ Ĝ −→ Ĝ/H⊥ ∼= Ĥ −→ 1,

by Theorem 1.3.10, which is also a short exact sequence. Therefore, ⋅̂ is an exact functor.
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CHAPTER 2
Global and Local Fields

2.1 Global Fields

Definition 2.1.1. A global field is one of the following:

(i) a field K that is a finite field extension of ℚ;

(ii) a finitely generated function field in one variable over a finite field k = Fq.

We call (i) a number field and (ii) a function field.

In this exposition, we will not not discuss function fields, please see Lorenzini [21],

An invitation to arithmetic geometry for a text on function fields. A field K is said to be

separable over a field F if the minimal polynomial of every element of K has no multiple

roots. A finite extension K of a field F is said to be simple if there exists a single element �

such that K = F (�). The primitive element theorem states that if K/F is a finite extension,

then K is simple if and only if there exists finitely many subfields of K containing F .

Moreover, if K/F is finite and separable, then K/F is simple. See Dummit and Foote [9],

Abstract Algebra, Section 14.4. A polynomial f(x) ∈ F [x] has multiple a root � if and only

if � is a root of the Dxf(x) ∈ F [x], where Dx is the algebraic derivative of the polynomial. In

particular, a polynomial does not have multiple roots if it is relatively prime to its derivative.

If F is a field of characteristic zero, then every irreducible polynomial is relatively prime

to its derivative, hence, making every extension of F separable. Since ℚ has characteristic

zero, then every number field K is separable , and hence there exists an element � ∈ ℚ

such that K is generated by �, K = ℚ(�). Then K = ℚ(�) = ℚ[x]/(m�(x)), where

m�(x) = cnx
n + ⋅ ⋅ ⋅ c1x + c0 ∈ ℚ[x] is the minimal polynomial of � and where n = [K : ℚ].

The elements 1, �, �2, . . . , �n constitute a basis of the vector space of K over ℚ, and hence

K = ℚ(�) = {c0 + c1� + ⋅ ⋅ ⋅+ cn−1�
n−1 : c0, c1, . . . , cn−1 ∈ ℚ}.
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A field extension K/F is said to be Galois if Card(Aut(K/F )) = [K : F ]; that is, if the

number of the F -automorphisms of K (automorphisms of K that fix F ) is equal to the

dimension of K as a vector space over F . This is equivalent to: K/F is Galois if and only

if the fixed field of Aut(K/F ) if F . This is also equivalent to: K/F Galois if and only if K

is the splitting field of some separable polynomial over F . In the case of K/F is a separable

extension, in which case, K = F (�), then K is Galois if and only if it contains all roots of

m�(x).

Let K be a number field. An algebraic integer is an element of K which is a root of

a monic polynomial with coefficients in ℤ. It can be shown that the product and sum of

two algebraic integers is an algebraic integer. We denote the ring of algebraic integers in a

number field K by oK . The ring of integers, oK , is clearly an integral domain because it lies

inside K. Since every integer m ∈ ℤ is an algebraic integer, then mx, where x ∈ oK is in

oK . Therefore, oK is a ℤ-module. More abstractly, the ring of integers is defined to be the

integral closure of ℤ in K.

The field of fractions of oK is precisely K. Indeed, since K has no zero divisors, then

oK has no zero divisors. Thus, the field of fractions of oK is contained in K. Let k ∈ K and

mk(x) = arx
r+ar−1x

r−1 + ⋅ ⋅ ⋅+a1x+a0 be the minimal polynomial of k. We may take ar ∈ ℤ,

or else we can multiply the coefficients by the denominator of ar ∈ ℚ. Then ark satisfies the

polynomial xr + arar−1x
r−1 + ⋅ ⋅ ⋅ an−1

r a1x + anra0, and is hence an algebraic integer. Since

an ∈ ℤ, then k is a quotient of algebraic integers. Already, from this fact, it is clear that oK

is an important subring that one should consider when studying an algebraic number field K.

Since ℤ is a principal ideal domain and K/ℚ is separable, then every finitely generated

oK-module of K is a free ℤ-module of rank [K : ℚ]. Therefore, oK is free ℤ-module of K

and moreover, every finitely generated oK-module admits a ℤ-basis �1, . . . , �n. See Neukirch

[23], Chapter I, Section 2, Proposition 2.10 for a proof of this fact. As a consequence, we may

speak of an integral basis of oK over ℤ. That is, there exists !1, . . . , !n ∈ oK such that every

� ∈ oK can be written uniquely as a linear combination � = m1!1 + m2!2 + ⋅ ⋅ ⋅mn!2, where
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n = [K : ℚ] and m1,m2, ⋅ ⋅ ⋅ ,mn ∈ ℤ. Note well that an integral basis, or basis for an ideal a

of oK , is a basis of K over ℚ because the length of the basis always agrees with [K : ℚ].

Definition 2.1.2. Let K be a number field. The discriminant of a basis �1, . . . , �n of K

over ℚ is defined by

d(�1, . . . , �n) = det((�i�j))
2,

where �i, i = 1 . . . , n varies over the ℚ-embeddings K → ℚ.

If we denote the primitive element of K by �, then we know the set {1, �, �2, . . . , �n−1}

constitutes a basis of K over ℚ. Letting �i� = �i, we see that the discriminant of this basis

is the determinant of the Vandermonde matrix, which is given by∣∣∣∣∣∣∣∣∣∣∣∣∣

1 �1 �2
1 ⋅ ⋅ ⋅ �n−1

1

1 �2 �2
2 ⋅ ⋅ ⋅ �n−1

2

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

1 �n �2
n ⋅ ⋅ ⋅ �n−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(�i − �j)2.

Suppose that �1, . . . , �n are �1, . . . , �n are two different integral basis of a finitely

generated oK-submodule of K. Then the change of basis matrix, T , between these two basis

as free ℤ-modules necessarily has integer coefficients, and hence det(T ) = ±1. Using the fact

that an embedding is additive, multiplicative, and fixes ℚ, we obtain

d(�1, . . . , �n) = det(T )2d(�1, . . . , �n) = d(�1, . . . , �n).

Therefore, we define the discriminant of an algebraic number field K to be dK = d(oK) =

d(�1, . . . , �n). Now, suppose one takes two different finitely generated oK submodules I

and J of K, such that I ⊆ J . Let �1, . . . , �n and �1, . . . , �n be the integral basis of I and

J , respectively. In this case, the change of a basis matrix between the two basis’ does not

necessarily have integral entries. The matrix may contain rational entries. This is because

it only makes sense to consider a change of basis when treating both basis’ as basis’ of K

over ℚ. The determinant of the base change matrix is precisely (J : I). Thus, we obtain the
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following result about the discriminant:

d(I) = (J : I)2d(J).

Definition 2.1.3. The trace and norm of an element x ∈ K are defined to be the trace and

determinant, respectively, of the endomorphism

Tx : K → K, Tx(�) = x�

of K as ℚ-vector space. That is,

TrK/ℚ(x) = Tr(Tx), NK:ℚ(x) = det(Tx).

Furthermore, the trace and norm have the following Galois theoretic interpretation:

NK/ℚ(x) =
∏
�

�(x) and TrK/ℚ(x) =
∑
�

�(x), (2.1)

where � varies over the different ℚ-embeddings of K into the algebraic closure ℚ of ℚ. See

Neukirch [23], Chapter 2, Proposition 2.6, for a proof of this fact. If

mx(t) = td + ad−1t
d−1 + ⋅ ⋅ ⋅+ a1t+ a0 ∈ ℚ[t]

is the minimal polynomial of x over ℚ, then NK/ℚ(x) = (−1)na
n/d
0 and TrK/ℚ(x) = −n

d
ad−1,

where n = [K : ℚ]. If x ∈ oK , then both the trace and norm of x lie in ℤ because the

minimal polynomial of x over ℚ is a monic polynomial with coefficients in ℤ. Let �1, . . . , �n

be a basis of K over ℚ. Then one obtains the following relationship between the discriminant

and trace:

d(�1, . . . , �n) = det(TrK/ℚ(�i�j)).

Indeed,

TrK/ℚ(�i�j) =
∑
k

(�k�i)(�k�j),

and hence the matrix (TrK/ℚ(�i�j)) is the product of (�k�i)
t and (�k�j). Using the fact that

the determinant is multiplicative and that the determinant of the transpose of a matrix is the

same as the determinant of the matrix, we obtain the desired result.
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Proposition 2.1.4. Let �1, . . . , �n be a basis of K over ℚ. Then

(x, y) = TrK/ℚ(xy)

is a nondegenerate bilinear form on the ℚ-vector space K. Hence,

d(�1, . . . , �n) ∕= 0.

Proof. Clearly, (x, y) is bilinear. Let � be the primitive element of K over ℚ. Let [K : ℚ] =

n. Fix E := {1, �, . . . , �n−1} as a ordered basis for K over ℚ. Let

M = (TrK/ℚ(�i�j))i,j=0,...,n−1.

As such,

(x, y) = [x]EM [y]tE ,

where [x]E is the vector corresponding to the coefficients of x written with respect to the

ordered basis E and where [y]E is defined similarly. Let �i = �i�. Since K/ℚ is separable,

then

det(M) = d(1, �, . . . , �n−1) =
∏
i<j

(�i − �j)2 ∕= 0

, and hence (x, y) is nondegenerate. The final statement follows from the relation

d(�1, . . . , �n) = det(TrK/ℚ(�i�j)).

Theorem 2.1.5. The ring oK is noetherian, integrally closed, and every prime ideal p is a

maximal ideal.

Proof. Since every ideal of ⋊K is a finitely generated ℤ-module, then every ideal is a finitely

generated oK-module. This is one of the many equivalent conditions of being noetherian.

Since oK is the integral closure of ℤ in K, then oK is integrally closed. The ideal p ∩ ℤ must

be prime ideal in ℤ. Let p ∩ ℤ = (p). Suppose y ∈ p and y ∕= 0. Then the constant term of

the minimal monic polynomial for y over ℤ must be nonzero and divisible by p. Therefore,

the integral domain oK/p is an algebraic extension of ℤ/pℤ. As such, oK/p is a field, and

hence p is maximal.
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Definition 2.1.6. A noetherian, integrally closed integral domain in which every nonzero

prime ideal is maximal is called a Dedekind domain.

Therefore, the above theorem tells us that oK is a Dedekind domain. Another equivalent

definition of a Dedekind domain is the following: A ring R is a Dedekind domain if for each

maximal ideal M of a ring R, the localization ring AM = {a/n : a ∈ R,m ∈ A −M} is

a discrete valuation ring, and each nonzero element of A is contained in only finitely many

prime ideals. See Appendix B, Theorem B-5, in Ramakrishnan and Valenza [24]. Recall

that a discrete valuation ring is a principal ideal domain having exactly one nonzero prime

ideal. Recall that the p-adic integers, denoted ℤp, are a discrete valuation ring with (p) as

the unique prime ideal. The localization ring ℤ(p) = {a/n : a ∈ ℤ,m ∈ ℤ − (p)} is similar to

ℤp. This is because completion and localization are similar operations.

Let a and b be two ideals of oK . We say a∣b if b ⊆ a. The sum of ideals a and b is

defined to be

a + b = {a+ b : a ∈ a, b ∈ b}.

This the smallest ideal containing a and b. By our divisibility relation, we can interpret this

as the greatest common divisor of a and b. We define the product a and b by

ab = {
∑
i

aibi : ai ∈ a, bi ∈ b}.

Theorem 2.1.7. Let K be a number field. Every ideal a of oK different from (0) or (1)

admits a factorization

a = p1 ⋅ ⋅ ⋅ pr

into nonzero prime ideals pi of oK, which is unique up to the order of its factors.

Proof. See Neukirch [23], Chapter 1, Theorem 3.3.

Definition 2.1.8. A fractional ideal of K is a finitely generated oK submodule a ∕= 0 of K.

Proposition 2.1.9. The fractional ideals of K form an abelian group under multiplication

of ideals. We denote this group by JK. The identity element is (1) = oK and the inverse of a
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fractional ideal a is given by

a−1 = {x ∈ K∣xa ⊆ oK}.

Proof. See Neukirch, Chapter 3, Proposition 3.8.

Combining the previous theorem and proposition, we obtain that every fractional ideal a

admits a unique representation, up to order, as a product

a =
∏
p

p�p ,

where �p ∈ ℤ and �p = 0 for all but finitely many p. As such JK is a free abelian group on

the set of nonzero prime ideals p of oK . Denote by PK the group of principal ideals of K.

They form a subgroup of JK and the quotient group

ClK = JK/PK ,

is called the ideal class group. The units in oK , denoted by o×K , fits into the following exact

sequence

1 −→ o×K → K∗ −→ JK −→ ClK −→ 1.

Denote by ℎK the order of ClK . One typically uses Minkowski lattice theory to show that ℎk

is finite. We direct the reader to Neukirch [23], Chapter 6.

Definition 2.1.10. The inverse different of K is defined to be the set

D−1
K = {x ∈ K∣TrK/ℚ(xy) ∈ ℤ, ∀y ∈ oK}.

One can show that the inverse different of K is a proper oK submodule of K containing

oK . As such, DK is a fractional ideal.

When referring to the norm of an ideal of a number field K, one typically distinguishes

between the relative and absolute norm. The relative norm of a fractional ideal a of K is

denoted NK/ℚ(a), and is defined to be the image of a under the norm map introduced above.

The absolute norm of an ideal a of oK is denoted ∣NK/ℚ∣(a), and is defined to be [oK : aoK ] .

In the case the ideal a is principal, say generated by a, then ∣NK/ℚ∣(a) = ∣NK/ℚ(a)∣. Indeed,
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let �1, �2, ⋅ ⋅ ⋅ , �n be an integral basis of oK . Then a�1, a�2, ⋅ ⋅ ⋅ , a�n is an integral basis

of a = aoK . Let A be the transition matrix, as basis’ of K over ℚ, from the basis a�i to

�i. As stated above, ∣ det(A)∣ = (ok : (a)). By definition, det(A) = NK/ℚ(a). Therefore,

∣NK/ℚ∣(a) = ∣NK/ℚ(a)∣. As an application of the Chinese remainder theorem, one can

show that for � = p�11 ⋅ ⋅ ⋅ p�rr , ∣NK/ℚ∣(�) = ∣NK/ℚ∣(p1)�1 ⋅ ⋅ ⋅ ∣NK/ℚ∣(pr)�r . This implies

the multiplicativity of the absolute norm. And hence, we can extend the absolute norm

to fractional ideals of K. Although, not trivially, one can show that NK/ℚ(DK) = dK ,

where dK is the ideal of ℤ generated by the discriminants of all bases of K/ℚ which are

contained in oK . See Neukirch, Chapter 3, Theorem 2.9 for a proof of this. We call dK the

relative discriminant. The discriminant in Proposition 2.1.4 will henceforth be denoted ∣dK ∣

and called the absolute discriminant. See Chapter 3, Section 2, in Neukirch [23], for more

information about the different and discriminant.

Since oK is a Dedekind domain, then the localization ring op = {a/b : a ∈ oK , b ∈

oK − p} is a discrete valuation ring with the unique prime ideal pop. We call an element �

a uniformizing parameter if � generates the unique prime ideal pop. Every element x ∈ K

can be expressed as �� ⋅ a
b
, where a, b ∈ o − p; define ∣x∣p = (Np)−� . We can extend

∣ ⋅ ∣p to K, the field of fractions of oK , in the obvious way. It follows that ∣x∣p = 0 if and

only if x = 0 and that ∣x∣p is multiplicative. Furthermore, it is not difficult to show that

∣x+ y∣p ≤ max{∣x∣p, ∣y∣p}. As such, we call ∣ ⋅ ∣p the p-adic absolute value. The p-adic absolute

value is non-Archimedean. This absolute value subsumes the definition of the p-adic absolute

value in the case K = ℚ. Let Kp be the completion of K with respect to the p-adic absolute

value. That is, Kp is the equivalence class of Cauchy sequences of K with respect to the

p-adic norm. Also, note that K clearly embeds into the completion Kp.

Equivalence classes of absolute values of K are called places of K. Two absolute values,

∣ ⋅ ∣1 and ∣ ⋅ ∣2, on K are equivalent if ∣ ⋅ ∣1 = ∣ ⋅ ∣t2 for some positive constant t. It can be

shown that every non-Archimedean equivalence class of places of K is represented by a p-adic

absolute value. Non-Archimedean places of K are referred to as finite places. Archimedean

places of K are induced by ℚ-embeddings of K into ℂ. The absolute value corresponding
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to an embedding is the composition of the embedding with the complex absolute value.

Since ∣z∣ = ∣z∣ , it is then immediately clear why complex conjugate embedding induce

equivalent norms. The Archimedean places of K are called infinite places. The completion

of K with respect to an absolute value induced by a complex embedding is precisely ℂ. The

completion of K with respect to an absolute value induced by real embedding is precisely

ℝ. As such, for the infinite places, we distinguish between real and complex places. The

generalized form of Ostrowski’s theorem, which we stated for ℚ in Chapter 1, states that

every place of a number field K is either represented by a p-adic absolute value or an

absolute value corresponding to a real or complex embedding. We will discuss the structure

of the completions of K in the following section on local fields (i.e. non-discrete locally

compact fields). We direct the reader to Keith Conrad’s article, Otrowski for Number Fields

[5], for a proof the Otrowski’s theorem for number fields.

2.2 Local Fields

Theorem 2.2.1. Let k be a locally compact non-discrete field (local field). Then

(i) If char(k) = 0, then k is ℝ or ℂ or a finite extension of ℚp for some rational prime p.

(ii) If char(k) = p > 0, then k is ultrametric and isomorphic to a field of formal power

series in one variable over a finite field.

Proof. We will provide a detailed sketch of the proof. In doing so, we will establish impor-

tant facts about local fields, which play an important role in Tate’s thesis. See Chapter 4,

Sections 1,2,and 3, of Ramakrishnan and Valenza [24] for a full proof.

Since k is a locally compact abelian group under addition, then k admits an additive

bi-invariant Haar measure, �. Let X be a Borel set of k. For all � ∈ k∗, we have that � ⋅ X

is a Borel set of k because multiplication is a one-to-one and continuous and hence, an open

mapping. Since left multiplication by an element � is an automorphism of the additive group

of k, then � ∘ � is a bi-invariant Haar measure. The uniqueness of the Haar measure implies

that there exists a positive real constant c� such that � ∘ � = c��. We write c� = modk(�)

and call modk(�) the module of automorphism of � ∈ K∗. We can extend this construction

to 0 ∈ k by defining modk(0) = 0. Let �, � ∈ k. Then modk(� ⋅ �) = modk(�) mod k(�)

by associativity of multiplication. One can show that modk : k → ℝ+ is a continuous
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homomorphism and moreover, an open homomorphism of k× onto a closed subgroup Γ

of ℝ×+. Furthermore, one can show that if k is non-discrete, then modk is unbounded and

consequently, that k it not compact. In addition, one obtains the following result, which we

state as a proposition:

Proposition 2.2.2. The sets Bm = {� ∈ k : modk(�) ≤ m} with m ∈ ℤ+ constitute a local

base at zero for the topology of k.

Proof. See Ramikrishnan and Valenza [24], Chapter 4, Proposition 4-7.

As a corollary, one obtains that limn→∞ a
n if and only if mod k(a) < 1. This is the first

step along the journey to classifying non-discrete locally compact fields. Next, one obtains

that there exists a positive real constant A ≥ 1 such that

modk(� ⋅ �) ≤ A ⋅ sup{modk(�),modk(�)}, (2.2)

and that if A = 1, then Γ = mod(k∗) is discrete in ℝ+. If A = 1, then k is ultrametric.

Furthermore, if modk is bounded on the prime ring {n ⋅ 1k : n ∈ ℕ}, then modk ≤ 1 on

the prime ring and k is ultrametric. As it turns out, since modk is multiplicative function

on ℕ ∼= {n ⋅ 1k : n ∈ ℕ} and satisfies (2.2), one can show that either modk(m) ≤ 1 for

all m (ultrametric), or modk(m) = m� for some positive constant � and for all m.

Suppose char(k) = p. Then modk(p) = 0, which does not equal p� for any positive real.

Therefore, if k has positive characteristic, then modk(m) ≤ 1 for all m.

A topological vector space is a topological group such that scalar multiplication is

a continuous mapping. Let V be a topological vector space over a non-discrete locally

compact field k, and let W be a finite-dimensional subspace of V of dimension n. Fix a basis

w1, . . . , wn of W . Let �j be the continuous projection map from the jth component of kn to

k. Also, let  j be the map from k to W defined by a 7→ awj. This map is continuous because

W is a topological vector space, as inherited from V . Define �j =  j ∘ �j, which is continuous

because a composition of continuous maps is continuous. Let � =
∑n

j=1 �j. That is,

� : kn −→ W

(aj) 7→
∑

ajwj.
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The map � is continuous because a sum of continuous functions is continuous. Since both

W and kn are finite topological vector spaces of the same dimension, then � is a continuous

isomorphism of topological vector spaces.

Proposition 2.2.3. Let k, V,W, and � be as above.

(i) Let U be any open neighborhood of zero in V . Then W ∩ U ∕= {0}.

(ii) The mapping � is homeomorphism. Consequently, W admits precisely one structure as

a topological vector space k.

(iii) W is closed and locally compact.

(iv) If V is itself locally compact, then V is finite-dimensional over k and modV (a) =

modk(a)dimV for all a ∈ V .

Proof. See Ramakrishnan and Valenza [24], chapter 4, Proposition 4-13.

Let k be ultrametric. Then modk(m) ≤ 1 for all m and {m ⋅ 1k : m ∈ ℕ} ⊆ B1.

Furthermore, since B1 is compact, then there exists a limit point a of {m ⋅ 1k : m ∈ ℕ}

(limit point compactness). Thus, for every � > 0, there exists infinitely many m such that

modk(m ⋅ 1k − a) ≤ �. Let m1 and m2 be two such integers. Then by the ultrametric

inequality, mod((m′ −m) ⋅ 1k) ≤ �. As such, there exists an n ∈ ℕ such that modk(n) < 1.

Let p be the smallest such positive integer. It follows that p must be prime since p is minimal

and modk is multiplicative. By the ultrametric property modk(np) < 1 for all n ∈ ℕ. Let r

be any positive integer less than p. As such, modk(r) ≥ 1. Then

modk(j +mp) ≤ sup{modk(j),modk(mp)} = 1.

So, if n ∈ ℕ is prime to p, then modk(n) = 1. Therefore, p is the unique prime such that

modk(p) < 1. If char(k) > 0, then modk(char(k)) = 0, which implies that p =char(k).

If char(k) = 0, then modk(p) ∕= 0, so there exists a positive real number t such that

modk(p) = p−t. We may express every n ∈ ℕ as mpr with (m, p) = 1 and hence,

modk(n) = modk(mp
r) = modk(m) mod (p)r = p−tr = (p−r)t = ∣pr∣tp = ∣mpr∣tp = ∣n∣tp,

where ∣ ⋅ ∣p is the p-adic norm on ℚ introduced in the first chapter.
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Now, suppose modk(m) = m� for all m. Then modk(m) = m� = ∣m∣� for all m ∈ ℕ. In

general, in the case char(k) = 0, we have

modk(n) = ∣n∣t� ,

where � is either a finite prime or the infinite prime. The isomorphism of algebras

ℤ→ ℤ ⋅ 1k

n 7→ m ⋅ 1k

extends to a unique isomorphism ℚ→ ℚ ⋅ 1k ⊆ k. Since the sets Bt constitute a local base at

0 in k, then the topological structure of ℚ⋅1k ∼= ℚ induced by k is identical to the topological

introduced by thte �-adic norm. Since k is locally compact, then the closure of ℚ in k is the

completion of ℚ with respect to the �-adic norm, which is ℚ� . By Proposition 2.2.3, k is

finite-dimensional over ℚ� . If � =∞, then k is either ℝ or ℂ. Otherwise, if � = p, then k is a

finite extension of a p-adic field ℚp. The positive characteristic case requires a more in depth

study of ultrametric fields.

Let Γ = modk(k). Then Γ is a discrete subgroup of ℝ×+. The set ok := {x ∈ K∣ mod

k(x) ≤ 1} is the unique maximal compact subring of k. The set {x ∈ K∣ mod k(x) = 1} is

group of units in ok. We denote this set by o×k . One can show that k is a discrete valuation

ring and that p = {x ∈ K∣ mod k(x) < 1} is the unique maximal ideal. Recall that a

uniformizing parameter is an element � ∈ k∗ such that p = �ok. It can be shown that

any uniformizing parameter � is given as any element in k∗ such that  = modk(�) is the

maximal element of Γ less than 1. Furthermore, the residue field oK/p is finite. The following

short exact sequence of groups splits:

1 −→ o×K → k∗
mod k−→ Γ −→ 1.

As such, every element a ∈ k∗ can be uniquely represented as u�n for some u ∈ o×K and

n ∈ ℤ. In such a case, we say a has order n.

Proposition 2.2.4. Assume k is an ultrametric local field. The the following assertions

hold:
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(i) Let {aj}j≥0 be a sequence in k such that lim aj = 0. Then

∞∑
j=0

aj

converges in k.

(ii) Let R be a fixed set of coset representatives of oK/p that includes 0. Let a ∈ k∗ have

order n. Then

a =
∞∑
i=n

ai�
i,

where ai ∈ R.

Proof. See Ramakrishnan and Valenza [24], Chapter 4, Proposition 4-17.

Let k be a ultrametric local field. Let p be the unique prime such that modk(p) < 1.

Let q =Card(ok/p). Since p1k ∈ p, then the characteristic of ok/p is p, and hence q = pr for

some positive integer r. Since oK is compact, then it is of finite Haar measure. Furthermore,

oK is a disjoint union of q additive translates of p. Therefore, �(oK) = q�(p) = q�(�ok),

which implies modk(�) = q−1. We call q the module of k. It can be shown that for a ∈ o×k ,

lim aq
n

exists. For a ∈ p, lim aq
n

= 0. We define !(a) = lim aq
n

for a ∈ ok. It is clear that

!(ab) = !(a)!(b), and hence that !(an) = !(a)n. Since (1 + p)p
n ⊆ 1 + pn+1, then a ∈ 1 + p,

or equivalently a ≡ 1 mod p, implies !(a) = 1. If !(a) = 1, then (a− 1)q
n ∈ p, which implies

that a ∈ 1 + p. Also, note that aq−1 ∈ 1 + p for all a ∈ o×k , so !(a)q−1 = 1 for all a ∈ o×k . Let

b ∈ o×k be chosen so that its projection generates (ok/p)∗. Put � = !(b). For any integer n

�n = 1⇔ !(bn) = 1⇔ bn ∈ 1 + p⇔ n ≡ 0(modq − 1).

Therefore, � generates a cyclic group of order q − 1. Define M∗ to be the group of roots

of unity in k of order prime to p. Then it can be shown that ! induces an isomorphism

(ok/p)∗ → M∗. See Ramakrishnan and Valenza [24], Chapter 4, Proposition 4-19. That is,

for all a ∈ M∗, !(a) = a. Hence M = M∗ ∪ {0} is a complete set of coset representatives

for (ok/p), and the polynomial xq−1 − 1 splits in k. Let M be the algebraic closure of Fp
in k. Let a be a nonzero element in M . Then a lies in some finite extension of Fp and so,

ap
m−1 = 1 for some m ≥ 1. Thus, the order of a has no factor of p, and a ∈ M . Therefore, M

is the algebraic closure of Fp in k.
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Proposition 2.2.5. Assume that k is an ultrametric local field. Then the following asser-

tions hold:

(i) Every element of pn with n ∈ ℤ is uniquely expressible as

∞∑
j≥n

aj�
j (aj ∈M).

(ii) ⟨M,+⟩ is a subgroup of ⟨k,+⟩, and hence a field, if an only if char(k) is positive.

Proof. Part (i) follows directly from Proposition 2.2.4 since M constitutes a complete set of

coset representatives for oK/p. If char(k) is positive, then M is a field. If M is closed under

addition, then it must have torsion because there is an injection of M into ok/p. Hence, k

has positive characteristic.

Let k have positive characteristic. By the above proposition, every element of k can

be expressed uniquely as a power series in � with coefficients in M . If k is of positive

characteristic, then M is a field and the assignment � 7→ x induces an isomorphism from k to

M((x)), the field of formal power series in the indeterminate x with coefficients in M . This

completes the proof of Theorem 2.2.1.

Let K be a number field. Recall that a place of K is defined to be an equivalence classes

of non-trivial absolute values on K. Places are either archimedean or non-archimedean

(ultrametric). We say a place � of K lies over a place p of ℚ if � restricts to p on ℚ. Since K

is separable, then K = ℚ(�) for some � ∈ ℚ ⊆ ℚp. Let m�(x) be the minimal polynomial of

� over ℚ and suppose that m�(x) =
∏r

j=1 m�,j(x) is the irreducible factorization of m�(x) in

ℚp[x]. For each j, fix a root �j of m�,j(x). The following assertions hold:

(i) K� = ℚp(�), where � is a root of m�(x). As such K� is a finite separable extension of

ℚp.

(ii) The places � that lie over p are in bijective correspondence with the embeddings of K

into ℚp induced by the assignments � 7→ �j.

See Ramakrishnan and Valenza [24],Chapter 4, Proposition 4-31 for a proof of this fact.

As such, our analysis of local fields has helped us to understand the completions of of
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global fields. It can be shown that oK = ∩pop, where oK is the ring of integers in K and

op = {x ∈ K� : ∣x∣� ≤ 1}.

We will end this chapter with the following important result.

Proposition 2.2.6. The algebraic isomorphism K ⊗F Fu → M =
∏

�∣uK� is in fact a

topological isomorphism.

Proof. See Neukirch [23], Chapter II, Section 8, Proposition 8.3 for a proof of this fact.
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CHAPTER 3
Restricted Direct Topology and the Adeles and Ideles

In this chapter, we will study the topology, dual group, and Haar measure of the

restricted direct product. Furthermore, we will develop tools for both the integration and

the Fourier transform of functions defined on the restricted direct topology. After developing

the theory for the general restricted product in the first section, we will explore in the

second section how the construction is used in the number theoretic context. Namely, we

will introduce the additive topological group of adeles of a global field K, denoted AK ,

and multiplicative topological group of ideles of a global field K, denoted IK ; these will

be used extensively in Tate’s thesis. While A∗K is isomorphic to IK as a group, the two are

not topologically isomorphic. The adeles and ideles will enable us to do harmonic analysis

on a global number field K. In the Pontryagin duality section of chapter 1, specifically

Proposition 1.3.4, we showed that the dual group of a discrete group is a compact group.

As an example, ℤ lies discretely in ℝ and the dual group of ℤ is ℝ/ℤ ∼= S1, which is a

compact group of ℂ. In a similar fashion, we will see that K embeds discretely in AK and

is, furthermore, a co-compact subgroup of AK . In Chapter 4 and specifically the “Adelic

Schwartz-Bruhat Functions and the Riemann-Roch Theorem for Number Fields” section,

we will prove that the dual group of K is AK/K. As such, we will obtain the fascinating

result that the character group of ℚ is Aℚ/ℚ. The multiplicative group K∗ embeds discretely

in IK , but not co-compactly. Nevertheless, the idele-class group of K (CK = IK/K∗) is

important because the traditional ideal class group and ray class groups of K are quotients

of CK . Although the quotient group CK is not compact, we will introduce the subgroup

C1
K = I1

K/K
∗, which is compact. The multiplicative group I1

K is the group of ideles of

absolute value 1, where the absolute value on IK , denoted ∣ ⋅ ∣AK , is the product of normalized

absolute values over the places of K. In order to show that the quotient I1
K/K

∗ makes sense,
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we will show that all the elements of K∗ have absolute value 1. We will also show that

CK ∼= C1
K × ℝ×+ for a number field K. This isomorphism will lead to factorization of quasi-

characters on CK , which are sometimes called idele-class characters or Hecke Characters.

3.1 Restricted Direct Topology

Definition 3.1.1. Let J = {�} be a set of indices for which we are given G� , a locally

compact group, and let J∞ be a fixed finite subset of J such that for each � ∕∈ J∞ we are

given a compact open subgroup H� ≤ G� . From Proposition 1.1.21, we know that H� is a

closed subgroup of G� . The restricted direct product of Gv with respect to Hv is defined by

′∏
�∈J

G� = {(x�) : x� ∈ G� with x� ∈ H� for all but finitely many �}.

We will denote by G the restricted direct product of G� with respect to the H� . The

restricted direct product is a subset of the set-theoretic direct product of the Gv and a

subgroup of the group-theoretic product of Gv. The restricted direct product lies somewhere

in between the group direct product and the group direct sum (all but finitely many entries

are the identity) The topology, which we will call the restricted direct topology on G, is

not equivalent to the product topology. However, the restricted direct topology will turn

out to be quite natural and, furthermore, will induce an equivalent topology on a subgroup

Gs ≤
∏′

�∈J G� , which we will define shortly as the product topology on GS. This fact

will enable us to conclude that the restricted direct product is locally compact. Local

compactness is essential.

Since the restricted direct product is clearly a group with respect to the componentwise

group operation, in order to define the topology it suffices, by homogeneity, to specify a

neighborhood base of the identity. We define the neighborhood base at the identity to be:

B = {
∏

N� : N� a neighborhood of 1 ∈ G� and N� = H� for all but finitely many �}.
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For any S ⊆ J , which necessarily contains J∞, define GS by

Gs =
∏
�∈S

G� ×
∏
� ∕∈S

H� .

We have assumed J∞ ⊆ S because we have not necessarily required that there exists a H� for

those � ∈ J∞. By Proposition 1.1.22, Gs =
∏

�∈S G� ×
∏

� ∕∈S H� is locally compact

Proposition 3.1.2. GS is an open subgroup of G and the product topology on GS is identical

to the subspace topology induced by restricted direct topology defined above.

Proof. Since G� and H� are open neighborhoods of the identity, then GS is an open sub-

group of G in the restricted direct topology. A neighborhood basis of the identity of the

product topology of GS consists of sets of the form
∏

�∈S V� ×
∏

� ∕∈S X� where V� is an open

neighborhood of the identity in G� , where X� is an open neighborhood of the identity in H� ,

and where X� = H� for all but finitely many indices. Such a set also is clearly open in the

subspace topology of GS induced by the restricted direct topology on G. A neighborhood

basis of the identity of the subspace topology of GS, induced by the restricted direct topology

on G, consists of sets of the form
∏

� N� ∩ GS, where N� is a neighborhood of the identity

in G� and N� = H� for all but finitely many �. Let U be a basic open neighborhood of the

identity in the subspace restricted direct topology on GS. Let S ′ be the set of indices such

that N� ∕= H� . Then

U =
∏
�

N� ∩GS =

(∏
�∈S′

N� ×
∏
� ∕∈S′

H�

)
∩

(∏
�∈S

G� ×
∏
� ∕∈S

H�

)

=

( ∏
�∈S∩S′

N� ×
∏

�∈S∩S′c
H�

)
×

( ∏
�∈S′∩Sc

N� ∩H� ×
∏
� ∕∈S′

H�

)
.

For all � ∈ S ′ ∩ Sc, the neighborhood N� ∩H� of the identity in H� is an open neighborhood

of the identity in H� because N� is an open neighborhood of the identity in G� . Also, H� is

an open subset of G� containing the identity, so for all � ∈ S∩S ′c we have that H� is an open

neighborhood of the identity in G� . As such, U is open in the product topology of GS.

Corollary 3.1.3. G is locally compact.

Proof. Since GS is locally compact in the product topology, then it is locally compact in the

restricted direct topology, since the two topologies are equivalent. Furthermore, every x ∈ G
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is contained in some GS for an appropriate set S containing J∞. Therefore, every element

x ∈ G admits a compact neighborhood via its inclusion in some appropriate GS.

Proposition 3.1.4. A subset Y of G has compact closure if and only if Y ⊆
∏
K�, for some

family of compact subsets K� ⊆ Gv, such that K� = H� for all but finitely many indices �.

Proof. First, assume that Y has compact closure. Let K be the closure of Y . Since subsets of

the form GS cover G and thus K, then a finite number of them cover K, say S1, S2, . . . , Sn.

Let S ′ = ∪ni=1Si. Then GS′ covers K. Let �� denote the projection of G onto G� . The

projection map only need be continuous in the product topology. Since K is a subset of GS′ ,

which has two equivalent topologies– one of which is the product topology, for which �v is

continuous–then ��(K) is compact in G� , and ��(K) = H� for all but finitely many indices

�. Let Kv = ��(K). Therefore, K, and hence Y , is contained in
∏
K� . Now, assume that

Y ⊆
∏
K� for K� . Let C be the closure of Y , which is necessarily the smallest closed set

containing Y . Since
∏
K� is a closed set containing Y , then C ⊆

∏
K� , which then implies

that C is compact.

There exists a topological embedding of G� −→ G given by

x 7−→ (. . . , 1, 1, x, 1, 1, . . .),

where the x is in the �th component. Let S = {�} and consider the open, and hence

closed, subgroup GS of G. The image of G� under this embedding lies in GS and is a closed

subgroup of GS in the product topology, and hence the restricted direct topology. Therefore,

G� can be identified with a closed subgroup of G.

In the algebraic number theory setting, which we will discuss formally in the next

section, we will define the adeles of a global field K, denoted AK , to be the restricted direct

product of the locally compact and complete groups K� , corresponding to the completion of

a global field K at the �th place of K, with respect to o� , the compact-open ring of integers

of K� . We will define the ideles of a global field K, denoted IK , to be the restricted direct

product of the locally compact and complete groups K∗� , corresponding to the multiplicative

group of the completion of a global field K at the �th place of K, with respect to o×� , the

77



compact-open group of units of o� . As such, by the above argument, for all places � of K,

K� can be identified with a closed subgroup of AK , and K∗� can be identified with a closed

subgroup of IK .

3.1.1 Restricted Direct Quasi-Characters and Dual Group

Now we will investigate the group of quasi-characters, HomCont(G,ℂ×), of the restricted

direct product G. For y ∈ G, let y� be the projection onto the factor G� , which may be

identified with a closed subgroup of G.

Lemma 3.1.5. Let � ∈ HomCont(G,ℂ×). Then � is trivial on all but finitely many H�.

Therefore, for y ∈ G, �(y�) = 1 for all but finitely many �, and

�(y) =
∏
�

�(y�).

Proof. Let U be a neighborhood of 1 in ℂ× that contains no subgroups of ℂ× besides the

trivial subgroup. Since � is continuous, then there exists an open neighborhood, V , of the

identity of G, such that �(V ) ⊆ U . We know that open neighborhoods of the identity in

the restricted direct topology are sets of the form
∏

� N� , where N� is a neighborhood of the

identity in G� , and where N� = H� for all � lying outside some finite subset S containing J∞.

Let V =
∏

� N� =
∏

�∈S N� ×
∏

� ∕∈S H� . Then

�

(∏
� ∕∈S

H�

)
⊆ U,

where we are identifying
∏

�∈S 1 ×
∏

� ∕∈S H� with
∏

� ∕∈S H� , which is contained in V . Since∏
� ∕∈S H� is a subgroup of G and � is a homomorphism, then �(

∏
� ∕∈S H�) is a subgroup of U .

Therefore,

�

(∏
� ∕∈S

H�

)
= {1},

since the only subgroup of U is the trivial subgroup. Hence, �(H�) = {1} for all � ∕∈ S.

Given any y ∈ G, we can factor y into y1y2y3, where y1 is a finite product of the projections

of y that lies outside any H� , and where y2 is a finite product of the projections of y that

lie in some H� for � ∈ S, and where y3 is a product of the projections of y, all of which
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lie in H� for � ∕∈ S. Therefore, � is trivial on all but finitely many projections of y and

�(y) =
∏

� �(y�).

Lemma 3.1.6. For each � let �� ∈ HomCont(G� ,ℂ×) and �� ∣H� = 1 for all but finitely many

indices �. Then we have that � =
∏

� �� ∈ HomCont(G,ℂ×).

Proof. Let S be a finite set of indices such that �� ∣H� = 1 for all � ∕∈ S. Let m be the

cardinality of S. Since y = (y�), where y� ∈ H� for all but finitely many � and �� ∣H� = 1

for all � outside S, then the product
∏

� �� is a well-defined quasi-character. Let U be a

neighborhood of the 1 in ℂ×. By Proposition 1.1.9 we can choose a neighborhood V of the

identity in ℂ× so that V (m) ⊆ U . Since �� is a continuous quasi-character of G� , then for

each � ∈ S, there exists a neighborhood N� of the identity in G� such that ��(N�) ⊆ V. Then∏
�∈S

N� ×
∏
� ∕∈S

H�

is a neighborhood of the identity in G such that

�(
∏
�∈S

N� ×
∏
� ∕∈S

H�) =
∏
�∈S

��(N�)
∏
� ∕∈S

��(H�) =
∏
�∈S

��(N�) ⊆ V (m) ⊆ U.

Therefore, � is continuous.

Restricting our attention to abelian groups G� , let us consider the dual group,

HomCont(G,S
1), of G. By Proposition 1.3.4, we know that the dual group of G is locally

compact because G is locally compact. In the following theorem we will prove that the dual

group of a restricted direct product of G� , with respect to H� , is the restricted direct product

of Ĝ� with respect to K(G� , H�), which is the set of characters of G� that restrict to the

identity on H� .

Theorem 3.1.7. Let G be the restricted direct product of locally compact abelian groups G�

with respect to compact-open subgroups H�. As topological groups, we have that

Ĝ ∼=
′∏
Ĝ� ,
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where the restricted direct product on the right is taken with respect to subgroups defined by

K(G� , H�) = {�� ∈ Ĝ� : �� ∣H� = 1}

for � ∕∈ J∞. This subgroup traditionally is denoted H⊥� .

Proof. We will begin by showing that K(G� , H�) is a compact-open subgroup of Ĝ� . It is

clear that K(G� , H�) is a subgroup of G� . Let U be a neighborhood of 1 in ℂ× that contains

no other subgroup besides the trivial subgroup. Recalling the definition of the compact-open

topology on the dual of an abelian topological group 1.1, consider the neighborhood of the

trivial character on G� defined by

W (H� , U) = {� ∈ Ĝ� : �(H�) ⊆ U}.

Since �(H�) is a subgroup of U , then �(H�) = {1}, and hence

W (H� , U) = K(G� , H�).

This shows that K(G� , H�) is an open subgroup of Ĝ� . As such, K(G� , H�) is also a closed

subgroup of Ĝ� (Proposition 1.1.9). If � ∈ K(G� , H�), then � factors through the quotient

group G�/H� . In the first chapter, specifically in Proposition 1.1.13, we established that

for a topological group G, and a normal subgroup H of G, the quotient space G/H is

discrete if H is open. Since G� is abelian and H� is open, then G�/H� is a discrete group.

Let �H� : G� → G�/H� be the projection map, which is both continuous and open by

Proposition 1.1.13. Let � ∈ K(G� , H�). Then the following diagram commutes:

G�

�
> S1

G�/H�

� ∘ ��

>

�� >

The map � 7→ � ∘ �H� defines a topological isomorphism between K(G� , H�) and Ĝ�/H� .

By Proposition 1.3.4, we have that Ĝ�/H� is compact, since G�/H� is discrete. Therefore,

K(G� , H�) is a compact subgroup of Ĝ� .
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Now it makes sense to define the restricted direct product of Ĝ� with respect to

K(G� , H�) for � ∕∈ J∞. Consider the mapping∏́
Ĝ�

�→ Ĝ

(��) 7→
∏

�� .

By the previous two lemmas we know that � is an algebraic isomorphism. We only need to

show that the map � is bicontinuous at the identity. Let U be a neighborhood of 1 in ℂ× and

let K be a compact neighborhood of the identity in G. By Proposition 3.1.4, K =
∏
K� ,

where K� is a compact neighborhood of the identity of G� , and where K� = H� for all but

finitely many indices �. Let � in W (K,U); that is, �(
∏
K�) ⊆ U . Now we will construct an

open neighborhood, N , of the trivial character in the restricted direct product of the dual

groups such that �(N) ⊆ W (K,U). By the first lemma above, we know that �(y�) = 1

for all but finitely many �. As such, let S be the set of indices such that �∣K� ∕= 1, and let

m = Card(s). Let V be a neighborhood of 1 in ℂ× such that V (m) ⊆ U . Since W (K� , V ) is

an open neighborhood of the trivial character in Ĝ� , then the set

N =
∏
�∈S

W (K� , V )×
∏
� ∕∈S

K(G� , H�)

is an open neighborhood of the identity in
∏′

Ĝ� . If (��) ∈ N , then

�((��))(K) = �((��))(
∏

K�) =
∏

��(K�) ⊆
∏
�∈S

V = V (m) ⊆ U.

Thus, we have proved that � is continuous. To show that � is open, let us pick a basic

open neighborhood of the identity N in
∏′

Ĝ� . As such, there exists a finite set S ′ of places

and an open set U of 1 in ℂ× such that N =
∏

�∈S′W (K� , U) ×
∏

� ∕∈S′ K(G� , H�). Then

W (
∏
K� , U) ⊆ �(N), where W (

∏
K� , U) is the open neighborhood of the trivial character in

Ĝ such that �(
∏
K�) ⊆ U . Therefore, � is an algebraic isomorphism and is both open and

continuous, making � a topological isomorphism.

The above two lemmas and the theorem about the dual group of the restricted direct

product will be used in three ways in Tate’s Thesis. First, Lemma 3.1.6 will be used to

construct the standard non-trivial adelic character,  K , of a number field K. We will
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define the character  K to be the product
∏

�  � , where  � is the standard non-trivial

character of the additive group of the completion of K at the �th place. The standard

non-trivial characters  � satisfy the property that  � ∣o� = 1 for all but finitely many �

of K. Furthermore, we will see that  K will be trivial on the diagonal embedding of K

in AK . Second, Theorem 3.1.7 will be used to show, in combination with the fact that

K�
∼= K̂� (i.e. local field duality) for all places � of K and in combination with the existence

of the non-trivial character  K on the adeles, that the map � K : a 7→  K(a⋅), from AK

to ÂK , is an algebraic and topological isomorphism. Additionally, we will show that the

map � K : k 7→  K(k⋅), from K to ÂK/K, is an algebraic and topological isomorphism.

The existence of the standard character,  K , on AK
∼= ÂK of a number field K, will be

essential in introducing the Fourier transform of “nice” functions defined on the adeles

and, ultimately, in proving the Poisson summation formula and its useful extension, the

Rieman-Roch theorem. The Rieman-Roch theorem is the main tool used in proving the

meromorphic continuation and functional equation of the global zeta function. Lastly,

Lemma 3.1.5 will be applied to factor a quasi-character � ∈ HomCont(IK ,ℂ×) that is trivial

on K∗ (i.e. an idele-class character or Hecke character) as a product of local quasi-characters

�� ∈ HomCont(K
∗
� ,ℂ×). This will enable us to define the L-function of � as a product over its

local versions, L(��).

3.1.2 Restricted Direct Integration and Self-Dual Measure

Again, let G be the restricted direct product of locally compact groups G� with respect

to compact-open subgroups H� . Since G is locally compact, then G admits a Haar measure.

However, like the characters of G, we would like to have some way of defining a Haar

measure on G in terms of Haar measures on G� . This brings us to the following proposition.

Proposition 3.1.8. Let dg� denote a left (right) Haar measure on G� normalized so that∫
H�

dg� = 1

for almost all � ∕∈ J∞. Recall that a Haar measure is necessarily finite on compact sets

(Proposition 1.2.4), so we may normalize the Haar measure as such. Then there is a unique
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left (respectively, right) Haar measure dg on G such that for each finite set of indices S

containing J∞, the restriction of dgs of dg to GS is precisely the product measure. We will

write dg =
∏

� dg� for this measure.

Proof. Let S be an arbitrary set containing J∞ and define dgS to be the product of the

measures dg� for all �. By the normalization of dg� and the fact that S is finite, then the

compact group
∏

� ∕∈S H� has finite measure with respect to dgS. As such, dgS is a Haar

measure on GS. Indeed, the product measure dgS is a radon measure and, furthermore, is

invariant under the componentwise group operation because each of the dg� is invariant

under the group operation. See Chapter 7, Theorem 7.28, in Folland’s Real Analysis [12]. Let

T ⊇ S be a larger set of indices. Clearly, GS ≤ GT . Then, by construction, we have that dgS

coincides with the restriction of dgT to the subgroup GS. Since G is locally compact, then G

admits a Haar measure, dg, which is unique up to a constant. Furthermore, the restriction

of dg to GS is also a Haar measure on GS. As such, we can pick any finite set S of indices

containing J∞, and choose the Haar measure dg of G, such that dg restricts to dgS. For any

T ⊇ S, the measure dg restricts to the product measure dgT on GT because of the above

remark about dgS coinciding with the restriction of dgT . Let S ′ be a set of indices containing

J∞. Then dg, constructed relative to dgS, uniquely picks out the product measure on GS∪S′ ,

and hence on dgS′ . Therefore, dg is independent of the S chosen and is unique.

Now that we have established the existence of a well-defined Haar measure dg on G in

terms of Haar measures dg� on G� , we would like to have a way of integrating and taking

the Fourier transform functions defined on G. In the following proposition, we should pay

special attention to functions of the form
∏

� f� , as these types of functions will play an

important role in the proof of the functional equation and analytic continuation of the Hecke

L-function. In the second proposition, we will construct the dual measure d� to dg on Ĝ such

that the Fourier inversion theorem holds. The Fourier inverion theorem is a key ingredient in

proving both the Poisson summation formula and the Riemann-Roch theorem.

Proposition 3.1.9.
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(i) Let f be an integrable function on G. Then∫
G

f(g) = lim
S

∫
GS

f(gs)dg,

where the limit is taken over larger and larger S. If f is only assumed to be continuous,

then the above identity holds, but then we must accept that the integral may take infinite

values.

(ii) Let S0 denote the finite set of indices containing both J∞ and the set of indices for

which Vol(H� , dg�) ∕= 1. Suppose that for each index �, we are given a continuous and

integrable function f� on G�, such that f� ∣H� = 1 for all � outside some finite set S1. Then

for g = (g�) ∈ G we can define the function

f(g) =
∏
�

f�(g�).

The function f is well-defined and continuous on G. Furthermore, if S is any finite set of

indices including S0 and S1, then we have∫
GS

f(g)dg =
∏
�∈S

(∫
G�

f�(g�)dg�

)
.

Furthermore, if

∏
�

(∫
G�

∣f�(g�)∣dg�
) (

= lim
S

∏
�∈S

(∫
G�

∣f�(g�)∣dg�
))

<∞

then ∫
G

f(g)dg =
∏
�

(∫
G�

f�(g�)dg�

)
and f ∈ L1(G).

(iii) Let {f�} and f be as they were in the previous part, but with the added constraint of f�

being a characteristic function of H� for all � ∕∈ S1. Then f ∈ L1(G) and, in abelian case,

the Fourier transform of f is given by

f̂(g) =
∏
�

f̂�(g�).
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If we additionally assume that f̂� ∈ L1(Ĝ�) for all �, then f̂ ∈ L1(Ĝ). Recall that B(G) is

the set of functions such that f is continuous, f ∈ L1(G), and f̂ ∈ L1(G). Moreover, this is

the set of functions for which the Fourier inversion theorem holds. Therefore, if we assume

f� ∈ B(G�) for all �, and both Vol(H� , dg�) = 1 and f� = 1H� for all but finitely many �,

then f ∈ B(G).

Proof. (i) From basic integration theory, we know that∫
G

f(g)dg = lim
K

∫
K

f(g)dg,

where the limit is taken over larger and larger compact sets K of G. Since any compact set

K is contained in some GS, then we may take the limit over larger and larger S, and hence

GS instead. So long as f is continuous, then the identity holds.

(ii) By our choice of f� , we know that f� ∣H� = 1 for all � ∕∈ S0. For g = (g�) ∈ G, we know

there exists a set Sg such that g� ∈ H� for all � ∕∈ Sg. Therefore,∏
�

f�(g�) =
∏

�∈S0∩Sg

f�(g�)
∏

�∈S0∩Scg

f�(g�)

is a finite product for all g ∈ G, and so f is well-defined. Recall that a neighborhood base of

the identity of G consists of sets of the form
∏
N� ×

∏
H� , where N� is a neighborhood of

the identity in G� , and where the first product is over a finite number of indices. We may,

however, take the basis to consist of sets of the above form with the added restriction that

the first product necessarily includes the indices for which f� ∣H� ∕= 1. In this way, locally, we

may identify f with the finite product of continuous functions f� . As such, f is continuous.

Now let S be a set of indices containing S0 and S1. Then f� ∣H� = 1 and Vol(H� , dg�) ∕= 1

for all � ∕∈ S. Further, dgS is nothing more than the product measure on GS. Therefore,∫
GS

f(gS)dg =

∫
GS

f(gS)dgS =
∏
�∈S

(∫
G�

f�(g�)dg�

)∏
� ∕∈S

(∫
H�

f�(g�)dg�

)
=
∏
�∈S

(∫
G�

f�(g�)dg�

)
,

since f� ∈ L(G�) for all �, and since the product over � ∕∈ S is 1. According to part (i),

since ∣f ∣ is continuous, then ∣f ∣ is integrable if and only if

lim
S

∫
GS

∣f(gS)∣dg = lim
S

∫
GS

∣f(gS)∣dgS <∞.
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Therefore, in combination with the above equality, applied to ∣f(g)∣ =
∏

� ∣f(g�)∣, we have

that the limit exists if and only if

lim
S

∫
GS

∣f(gS)∣dgS = lim
S

∏
�∈S

(∫
G�

∣f�(g�)∣dg�
)

=
∏
all �

(∫
G�

∣f�(g�)∣dg�
)
<∞.

This completes the proof of part (ii).

(iii) Since f = 1H� for all � ∕∈ S1 and since Vol(H� , dg�) = 1 for � ∕∈ S0, then for S = S0 ∪ S1

we have ∏
all �

(∫
G�

∣f�(g�)∣dg�
)

=
∏
�∈S

(∫
G�

∣f�(g�)∣dg�
)
.

The latter integral is finite because f� ∈ L(G�) for all �. Therefore, by part (ii), we obtain

that f ∈ L1(G). If G is abelian, then let � = (��) ∈ Ĝ (Theorem 3.1.7). Define ℎ� = f���

and ℎ =
∏

� ℎ� . Since �� ∣H� = 1 and f = 1H� for all but finitely may �, then ℎ� = 1H� for

all but finitely many �. Furthermore, since �� is a unitary continuous character, then ℎ� is

a continuous and absolutely integrable function on G� . Therefore, we have that∏
all �

(∫
G�

∣ℎ�(g�)∣dg�
)

=
∏
�∈S

(∫
G�

∣f�(g�)∣dg�
)
<∞.

As such, applying part (ii) to ℎ, we have that

f̂(g) =

∫
G

f(g)�(g)dg =
∏
�

(∫
G�

f�(g�)��(g)dg

)
=
∏
�

f̂�(g�).

Now suppose that f̂� ∈ L1(G�). In order to show that f̂ ∈ L1(G), we need to show that

f̂� is a characteristic function for all but finitely many �. For each �, let d�� = d̂g� denote

the dual measure, as in the Fourier inversion theorem, to dg� on Ĝ� . Let � ∕∈ S1 so that

f� = 1H� . Then

f̂�(��) =

∫
G�

1H� (g�)��(g�)dg� =

∫
H�

��(g�)dg� .

If �� ∣H� = 1, then f̂�(��) = Vol(H� , dg�). Suppose �� ∣H� ∕= 1. Let g′ ∈ H� be chosen such

that ��(g
′) ∕= 1. Writing the group action of G� multiplicatively, we have that g′ ⋅H� = H� ,

since left multiplication by a group element is an automorphism. By the translation

invariance of the Haar measure dg� and the fact that �� is a homomorphism, we have∫
H�

��(g�)dg� =

∫
g′⋅H�

��(g
′ ⋅ g�)dg� = ��(g

′)

∫
H�

��(g�)dg� .
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Since H� is compact and �� is unitary, then∣∣∣∣∫
H�

��(g�)dg�

∣∣∣∣ ≤ ∫
H�

dg� = Vol(H� , dg�) <∞,

because the Haar measure is finite on compact sets. Finally, since ��(g
′) ∕= 1, then

f̂�(��) = 0 for all �� ∣H� ∕= 1. Let us denote the set of characters of G such that �� ∣H� ∕= 1

by H⊥� . We previously denoted the set H⊥� by K(G� , H�). As such,

f̂�(��) = Vol(H� , dg�)1H⊥� (��).

Since Vol(H� , dg�) = 1 for all � ∕∈ S0, then f̂� is a characteristic function of Ĥ⊥� for all

� ∕∈ S = S1 ∪ S0. By Theorem 3.1.7, we have that Ĝ ∼=
∏′

� Ĝ� , where the restricted direct

product is taken with respect to the compact-open subgroup H⊥� . Also, since f̂� is both

continuous and absolutely integrable, then∏
all �

(∫
Ĝ�

∣f̂�(��)∣d��
)

=
∏
�∈S

(∫
Ĝ�

∣f�(��)∣d��
)
<∞

, and hence f̂ ∈ L1(Ĝ). Therefore, since f =
∏

� f� is continuous, and f ∈ L1(G), and

f̂ ∈ L1(Ĝ), then f ∈ B(G).

We would now like to construct the measure that is dual to dg =
∏

� dg� in the sense

that is defined by the Fourier inversion theorem. Again, we will assume that the dg� are

normalized so that Vol(H� , dg�) = 1 for all but finitely many �. As in part (iii) of the above

proposition, for each �, let d�� = d̂g� denote the dual measure to dg� on Ĝ� . Also, let f� be

as it is in part (iii) of the above theorem. That is, assume f� ∈ B(G�) for all � and f� = 1H�

for all but finitely many �. Let us fix a � such that f� = 1H� . In part (iii), we showed that

f̂� = Vol(H� , dg�)1H⊥� . Implicity identifying
ˆ̂
G� with G� by Pontryagin duality, we obtain

ˆ̂
f�(g�) = Vol(H� , dg�)

∫
Ĝ�

1H⊥� (��)��(g�)d�� = Vol(H� , dg�)

∫
H⊥�

��(g�)d�� .

In the proof of self-duality of the restricted direct product, we proved that H⊥� is a compact-

open, and hence closed, subgroup of Ĝ. Replicating the argument in part (iii) together with
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the fact that H⊥ is compact (i.e. orthogonality of characters), we have that

ˆ̂
f�(g�) = Vol(H� , dg�)Vol(H⊥� , d��)1(H⊥� )⊥ .

On the other hand, the Fourier inversion theorem tells us that
ˆ̂
f�(g) = f�(g

−1). Note that we

need f� ∈ B(G�) for the theorem to hold. Therefore,

Vol(H� , dg�)Vol(H⊥� , d��)1(H⊥� )⊥(g) = 1H� (g
−1) = 1H� (g),

because H� is a subgroup. Since (H⊥� )⊥ = H� , then we have the relation

Vol(H� , dg�)Vol(H⊥� , d��) = 1.

Since we have assumed that Vol(H� , dg�) = 1 for all but finitely many �, then Vol(H⊥� , d��) =

1 for all but finitely many �. In this way, we can define d� = d̂g, which brings us to our next

proposition.

Proposition 3.1.10. The measure d� =
∏

� d��, where d�� = d̂g�, is dual the measure

dg =
∏

� dg�. Therefore,

f(g) =

∫
Ĝ

f̂(�)�(g)d�,

for all f ∈ B(G).

Proof. Since Vol(H� , dg�) = 1 for all but finitely many �, then we have that d� =
∏

� d��

is a Haar measure on
ˆ̂
G by Proposition 3.1.8 and Proposition 3.1.7. Since a Haar measure

is unique up to a constant, then it suffices to check duality for a given product of functions.

That is, we would like to show that the normalization factor is 1. We have already computed

the Fourier transform for the set of functions such that f =
∏

� f� , where f� ∈ B(G�), and

where f� = 1H� for all but finitely many �. Such functions are necessarily in B(G) by part

(iii) of the above proposition. Let g = (g�) ∈ G. By part (iii) of the above proposition, we

have that ∫
Ĝ

f̂(�)�(g)d� =
∏
�

∫
Ĝ�

f̂�(��)��(g�)d�� .
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Since d�� is the dual measure to dg� , then

f�(g�) =

∫
Ĝ�

f̂�(��)��(g�)d�� .

Therefore, ∫
Ĝ

f̂(�)�(g)d� =
∏
�

f�(g�) = f(g).

This completes the proof.

3.2 Adeles and Ideles

Let K be a number field. Let K� be the completion of K at the �th place of K. The

restricted direct product of K� , under addition, with respect to o� , is called the adele group

of K, and is denoted AK . We set J∞ = {� : � an infinite place of K} because when

completing K at the infinite places, there does not exist an open compact subgroup o� . Note

that K� is an abelian locally compact group and oK is a compact-open subgroup of K� for all

finite places � of K. Every element of K is divisible by finitely many prime ideals, and hence

the embedding of K into K� for all � lies in o� for all but finitely many places. Therefore, K

embeds diagonally into AK :

K → AK

x 7→ (x, x, x, . . .).

The idele group, denoted IK , is the restricted direct product of K∗� , as a multiplicative group,

with respect to o×� , an open compact subgroup of K∗� . Since every element of K∗ is locally an

integer, and hence a unit for all but finitely many places, K∗ diagonally embeds into IK :

K∗ → IK

x 7→ (x, x, x, . . .).

By construction, AK is an additive group. However, if we define componentwise multiplica-

tion on AK , then AK is a ring because multiplication in K� is closed. Every element is not
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unit, though, so it makes sense to consider A×K . The group of units of AK is the restricted

direct product of K∗� with respect to o×� , and hence IK ∼= A×K . Said otherwise, IK embeds into

the adele group via the isomorphism with the group of units. Unfortunately, the embedding

is not a topological embedding. To see that the above algebraic isomorphism is not always

a topological embedding, consider K = ℚ. The restricted direct topology on Iℚ is, in fact,

stronger than the subspace topology induced by the restricted direct topology on the adeles.

In order to show this, we must find an open set in the restricted direct topology on Iℚ that is

not an open set in the subspace topology. In the case K = ℚ, the completion with respect to

the infinite prime (absolute value), of which there is only one, is just ℝ. The characterization

of primes or places of ℚ formally is called Ostrowski’s theorem. A neighborhood base of the

multiplicative identity in the subspace topology, induced by the restricted direct topology on

the adeles, of Iℚ consists of sets of the form(∏
p∈S

Np ×
∏
p ∕∈S

ℤp

)
∩ Iℚ,

where S is any finite set of primes that contains the infinite prime and where Np are neigh-

borhoods of the multiplicative identity in ℚp. For any choice of Np and S we can always find

a point x = (xp) ∈
∏

p∈S Np ×
∏

p ∕∈S ℤp such that xq ∈ ℤq − ℤ×q for some q ∕∈ S and xp ∈ ℤ×p

for all but finitely many p. Then x ∈ Iℚ because xp ∈ ℤ×p for all but finitely many p. In the

restricted direct topology of Iℚ, the set

U = ℝ× ×
∏
p ∕∈I∞

ℤ×p

is an open neighborhood of the multiplicative identity because ℝ× is an open neighborhood

of the multiplicative identity and because the remaining part of the product is a product of

ℤ×p for all finite primes. Since (xp) ∕∈ U , then(∏
p∈S

Np ×
∏
p∕∈S

ℤp

)
∩ Iℚ ∕⊂ ℝ× ×

∏
p ∕∈I∞

ℤp
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for all S and Np. However, every open neighborhood of the identity in the restricted direct

topology of Iℚ is a set of the form ∏
p∈S

N∗p ×
∏
p ∕∈S

ℤ×p ,

where N∗p is an open neighborhood of the multiplicative identity in ℚ∗p and where S is some

finite set of primes containing the infinite prime. Clearly,

∏
p∈S

N∗p ×
∏
p ∕∈S

ℤ×p =

(∏
p∈S

N∗p ×
∏
p∕∈S

ℤp

)
∩ Iℚ

is open in the subspace topology because every open neighborhood of the multiplicative

identity N∗p in ℚ∗∣ is an open neighborhood of the multiplicative identity in ℚp. Consequently,

the restricted direct topology on Iℚ is stronger than the subspace topology induced by Aℚ.

This, in fact, is something that arises often in the study topological rings. More gener-

ally, for any topological ring R, the group of units R∗ is not always a topological group with

respect to the subspace topology induced by the topology of R. This is because multiplica-

tive inversion may not be continuous. However, the following is an example of where R∗ is a

topological group in the induced subspace topology. Take R = ℤp with R∗ = ℤ×p . Then for

a, b ∈ ℤ×p

∣1
a
− 1

b
∣p = ∣b− a

ab
∣p = ∣b− a∣p,

which implies that inversion is continuous. In other words, sometimes R∗ is a topological

group and other times it is not. In order to deal with this problem, we embed R∗ in R× R in

the following way and endow R∗ with the induced subspace product topology:

� : R∗ ↪→ R×R

x 7→
(
x,

1

x

)
.

One can prove that this a topological embedding. But in our case, we are presented with a

slightly more complicated scenario. The ideles have their own topology, the restricted direct

topology of K×� with respect to o×� . The ideles algebraically identify with the unit group of

the adeles. We have seen that the restricted direct topology on the ideles is not equivalent to
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the adelic induced topology, at least in the case K = ℚ. We proceed with the above “fix” to

make the ideles, viewed as the unit group of the adeles, a topological group. Fortunately, the

restricted direct topology on the ideles coincides with topology induced by embedding of IK

into AK × AK given above.

Proposition 3.2.1. IK is a topological isomorphism onto its image in A2
K under the map

� : IK −→ A2
K

x 7→
(
x,

1

x

)
Proof. Let U be an open set of the multiplicative identity in the image of �. Then U =

V ∩ �(IK), where V is an open neighborhood of the multiplicative identity in A2
K with the

product topology. A neighborhood basis of A2
K consists of sets of the form∏

�∈S

N� ×
∏
�∈Sc

ov ×
∏
�∈T

M� ×
∏
�∈T c

ov,

where S and T are both finite sets of places containing the infinite places and where N�

and M� are neighborhoods of the multiplicative identity in K� . Let V be such a set. Let

N � = N� ∩K∗� and M� = M� ∩K∗� . Also, let N
o

� = N� ∩ o� ∩K=
� N� ∩ o×� and M

o

� = M� ∩ o×� .

Note that N � , N
o

� , M� , and M
o

� are open in K∗� . As such, N
−1

� , N
o

�

−1
, M

−1

� , and M
o

�

−1
are

well defined and open in K∗� , since K� is a topological field. Then

V ∩ �(IK) =
∏

�∈S∩T

(
N � ∩M

−1

�

)
×

∏
�∈S−(S∩T )

N
o

� ×
∏

�∈T−(S∩T )

M
o

�

−1 ×
∏

�∈(S∪T )c

o×�

×
∏

�∈S∩T

(
N
−1

� ∩M�

)
×

∏
�∈S−(S∩T )

N
o

�

−1 ×
∏

�∈T−(S∩T )

M
o

� ×
∏

�∈(S∪T )c

o×� .

Furthermore,

�−1 (V ∩ �(IK)) =
∏

�∈S∩T

(
N� ∩M

−1

�

)
×

∏
�∈S−(S∩T )

N
o

� ×
∏

�∈T−(S∩T )

M
o

�

−1 ×
∏

(S∪T )c

o×� ,

which is clearly open in the restricted direct topology on IK . Now, let U be an open neigh-

borhood of the multiplicative identity in the restricted direct topology on IK . Without loss of

generality we may take

U =
∏
�∈S

N� ×
∏

�∈I−S

o×� ,
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where S is a finite set of places containing the infinite places and where N� are neighbor-

hoods of the multiplicative identity in K∗� . Consider the image of U under the mapping

�:

�(U) =
∏
�∈S

N� ×
∏
�∈Sc

o×� ×
∏
�∈S

N−1
� ×

∏
�∈Sc

o×�

=

(∏
�∈S

N� ×
∏
�∈Sc

o� ×
∏
�∈S

N−1
� ×

∏
�∈Sc

o�

)
∩ �(IK).

Since N� and N−1
� are open neighborhoods of the identity in K∗� , and hence in K� , then the

set on the left-hand side of the intersection is open in A2
K , making the entire set open in

the subspace topology of �(IK). Therefore, � is bi-continuous and hence an algebraic and

topological isomorphism of IK onto its image.

Define the subgroup AJ∞ of AK to be

AJ∞ := {x = (x�) ∈ AK : x� ∈ o� for all � ∕∈ J∞}.

Hence forth, denote this subgroup by A∞. The following is called the Approximation

Theorem.

Proposition 3.2.2. For every global field K, we have both

AK = K + A∞ and K ∩ A∞ = oK .

Proof. As seen above, K embeds diagonally into AK . In order to prove the above proposi-

tion, we must show that for every element x ∈ AK , there exists an element k ∈ K such that

x− k has an absolute value less than or equal to 1 for all finite places; otherwise said, x− k is

locally an integer for all finite places. Let � be a finite place of K and let p� be a prime ideal

of oK corresponding to �. Suppose p� lies above the rational prime p� . Let x = (x�) ∈ AK .

For all �, there exists some positive integer m� such that ∣pm�� x� ∣p� = 1 ⇔ pm�� x� ∈ o� .

Since x ∈ AK is locally not an integer at only a finite number of places, then we may find a

rational integer m–which we are implicitly diagonally embedding into AK–such that all finite

(place) components of mx lie in the ring of integers. Say p1, p2, . . . , pn are the prime ideals

that divide m in oK . By construction, the set of aforementioned primes must contain the set
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of primes for which the corresponding component of x in AK failed to be an integral. Let

ej > 0 represent the power of the prime pj appearing in the unique factorization of the ideal

m in oK . That is,

m = pe11 ⋅ ⋅ ⋅ pen .

Applying the Chinese remainder theorem, we can find a � ∈ ok such that

mxj = �(mod p
e′j
j ) j = {1, 2, . . . n},

where xj is the pjth component of x in the adeles, and e′j ≥ ej. Note that we are using the

fact that prime ideals remain comaximal at higher powers. Let k = �m. Then x − k =

m−1(mx − �) is integral at p1 ⋅ ⋅ ⋅ pn and all other finite primes. Recall that one definition of

the ring of integers of a global field K is

oK =
∩

v finite

ov.

Also, by definition, A∞ consists of all elements of the adeles that are locally an integer at all

finite places. So, K ∩ A∞ = oK . This completes the proof.

For K = ℚ the approximation theorem implies the following corollary.

Corollary 3.2.3.

Aℚ = ℚ + A∞ = ℚ +

(
ℝ×

∏
p prime

ℤp

)
and ℚ ∩ A∞ = ℤ.

Lemma 3.2.4. Let E/K be a finite extension and fix a K-basis {u1, . . . , un} of E. Then the

map

� :
n∏
j=1

AK → E

((x�,j)�)j 7→
∑
j

uj(x�,j)�

is an isomorphism of topological groups.

Proof. See Ramakrishnan and Valenza [24], Chapter 5, Section 3, Lemma 5-10.
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The following theorem will establish that K is a discrete, co-compact subgroup of AK .

In Chapter 4, we will construct the standard non-trivial character  K on AK by taking

the product of the standard non-trivial characters  � on K� . We also will show that  K is

trivial on K. This fact was mentioned previously in the restricted direct product section.

Furthermore, we will show that the map � K from K to ÂK/K, given by a →  K(a⋅), is an

isomorphism. In showing that this map is surjective, we will need to use the fact that AK/K

is compact and hence that ÂK/K is discrete (Proposition 1.3.4).

Proposition 3.2.5. K is a discrete, co-compact subgroup of AK.

Proof. Let [K : ℚ] = n. Using the preceding lemma, we see that
∏n

i=1 Aℚ is isomorphic to

AK as topological groups. Furthermore,
∏n

i=1 ℚ is isomorphic to K as topological groups,

endowing both with the discrete topology. As such, AK/K is isomorphic to
∏n

i=1 Aℚ/ℚ as

topological groups. It will suffice to show that Aℚ/ℚ is compact by Tychonoff’s thoerem.

Similarly, it will suffice to show that ℚ is discrete in Aℚ. Let ∞ be the real place of ℚ. Note

that oℚ = ℤ. We will show that the subset C of Aℚ, given by

C = {x = (xp) ∈ Aℚ : ∣x∞∣∞ ≤ 1/2 and ∣xp∣p ≤ 1 ∀p},

is a compact fundamental domain for ℚ in Aℚ. Note that ℤp = {x ∈ ℚp : ∣xp∣p ≤ 1}. If

we can show that C ∩ ℚ = {0} and Aℚ = C + ℚ, then we are done. The C ∩ ℚ = {0}

condition guarantees that there are no repeats and the Aℚ = C + ℚ condition shows that Aℚ

is covered by translates of K by elements in C. Suppose that x ∈ C ∩ℚ. Since every integer

is divisible by only finitely many primes and since x ∈ ℤp for all p, then x = pn1
1 ⋅ ⋅ ⋅ pnrr , where

the ni, i = 1, . . . , r are positive integers. However, since x has absolute value less than 1/2,

then x = 0. Consequently, C ∩ℚ = {0}.

Let y = (yp) ∈ Aℚ. Then yp ∈ ℤp for all but finitely many p. Let S be the finite set of

primes containing both the infinite prime and those primes for which yp ∕∈ ℤp. We want to

show that for all p ∈ S, there exists an element u(p) ∈ ℚ such that y − u(p) ∈ ℤp and such

that u(p) ∈ ℤq for all q ∕= p. Let u(p) be the fractional part of yp ∈ ℚp–the polar part of the

p-adic series representation. Then u(p) = a
pm

for some m > 0 and for some a ∈ ℤ. Therefore,

by construction, we have that yp − u(p) ∈ ℤp. Furthermore, since a ∈ ℤ and (p, q) = 1 for all

q ∕= p, then u(p) = a
pm
∈ ℤq for all q ∕= p. Letting � =

∑
p∈S u(p), we see that y − � ∈ ℤp for
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all rational primes p. Let �′ be the nearest integer to (y∞ − �). Then ∣y∞ − � − �′∣∞ ≤ 1/2. It

is also clear that since �′ is an integer, then �′ ∈ ℤp for all rational primes p. Then we have

∣yp − � − �′∣p ≤ max{∣y� − �∣p, ∣�′∣p} ≤ 1 ∀ p and ∣y∞ − � − �′∣∞ ≤ 1/2,

which implies that x = y − � − �′ ∈ C. Since � − �′ ∈ ℚ, then y = x + � + �′ ∈ C + ℚ. This

completes the proof.

Proposition 3.2.6. There exists an isomorphism of topological groups

Aℚ/ℚ ∼= lim
←

ℝ/nℤ

Proof. See Ramakrishnan and Valenza [24], Chapter 5, Section 3, Proposition 5-12.

Proposition 3.2.7. The group K∗ embeds discretely in IK.

Proof. Recall from Proposition 3.2.1 that � : IK → A2
K , defined by x 7→ (x, 1

x
), yields a

topological isomorphism of IK onto its image under �. We know from Proposition 3.2.5 that

K embeds discretely into AK . As such, K×K embeds discretely into AK×AK , which implies

that K∗ ×K∗ embeds discretely in �(IK). This completes the proof.

Definition 3.2.8. We define the idele-class group to be IK/K∗ and we denote it by CK .

Now we want to define an absolute value ∣ ⋅ ∣AK on IK as the product of the local absolute

values ∣ ⋅ ∣� over the places � of K. More specifically, we want to choose the absolute values

on the completions K� , such that for any idele x, we have that ∣x∣AK =
∏

� ∣x∣� is precisely

the module of the automorphism y 7→ xy, defined on the locally compact abelian group AK .

Regardless of the measure chosen for AK , the module of automorphism is the same. Indeed,

let � be a Haar measure on AK . Then the module of automorphism of y ∈ IK is defined to

be modAK (y) = �(y ⋅M)/�(M) where M is any Borel set with 0 < �(M) < ∞. Since the

Haar measure is unique up to a constant, if we chose another measure �′, then �′ = c� for

some positive real c. As such, �′(y ⋅M)/�′(M) = �(y ⋅M)/�′(M) = modAK (y). As one would

expect, the absolute values on the completions that will induce an absolute value on AK with

the module of automorphism property are exactly the absolute values with the module of

automorphism property.
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Definition 3.2.9. Let F be a local field of characteristic zero. We define the normalized

absolute value on F as follows:

(i) If F = ℝ, then let ∣ ⋅ ∣F be the standard absolute value.

(ii) If F = ℂ, then let ∣ ⋅ ∣F be the square of the standard absolute value.

(iii) If F is non-Archimedean, then let ∣ ⋅ ∣F be such that ∣�F ∣F = 1
q
, where �F is the

uniformizing parameter of F , and q is the order of the residue field oF/�FoF .

In order to show that these normalized absolute values are the module of automorphism

of the Haar measure, it suffices to pick any measure on F and any measurable set M .

However, we might as well pick measures that will be of use to us in the following chapter.

In Chapter 4 contained below, we will show that for any non-trivial additive character  

of F , the map � : F 7→ F̂ , defined by a 7→  (a⋅), is a topological group isomorphism.

In this special case, the Fourier transform of a function f ∈ B(F ) can be identified with

a function on F , rather than on F̂ . That is, if we wish to evaluate the Fourier transform

of f at an additive character �, we first find the a ∈ F such that our fixed choice of  

satisfies � =  (a⋅); we then can evaluate at f̂ at � by integrating against  (a⋅). As such,

we want to pick the measures on the local fields such that the Fourier inversion theorem

holds:
ˆ̂
f(x) = f(−x) for all f ∈ B(F ). However, the choice of measure will depend on

the fixed choice of  that one uses when defining the Fourier transform. In Chapter 4, at

some points, especially when constructing the adelic character  K , we will consider specific

non-trivial additive characters on local fields. Recall the requirement in Proposition 3.1.6

for constructing such a character; the local characters must be trivial on H� for all but

finitely many �. The non-Archimedean local additive characters that we will construct satisfy

this requirement, as they are are trivial on o� for all but finitely many places � of K. The

measures that we define below for local fields are precisely the self-dual measures to the

non-trivial additive characters that we construct for local fields. See Proposition 4.2.4

Definition 3.2.10.

(i) If F = ℝ, then let dx be the standard Lesbesgue measure.

(ii) IF F = ℂ, then let dx be twice the standard Lebesgue measure.
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(iii) If F is non-Archimedean, then let dx be such that Vol(oF , dx) = N(DF )−1/2,

where DF denotes the different of F . Since the different is a fractional ideal of F , then

DF = pd for some integer d, where p is the unique prime of F . As such, N(DF )−1/2 =

N(p)−d/2 = q−d/2 where q is the order of the residue field oF/poF .

Proposition 3.2.11. Let ∣ ⋅ ∣F be the normalized absolute value of F . If � is a Haar measure

on F , then
�(y ⋅M)

�(M)
= ∣y∣F ,

for any y ∈ F× and for any measurable set M with 0 < �(M) <∞.

Proof. As mentioned above, it suffices to consider any Haar measure � and any set mea-

surable set M . Let us choose the dx in Definition 3.2.10 and M = oF , where oℝ = [−1, 1],

oℂ = S1, and oF is the ring of integers for F non-Archimedean. We will write Vol(X, dx) for

the measure of a measurable set X with respect to dx. That is,

Vol(X, dx) =

∫
F

1Xdx,

where 1X is the characteristic function of X. We will proceed case by case.

(i) If F = ℝ, then

Vol(y ⋅ [−1, 1], dx) = Vol([−y, y], dx) =

y∫
−y

dx =

⎧⎨⎩2y for y ≥ 0

−2y for y < 0.

Therefore,

Vol(y ⋅ [−1, 1], dx) = 2∣y∣ℝ = Vol([−1, 1], dx)∣y∣ℝ.

(ii) Let ∣y∣st be the standard Lebesgue measure on ℂ. Then

Vol(y ⋅ S1, dx) =

∫
y⋅S1

dx =

2�∫
0

∣y∣st∫
0

2rdrd� =

2�∫
0

∣y∣st∫
0

r2d� =

= 2�∣y∣2st = Vol(S1, dx)∣y∣2st = Vol(S1, dx)∣y∣ℂ.
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(iii) Let R be the residue system of oF/yoF in oF for F non-Archimedean. Applying the

translation invariance of the Haar measure, we obtain

[oF : yoF ] Vol(yoF , dx) = [oF : yoF ]

∫
F

�yoF (x)dx =
∑
x′∈R

∫
x′+yoF

dx =

∫
oF

dx = Vol(oF , dx).

Therefore,

Vol(yoF , dx) = [oF : yoF ]−1 Vol(oF , dx) = ∣y∣FVol(oF , dx).

For the finite places � of K, we have Vol(o� , dx�) = N(DK� )
−1/2. It can be shown that

the inverse different is trivial for all but finitely many places �. See Neukrich [23], Algebraic

Number Theory, page 195. Therefore, Vol(o� , dx�) = 1 for all but finitely many finite places

� of K because DK� = o� for all but finitely many finite places � of K. Therefore, by

Proposition 3.1.8, there is a unique Haar measure dx on AK such that for each finite set S of

places of K, necessarily containing the infinite places, the restriction dxS of dx to

AK,S =
∏
�∈S

K� ×
∏
� ∕∈S

o�

is precisely the product measure dxS =
∏

�∈S dx� . We write dx =
∏

� dx� for the Haar

measure on AK .

Definition 3.2.12. Let K be a number field and let K� be the completion at a place � of K.

Let dx� be the corresponding measures on K� as given in Definition 3.2.10. As in Proposition

3.1.8, we set dx =
∏

� dx� to be the Haar measure on AK .

Proposition 3.2.13. For every � = (��) ∈ IK, let ∣�∣AK =
∏

� ∣�� ∣�, where ∣ ⋅ ∣� are defined

as in Definition 3.2.9. Note that the product on the right is finite because �� ∈ o×� for all but

finitely many places. If � is a Haar measure on AK, then

�(� ⋅M)

�(M)
= ∣�∣AK

for any � ∈ IK and for any measurable set M with 0 < �(M) <∞.

Proof. Let B be a compact set of AK . By Proposition 3.1.4, compact sets in AK are of the

form
∏

� B� , where B� is a compact set for all � and where B� = o� for all but finitely
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many �. Let dx =
∏

� dx� be as in Definition 3.2.12. Again, it suffices to pick any Haar

measure and any measurable set with finite nonzero measure. Then by Proposition 3.1.9 and

Proposition 3.2.11, we have that

Vol(� ⋅B, dx) =

∫
�⋅B

dx =
∏
�

∫
�� ⋅B�

dx =
∏
�

∣�� ∣�
∫
K�

dx = ∣�∣AK
∫
B

dx = ∣�∣AKVol(B, dx).

This completes the proof.

In addition to Proposition 3.2.11, the normalized absolute values in Definition 3.2.9

satisfy another very important property. Let l/k be finite extension of fields. If one fixes a

basis of l over k, then we know that every endomorphism of l as a k-vector space is uniquely

representable as a matrix with entries in k. Since l is a field, every element x of l defines

an endomorphism �x of l as a k-vector space via multiplication. This formally is called

the regular representation. The norm of x, Nl/k(x), is defined to be the determinant of the

matrix representation of �x. Note that the determinant is independent of the basis chosen for

l. Since the determinant is multiplicative, then the norm is multiplicative. For a separable

extension, we have that Nl/k(x) =
∏

� �(x), where the product runs over the k-embeddings of

l. See Neukirch [23], Chapter 1, Section 2 for more information about the norm.

Lemma 3.2.14. Let l/k be a finite extension of local fields. Then for all x ∈ l, we have

∣x∣l = ∣Nl/k(x)∣k.

Proof. Let l = ℂ and k = ℝ. Let x ∈ ℂ. Let us fix the basis e = {1, i} of ℂ over ℝ.

Then x = a + bi for some unique choice of a, b ∈ ℝ. Further, x ⋅ 1 = a + bi = [a b]te and

x ⋅ i = −b+ ai = [−b a]te. As such, the matrix representation of the endomorphism �x, defined

by z → x ⋅ z, written with respect to the basis e, is given by

[�x]e =

⎡⎣ a −b

b a

⎤⎦
e

Then Nℂ/ℝ(x) = det(�x) = det([�x]e) = a2 + b2. By definition, we have ∣x∣ℂ = ∣x∣2st = a2 + b2,

where ∣ ⋅ ∣st is the standard absolute value on ℂ. On the other hand, ∣Nℂ/ℝ(x)∣ℝ = ∣a2 + b2∣ℝ =

a2 + b2. Therefore, ∣x∣ℂ = ∣Nℂ/ℝ(x)∣ℝ.
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Now, let k be non-Archimedean with the uniformizing parameter �k. Let �l be the

uniformizing parameter of l. Let qk = [ok : �kok] and ql = [ol : �lol] . Every element in l can

be written uniquely in the form u�ml for some m ∈ ℤ and some u ∈ o×l . Since the norm

is multiplicative, then Nl/k(u) = Nl/k(u
n) = Nl/k(u)n, which implies that Nl/k(u) ∈ o×K .

Therefore, ∣u�ml ∣l = ∣u∣l∣�ml ∣l = ∣�l∣ml and ∣Nl/k(u�
m
l )∣k = ∣Nl/k(u)Nm

l/k(�l)∣k = ∣Nl/k(�l)∣mk .

As such, it suffices to pick x = �l. Let e be the ramification index of l/k; e is determined

by the relation �k = v�el for some v ∈ o×l . Let f be the residual degree of l/k. That is, f is

determined by the relation q1 = qf . From Proposition 2.2.3 and Proposition 3.2.11 we have

that

∣�k∣l = modl(�K) = modk(�K)n = ∣�K ∣nk = q−n,

where n = [l : k]. On the other hand, by our choice of e and f , we have that

∣�k∣l = ∣�el ∣l = q−el = q−ef ,

which yields the relation n = ef . Since the uniformizing parameter is only unique up to a

unit in the ring of integers, then we can replace �k with v−1�k, so that �k = �el . Since �el ∈ k,

then

Nl/k(�
e
l ) = �nk ,

, and hence

∣Nl/k(�
e
l )∣k = ∣�nk ∣k =

1

qn
=

1

qef
.

But since ∣Nl/k(�
e
l )∣k = ∣Nl/k(�l)∣ek, then ∣Nl/k(�l)∣k = 1

qf
. On the other hand, by definition,

we have that

∣�l∣l =
1

q1

=
1

qf
.

This completes the proof.

Theorem 3.2.15. Let K be a number field. Then:

(i) For every x ∈ K∗ we have ∣x∣AK = 1. This is typically referred to as Artin’s product

formula.

(ii) The absolute value map ∣ ⋅ ∣AK is surjective.
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Proof. (i) Let E/K be a finite field extension. Let PE and PK denote the set of places of E

and K, respectively. By the lemma above, for all x ∈ E we have

∣x∣AE =
∏
�∈PE

∣x� ∣� =
∏
u∈PK

∏
�∈PE
�∣u

∣x∣� =
∏
u∈PK

∏
�∈PE
�∣u

∣NE�/Ku∣u.

Recall from Proposition 2.2.6 that E ⊗K Ku
∼=
∏

�∣uE� . Therefore,∏
�∣u

NE�/Ku(x) = NE/K(x),

which implies that

∣x∣AE =
∏
u

∣NE/K(x)∣u.

As such, it suffices to take K = ℚ. Every rational x can be expressed as x = pe11 ⋅ ⋅ ⋅ perr for

some unique rational primes p1, . . . , pr, and integers e1, . . . , er. Also, note that ∣ − 1∣� = 1

for all �. Since the absolute value is multiplicative, then it suffices to consider one rational

prime p. Then p has non-trivial absolute value at two places, the place corresponding to p

and the infinite place. Then we have that ∣p∣Aℚ = ∣p∣∞ ⋅ ∣p∣p = p ⋅ 1
p

= 1, which completes the

proof of part (i).

(ii) Let K be a number field. Let � be any infinite place of K. Let t ∈ ℝ×+. If � is a real

place, then let x be the adele with t in the �th component and with 1’s elsewhere. If �

is a complex place, then let x be the adele with
√
t in the �th component and with 1’s

elsewhere. In either case, ∣x∣∞ = ∣t∣� = t, which proves that ∣ ⋅ ∣AK is surjective.

Since ∣ ⋅ ∣AK is a continuous and surjective map from IK to ℝ×+ with K∗ ⊂ Ker(∣ ⋅ ∣AK ),

then the quotient group CK = IK/K∗ cannot be compact.

Definition 3.2.16. Let K be an algebraic number field. We define the ideles of norm one to

be

I1
K := Ker(∣ ⋅ ∣AK ).

. As K∗ is a subgroup of I1
K by the above theorem, we define the norm-one idele-class group

to be the quotient group C1
K := I1

K/K
∗.
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The above theorem implies that the following sequence is short exact:

1→ C1
K = I1

K/K
∗ inc−→ CK = IK/K∗

∣⋅∣AK−→ ℝ× → 1.

In fact, this short exact sequence splits. To see this, fix �, an infinite place of K, and define

the map R : ℝ×+ → IK/K∗ by t 7→ (t, 1, 1, . . .), where t is in the �th component if � is a real

place, and where t 7→ (
√
t, 1, 1, . . .) if � is a complex place. Then R ∘ ∣ ⋅ ∣AK = idℝ×+

and hence

C1
K = CK × ℝ×+.

We will conclude this section with a proof that C1
K is compact.

Theorem 3.2.17. Let K be a number field. The quotient group C1
K = I1

K/K
∗ is compact.

Proof. In Theorem 3.2.5, we showed that K is a discrete, co-compact subgroup of AK .

Therefore, there exists a compact subset Φ of AK such that AK = K + Φ. Let � be any

Haar measure on the locally compact groupAK . Since Φ is compact, then �(�) < ∞. Pick a

compact subset Z of AK such that �(Z) > �(Φ) and define the sets Z1 and Z2 as follows:

Z1 = {z1 − z2 : z1, z2 ∈ Z} and Z2 = {z1z2 : z1, z2 ∈ Z1}.

The set Z1 is compact because it is the continuous image of Z × Z ⊂ AK × AK in AK

under the subtraction mapping. The set Z2 is compact because it is the continuous image of

Z1×Z1 ⊂ AK ×AK in AK under the multiplication mapping. Since K is discrete in AK , then

K ∩ Z2 is finite and contains nonzero elements; for example, y1 ⋅ ⋅ ⋅ yr. Set

Ψ =
r∪
j=1

�−1
(
{u, y−1

j v) : u, v ∈ Z1}
)
,

where � is the embedding of IK into AK × AK . Note that Ψ is the finite union of inverse

images of compact sets under �. We proved in Proposition 3.2.1 that � is a topological

isomorphism of IK onto its image. Therefore, Ψ is a compact set of IK . If we can show that

I1
K ⊆ K∗Ψ, then we are done.

We showed in Proposition 3.2.13 that ∣y∣AK is the module of automorphism of AK , given

by multiplication by y. If x ∈ I1
K , then left multiplication by x does not change the volume of
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compact sets with respect to the Haar measure. Specifically, the compact sets xZ and x−1Z

have the same volume as Z.

Claim 3.2.18. Since �(Z) > �(Φ), then we claim there exist elements z1, z2, z3, z4 ∈ Z, with

z1 ∕= z2 and z3 ∕= z4, such that � = x(z1 − z2) and � = x−1(z3 − z4) are both in K.

Proof. Let us first show that there exist distinct elements r1, r2 ∈ Z such that r1 − r2 ∈ K.

By Proposition 3.2.5, the sets k + Φ, k ∈ K are pairwise disjoint and cover AK . As such, the

sets Z ∩ (k + Φ), k ∈ K, are a disjoint cover of Φ. Therefore,

�(Z) =
∑
k∈K

� (Z ∩ (k + Φ)) .

Since � is a Haar measure, then � is translation invariant and hence

� (Z ∩ (k + Φ)) = � ((−k + Z) ∩ Φ) .

Suppose, by contradiction, that the sets (−k + Z) ∩ Φ, k ∈ K were disjoint. Then we would

obtain

�(Z) =
∑
k∈K

� ((−k + Z) ∩ Φ) .

However, the right-hand side is certainly less than or equal to �(Φ). But this contradicts the

assumption that �(Z) > �(Φ). As such, there exist distinct elements k1, k2 ∈ K such that

(−k1 + Z) ∩ (−k2 + Z) ∩ Φ ∕= ∅. Consequently, there exits elements r1, r2 ∈ Z such that

−k1 + r1 = −k2 + r2. If r1 = r2, then −k1 = −k2, which is a contradiction. Therefore, there

exit distinct elements r1, r2 ∈ Z such that r1 − r2 = −k2 + k1 ∈ K. Since the compact sets

xZ and x−1Z have the same volume as Z, then �(xZ) > �(Φ) and �(x−1Z) > �(Φ). By

what we have just shown, there exist z1, z2, z3, z4 ∈ Z, with z1 ∕= z2 and z3 ∕= z4, such that

� = x(z1 − z2) and � = x−1(z3 − z4) are both in K

Now we return to showing that I1
K ⊆ K∗Ψ. By the claim, we have that �� = (z1 −

z2)(z3 − z4) ∈ K∗ ∩ Z2 = {y1, ⋅ ⋅ ⋅ , yr}. Thus, there exists some yj, j = 1, ⋅ ⋅ ⋅ , r, such that

(z1 − z2)(z3 − z4)y−1
j = 1. Then

�(x�) = �(z3 − z4) = (z3 − z4, (z3 − z4)−1) = (z3 − z4, (z1 − z2)y−1
j ∈ Z1 × Z1y

−1
j .

Therefore, x� ∈ Ψ, which completes the proof.
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CHAPTER 4
Tate’s Thesis

In this treatment of Tate’s thesis, we have followed the presentation of Ramakrishnan

and Valenza [24], while also referring to Tate [27], Koch [16], Lang [19], and Kudla [18] for

some details and ideas. Unfortunately, function fields will not be treated in this exposition

of Tate’s Thesis. Please see the exercises in Chapter 7 of Ramakrishnan and Valenza [24]

and Section 18 in Chapter 7 of Koch [16]. In addition, the distributional approach to Tate’s

thesis, originally presented by A. Weil in 1966 [29], will not be included. However, we recom-

mend that the reader consult the article written by Kudla [18] in Chapter 6 of Introduction

to the Langlands Program for an introduction to the distributional approach to Tate’s Thesis.

Kudla’s article is an excellent foray into automorphic forms and representations.

4.1 Local Quasi-Characters and their Associated Local L-factors

Let F be a local field and let ∣ ⋅ ∣F be the normalized absolute value, as defined in

Definition 3.2.9. The unit group F× of a local field F is the direct product of o×F × V (F ),

where o×F is a subgroup of of F× of elements of absolute value 1 and

V (F ) := {y ∈ ℝ×+ : y = ∣x∣F , for some x ∈ F×}.

If F = ℝ, then o×F = {±1} and V (F ) = ℝ×+. If F = ℂ, then o×F = S1 and V (F ) = ℝ×+.

In the non-Archimedean case, o×F is the group of units in the ring of integers of F , and

V (F ) = qℤ, where q is the order of the residue field oF/poF for p the unique prime ideal of

F . Therefore, for F archimedean, every x ∈ F× can be written uniquely in the form x = x̃�,

where x̃ ∈ o×F and � > 0. Also, for F non-archimedean, if we fix a uniformizing parameter

�, then every x ∈ F× can be written uniquely in the form x = x̃��(x), where x̃ ∈ o×F . Let ⋅̃

denote the continuous homomorphism from F× to o×F .
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The following two propositions will prove that any quasi-character � ∈ Homcont (F×,ℂ×)

factors into the product � = �̃ ∣⋅∣s, where �̃ is the pullback of a unitary character (image in

S1) on o×F ⊆ F× and s ∈ ℂ. Note that �̃ is uniquely defined by the restriction of � onto the

first component of the product factorization of F×. We note that since o×F is compact, then

the set of continuous quasi-characters of o×F must in fact be unitary; the quasi-characters

of V (F ) are of the form t 7→ ts for some s ∈ ℂ. Also, only the real part of s is uniquely

determined in the above factorization. We call ℜ(s) the exponent of �.

Definition 4.1.1. A � ∈ Homcont (F×,ℂ×) is unramified if it is trivial on the group of units

o×F of F .

Proposition 4.1.2. For every unramified quasi-character � of F× there exists a complex

number s such that �(�) = ∣�∣sF for � ∈ F×.

Proof. It is clear that ∣�∣sF = 1 for all � ∈ o×F and that ∣��∣sF = ∣�∣sF ∣�∣sF . Furthermore,

∣ ⋅ ∣F is continuous since the topology of the local field is compatible with ∣ ⋅ ∣F . Hence,

∣ ⋅ ∣sF : F× → ℂ× is continuous since the composition of continuous maps is continuous.

Therefore, ∣ ⋅ ∣sF is an unramified quasi-character. Let � be an unramified quasi-character.

As such, � factors through the projection F× → V (F ) defined by x 7→ ∣x∣F . That is,

�(x) = �′(∣x∣F ), where �′ : V (F ) → ℂ× is a continuous homomorphism. Identifying ℂ×

with ℝ×+ × S1 via the map z = reit 7→ (r, eit), we can decompose �′ into two components:

�′r : V (F )→ ℝ× and �′u : V (F )→ S1. However, we will need this decomposition only for the

Archimedean case.

In the case that F is Archimedean, we have V (F ) = ℝ×+. Let d�′r be the “differential”

of �′r; that is, d�′r(t) = log�′r(e
t). Since the differential is a linear map, then it must be

equivalent to a multiplication by a real number �. Exponentiating, we obtain �′r(∣x∣F ) = ∣x∣�.

Applying again the “differential argument”, we obtain �′u(∣x∣F ) = ∣x∣it for some real number

t. Therefore, �(x) = ∣x∣sF for some s ∈ ℂ.

If F is non-Archimedean, we have V (F ) = qℤ, and hence �′ : qℤ → ℂ×. Therefore, �′ is

completely determined by its value on q, and �′(q) = qs for the complex number s = log(�′(q))
log(q)

,

which is determined up to an integer multiple of 2�i/ log(q). Consequently,

�(x) = �′(∣x∣F ) = ∣x∣sF .
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Proposition 4.1.3. Every quasi-character � of F× has the form

�(x) = �̃(x̃)∣x∣sF ,

where �̃ is a unitary character of o×F , x̃ is the continuous homomorphism of F× to o×F , and

s ∈ ℂ. The real part of s is uniquely determined by the quasi-character, but the imaginary

part of s is not, since ∣ ⋅ ∣i� for � ∈ ℝ is a unitary character. We denote by � the real part of

s and call it the exponent of �.

Proof. Certainly �̃(x̃)∣ ⋅ ∣sF is a quasi-character because the product of two quasi-characters

is a quasi-character. Conversely, let � be a quasi-character and denote by �̃ the restriction

of � to o×F . Since o×F is compact and �̃ is a continuous homomorphism of o×F into ℂ×,

then �̃(o×F ) is a compact subgroup of ℂ× and hence is contained in S1. Therefore, �̃ is an

actual character of o×F . The continuous homomorphism defined by x 7→ �(x)�̃(x̃)−1 is, by

definition, an unramified quasi-character of F×. From the previous proposition we have that

�(x)�̃−1(x̃) = ∣x∣sF for some s ∈ ℂ.

Remark 4.1.4. Note that a unitary character on F× is not the same as a unitary character

on o×F . Indeed, ∣ ⋅ ∣itF is a unitary character on F for all t ∈ ℝ. We always denote unitary

multiplicative characters on F times by �̃, regardless of whether there is an associated � in

question. If � is a quasi-character, then �̃ is the pullback of a unitary character on o×F as in

the proposition above. Other times, we may simply say to consider a unitary character �̃,

when there is no “larger” � of which to speak. Furthermore, if we analyze the characters �̃ of

o×F , then we can completely specify the quasi-characters of F×. We will do so case by case.

(i) Let F = ℝ. Since o×ℝ = {±1}, then �̃(x̃) = x̃n with n = 0, 1. If n = 0, then �̃ = 1.

Otherwise, if n = 1, then �̃ = sgn. In sum, a quasi-character of ℝ is either of the form ∣ ⋅ ∣s

or ∣ ⋅ ∣s sgn.

(ii) Let F = ℂ. We have that o×ℂ = S1. In Proposition 1.3.1 part (ii), we showed that the

dual group of S1 is isomorphic to ℤ. Therefore, �̃(x̃) = x̃n for some n ∈ ℤ. Identifying ℂ×

with ℝ×+ × S1, every quasi-character of ℂ takes the form

�s,n : rei� 7→ rsein�.
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(iii) Finally, let F be non-Archimedean and p be the unique prime ideal in F . Since �̃ is

continuous and unitary, then for sufficiently large n ∈ ℕ, the subgroup 1 + pn is mapped by

�̃ to a a neighborhood of 1 in S1. However, there are no small subgroups of S1. Therefore,

there exists an n ∈ ℕ such that �̃(1 + pn) = {1}. For the smallest n with this property, we

call pn the conductor of �̃. If �̃ is trivial (n = 0), then we say the conductor is p0 = o×F .

Consequently, �̃ is induced by a character on the finite group o×F/(1 + pn). Since o×F/(1 + pn)

is a finite abelian group, then the character group is isomorphic to the group itself, and

hence is finite. Although in the proof of the local functional equation we will denote quasi-

characters by �s,n, where �s,n = ∣ ⋅ ∣sF �̃ and where �̃ is unitary character of conductor pn, we

must realize that often there is more than one unitary character of conductor pn.

Two quasi-characters are called equivalent if their quotient is an unramified quasi-

character. This relation certainly is reflexive, transitive, and symmetric, and hence an

equivalence relation. Each equivalence class is isomorphic to the space of unramified quasi-

characters. We now will describe the space of quasi-characters with the aforementioned

equivalence relation for the three types of local fields.

(i) If F = ℝ, then he space of quasi-characters is a pair of complex-planes.

(ii) If F = ℂ, then the space of quasi-characters is a countable set of complex planes

indexed by the integers.

(iii) If F is non-Archimedean, then the space of quasi-characters is a countable set of

cylinders

{s ∈ ℂ : s ∼= s′ if s− s′ = m
2�i

log(q)
, m′ ∈ ℤ}.

Define the Gamma function by the integral

Γ(z) =

∞∫
0

e−ztz−1dt.

This integral(function) converges absolutely and is analytic for ℜ(z) > 0. The Gamma

function can also be defined by the Euler product

Γ(z) =
1

z

∞∏
n=1

((
1 +

1

n

)z (
1 +

z

n

))
.
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Since 1/z ∕= 0 for ℜ(z) > 0, and the limit as n → ∞ of both
(
1 + 1

n

)z
and

(
1 + z

n

)
is 1, then

the Γ function is never 0 for ℜ(z) > 0. From this product definition, it is routine to show

that Γ(z) satisfies the following functional equation

Γ(z + 1) = zΓ(z).

Using this functional equation, one can show that Γ(z) can be meromorphically continued

to the entire complex plane with simple poles at z = −n, for n ∈ ℕ ∪ {0}, with residues

(−1)n/n!. See Lang [20], Chapter XV, for an introduction to the Gamma function.

Definition 4.1.5. Let F be a local field and let � ∈ Homcont(F
×,ℂ×).

(i) If F = ℂ, then let

L(�s,n) = Γℂ(s+
∣n∣
2

) = (2�)−(s+
∣n∣
2

)Γ(s+
∣n∣
2

). (4.1)

(ii) If F = ℝ and � = �̃∣ ⋅ ∣s, then let

L(�) =

⎧⎨⎩Γℝ(s) = �−s/2Γ(s/2) if �̃ = 1

Γℝ(s+ 1) if �̃ = sgn.

(4.2)

(iii) If F is non-Archimedean, then let

L(�) =

⎧⎨⎩(1− �(�F ))−1 if � is unramified ,

1 otherwise,

(4.3)

where �F is the uniformizing parameter, a generator of the unique maximal ideal, p of F .

Note that since � is unramified, then �(oF ) = 1, which implies that �(�F ) is well-defined.

Remark 4.1.6. We have seen that each equivalence class of quasi-characters is a surface

that is isomorphic to the whole complex plane, or a quotient group of the complex plane.

Therefore, it is reasonable to say that L(�), for a given local field F , is a function on

the domain of quasi-characters of F . In this way, it makes sense to say that L(�) is a

meromorphic, nonzero, function of s ∈ ℂ. That is, on each equivalence class of quasi-

characters, L(�) is a meromorphic function of s ∈ ℂ.
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Given any quasi-character � of F× and a complex number s, the product �∣ ⋅ ∣sF is also a

character. And we write L(s, �) for L(�∣ ⋅ ∣sF ). We define the shifted dual of � to be

�̌ = �−1∣ ⋅ ∣F

so that

L( ˇ(�∣ ⋅ ∣sF )) = L(�−1∣ ⋅ ∣−sF ∣ ⋅ ∣F ) = L(�−1∣ ⋅ ∣1−sF ) = L(1− s, �−1).

4.2 Local Additive Characters and the Self-Duality of Local Fields

In order the prove the self-duality of local fields, we will need to establish the existence

of a non-trivial additive character. We will now construct the standard non-trivial additive

characters for each of the local fields.

(i) (F = ℝ) Let  (x) = e−2�ix. We have  (x) ∕= 1 if and only if x ∈ ℝ − ℤ. Furthermore,

 (x+ y) = e−2�i(x+y) = e2�ixe−2�iy =  (x) (y) and ∣ (x)∣ =  (x) (x) = 1. Clearly,  is

continuous.

(ii) (F = ℂ) Set  (x) = e−2�itrℂ/ℝ(x), where trℂ/ℝ(x) = x + x = ℜ(x). We have  (x) ∕= 1 if

and only if ℜ(x) ∕∈ ℤ. It can be verified easily that  is a continuous homomorphism of

ℂ into S1.

(iii) (F non-Archimedean). First, we will define a non-trivial character on ℚp, for some

rational prime p, and then use the trace map, which is additive, to define a character on

a finite extension of ℚp. Define  p on ℚp by the following composition:

 p = [ℚp
can.−→ ℚp/ℤp −→ ℚ/ℤ

e2�i(⋅)

−→ S1].

Recall that every x ∈ ℚp can be represented in the form

x = x−rp
−r + x1−rp

1−r + ⋅ ⋅ ⋅+ x−1p
−1 + x0 + x1p+ ⋅ ⋅ ⋅ =

−1∑
j=−r

xjp
j+r

pr
+
∞∑
i=0

xip
i (4.4)
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with xn ∈ ℤ and 0 ≤ xn ≤ p − 1. Also, x ∈ ℤp if and only if �−r = 0 whenever r > 0.

Setting a :=
∑−1

j=−r xjp
j+r and b :=

∑∞
i=0 xip

i, we have

x =
a

pr
+ b with a ∈ ℤ, b ∈ ℤp, r ∈ ℕ ∪ {0}.

We say that a
pr

the fractional part of x. Since the class a
pr

+ ℤ in ℚ/ℤ is independent of

the choice of a and r, then there exists a well-defined homeomorphism � of ℚp into ℚ/ℤ

given by

�(x) =
a

pr
+ ℤ.

We set

 p(x) = e2�i�(x).

Since �(x) ∈ ℤ if and only if x ∈ ℤp, then  p(x) = 1 if and only if x ∈ ℤp. As such,

 p(x+ y) =  p(x) for all y ∈ ℤp, making  p locally constant.

If � ∈ ℚ, then there is a unique expansion of the form

� =
∑
p

ap
p�p

+ b,

where ap, �p, b ∈ ℤ and ap = 0 for all but finitely many primes. Indeed, let the fraction

ap
p�p

be the fractional part of � in the p-adic numbers. Then consider the difference

� −
∑

p
ap
p�p
. For p ∕= q, ap

p�p
∈ ℤq, while � − aq

p�q
∈ ℤq, since aq

p�q
is the polar part of the

q-adic expansion of �. Consequently,

�−
∑
p

ap
p�p

= �− aq
p�q
−
∑
p ∕=q

ap
p�p
∈ ℤq

for all primes q, and thus � −
∑

p
ap
p�p
∈ ℤ. We are explicitly realizing ℚ/ℤ as the direct

sum of its p-power torsion subgroups. That is, ℚ/ℤ ∼=
⊕

pℚp/ℤp. The character  p fits
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into the following commutative diagram

ℚp/ℤp

S1

 p
>

ℚ/ℤ

inc

∨ r 7→ e2�r

>

Unlike e2�x for x ∈ ℝ, the function  p : x → e2�i�(x) does not take all values in S1,

rather it takes exactly the pth power roots of unity.

For any finite extension F of ℚp, we set  (x) =  p(trF/ℚp(x)), where  p is the standard

additive character on ℚp. Recall that the trace of an element x in F is defined to be the

trace of the endomorphism y 7→ xy of the finite-dimensional ℚp-vector space F . It can

be shown that the trace is a non-degenerate bilinear form. See Neukirch [23], Chapter

1, Section 2. The conductor of an additive-character of a non-Archimedean local field is

defined to be pm where p is the unique prime ideal of F and

m = inf{r ∈ ℤ :  ∣pr = 1}.

Since  is continuous and takes the value 1 at 0, then m is finite. With this in mind, let

us define the subset o′F of F , called the dual of oF , by

o′F := {x ∈ F : trF/ℚp(x ⋅ oF ) ⊆ ℤp}.

Let x, y ∈ o′F . Then

trF/ℚp((x+ y) ⋅ oF ) = trF/ℚp(x ⋅ oF + y ⋅ oF ) = trF/ℚp(x ⋅ oF ) + trF/ℚp(y ⋅ oF ) ∈ ℤp,

which implies that o′F is a subgroup of F . Furthermore, if w ∈ ℤp, then

trF/ℚp(wx ⋅ oF ) = trF/ℚp(x ⋅ woF ) = trF/ℚp(x ⋅ oF ) ∈ ℤp,
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which implies that wx ∈ o′F . These two facts prove that o′F is a ℤp sub-module of F.

Since F is a local field, then

o′F = �−dF oF ,

where �F is a uniformizing parameter of the unique prime p of F . The different of a

local field, denoted DF , is defined to be o′−1
F . In this notation, we say the conductor of

 is D−1
F = �−dF oF .

Armed with the existence of non-trivial additive characters on local fields, except for the

function field case, which we are not considering, we will now provide a proof of self-duality.

Theorem 4.2.1. Let  be a fixed nontrivial unitary additive character of the locally compact

field F . The existence of such a character was shown above. For each a ∈ F , define

 a : F → S1 by  a(x) =  (ax). Then the map � : F → F̂ given by a 7→  a is a topological

group isomorphism.

Proof. We first will show that � is a well-defined map and, furthermore, is an injective

group homomorphism of F into its Pontryagin dual F̂ . We have

 a(x+ y) =  (a(x+ y)) =  (ax+ ay) =  (ax) ⋅  (ay) =  a(x) ⋅  a(y)

and ∣ a(x)∣ = 1 for all x, y ∈ F because  a homomorphism of F into S1. Since left

multiplication by a is a continuous map from F into itself, and  is a continuous map of

F into S1, then  a is continuous, and thus a unitary character. Consequently, � is a well

defined map. By definition, � (a+ b) =  a+b. For all x ∈ F , we have

 a+b(x) =  ((a+ b)x) =  (ax+ bx) =  (ax) ⋅  (bx) =  a(x) ⋅  b(x).

Hence � (a + b) = � (a) ⋅ � (b), which proves that � is a homomorphism of groups. If  a

is trivial, then  a(x) = 1 ⇔  (ax) = 1 for all x ∈ F . However, since left multiplication by a

nonzero element of F is an automorphism of the field F viewed as an additive group, then  a

is trivial only if a = 0 because  was assumed to be non-trivial. Conversely, if a = 0, then  a

is trivial. As a consequence, � is an injective group homomorphism of F into F̂ .
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The topology on the dual group F̂ is the compact-open topology. A neighborhood base

of trivial character is given by

W (C, V ) = {� : �(C) ⊆ V }

where C is a compact set of F and V is an open neighborhood of the identity of S1. A

neighborhood base of the identity of S1 is given by V� := {s ∈ S1 : ∣s − 1∣ < �} for � ∈ ℝ,

� > 0. Furthermore, it suffices to consider compact sets of C of the form Cm := {x ∈ F :

∣x∣F ≤ m} for m ∈ ℝ and m > 0. In other words, we can reformulate the neighborhood base

of the trivial character as

W (Cm, �) = {� : ∣�(x)− 1∣ < � for x ∈ Cm}.

By simplifying the topology of the dual group F̂ we can simplify the proof of bi-continuity of

� .

Since  is continuous, then for all � > 0 there exists a � > 0 such that ∣ (x) − 1∣ < �

whenever ∣x∣F < �. In order to show continuity of the group homomorphism � we must

show that for all {W (�, Cm)}�,m∈ℝ×+ there exists an open neighborhood U of 0 in F with

� (U) ⊆ W (�, Cm). The set

U = {y ∈ F : ∣y∣F < �/m}

is open. For all y ∈ U we have that

∣� (y)(x)− 1∣ = ∣ (yx)− 1∣ < �

for all x ∈ Cm because ∣yx∣F = ∣y∣F ∣x∣F < �. Therefore, � (U) ⊆ W (�, Cm), which implies

that � is a continuous injective group homomorphism.

To show that �−1
 is a continuous map of � (F ) onto F , we need to show that for all

� > 0 there exist an � > 0 and m > 0 such that ∣�−1
 (�)∣F < � for all � ∈ � (F ) ∩W (�, Cm).

Since  is not trivial, then there exists x0 ∈ F with  (x0) ∕= 1. For a given � > 0 set

� = ∣ (x0)− 1∣, m =
∣x0∣F
�

.

Let � ∈ � (F ) ∩W (�, Cm). For y ∈ F with � (y) ∈ W (�, Cm) we have that ∣ (yx) − 1∣ <

∣ (x0) − 1∣ for all x ∈ Cm, or, equivalently, if x ∈ F with ∣x∣F < ∣x0∣F
�

. It follows that
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x0 ∕∈ yCm, and hence

∣x0∣F > ∣y∣F
∣x0∣F
�
⇔ ∣y∣F < �.

This proves that � is a topological isomorphism onto its image.

See Proposition 1.3.4 for a proof that F̂ is locally compact. Since � is an open map,

then � (F ) is an open and hence closed subgroup of the locally compact group F̂ . By

Proposition 1.1.21, a closed subgroup of a locally compact group is locally compact in the

subspace topology. Let H = � (F ). Then H⊥ = {z ∈ F :  (zx) = 1 for all x ∈ F}.

However, since  is non-trivial, then H⊥ = {0}. The functorial nature of Pontryagin duality,

Theorem 1.3.10, tells us that F̂ /H ∼= Ĥ⊥, which is trivial. This proves that � is surjective,

completing the proof of self-duality of a local field.

Let G be a locally compact abelian group G with bi-invariant Haar measure dx. Let Ĝ

be the dual group of G. Note that Ĝ is locally compact by Proposition 1.3.4. Let f ∈ L1(G).

Recall that f̂ : Ĝ→ ℂ, the Fourier transform of f , is defined by the formula

f̂(�) =

∫
G

f(y)�(y)dg,

for � ∈ Ĝ. Let B(G) be the set of functions such that f is continuous, f ∈ L1(G), and

f̂ ∈ L1(Ĝ). The Fourier inversion theorem states that there exists a Haar measure d� on Ĝ

such that for all f ∈ B(G),

f(y) =

∫
Ĝ

f̂(�)�(y)d� =
ˆ̂
f(−y).

Note that we have written −y, but it could very well be y−1 if one is writing the group

operation multiplicatively.

Proposition 4.2.2. Let G be a locally compact abelian group with Haar measure dx, and

let d� be the dual measure; that is, the measure on the Pontryagin dual Ĝ relative to which

the Fourier inversion formula holds. Suppose that we have an isomorphism � : G → Ĝ of

topological groups. Then there is a unique measure � such that � = t ⋅ dx for some t ∈ ℝ×+,

and � identifies with its dual measure under �. One calls � the self-dual measure on G

relative to the isomorphism �.
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Proof. Identifying Ĝ with G, we can define the Fourier transform of an f ∈ L1(G) by

f̂(y) =

∫
G

f(x)�(y)(x)dx,

where �(y) is the unique character in Ĝ associated to y ∈ G. The Fourier inversion theorem

asserts the existence of a measure such that
ˆ̂
f(y) = f(−y) for all f ∈ B(G) and y ∈ G. Since

the Haar measures are unique up to a constant, then the Fourier inversion theorem implies

that
ˆ̂
f(y) = 1

t
⋅ f(−y) for some constant t with ⋅̂, defined relative to dx. Therefore, if we let

� = t ⋅ dx, then � identifies with the dual measure under �.

Remark 4.2.3. In this chapter, we will drop the traditional conjugation of the second

factor of the integrand. However, do note that the conjugation will reappear in the Fourier

inversion formula.

Proposition 4.2.4. For each local field F , the measure dx in Definition 3.2.10 is self-dual

with respect to the standard non-trivial characters constructed above.

Proof. It suffices to check one function, f(x), by the Fourier inversion theorem.

(i) Pick f(x) = e−�x
2
. We will differentiate the Fourier transform of f and obtain a

differential equation. Note that we are justified in bringing the derivative into the integral.

See Proposition 4.4.4, part (i), for justification of exchanging the order of the derivative and

integral. As such, we have

d

dy
f̂(y) =

d

dy

∞∫
−∞

e−�x
2

e−2�ixydx =

∞∫
−∞

e−�x
2 d

dy
e−2�ixydx =

=

∞∫
−∞

e−�x
2 − 2�ixe−2�ixydx =

∞∫
−∞

(−2�ixe−�x
2

)e−2�ixydx =

= ie−2�xye−�x
2∣∞−∞ + i

∞∫
−∞

e−�x
2

(−2�yi)e−2�ixydx = 2�yf̂(y).
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Solving the differential equation yields f̂(y) = Ce−�y
2
. We will compute f̂(0) in order to

determine C.

f̂(0) = =

∞∫
−∞

e−�x
2

dx =

√√√√⎷ ∞∫
−∞

∞∫
−∞

e−�(x2+y2)dxdy =

√√√√⎷ 2�∫
0

∞∫
0

e−�r2rdrd�

=

√√√√⎷�

∞∫
0

e−�udu =
√
−e−�u∣∞0 = 1.

Hence, C = 1 and f̂(y) = e−�y
2
. Applying the Fourier transform again yields

ˆ̂
f(y) = f(y) =

f(−y).

(ii) Pick f(x) = e−2�xx = e−2�((ℜx)2+(ℑx)2). Let � = y1 + iy2. Then

f̂(�) = 2

∞∫
−∞

∞∫
−∞

e−2�(x21+x22)e−4�i(x1y1−x2y2)dx1dx2

= 2

⎛⎝ ∞∫
−∞

e−2�x21e−4�ix1y1dx1

⎞⎠ ⋅
⎛⎝ ∞∫
−∞

e−2�x22e4�ix2y2dx2

⎞⎠
= 2

⎛⎝ ∞∫
−∞

e−�(
√

2x1)2e−2�i(
√

2x1)(
√

2y1)dx1

⎞⎠ ⋅
⎛⎝ ∞∫
−∞

e−�(
√

2x2)2e−2�i(
√

2x2)(−
√

2y2)dx2

⎞⎠ .

Applying the change of variable u1 =
√

2x1 and u2 =
√

2x2, we obtain

f̂(�) =

⎛⎝ ∞∫
−∞

e−�u
2
1e−2�iu1(

√
2y1)du1

⎞⎠ ⋅
⎛⎝ ∞∫
−∞

e−�u
2
2e−2�iu2(−

√
2y2)du2

⎞⎠
= e−�(

√
2y1)2e−�(−

√
2y2)2 = e−2�(y21+y22) = e−2��� = f(�).

Therefore,
ˆ̂
f(x) = f(x) = f(−x).

(iii) Let f(x) be the characteristic function of oF . Let  be the standard non-trivial

character. Then,

f̂(y) =

∫
F

f(x) (xy)dx =

∫
oF

 (xy)dx.
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We see that when x ∈ oF ,  (xy) = 1 if and only if y ∈ D−1
F . Otherwise, the integral is 0 by

orthogonality of characters, since oF is a subgroup. By our choice of measure, we have that

f̂(y) = Vol(oF , dx) = N(DF )−1/2 for y ∈ D−1
F ,

and 0 elsewhere. Then,

ˆ̂
f(x) =

∫
D−1
F

N(DF )−1/2�(yx)dy.

For y ∈ D−1
F , �(yx) is trivial if and only if x ∈ oF . Otherwise, the integral is 0 by

orthogonality of characters, since D−1
F is a subgroup. Therefore,

ˆ̂
f(x) = N(DF )−1/2�(D−1

F ) = N(DF )−1/2N(DF )�(oF ) = 1 for x ∈ oF ,

and 0 otherwise. So,
ˆ̂
f(x) = f(x) = f(−x).

4.3 The Multiplicative Haar Measure

We would like to construct a measure on the multiplicative group F× from an additive

measure dx. Since F is locally compact and F× = F − {0} is closed, then F× is locally

compact as well. Therefore, F× admits a Haar measure, which is unique up to positive real

constant. If we construct an invariant functional on C+
c (F×) = {f ∈ Cc(F×) : f(x) ≥

0 ∀x ∈ F× and ∣∣f ∣∣u > 0} where ∣∣ ⋅ ∣∣u is the uniform or sup norm, then we can apply the

Riesz representation theorem to recover the invariant Radon measure on F× corresponding

to the functional. Let ∣ ⋅ ∣−1
F be as it was in Proposition 3.2.11. If g ∈ C+

c (F×), then

g∣ ⋅ ∣−1
F ∈ C+

c (F −{0}). This is, in fact, a one-to-one correspondence. Let us define a functional

Φ on C+
c (F×) by

Φ(g) =

∫
F−{0}

g(x)
dx

∣x∣F
.
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This is clearly a positive, non-trivial, linear functional on C+
c (F×). To show the invariance of

Φ we consider the action of Ly on g. That is,

Φ(Lyg) =

∫
F−{0}

Lyg(x)
dx

∣x∣F
=

∫
F−{0}

g(y−1x)
dx

∣x∣F
=

∫
y−1(F−{0})

f(x)
∣y∣Fdx
∣yx∣F

=

∫
F×

f(x)
dx

∣x∣F
.

Therefore, Φ is an invariant, positive, non-trivial, linear functional on C+
c (F×). Applying the

Riesz representation theorem, we know that this functional Φ must come from an invariant

Radon measure (Haar measure). Let us denote this measure d∗x and write d∗x = dx
∣x∣F

.

Since the functions in C+
c are dense in L1, then we can extend, by limits, the one-to-one

correspondence between C+
c (F×) and C+

c (F − {0}) to L1(F×) and L1(F − {0}), respectively.

We summarize the above in the following proposition.

Proposition 4.3.1. There is a one-to-one correspondence of L1(F×) and L1(F − {0}) given

by g(x) 7→ g(x)∣x∣−1
F , and for these functions we have∫

F×
g(x)d∗x =

∫
F−{0}

g(x)
dx

∣x∣F
.

Since the Haar measure is unique up to a constant, then any measure on F× is of the

form cdx/∣x∣F for some positive constant c. For F non-Archimedean, let us consider the

multiplicative measure

d∗x =
q

q − 1

dx

∣x∣F
,

where q is the order of the residue field oF/p ⋅ oF and p is the unique prime in F . This

multiplicative measure is the unique measure such that o×F has the same measure as the

additive measure of oF . Let us check this:

Vol(o×F , d
∗x) =

∫
o×F

q

q − 1

dx

∣x∣F
=

q

q − 1

∫
o×F

dx =
∞∑
n=0

q−n
∫
o×F

dx =
∞∑
n=0

∫
o×F

q−ndx =

=
∞∑
n=0

∫
�nF o

×
F

dx =

∫
∪∞n=0�

n
F o
×
F

dx =

∫
oF

dx = Vol(oF , dx).
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4.4 Local Schwartz-Bruhat Functions

Definition 4.4.1. A complex-valued function f on F is smooth if it is C∞ for F Archimedean,

and is locally constant otherwise. That is, if F is non-Archimedean, we say f is smooth if

f(x) = f(x0) for all x sufficiently close to x0. In the Archimedean case, a Schwartz function

f on F is a smooth function such that the function, together with all its higher derivatives,

vanish at infinity faster than any power of ∣x∣. That is, f is a Schwartz function if, for any

nonnegative integers N,M ,

sup
x∈F

(1 + ∣x∣)N ∣ d
M

dxM
f(x)∣ <∞.

A Schwartz-Bruhat function is a Schwartz function if F is Archimedean, and is a smooth

function with compact support if F is non-Archimedean. Let S(F ) denote the space of

Schwartz-Bruhat functions.

If f is a Schwarz-Bruhat function on F Archimedean, then dM

dxM
f(x) ∈ Lp for all

p ∈ [1,∞]. Indeed, ∣ dM
dxM

f(x)∣ ≤ CN(1 + ∣x∣)−n for all N , and (1 + ∣x∣)−n ∈ Lp for N > n/p.

Examples 4.4.2.

(i) If F is Archimedean, then fn(x) = xne−∣x∣
2

is a Schwartz-Bruhat function for any

nonnegative integer n.

(ii) If F is non-Archimedean, then the characteristic functions of compact sets of F are

Schwartz-Bruhat. Examples of compact sets of F are pn for n, a non-negative integer,

where p, the unique prime of F .

Proposition 4.4.3. For every f ∈ S(F ), F non-Archimedean, there exist integers m and n,

−m ≤ n, such that f(x) = 0 for x ∕∈ p−m, and for x ∈ p−m, f(y) = f(x) for all y ∈ x+ pn.

Proof. Let x ∈ supp(f). Since f is locally constant, then there exists an open neighborhood

Ux of x such that f(Ux) = f(x). Moreover, since {pn}n∈ℕ forms a neighborhood basis for

0 ∈ F , then by homogeneity, we may take Ux = x + pn(x) for some n(x) ∈ ℕ. Then

∪x∈supp(f)Ux is an open cover of supp(f). Since the support of f is compact, then finite

number of the Ux cover the support. That is, there exists a finite set of x1, . . . , xr ∈ supp(f)

such that supp(f) ⊆ ∪ri=1Uxi . Let n = minn(xi). Then supp(f) ⊆ ∪ni=1(x + pn). Since

the Heine-Borel theorem holds for a non-Archimedean local field, then supp(f), which is
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compact, is bounded. See Proposition 1.1.33 for a proof in the p-adic case. Also, every

bounded set in F is contained in some p−m. This completes the proof.

Proposition 4.4.4. Let F = ℂ and  (x) and dx be given as above. If f ∈ S(F ) then the

following assertions hold for i = 1, 2:

(i)
∂p

∂ypi
f̂(y1 + iy2) = (−4�i)p(x̂pi f)(y1 + iy2)

(ii)

ypi f̂(y1 + iy2) = (4�i)−p(
∂̂p

∂xpi
f)(y1 + iy2)

Proof.

(i) Let ℎ ∈ ℝ×. Let K(y1, y2) = f̂(y1 + iy2). Then

K(y1 + ℎ, y2)−K(y1, y2)

ℎ
=

2

ℎ

∞∫
−∞

∞∫
−∞

f(x1 + ix2)(e−4�i(x1(y1+ℎ)−x2y2) − e−4�i(x1y1−x2y2))dx1dx2

=
2

ℎ

∞∫
−∞

∞∫
−∞

f(x1 + ix2)(e−4�ix1ℎ − 1)e−4�i(x1y1−x2y2)dx1dx2.

Applying L’Hospitals, we obtain

lim
ℎ→0

f(x1 + ix2)(e−4�ix1ℎ − 1)

ℎ
= −4�ix1f(x).

Since f ∈ S(F ), then −4�ix1f(x) is integrable. Therefore, the Lebesgue dominated

convergence theorem yields

∂

∂y1

f̂(y1 + iy2) = lim
ℎ→0

K(y1 + ℎ, y2)−K(y1, y2)

ℎ
= −4�ix1f̂(y1 + iy2).

Using induction, one obtains

∂p

∂yp1
f̂(y1 + iy2) = (−4�i)p(x̂p1f)(y1 + iy2).

The same argument works for ∂
∂y2

, which completes part (i).
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(ii) Using integration by parts and that f(x1 + ix2)e−4�i(x1y1−x2y2) → 0 as x1 →∞ for a fixed

x2, y1, y2 ∈ ℝ, one obtains:

y1f̂(y1 + iy2) = 2

∞∫
−∞

∞∫
−∞

f(x1 + ix2)y1e
−4�i(x1y1−x2y2)dx1dx2

=
2

4�i

∞∫
−∞

∞∫
−∞

∂

∂x1

f(x1 + ix2)e−4�i(x1y1−x2y2)dx1dx2 =

= (4�i)−1(
∂̂

∂x1

f)(y1 + iy2)

Using induction, one obtains

yp1 f̂(y1 + iy2) = (4�i)−p(
∂̂p

∂xp1
f)(y1 + iy2).

The same argument works for y2.

Proposition 4.4.5. Let F = ℝ and  (x) and dx be given as above. If f ∈ S(F ), then the

following assertions hold for p ∈ ℕ ∪ {0} :

(i) dp

dyp
f̂(y) = (−2�i)p(̂xpf)(y)

(ii) yp f̂(y) = (2�i)−p(̂ dp

dxp
f)(y).

Proof. The proof is identical to the F = ℂ case, but one dimension less.

Theorem 4.4.6. S(F ) is a complex vector space and the Fourier transform maps S(F ) into

S(F ).

Proof. If a, b ∈ ℂ and f, g ∈ S(F ), then af + bg ∈ S(F ). Indeed, for F Archimedean,

sup
x∈F

(1 + ∣x∣)N ∣ d
M

dxM
(af + bg)(x)∣ ≤ sup

x∈F
(1 + ∣x∣)N(∣a∣∣ d

M

dxM
f(x)∣+ ∣b∣∣ d

M

dxM
g(x)∣) <∞.

If F is non-Archimedean, then af + bg is locally constant and of compact support since f, g

are locally constant and of compact support. All of the other properties of vector spaces hold

and are easily verified. One sees that

∣f̂(y)∣ = ∣
∫
F

f(x) (xy)∣dx ≤
∫
F

∣f(x) (xy)∣dx ≤
∫
F

∣f(x)∣dx.

122



Hence, if f ∈ S(F ), F Archimedean, then f̂ is bounded. We will now proceed case by

case.

(i) (F = ℝ) Since ypf̂(y) = (2�i)−p ˆdp/dxpf(y) and dp/dxpf ∈ S(F ), then ypf̂(y) is

bounded. Thus, f̂ tends rapidly to zero at infinity. Also,

yp
dq

dyq
(f̂)(y) = (−2�i)qyp( ˆxqf)(y) = (−2�i)q(2�i)−p(

ˆdq

dxq
(xpf))(y)

= (−1)q(2�i)q−p(
ˆdq

dxq
(xpf))(y).

Since dq/dxq(xpf) ∈ S(F ), then yp(dq/dxq)f̂(y) is bounded. Therefore, f̂ ∈ S(F ).

(ii) (F = ℂ) Since

yp1y
q
2f̂(y1 + iy2) = (4�i)−p(−4�i)−q(

ˆ∂p
∂xp1

∂q

∂xq2
f)(y1 + iy2),

then yp1y
q
2f̂(y1 + iy2) is bounded. Thus, f̂ tends rapidly to zero at infinity. Also,

yp1y
q
2

∂r

∂yr1

∂s

∂ys2
f̂(y1 + iy2) = (−1)r(4�i)r+syp1y

q
2
ˆ(xr1xs2f)(y1 + iy2)

= (−1)r+q(4�i)r+s−p−q
ˆ

(
∂p

∂xp1

∂q

∂xq2
(xr1x

s
2f))(y1 + iy2).

Since ∂p

∂xp1

∂q

∂xq2
(xr1x

s
2f) ∈ S(F ), then yp1y

q
2
∂r

∂yr1

∂s

∂ys2
f̂(y1 + iy2) is bounded. Therefore, f̂ ∈ S(F ).

(iii) (F non-Archimedean) We will not fix a specific measure for this case. Although we will

fix the additive character  (x) =  p(trF/ℚp(x)) with conductor p−d, the proof will hold for

any additive character. In view of Proposition 4.4.3, all f ∈ S(F ) factor through the finite

quotient group p−m/pn, m, n ∈ ℤ, −m ≤ n. Let R denote a residue system of p−m/pn in

p−m. Then we see that

f̂(y) =

∫
F

f(x) (xy)dx =
∑
x′∈R

∫
x′+pn

f(x) (xy)dx =
∑
x′∈R

f(x′)

∫
x′+pn

 (xy)dx.

Applying the translation invariance of the Haar measure, we obtain∫
x′+pn

 (xy)dx =

∫
pn

 ((x′ + x)y)dx =  (x′y)

∫
pn

 (xy)dx.
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For y ∈ p−nD−1
F and x ∈ pn we have  (xy) =  p(trF/ℚp(xy)) = 1, and hence that∫

pn

 (xy)dx = Vol(pn, dx) = (N(pn))−1Vol(oF , dx).

For y ∕∈ p−nD−1
F there exists an x0 ∈ pn such that  (x0y) ∕= 1. Applying the translation

invariance of the Haar measure, we obtain∫
pn

 (xy)dx =

∫
pn

 ((x+ x0)y)dx =  (x0y)

∫
pn

 (xy)dx

, and hence that f̂(y) = 0 for y ∕∈ p−nD−1
F . Note that in order to conclude that f̂(y) = 0, we

needed that pn be compact, and hence of finite measure. Therefore,

∫
pn

 (xy)dx =

⎧⎨⎩N(p)−nVol(oF , dx) for y ∈ p−nD−1
F

0 for y ∕∈ p−nD−1
F .

Putting it all together, we obtain

f̂(y) =

⎧⎨⎩N(p)−nVol(oF , dx)
∑

x′∈R f(x′) (x′y) for y ∈ p−nD−1
F

0 for y ∕∈ p−nD−1
F .

For all x′ ∈ R and y ∈ p−nD−1
F we have that

 (x′(y + x′−1D−1
F )) =  p(trF/ℚp(x

′(y + x′−1D−1
F )) =  p(trF/ℚp(x

′y) + trF/ℚp(x
′x′−1D−1

F )) =

=  p(trF/ℚp(x
′y) + trF/ℚp(D

−1
F )) =  p(trF/ℚp(x

′y)) p(trF/ℚp(D
−1
F )) =

=  p(trF/ℚp(x
′y)) =  (x′y).

This proves that  is locally constant. Consequently, f̂ ∈ S(F ), which completes the proof.

Corollary 4.4.7. S(F ) ⊆ B(F ), where B(F ) is the set of functions such that the Fourier

inversion theorem holds.

Proof. By definition, if f ∈ S(F ), then f is continuous and f ∈ L1(F ). In the proposition

above we proved that f̂ ∈ S(F ), which implies that f̂ ∈ L1(F̂ ) = L1(F ). This completes the

proof.
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Corollary 4.4.8. The Fourier transform is an isomorphism of S(F ).

Proof. We know that the Fourier transform maps S(F ) into S(F ) by the theorem above. It

is easy to see that the map f 7→ f̌ , defined by f̌(x) = f̂(−x), maps S(F ) into S(F ). The

Fourier inversion formula, or the self-duality of the measure in this case (local fields), asserts

that ⋅̌ and ⋅̂ are inverses of each other. Therefore, ⋅̂ is an isomorphism.

4.5 The Meromorphic Continuation and Functional Equation of the Local Zeta
Function

Definition 4.5.1. For f ∈ S(F ) and � ∈ Homcont(F
×,ℂ×), we define the associated local

zeta function to be

Z(f, �) =

∫
F×

f(x)�(x)d∗x.

Note that Z(f, �) is dependent on the multiplicative measure d∗x. If we fix an additive

measure dx and choose d∗x = dx/∣x∣F as in Proposition 4.3.1, then Z(f, �) is dependent on

dx.

Remark 4.5.2. In the same way as Remark 4.1.6, Z(f, �) is a function on the domain of

quasi-characters of F . Since each equivalence class of quasi-characters is a surface that is

isomorphic to either the whole complex plane or a quotient group of the complex plane, then

we may speak of the analytic continuation from one subset of an equivalence class to a larger

subset. In the next theorem, we first will show that Z(f, �) is a holomorphic and absolutely

convergent function in the domain of quasi-characters of exponent (� = ℜ(s)) greater than

1. Furthermore, we will show that it satisfies a functional equation, which thereby yields

an analytic continuation of Z(f, �) to a function in the domain of quasi-characters of all

exponents.

In the following theorem, for F Archimedean we take  to be standard non-trivial

additive character, and dx to be the Lebesgue measure if F = ℝ or twice the Lebesgue

measure if F = ℂ. Also, set d∗x = dx/∣x∣F , where ∣x∣F is the normalized absolute value of

F . However, in the style of Ramarkishnan and Valenza [24], for non-Archimedean fields F

we will not restrict ourselves to a specific additive character, Haar measure, or multiplicative

measure. Nevertheless, for any dx and d∗x one has the relation d∗x = cdx/∣x∣F for some
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positive real constant c, since the multiplicative Haar measure is unique up to a constant.

Two factors,  and �, will appear in the theorem below. Both of them will depend, most

importantly, on �, and hence on s, but they will also depend on dx and  . As such, we write

�(�,  , dx) and (�,  , dx) to indicate their dependence on �,  , and dx. The pair ( , dx)

is not required to be self-dual in the proof of this theorem. In the following section, we will

show how �(�,  , dx) depends on the choice of  and dx.

Theorem 4.5.3. Let f ∈ S(F ), and � = �̃∣ ⋅ ∣s where �̃ is the unitary part of the quasi-

character �. Let � = ℜ(s). Then the following statements hold:

(i) Z(f, �) = Z(f, �̃, s) is holomorphic and absolutely convergent if � > 0.

(ii) If 0 < � < 1, then there is a functional equation

Z(f̂ , �̌) = (�,  , dx)Z(f, �),

for some (�,  , dx), which is both independent of f and meromorphic as a function of s.

Thus, Z(f, �) admits a meromorphic continuation to the whole s plane.

(iii) There exists a factor �(�,  , dx) that lies in ℂ× for all s and satisfies the relation

(�,  , dx) = �(�,  , dx)
L(�̌)

L(�)
.

Therefore, the relation

L(�)Z(f̂ , �̌) = �(�,  , dx)L(�̌)Z(f, �)

illustrates that the poles of Z(f, �) are no worse than those of L(�), which is independent of

f . Furthermore, L(�) = Z(f0, �) for some suitable f0.

Proof. (i) Since f ∈ S(F ), then for F Archimedean we have ∣f(x)∣∣x∣�−1
F → 0 rapidly

as ∣x∣ → ∞. Let K be a punctured neighborhood of 0 in F . We know that there exists

a positive real number C such that ∣f(x)∣ ≤ C for all x ∈ K . The local zeta function

convergence thus is determined by the integrability of ∣x∣�−1
F around zero for any positive �.
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In other words,

∣Z(f, �)∣ =

∣∣∣∣∣∣
∫
F×

f(x)�(x)d∗x

∣∣∣∣∣∣ =

∫
F−{0}

∣f(x)∣∣x∣�−1
F dx

= (

∫
F−K

+

∫
K

)∣f(x)∣∣x∣�−1
F dx ≤M + C

∫
K

∣x∣�−1
F dx,

where M is a positive real number. From basic calculus, the integral is finite for � > 0. We

see that
d

ds
f(x)�̃(x)∣x∣sF = f(x)�̃(x)

d

ds
es log(∣x∣F ) = f(x)�̃(x) log(∣x∣F )∣x∣sF ,

which is continuous and absolutely integrable for � > 0. Therefore,

d

ds
Z(f, �̃, s) =

d

ds

∫
F×

f(x)�̃(x)∣x∣sFd∗x =

∫
F×

f(x)�̃(x) log(∣x∣F )∣x∣sFd∗x.

We now are left with the non-Archimedean case. Let d∗x = cdx. Let q be the order of the

residue field oF/poF , where p is the unique prime of F . Since f ∈ S(F ), then by Lemma

5.16, f factors through the finite quotient group p−m/pn, m, n ∈ ℤ, −m ≤ n. By linearity

and translation invariance of the Haar measure, it suffices to consider f = �pn . Let �F be a

uniformizing parameter of p. From

�nFoF − {0} =
∞∪
n

�kFo
×
F

and the translation invariance of the multiplicative measure, it follows that

∣Z(f, �)∣ = c

∫
F−{0}

∣f(x)∣∣x∣�−1
F dx = c

∫
F−{0}

�(�nF )∣x∣�−1
F dx = c

∞∑
k=n

∫
�kF o

×
F

∣x∣�Fd∗x =

=
∞∑
k=n

∫
o×F

∣�kFx∣�Fd∗x =
∞∑
k=n

q−k�
∫
o×F

d∗x =
q−n�

1− q−�
Vol(o×F , d

∗x),

which is finite for � > 0. Like the Archimedean case, we can apply d/ds to Z(f, �̃, s). We

have proved part (i).

(ii) We will first prove a lemma.
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Lemma 4.5.4. For all � ∈ X(F×) with 0 < � < 1, we have

Z(f, �)Z(ĝ, �̌) = Z(f̂ , �̌)Z(g, �).

Proof. By part (i), the zeta functions that have � = �̃∣ ⋅ ∣sF are well-defined for � > 0, where

as the zeta functions that have a �̌ = �̃−1∣ ⋅ ∣1−sF are well-defined for ℜ(1 − s) > 0 ⇔ 1 − � >

0 ⇔ � < 1. Recall that since f, g ∈ S(F ), then f̂ , ĝ ∈ S(F ). Therefore, the above zeta

functions are all well-defined for 0 < � < 1. By definition,

Z(f, �)Z(ĝ, �̌) =

∫∫
F××F×

f(x)�(x)ĝ(y)�−1(y)∣y∣Fd∗xd∗y =

∫∫
F××F×

f(x)ĝ(y)�(xy−1)∣y∣Fd∗xd∗y.

The product (Haar) measure on F× × F× is the d∗xd∗y, and hence the measure is invariant

under the translation (x, y) 7→ (x, xy). Applying this transformation, the double integral

becomes∫∫
F××F×

f(x)ĝ(xy)�(y−1)∣xy∣Fd∗xd∗y =

∫
F×

⎛⎝∫
F×

f(x)ĝ(xy)∣x∣Fd∗x

⎞⎠�(y−1)∣y∣Fd∗y.

The last equality is justified by Fubini’s theorem, which is applicable because f ∈ S(F ) and

g ∈ S(F )⇒ ĝ ∈ S(F ). From the definition of ĝ, and Fubini’s Theorem, we obtain

∫
F×

f(x)ĝ(xy)∣x∣Fd∗x = c

∫
F

g(z)

⎛⎝∫
F

f(x)�(xzy)dx

⎞⎠ dz =

∫
F×

g(z)f̂(zy)∣z∣Fd∗z.

Applying the above results and Fubini’s theorem, we obtain

Z(f, �)Z(ĝ, �̌) =

∫
F×

⎛⎝∫
F×

g(z)f̂(zy)∣z∣Fd∗z

⎞⎠�(y−1)∣y∣Fd∗y

=

∫
F××F×

f̂(zy)ℎ(z)�(y−1)∣zy∣Fd∗yd∗z
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Making the change of variable y 7→ z−1y yields

Z(f, �)Z(ĝ, �̌) =

∫
F××F×

f̂(y)ℎ(z)�((z−1y)−1)∣y∣Fd∗yd∗z

=

∫
F××F×

f̂(y)ℎ(z)�(y−1z)∣y∣Fd∗yd∗z

=

∫
F××F×

f̂(y)�−1(y)∣y∣Fℎ(z)�(z)d∗yd∗z

= Z(f̂ , �̌)Z(ℎ, �),

which completes the proof.

Let us return to the proof of part (ii). Fix a Schwartz function f0 ∈ S(F ) and put

(�,  , dx) =
Z(f̂0, �̌)

Z(f0, �)
.

By the lemma above,  is independent of the choice of f0, and hence we obtain the desired

result

Z(f̂ , �̌) = (�,  , dx)Z(f, �). (4.5)

Also, notice that (�,  , dx) is independent of the multiplicative measure d∗x chosen. Indeed,

since the Haar measure is unique up to a positive real constant, then let d× = t ⋅ d∗x. We see

that

(�,  , dx) =
Z(f̂ , �̌)

Z(f, �)
=

∫
F×

f̂(x)�̌(x)d∗x∫
F×

f(x)�(x)d∗x
=

∫
F×

f̂(x)�̌(x)td∗x∫
F×

f(x)�(x)td∗x
=

∫
F×

f̂(x)�̌(x)d×x∫
F×

f(x)�(x)d×x
.

As a bi-product of our calculations in part (iii), we will show that (�,  , x) is meromorphic

as a function of s. As such, since Z(f, �) is holomorphic for � > 0 and that Z(f̂ , �̌) is

holomorphic for � < 1, then equation 4.5 yields a meromorphic continuation of Z(f, �) to the

entire complex plane.

(iii) In this part, we will choose test functions f ∈ S(F ) for each type of local field of

characteristic zero and moreover, for specific equivalence class of quasi-characters, such that

Z(f, �) = ℎ(f, �,  , dx)L(�)
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and

Z(f̂ , �) = ℎ(f̂ , �̌,  , dx)L(�),

for some entire nonzero function ℎ that is dependent on f ,  and dx. If one does not fix the

multiplicative measure d∗x = dx/∣x∣F , then ℎ is also dependent on d∗x. As such, we will have

(�,  , dx) =
Z(f̂ , �̌)

Z(f, �)
=
ℎ(f̂ , �̌,  , dx)

ℎ(f, �,  , dx)

L(�̌)

L(�)
.

Since L(�), L(�̌), and ℎ(f̂ , �̌,  , dx)/ℎ(f, �,  , dx) are meromorphic as a functions of s, then

we will establish that (�,  , dx) is a meromorphic as a function of s, and is not dependent

on f . Finally, we will get that

�(�,  , dx) =
ℎ(f̂ , �̌,  , dx)

ℎ(f, �,  , dx)
.

Although ℎ(f̂ , �̌,  , dx) and ℎ(f, �,  , dx) are dependent on f and are only intermediary

results of this proof, they will reappear when we prove the functional equation of the Hecke

L-function. More specifically, ℎ will be used to prove that the global L-function L(s, �̃),

where �̃ is a unitary idele-class character, is a meromorphic function of s (Theorem 4.10.4).

We now proceed case by case.

(F = ℝ). For this calculation, we take dx be the Lebesgue measure and  (x) = e−2�ix.

Recall that every quasi-character � ∈ Homcont(ℝ×,ℂ×) is either of the form ∣ ⋅ ∣s or sgn ∣ ⋅ ∣s.

Note that we dropped the F from the absolute value because for ℝ, the normalized absolute

value is precisely the standard absolute value. These are the two equivalence classes of

quasi-characters, both of which are isomorphic to ℂ.

First, consider the equivalence class � = ∣ ⋅ ∣s and pick f0(x) = e−�x
2

for this class. The

function f0 is the standard example of a Schwartz function. Then

Z(f0, �) =

∫
ℝ×

e−�x
2∣x∣sd∗x = 2

∞∫
0

e−�x
2

xs−1dx.

Applying the change of variable u = �x2 ⇒ du = 2�x = 2�1/2u1/2, we obtain

Z(f0, �) =

∞∫
0

e−u(u�−1)(s−1)/2�−1/2u−1/2du = �−s/2
∞∫

0

e−uus/2−1du.
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Since

Γ(s/2) =

∞∫
0

e−uus/2−1du,

then by the definition of L(�) we have that

Z(f0, �) = �−s/2Γ(s/2) = L(�) (4.6)

for all characters � = ∣ ⋅ ∣s . In the proof of self-duality of the measure dx (Proposition 4.2.4),

we proved that f̂ = f . Therefore, by the above argument, we have that

Z(f̂0, �̌) = L(�̌).

Consequently, for � = ∣ ⋅ ∣s, we have

(∣ ⋅ ∣s,  , dx) =
L(�̌)

L(�)
and �(∣ ⋅ ∣s,  , dx) = 1. (4.7)

Let us now consider the other equivalence class of quasi-characters. That is, � = sgn ∣ ⋅ ∣s =

x
∣x∣ ⋅ ∣ ⋅ ∣

s. Pick f1(x) = xe−�x
2 ∈ S(F ). Then

Z(f1, �) =

∫
ℝ×

e−�x
2∣ ⋅ ∣s+1d∗x = �−( s+1

2
)(

s+ 1

2
) = L(�), (4.8)

where the second to last line follows from the computation done for f0 above. Using the

Fourier transform identity from Proposition 5.1.8 and that f̂1 = f1, we have

f̂1(y) = (−2�i)−1 d

dy
e−�y

2

= iye−�y
2

.

Therefore,

Z(f̂1, �̌) = i

∫
ℝ×

xe−�x
2 ⋅ x
∣x∣
⋅ ∣x∣1−sd∗x = i

∫
ℝ×

e−�x
2∣x∣2−sd∗x = i�−( 2−s

2
)Γ(

2− s
2

).

By definition �̌ = sgn−1 ∣ ⋅ ∣1−s = sgn ∣ ⋅ ∣1−s, and hence L(�̌) = �−( 2−s
2

)Γ(2−s
2

). Therefore,

Z(f̂ , �̌) = iL(�̌), which implies that

(sgn ∣ ⋅ ∣s,  , dx) = i
L(�̌)

L(�)
and �(sgn ∣ ⋅ ∣s,  , dx) = i. (4.9)
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In addition, we see that for the two equivalence classes of quasi-characters of F = ℝ, denoted

solely by the test function choice (n = 0, 1), that we have

ℎ(fn, �,  , dx) = 1 and ℎ(f̂0, �̌,  , dx) = 1 and ℎ(f̂1, �̌,  , dx) = 1.

(F = ℂ) We set dx to be twice the standard Lebesgue measure and  (x) = e−2�i(x+x).

Although it is not conventional to use x for a complex variable, we use it anyway. Every

quasi-character � ∈ Homcont(ℝ×,ℂ×) is of the form � = �s,n : rei� 7→ rsein� for some s ∈ ℂ

and some uniquely defined n ∈ ℤ. Only the real part of s, �(s) is uniquely defined. For each

equivalence class of quasi-characters, indexed by n , pick

fn(x) =

⎧⎨⎩(2�)−1xne−2�xx for n ≥ 0

(2�)−1x−ne−2�xx for n < 0.

It is clear that fn ∈ S(F ) for all integers n.

Claim 4.5.5. For all integers n we have the relation f̂n(x) = i∣n∣f−n(x).

Proof. Since f0(x) = e−2�zx, then f̂0(x) = f0(x). We proved this in Proposition 4.2.4. Assume

the formula is true for some m ∈ ℕ. That is, assume we have∫
ℂ

fm(x)e−2�i(x+x)dx = imf−m(x),

and, equivalently, that for x = y1 + iy2

2

∞∫
−∞

∞∫
−∞

(x1 − ix2)me−2�(x21+x22)−4�i(x1y1−x2y2)dx1dx2 = im(y1 + iy2)me−2�(y21+y22).

Now, let us apply the operator

D =
1

4�i

(
∂

∂y1

+ i
∂

∂y2

)
to the above equality. If ℎ is an analytic function, then the Cauchy-Riemann equations imply

that
∂ℎ

∂y1

ℎ(y1 + iy2) = −i ∂ℎ
∂y2

ℎ(y1 + iy2)⇔
(
∂

∂y1

+ i
∂

∂y2

)
ℎ(y1 + iy2) = 0.
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Since (y1 + iy2)m is analytic, then

Dim(y1 + iy2)me−2�(y21+y22) = im(y1 + iy2)m
−4�

4�i
(y1 + iy2)e−2�(y21+y22)

= im+1(y1 + iy2)m+1e−2�(y21+y22).

Therefore, applying D to both sides of the induction hypothesis equation, we obtain

2

∞∫
−∞

∞∫
−∞

(x1 − ix2)m+1e−2�(x21+x22)−4�i(x1y1−x2y2)dx1dx2 = im+1(y1 + iy2)m+1e−2�(y21+y22),

which establishes

f̂m+1(x) = im+1f−(m+1)(x).

We have proved the claim for n > 0. By what was just proven we have that f̂−m(x) =

i∣m∣fm(x) for m < 0. Also, by definition, we have

f−m(−x) = (−1)mf−m(x).

Applying the Fourier transform to both sides and using self duality (
ˆ̂
f(x) = f(−x)), we

obtain

f−m(−x) = i∣m∣f̂m(x)⇔ f̂m(x) = i−∣m∣f−m(−x) = (−i)−∣m∣f−m(x) = i∣m∣f−m(x).

This proves the claim.

In order to compute the zeta function we will make use of polar coordinates. With

x = re−i�(x), we have

fn(x) = (2�)−1r∣n∣e−in�(x)e−2�r2 = (2�)−1r∣n∣e−2�r2−in�(x),

d∗x =
2dxdx

∣x∣F
=

2rdrd�

r2
=

2

r
drd�,

and

�s,n(x) = (xx)ein�(x) = r2sein�(x).
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Then

Z(fn, �s,n) =
1

2�

2�∫
0

∞∫
0

r∣n∣e−2�r2−in�(x)r2sein�
2

r
drd�

=
1

�

2�∫
0

∞∫
0

e−2�r2r∣n∣+2s−1drd�

= (2�)−(s+
∣n∣
2

)2

2�∫
0

∞∫
0

e−2�r2(2�r2)s−1+
∣n∣
2 rdrd�

= (2�)−(s+
∣n∣
2

)

∞∫
0

e−2�r2(2�r2)s−1+
∣n∣
2 4�rdr.

Applying the substituion t = 2�r2 ⇒ dt = 4�rdr we obtain

Z(fn, �s,n) = (2�)−(s+
∣n∣
2

)

∞∫
0

e−tts−1+
∣n∣
2 dt

= (2�)−(s+
∣n∣
2

)Γ(s+
∣n∣
2

) = L(�s,n). (4.10)

Since ˇ�s,n = �1−s,−n and f̂n(x) = i∣n∣f−n(x), then

Z(f̂n, ˇ�s,n) = Z(i∣n∣f−n(x), �1−s,−n) = i∣n∣(2�)−(1−s+ ∣n∣
2

)Γ(1− s+
∣n∣
2

) = i∣n∣L( ˇ�s,n).

Therefore,

(�s,n,  , dx) = i∣n∣
L( ˇ�s,n)

L(�s,n)

�(�s,n,  , dx) = i∣n∣. (4.11)

Note that both ℎ(fn, �,  , dx) = 1 and ℎ(f̂n, �̌,  , dx) = 1 for the n ∈ ℤ equivalence classes of

quasi-characters of ℂ×.

(F non-Archimedean). Let F is a finite extension of ℚp. We will prove only the characteristic

zero case. By Proposition 4.1.3, every quasi-character � ∈ Homcont(F
×,ℂ×) is of the form

�̃∣ ⋅ ∣sF , where �̃ is a unitary character. Let p be the unique prime of F . We write Un for

subgroups of o×F of the form 1 + pn with n ≥ 0. Write �s,n for the map

x 7→ ∣x∣sF �̃(x̃),
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where x̃ ∈ o×F is uniquely defined by the relation x = x̃�
�(x)
F and where pn is the conductor of

�̃. Note that � is said to be unramified if �(oF ) = 1, or, equivalently, if n = 0. Recall that s

and n do not uniquely determine �s,n because often there are many characters of conductor n

and because s is determined modulo 2�i
log(q)

, where q is the order of the residue field oF/poF .

We defined the standard non-trivial additive character on a local field to be  =

 p(trF/ℚp(⋅)), where p is the prime lying below p and  p is the standard non-trivial additive

character on ℚp. In addition, we saw that the conductor of  is precisely the inverse different

of F , which is D−1
F = {x ∈ F : trF/ℚp(x) ⊆ ℤp}. The inverse different is a ℤp-submodule of F

and thus has the representation

D−1
F = p−d = �−dF oF ,

where �F is a uniformizing parameter. As such, we say the standard non-trivial additive

character on F has conductor p−d. Although we will not choose the standard non-

trivial additive character of F for this calculation, we conveniently will choose an

arbitrary additive character,  , with conductor p−d.

For a given quasi-character �s,n, and additive character  with conductor p−d, define

fn(x) =  (x)1p−d−n(x),

where 1p−d−n(x) is a characteristic function of p−d−n.

First, assume n = 0, which is the unramified case. Using the fact that �−dF oF − {0} =

∪∞k=−d�
k
Fo
×
F , we obtain

Z(f0, �s,0) =

∫
F×

f0(x)�s,0(x)d∗x =

∫
�−dF −{0}

∣x∣sFd∗x =

=
∞∑

k=−d

∫
�kF o

×
F

∣x∣sFd∗x =
∞∑

k=−d

q−ksVol(o×F , d
∗x) =

= Vol(o×F , d
∗x)

qds

1− q−s
= qdsVol(o×F , d

∗x)(1− ∣�F ∣sF )−1 =

= qdsVol(o×F , d
∗x)L(�s,0). (4.12)
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Now, let us consider n > 0, the ramified case. Then

Z(fn, �s,n) =

∫
F×

fn(x)�s,n(x)d∗x =

∫
�−d−nF oF−{0}

 (x)�̃(x̃)∣x∣sFd∗x =

=
∞∑

k=−d−n

∫
o×F

 (�kFu)�̃(�̃kFu)∣�kFu∣sFd∗u =
∑

k=−d−n

q−ks
∫
o×F

 (�kFu)�̃(ũ)d∗u,

since �̃kFu = ũ.

Definition 4.5.6. For any multiplicative character ! : o×F → S1 and any additive character

� : oF → S1, define the associated Gauss sum to be

g(!,  ) =

∫
o×F

!(u)�(u)d∗u.

As such,

Z(fn, �s,n) =
∑

k=−d−n

q−ksg(�̃,  �kF ),

where  �kF (x) =  (�kFx). In view of this, we will prove the following lemma about Gauss

sums. The generalization of Gauss sums was an important part of Tate’s thesis. A Gauss

sum will be appear in the epsilon factor for ramified quasi-characters.

Lemma 4.5.7. Let ! and � be taken as above with conductors pn and pr, respectively. Let

c > 0 be the number such that d∗x = cdx. Then the following statements hold:

(i) If r < n, then g(!, �) = 0.

(ii) If r = n = 0, then ∣g(!, �)∣2 = Vol(o×F , d
∗x)2.

(iii) If r = n, then ∣g(!, �)∣2 = cVol(oF , dx)Vol(Ur, d
∗x).

(iv) If r > n, then ∣g(!, �)∣2 = cVol(oF , dx)(Vol(Ur, d
∗x)− q−1Vol(Ur−1, d

∗x)).

Proof. If r = n = 0, then !o×F
= 1 and �∣o×F = 1. Therefore, we have

g(!,  ) =

∫
o×F

!(u)�(u)d∗u = Vol(o×F , d
∗x),
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, and hence ∣g(!,  )∣2 = Vol(o×F , d
∗x)2. Let R denote a residue system of o×F/Uro

×
F in o×F . For

a ∈ R and 1 + b�rF ∈ Ur, we have

�(a(1 + �rF b)) = �(a)�(a�rF b) = �(a)

because pr = �rFoF is the conductor of �. Then

g(!, �) =
∑
a∈R

�(a)!(a)

∫
Ur

!(u)d∗u. (4.13)

If r < n, then there exists an element u0 ∈ Ur such that !(u0) ∕= 1. By the translation

invariance of the multiplicative Haar measure we obtain∫
Ur

!(u)d∗u =

∫
Ur

!(uu0)d∗u = !(u0)

∫
Ur

!(u)d∗u

which proves that ∫
Ur

!(u)d∗u = 0.

This proves part i. Suppose r ≥ n. Applying the transformation x = zy and translation

invariance of the Haar measure, we obtain

∣g(!, �)∣2 =

∫
o×F

!(x)�(x)d∗x ⋅
∫
o×F

!(y)�(y)d∗y =

∫
o×F

∫
o×F

!(xy−1)�(x− y)d∗xd∗y

=

∫
o×F

!(z)ℎ(z)d∗z,

where

ℎ(z) =

∫
o×F

�(y(z − 1))d∗y = c

∫
o×F

�(y(z − 1))dy.

Since o×F = oF − p, then

ℎ(z) = c

∫
oF

�(y(z − 1))dy − c
∫
p

�(y(z − 1))dy.

For z − 1 ∈ pr and y ∈ oF , we have that �(y(z − 1)) = 1. For z − 1 ∈ {pr−1 − pr} and

y ∈ p, we have �(y(z − 1)) = 1. On the other hand, if z − 1 ∈ {pr−1 − pr}, then there exists
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a y0 ∈ o×F ⊂ oF such that �(y0(z − 1)) ∕= 1. For z − 1 ∕∈ pr−1 there exists a y0 ∈ p such that

�(y0(z − 1)) ∕= 1. In sum, we obtain

ℎ(z) =

⎧⎨⎩
c(1− q−1)Vol(oF , dx) if z − 1 ∈ pr

−cq−1Vol(oF , dx) if z − 1 ∈ {pr−1 − pr}

0 otherwise .

Consequently, if r > 0, then

∣g(!, �)∣2 =

∫
{Ur−1−Ur}

!(z)ℎ(z)d∗z +

∫
Ur

!(z)ℎ(z)d∗z

= cVol(oF , dx)

⎛⎜⎝−q−1

∫
{Ur−1−Ur}

!(z)d∗z + (1− q−1)

∫
Ur

!(z)d∗z

⎞⎟⎠
= cVol(oF , dx)

⎛⎝−q−1

∫
Ur−1

!(z)d∗z + Vol(Ur, d
∗z),

⎞⎠
where q is the order of the residue field oF/poF . More specifically, if r = n > 0, then

∣g(!, �)∣2 = cVol(oF , dx)Vol(Ur, d
∗x)

because !(z) is non-trivial on Ur−1 = Un−1 (orthogonality of characters), whereas if r > n,

then

∣g(!, �)∣2 = cVol(oF , dx)(Vol(Ur, d
∗z)− q−1Vol(Ur−1, d

∗x)).

In the case r = 0(= n), we obtain

∣g(!, �)∣2 =

∫
Ur

!(z)ℎ(z)d∗z = c(1− q−1)Vol(oF , dx)

∫
o×F

!(z)d∗z =

= c(1− q−1)Vol(oF , dx)Vol(o×F , d
∗x)

138



Since c(1− q−1)Vol(oF , dx)Vol(o×F , d
∗x) = Vol(o×F , d

∗x), then ∣g(!, �)∣2 = Vol(o×F , d
∗x)2, which

is the same result we obtained by the direct calculation in the beginning of the proof. Indeed,

c(1− q−1)Vol(oF , dx) = c(1− q−1)

∫
oF

dx = c(1− q−1)
∞∑
m=0

∫
�mF o×F

dx =

= c(1− q−1)
∞∑
m=0

∫
o×F

∣�mF ∣Fdx = c(1− q−1)
∞∑
m=0

q−m
∫
o×F

dx =

=

∫
o×F

c dx =

∫
o×F

c
dx

∣x∣F
= Vol(o×F , d

∗x).

This completes the lemma.

We now will return to the computation of Z(fn, �s,n) for n > 0. Since the conductor of  

is p−d, then the conductor of  �k is (p−d−k). Before the lemma we determined that

Z(fn, �s,n) =
∑

k=−d−n

q−ksg(�̃,  �kF ),

where �̃ has conductor pn. Note that −d− k < n⇔ k > −d− n. Consequently, from part (i)

of the above lemma, we have that g(�̃,  �−d−nF
) = 0 for all k > −d− n. Therefore,

Z(fn, �s,n) = q(d+n)sg(�̃,  �−d−nF
).

Since both �̃ and  �−d−nF
have conductor pn, then from part (ii) and (iii) of the above lemma

we see that g(�̃,  �−d−nF
) ∕= 0. As such, Z(fn, �s,n) is essentially an exponential function with

neither zeros nor poles. Recall that for n > 0, L(�s,n) is 1 because �s,n is not ramified. Thus,

Z(fn, �s,n) = q(d+n)sg(�̃,  �−d−nF
)L(�s,n). (4.14)

Let us compute the Fourier transform of our test function f , so that we can determine

Z(f̂ , ˇ�s,n).

Lemma 4.5.8. For n = 0, we have f̂0(y) = Vol(p−d, dx)1oF (y), where 1oF (y) is the

characteristic function of oF . For n > 0 we have f̂n(y) = Vol(p−d−n, dx)1pn−1(y), where

1pn−1(y) is the characteristic function of pn − 1.
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Proof. By definition,

f̂n(y) =

∫
F

fn(x) (xy)dx =

∫
p−d−n

 (x) (xy) =

∫
p−d−n

 (x(y + 1))dx.

First, let n = 0. The conductor of  is p−d. For y ∕∈ oF , we have that  (x(y + 1)) is non-

trivial for some x ∈ p−d, hence f̂(y) = 0 by orthogonality of characters. For y ∈ oF , we have

that  (x(y + 1)) = 1 for all x ∈ p−d, hence f̂(y) = Vol(p−d, dx). Let n > 0. For y ∕∈ pn − 1, we

have that  (x(y + 1)) is non-trivial for some x ∈ p−d−n, hence f̂(y) = 0 by orthogonality of

characters. For y ∈ pn − 1, we have that  (x(y + 1)) = 1, hence f̂(y) = Vol(p−d−n, dx).

We have computed Z(f, �s,n) for the unramified and ramified case, and now will now

compute Z(f̂ , ˇ�s,n) for both the unramified and ramified case. Let n = 0. Using the above

lemma and the fact that oF − {0} = ∪∞k=0�
ko×F , we obtain

Z(f̂0, ˇ�s,0) =

∫
F×

f0(y) ˇ�s,0(y)d∗y = Vol(p−d, dx)

∫
oF−{0}

ˇ�s,0(y)d∗y =

= Vol(p−d, dx)
∞∑
k=0

∫
�ko×F

∣y∣1−sF d∗y = Vol(p−d, dx)Vol(o×F , d
∗x)

∞∑
k=0

q−k(1−s) =

= Vol(p−d, dx)Vol(o×F , d
∗x)

1

1− q−(1−s) = Vol(p−d, dx)Vol(o×F , d
∗x)

1

1− ˇ�s,0(�F )

= Vol(p−d, dx)Vol(o×F , d
∗x)L( ˇ�s,0) = qdVol(oF , dx)Vol(o×F , d

∗x)L( ˇ�s,0).

Consequently, from equation (4.12), we have that

(�s,0,  , dx) = q−d(s−1)Vol(oF , dx)
L( ˇ�s,0)

L(�s,0)

and

�(�s,0,  , dx) = q−d(s−1)Vol(oF , dx). (4.15)

Now consider n > 0. By definition, ˇ�s,n = �−1
s,n∣ ⋅ ∣F = �̃−1∣ ⋅ ∣1−sF . Since �̃ is unitary, then

�̃−1 = �̃. Note that the conductor of ˇ�s,n, which is just the conductor of �̃−1, is also n. Using
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this fact, the above lemma, and that L(�s,n) = 1, we have

Z(f̂n, ˇ�s,n) = Vol(p−d−n, dx)

∫
pn−1

�̃(ỹ)∣y∣1−sF d∗y

= Vol(p−d−n, dx)

∫
pn−1

�̃(y)d∗y

= Vol(p−d−n, dx)

∫
1+pn

�̃(−y)d∗y

= qd+nVol(oF , dx)�̃(−1)

∫
1+pn

�̃(y)d∗y

= qd+nVol(oF , dx)Vol(1 + pn, d∗x)�̃(−1)L(�s,n).

If n > 0, then by applying the translation invariance of the Haar measure, we have

Vol(Un, d
∗x) =

∫
Un

d∗x = c

∫
(1+pn)−{0}

∣x∣−1
F dx = c

∫
pn

dx = cVol(pn, dx) = cq−nVol(oF , dx).

As such,

Z(f̂n, ˇ�s,n) = cqdVol2(oF , dx)�̃(−1)L(�s,n).

Therefore, we have

�( s,n,  , dx) = (�s,n,  , dx) =
cqdq−(d+n)sVol2(oF , dx)�̃(−1)

g(�̃,  �−d−nF
)

.

Applying the translation invariance of the Haar measure d∗u, we obtain

g(�̃,  �−d−nF
) =

∫
o×F

�̃(u) (�−d−nF u)d∗u =

∫
o×F

�̃(u) (−�−d−nF u)d∗u =

= �̃(−1)

∫
o×F

�̃(u) (�−d−nF u)d∗u = �̃(−1)g(�̃,  �−d−nF
).

Since the conductor of �̃ and  −d−n is pn, then

g(�̃,  �−d−nF
)g(�̃,  �−d−nF

) = cVol(oF , dx)Vol(1 + pn, d∗x) = c2q−nVol2(oF , dx).
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Consequently, for n > 0 we have

�( s,n,  , dx) =
cqdq−(d+n)sVol2(oF , dx)�̃(−1)

g(�̃,  �−d−nF
)

�̃(−1)g(�̃,  �−d−nF
)

g(�̃,  �−d−nF
)

=
cqdq−(d+n)sVol2(oF , dx)g(�̃,  �−d−nF

)

c2q−nVol2(oF , dx)

=
1

c
q(−d−n)(s−1)g(�̃,  �−d−nF

)

Consider the Gauss sum of �̃ and  �−d−nF
defined by

g(�̃,  �−d−nF
) =

∫
o×F

�̃(u) �−d−nF
(u)d∗u.

Since  has conductor p−d, then  �−d−nF
, defined by  �−d−nF

(x) =  (�−d−nF x), has conductor

pn. For a ∈ U/Un and 1 + b�nF ∈ Un, we have

 �−d−nF
(a(1 + �nF b)) =  �−d−nF

(a) �−d−nF
(a�nF b) =  �−d−nF

(a)

because pn = �nFoF is the conductor of  �−d−nF
. As such,

g(�̃,  �−d−nF
) =

∑
x∈U/Un

 �−d−nF
(x)�̃(x)

∫
Un

�̃(u)d∗u = Vol(Un, d
∗x)

∑
x∈U/Un

�̃(x) �−d−nF
(x) =

= cq−nVol(oF , dx)
∑

x∈U/Un

�̃(x) �−d−nF
(x). (4.16)

Therefore,

�( s,n,  , dx) =
1

c
q(−d−n)(s−1)g(�̃,  �−d−nF

) = q−d(s−1)q−nsVol(oF , dx)
∑

x∈U/Un

�̃(x) �−d−nF
(x).

(4.17)

For F non-Archimedean case, we have

ℎ(fn, �s,n,  , dx) =

⎧⎨⎩q
dsVol(o×F , d

∗x) for n = 0

q(d+n)sg(�̃,  �−d−nF
) for n > 0

and

ℎ(f̂n, ˇ�s,n,  , dx) =

⎧⎨⎩q
dVol(oF , dx)Vol(o×F , d

∗x) for n = 0

cqdVol2(oF , dx)�̃(−1) for n > 0,

,
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where: p is the unique prime ideal of F, q is the order of the residue field oF/poF , p−d is the

conductor of the additive character  , pn is the conductor of �s,n, and �̃ is the restriction of

�s,n to oF . Furthermore, note the dependence of ℎ on dx and on d∗x.

Therefore, for all characteristic zero local fields, we have that

(�,  , dx) = �(�,  , dx)
L(�̌)

L(�)
,

where �(�,  , dx) is an entire function of s whose image lies in ℂ×. Applying part (ii), it

follows at once that

L(�)Z(f̂ , �̌) = �(�,  , dx)L(�̌)Z(f, �). (4.18)

Since L(�), L(�̌), and �(�,  , dx) do not have zeroes, then the poles of Z(f, �) are no worse

than those of L(�), which is independent of f .

4.6 Local Epsilon Factor and Root Number

The dependence of the epsilon factor �(�,  , dx) on both the additive character  and

Haar measure dx for any � ∈ Homcont(F
×,ℂ×) is stated in the following proposition. As

mentioned in the remark before the local functional equation proof, it was not necessary for

the pair ( , dx) to be self-dual. Three other important properties about the epsilon factor

also will be proven.

Proposition 4.6.1. (i) For every real number t,

�(�,  , t ⋅ dx) = t ⋅ �(�,  , dx).

(ii) Let a ∈ F×, and let  a denote the character defined by  a(x) =  (ax). Then

�(�,  a, dx) = �(a)∣a∣−1
F �(�,  , dx).

(iii) Let F be a non-Archimedean field with unique prime ideal p, and let pn and p−d be the

conductors of � and  , respectively. Then for every unramified character � of F× we have

�(��,  , dx) = �(�d+n)�(�,  , dx),

143



where � is the uniformizing parameter for oF . Note that since � is unramified (�(o×F ) = 1),

then �(�m+n) is independent of the choice of uniformizing parameter.

(iv)

�(�̌,  , dx) =
�(−1)

�(�,  , dx)
.

(v)

�(�,  , dx) = �(−1)�(�,  , dx).

Proof.

(i) Since the Fourier transform of a self-dual local field is dependent on the Haar measure,

dx, chosen for F and the additive character,  , chosen, then we will denote the Fourier

transform of a function f ∈ S(F ) by (f̂ ,  , dx). By definition, we have

(f̂ ,  , tdx)(y) =

∫
F

f(x) (xy)tdx = t

∫
F

f(x) (xy)dx = t(f̂ ,  , dx).

Although, Z(f, �) is dependent on d∗x, and therefore on dx if we set d∗x = dx/∣x∣F ,

the ratio Z(f̂ �̌)/Z(f, �) is independent of the measure chosen, whether we specify the

multiplicative measure independent of dx or not. Therefore, we have

Z((f̂ ,  , tdx), �̌, tdx)

Z(f, �, tdx)
= t

Z((f̂ ,  , dx), �̌, dx)

Z(f, �, dx)

, and hence

�(�,  , t ⋅ dx) = t ⋅ �(�,  , dx).

(ii) With the same notation in part (i), it is clear that (f̂ ,  a, dx)(x) = (f̂ ,  , dx)(ax). Let

� = �∣ ⋅ ∣sF . So,

Z((f̂ ,  a, dx), �̌, dx) =

∫
F×

(f̂ ,  , dx)(ax)�̌(x)d∗x =

∫
F×

(f̂ ,  , dx)(x)�̌(a−1x)d∗x =

= �̌(a−1)

∫
F×

(f̂ ,  , dx)(x)�̌(x)d∗x = �−1(a−1)∣a−1∣Z((f̂ ,  , dx) =

= �(a)∣a∣−1
F Z(f̂ ,  , dx).

Therefore,
Z((f̂ ,  a, dx), �̌, tdx)

Z(f, �, dx)
= �(a)∣a∣−1

F

Z((f̂ ,  , dx), �̌, dx)

Z(f, �, dx)
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, and hence

�(�,  , t ⋅ dx) = �(a)∣a∣−1
F ⋅ �(�,  , dx).

(iii) Since � is unramified, then there exists an s′ ∈ ℂ such that � = ∣ ⋅ ∣s′F (Proposition 4.1.2).

Also, � = ∣ ⋅ ∣sF �̃ for some s ∈ ℂ and unitary �̃, the restriction of � to oF , with conductor pn.

The conductor of �� is the same as the conductor of � since � is unramified. As in the local

computations, we write �� = �s+s′,n. Note that this notation does not uniquely specify the

character. If n = 0, then we have by equation (4.15) that

�(�s+s′,0,  , dx) = = q−d(s+s′−1)Vol(oF , dx) = q−ds
′
q−d(s−1)Vol(oF , dx)

= ∣�dF ∣s
′

F q
−dsVol(p−d, dx) = �(�dF )�(�s,0,  , dx),

where q is the order of the residue field oF/poF . If n > 0, then by equation (4.17) we have

that

�(�s+s′,n,  , dx) = q−d(s+s′−1)q−n(s+s′)Vol(oF , dx)
∑

x∈U/Un

�̃(x) �−d−nF
(x)

= q−ds
′
q−ns

′
q−d(s−1)q−nsVol(oF , dx)

∑
x∈U/Un

�̃(x) �−d−nF
(x)

= �(�d+n
F )�(�s,n,  , dx).

(iv) Applying part (ii) of the Theorem 4.5.3 twice, we obtain

Z(f, �) = (�,  , dx)Z(f̂ , �̌) = (�,  , dx)(�̌,  , dx)Z(
ˆ̂
f, ˇ̌�).

Using the translation invariance of the multiplicative Haar measure, self-duality of the pair

( , dx), and the fact that ˇ̌� = �, we obtain

Z(
ˆ̂
f, ˇ̌�) =

∫
F×

ˆ̂
f(x)�(x)d∗x =

∫
F×

f(−x)�(x)d∗x =

∫
F×

f(x)�(−x)d∗x =

= �(−1)

∫
F×

f(x)�(x)d∗x = �(−1)Z(f, �).

Therefore, (�̌,  , dx) = �(−1)
(�, ,dx)

, which implies that

�(�̌,  , dx)
L( ˇ̌�)

L(�̌)
=

�(−1)

�(�,  , dx)

L(�)

L(�̌)
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, and hence that

�(�̌,  , dx) =
�(−1)

�(�,  , dx)
.

(v) By inspection �̌ = �̌. Since  (x(−y)) =  (xy), then

f̂(y) =

∫
F

f(x) (xy)dx =

∫
F

f(x) (x(−y))dx =

∫
F

f(x) (x(−y))dx = f̂(−y).

Using this, we obtain

Z(f̂ , �) =

∫
F×

f̂(x)�(x)d∗x =

∫
F×

f̂(−x)�(x)d∗x = �(−1)Z(f̂ , �).

Applying part (ii) of the Theorem 4.5.3 and the above facts, we have that

Z(f, �) = Z(f, �) = (�,  , dx)Z(f̂ , �̌) = (�,  , dx)�(−1)Z(f̂ , �̌) = (�,  , dx)�(−1)Z(f̂ , �̌).

On the other hand, we have

Z(f, �) = (�,  , dx)Z(f̂ , �̌).

Therefore, we have

(�,  , dx) = �(−1)(�,  , dx).

Consequently,

�(�,  , dx)
L(�̌)

L(�)
= �(−1)�(�,  , dx)

L(�̌)

L(�)

, and hence that

�(�,  , dx) = �(−1)�(�,  , dx).

Suppose we wanted to preserve the self-duality of the pair ( , dx). If we wish to use

a different additive character, say  b, then what is the corresponding self-dual measure in

terms of dx? This is really just a matter of being very careful with notation. Let f ∈ B(F ).

For convenience, let f̂ = (f̂ ,  , dx). Then (f̂ ,  b, dx)(y) = f̂(by), and hence (f̂ ,  b, dx) =
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Lb−1 f̂ . Let g ∈ L1(F ). Then

L̂b−1g(y) =

∫
F

g(bx) (xy)dx = ∣b∣−1
F

∫
F

g(z) (zb−1y)dz = ∣b∣−1
F ĝ(b−1y).

That is, L̂b−1g = ∣b∣−1
F Lbĝ. Letting g = f̂ we obtain L̂b−1 f̂ = ∣b∣−1

F Lb
ˆ̂
f . Then

(
ˆ̂
f,  b, dx)(y) = Lb−1L̂b−1 f̂(y) = Lb−1∣b∣−1

F Lb
ˆ̂
f(y) = ∣b∣−1

F f(−y).

As such, the measure ∣b∣1/2F dx is the self-dual measure with respect to  b. By the proposition

above, we obtain

�(�,  b, ∣b∣1/2F dx) = �(b)∣b∣−1/2
F �(�,  , dx).

Definition 4.6.2. Let F be a local field with standard non-trivial character  and self-dual

measure dx. For a unitary character �̃ of F×, one defines the root number W (�̃) by

W (�̃) = �(�̃∣ ⋅ ∣1/2F ,  , dx).

Proposition 4.6.3. ∣W (�̃)∣ = 1.

Proof. For � = �̃∣ ⋅ ∣1/2F , we have

�(x)�(x) = �̃(x̃)∣x∣1/2F �̃(x̃)∣x∣1/2F = ∣x∣�̃(x̃)�̃(x̃) = ∣x∣ = (�̃(x̃)∣x∣1/2F )(�̃(x̃)∣x∣1/2F )−1∣x∣ = �(x)�̌(x)

since �̃ is a unitary character. Thus � = �̌. By part (iv) and (v) of the above proposition we

have that

�(�,  , dx)−1 = �(�,  , dx),

which proves the theorem.

Let F be a characteristic zero non-Archimedean field with unique prime p and uni-

formizing parameter �F . Let  be the standard non-trivial character of F with conductor

D−1
F = p−d and let dx be the associated self-dual measure. Note that dx has the property

Vol(oF , dx) = q−d/2. Let �̃ be a unitary multiplicative character with conductor pn. If n > 0,
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then by 4.17 we have that

W (�̃) = �(�̃∣ ⋅ ∣1/2F ,  , dx) = q−d(1/2−1)q−n/2Vol(oF , dx)
∑

x∈U/Un

�̃(x) �−d−nF
(x)

= qd/2q−n/2q−d/2
∑

x∈U/Un

�̃(x) �−d−nF
(x)

= q−n/2
∑

x∈U/Un

�̃(x) (�−d−nF x). (4.19)

If n = 0, then by 4.15 we have that

W (�̃) = �(�̃∣ ⋅ ∣1/2F ,  , dx) = q−d(1/2−1)Vol(oF , dx) = qd/2q−d/2 = 1.

Put

G =
∑

x∈U/Un

�̃(x) (�−d−nF x).

If n = 0, then G = 1 because �̃(1) (�−dF 1) = 1. Furthermore, we have that

g(�̃,  �−d−nF
) = cq−n−d/2G.

See equation 4.16. According to Lemma 4.5.7, for n > 0, we have that

∣g(�̃,  �−d−nF
)∣2 = cVol(oF , dx)Vol(Un, d

∗x) = c2q−d/2Vol(pn, d∗x) = c2q−n−d.

Therefore, for n > 0 we have

∣G∣2 =
1

c2
q2n+d∣g(�̃,  �−d−nF

)∣2 = qn,

and for n = 0 we have

∣G∣2 = 1.

By 4.19, we see that W (�̃) = q−n/2G for n > 0. As such, we obtain the relation

q−n∣G∣2 = ∣W (�̃)∣,

, and hence that ∣W (�̃)∣ = 1 by direct calculation.
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For F = ℝ, there are two unitary multiplicative characters, 1 and sgn. In the local

computations, specifically equations 4.7 and 4.9, we found that

W (�̃) =

⎧⎨⎩
1 for �̃ = 1

i for �̃ = sgn .

Consequently, ∣W (�̃)∣ = 1.

For F = ℂ, the unitary characters are the maps �0,n : re−i� 7→ e−in�. According to

equation 4.11, we have

W ( ˜�s,n) = W (�0,n) = i∣n∣.

Again, we have that ∣W (�0,n)∣ = 1.

4.7 Adelic Schwartz-Bruhat Functions and the Riemann-Roch Theorem

One of the most important and useful results of abelian harmonic analysis is the Poisson

summation formula, which relates the averages of a function over a lattice to its Fourier

transform. The Poisson summation formula will help us to establish the global functional

equation.

Definition 4.7.1. Let K be a global field. Let � be a place of K and K� be the completion

of K with respect to �. Define

S(AK) = ⊗′�S(K�) = {f = ⊗f� : f� ∈ S(K�)∀� and f� = 1o� for almost all �},

where 1o� is a characteristic function of o� . A function f ∈ S(AK) is called an adelic

Schwartz-Bruhat function.

According to Proposition 3.1.9, it makes sense to write

f(x) =
∏
�

f�(x�)

for all x = (x�) ∈ AK . Also, let dx denote the Haar measure on AK , and define L2(AK) using

this measure. It can be shown that S(AK) is dense in L2(AK).
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Proposition 4.7.2. For each place � of K, let  � be the standard unitary character on K� .

Then the restriction of  � to o� is trivial for almost all �. Hence,

 K

(∏
�

x�

)
=
∏
�

 �(x�) for x = (x�) ∈ AK

is a well-defined non-trivial character on the adeles. Furthermore,  (�) = 1 for � ∈ K.

Proof. Recall that the conductor of  � is the inverse different of K� . Since the inverse

different is trivial for all but finitely many places �, then  � ∣o� = 1 for all but finitely many

places �, and hence
∏

�  � is a well-defined character on AK . See Proposition 3.1.6. First, let

us first restrict ourselves to K = ℚ in order to show that  is trivial on the embedding of

K = ℚ into Aℚ. In this case,  ℚ =  ∞ ×
∏

p  p, where  p is the standard non-trivial additive

character on ℚp, and where  ∞ = e−2�i⋅ because the infinite prime of ℚ is a real prime (the

completion at the usual absolute value is ℝ). Recall that if � ∈ ℚ, then there is a unique

expansion of the form

� =
∑
p

ap
p�p

+ b,

where ap, �p, b ∈ ℤ and ap = 0 for all but finitely many primes. This was proved explic-

itly when we constructed the non-trivial additive character on ℚp. Applying this unique

representation of �, we obtain

 ℚ(�) =
∏
p

 p(�) =  ∞(�)
∏
p ∕∣∞

 p(
ap
p�p

) = e−2�ia
∏
p

e
2�ap

p�p = e−2�b = 1.

Note the convenience of the negative sign in the infinite character e−2�ia.

One can show that ∑
�∣p

trK�/ℚp(⋅) = trK/ℚ(⋅).

See Neukrich’s text, Algebraic Number Theory, page 164, for a proof of this fact.

Then, for a finite extension K of ℚ, we have

 K(�) =
∏
p

∏
�∣p

 p(trK�/ℚp(�)) =
∏
p

 p

⎛⎝∑
�∣p

trK�/ℚp(�)

⎞⎠ =
∏
�

 p(trK/ℚ(�) = 1.

This completes the proof.
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Remark 4.7.3. The standard character  K factors through the trace map from AK to Aℚ,

defined by

tr : AK −→ Aℚ

(x�)� 7−→

⎛⎝∑
�∣p

trK�/ℚp(x�)

⎞⎠ ,

where p ranges over all rational primes of ℚP . That is,

 K(x) =  ℚ(tr(x)) for all x ∈ AK .

Proposition 4.7.4. Let K be a number field with the standard character  K, as defined

above. Then the following assertions hold:

(i) The map � K : AK → ÂK, defined by y 7→  K,y, where  K,y(x) =  K(xy), is an

isomorphism.

(ii) The map � K : K → ÂK/K, defined by x 7→  K,x, where x is identified with its

embedding in AK, is an isomorphism. Hence, by part (i), the translation  K,y of  K is

trivial on K if and only if y ∈ K.

Proof.

(i) In Proposition 3.1.7, we proved that the dual group of the restricted direct product of

G� with respect to H� (a compact-open subgroup of G�) is the restricted direct product of

Ĝ� with respect to K(G� , H�), the subgroup of characters on G� that restrict to the trival

map on H� . Therefore, ÂK
∼=
∏′

K̂v, where the restricted direct product is taken with

respect to the characters of K� that restrict to the identity on o� . We have proved above

that  K ∈ ÂK . In Proposition 4.2.1, we proved that � � : K� → K̂� , defined by y 7→  �,y, is

topological group isomorphism for all local fields K� . Therefore, the map � K : AK → ÂK ,

defined by a = (a�) 7→  K,a =
∏

�  �,a� , is an isomorphism.

(ii) Since  K is trivial on K, then  K induces a character on AK/K. That is, for any coset

a + K ∈ AK/K, we have that  K(a + K) =  K(a). The map � K : K → ÂK/K, defined

by x 7→  K,x, is therefore a well-defined map from K into ÂK/K. Indeed,  K,�(x + K) =

 K,�(x) =  K(�x) = 1 for all x ∈ K because �x ∈ K. Since AK/K is compact, then by

Proposition 1.3.4, ÂK/K is discrete. Recall that from the functorial nature of Pontryagin
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duality, we have K⊥ ∼= AK/K, where K⊥ is the closed set of characters of AK that are

trivial on K. Since AK is self-dual, then K⊥/K is a closed subgroup of the compact

quotient group AK/K. Therefore, K⊥/K is both discrete and compact, and hence finite.

Since K⊥/K is a K-vector space, then K⊥/K = 0, which proves that ÂK/K ∼= K.

Remark 4.7.5. Let K = ℚ. Then part (ii) yields ℚ̂ ∼= Aℚ/ℚ. Let us reinvestigate this

case. For any additive character  of Aℚ, we can define a character on ℚ via the diagonal

embedding of ℚ into Aℚ. By part (i) of the above theorem, we have that every character on

Aℚ is of the form  ℚ,a for some a = (ap) ∈ Aℚ. Let q ∈ ℚ. Then

 ℚ,a(q) =  ℚ((ap) ⋅ (q, q, ⋅ ⋅ ⋅ )) =  ∞(a∞ ⋅ q) ⋅
∏
p finite

 p(ap ⋅ q) = e−2�ia∞⋅q ⋅
∏
p finite

e2�i{ap⋅q}p ,

where {ap ⋅ q}p are the fractional parts of ap ⋅ q in ℚp. Also,  ℚ,a is a homomorphism of ℚ

into S1 because  ℚ is a homomorphism of Aℚ into S1. However, if a ∈ Aℚ ∩ ℚ, that is,

a = (q, q, ⋅ ⋅ ⋅ ) for some q ∈ ℚ, then the Proposition 4.7.2 tells us that  ℚ,a is the trivial

character on ℚ. If a, b ∈ Aℚ and a − b ∈ Aℚ ∩ ℚ, then  ℚ,a =  ℚ,b. To show that every

character of ℚ takes this form, and that  ℚ,a =  ℚ,b if and only if a− b ∈ Aℚ ∩ℚ, is precisely

the content of part (ii) of the above proposition. It can, however, be shown more directly.

See Keith Conrad’s [6] notes on the Character Group of ℚ.

The topological group isomorphism ℚ̂ ∼= Aℚ/ℚ is analogous to ℤ̂ ∼= ℝ/ℤ ∼= S1, where

that hat over ℤ is signifying the dual group and not the projective limit. In Proposition

3.2.6, we saw that Aℚ/ℚ ∼= lim
←

ℝ/nℤ. As such, we now obtain the topological group

isomorphism ℚ̂ ∼= lim
←

ℝ/nℤ, which helps solidify the aforementioned analogy. Furthermore,

from basic algebraic topology, we know that the universal cover of S1 is ℝ. Recall that a

covering space of S1 is a space C with a continuous surjective map p : C → S1 such that

for every z ∈ S1, there exists an open neighborhood U of z, such that p−1(U) is a disjoint

union of open sets in C, each of which is mapped homeomorphically onto U by p. The map

� : ℝ → S1, defined by p(t) = (cos(t), sin(t)), is an infinite cover (infinitely many open sets

in the pre-image). In addition, ℝ is simply connected and satisfies the following property:

if the mapping q : C → S1 is any cover of S1, where C is connected, then there exists a

covering map f : ℝ → C such that � ∘ f = q. We call ℝ the universal cover of S1. See
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Munkres [22], Chapter 13, Section 80 for an introduction on universal covers. There is a

strong connection between coverings and the fundamental group in nice enough spaces.

Since S1 is path-connected, locally path-connected and semi-locally simply connected, then

there is a bijection between equivalence classes of path-connected covers of S1 and the

conjugacy classes of subgroups of the fundamental group of S1, namely ℤ. See Munkres [22],

Chapter 13, for an introduction to this correspondence. This connection is very similar to

the connection between algebraic field extensions and the Galois group. Covering spaces

play the role of algebraic field extensions and the fundamental group plays the role of the

Galois group. The map �n : ℝ/nℤ → ℝ/ℤ is a covering of degree n. By the correspondence

between conjugacy classes of subgroups of ℤ and equivalence classes of path-connected

covers of ℝ/ℤ, we know that all the finite degree coverings of ℝ/ℤ come from such maps.

Therefore, every finite cover of S1 comes from ℚ̂ ∼= Aℚ/ℚ = lim
←

ℝ/nℤ. Such an object

is called an algebraic universal covering. Continuing with the analogy of field extensions,

the algebraic universal cover plays the role of the algebraic closure. The Galois group of the

covering ℚ̂ ∼= Aℚ/ℚ ∼= lim
←

ℝ/nℤ → S1 is ℤ̂ := lim
←

ℤ/nℤ. This whole construction is a

simple example of Grothendieck’s general construction of the algebraic fundamental group for

abelian varieties.

Let K be a number field. Let K� be the completion of K at the �th place. Let us fix the

Haar measures dx� on local fields as in Definition 3.2.10 and let dx on AK be defined as in

Definition 3.2.12. That is, dx is the the unique Haar measure such that for each finite set S

of places of K, necessarily containing the infinite places, the restriction dxS of dx to

AK,S =
∏
�∈S

K� ×
∏
� ∕∈S

o�

is precisely the product measure dxS =
∏

�∈S dx� . We write dx =
∏

� dx� for the Haar

measure on AK . In Proposition 4.2.4 we proved that the dx� are self-dual with respect to the

standard non-trivial additive characters,  � . Since dx� is self-dual with respect to  � for all

�, then dx on AK is self-dual with respect to  K by Proposition 3.1.10. Let ∣�∣AK =
∏

� ∣ ⋅ ∣� ,

where ∣ ⋅ ∣� is the normalized absolute value of the completion K� . In Chapter 3, Proposition

3.2.13, we showed that �(�M) = ∣�∣AK�(M) for any Haar measure � on AK and for any
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measurable set M with 0 < �(M) < ∞. As such, this property holds for our choice of dx on

AK .

Theorem 4.7.6. The mapping f 7→ f̂ defines an automorphism of S(AK) that, moreover,

extends to an isometry of L2(AK).

Proof. Let f ∈ S(AK). Since S(AK) is generated by functions of the form f = ⊗�f� where

f� ∈ S(K�), then f̂ = ⊗� f̂� . We have already seen that for all local fields K� , f̂� ∈ S(K�)

for all �. Furthermore, the conductor of the standard character  � is the inverse different

of K� , and the inverse different is o� for all but finitely many �. Also, f� = 1o� for all but

finitely many �. Let � be place such that the conductor of  � is D−1
F = o� and such that f� is

a characteristic function of o� . There are infinitely many � of that type. Then

f̂�(y�) =

∫
K�

f�(x�) �(x�y�)dx� =

∫
o�

 K(x�y�)dx =

⎧⎨⎩Vol(o� , dx�) = 1 if y� ∈ o�

0 otherwise.

Recall that we picked dx such that Vol(o� , dx�) = N(DK� )
−1/2. Since the inverse different in

this case is o� , then N(DK� )
−1/2 = 1. Therefore, f̂ =

∏
� f̂� ∈ S(AK) because f̂� ∈ S(K�) for

all � and because f̂� = 1o� for all but finitely many �.

Let ℎ = f̂ . Then

ℎ̂(y) =

∫
AK

f̂(x) K(xy)dx =

∫
AK

f̂(x) K(−xy)dx =

∫
AK

f̂(x) K(x(−y))dx = f(−(−y)) = f(y)

by the Fourier inversion theorem and self-duality

ˆ̂g(y) = g(−y).

Applying the above result and Fubini’s theorem we obtain∫
AK

∣f(x)∣2dx =

∫
AK

f(x)f(x)dx =

∫
AK

f(x)ℎ̂(x)dx =

=

∫
AK

f(x)

⎛⎝∫
AK

ℎ(y) K(yx)dy

⎞⎠ dx =

∫
AK

ℎ(y)

⎛⎝∫
AK

f(x) K(xy)dx

⎞⎠ dy =

=

∫
AK

f̂(x)ℎ(x)dx =

∫
AK

∣f̂(x)∣2dx
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Since the Schwartz-Bruhat functions are dense in L2(AK), a Hilbert space, then Fourier

transform may be extended by continuity to an isometry on L2(AK). This follows from the

fact that L2(AK) is a Hilbert space. See Rudin’s Real and Complex Analysis Chapter 4

Lemma 4.16 [26].

We want to consider the set of functions on AK that are invariant with respect to

additive translations by elements of K. For example,  K , as chosen above, is translation

invariant because  K is an additive character that is trivial on K. For � ∈ S(AK), set

�̃(x) =
∑
∈K

�( + x).

If the function �̃ is convergent for all x ∈ AK , then it is invariant under translation by K

because additive translation is an automorphism of K.

Definition 4.7.7. Let f be a complex-valued function on AK such that both f̃ and
˜̂
f are

normally convergent ; both are absolutely and uniformly convergent on compact sets. Then

we say that f is admissible.

Lemma 4.7.8. All f ∈ S(AK) are admissible.

Proof. Let f ∈ S(AK). Let C be a compact set of AK . We know that compact sets of

the local fields K� are of the form pn�� , where p is the unique prime ideal of K� and where

n� ∈ ℤ. Therefore, without loss of generality, by enlarging K, we may take it to be of the

form ∏
�∈S!

C� ×
∏
�∈S

pn�� ×
∏

� ∕∈S∪S!

o� ,

where S is the finite set of finite places such that f ∣o� ∕= 1, and S! is the set of infinite places.

Since the characteristic functions of pm�� generate S(K�), then we may assume that f� for all

� ∈ S are characteristic functions. Define the fractional ideal I in oK by

I =
∏
�∈S

pk�� ,

where k� = inf{n� ,m�} and where p� really should be thought of as p� ∩ oK . Suppose that

f( + z) ∕= 0 for some z ∈ C and for some  ∈ K. Since we assumed that for all � ∈ S, f� is a

characteristic function of pm�� , then the �th components of  + z ∈ AK , � ∈ S are necessarily

155



in pm� for all � ∈ S. Consequently,  ∈ pm� − z� ⊂ pk�� for all � ∈ S. In addition,  ∈ o� for

� ∕∈ S ∪ S!. Therefore,

∣f̃(z)∣ = ∣
∑
∈K

f( + z)∣ ≤
∑
∈K

∏
�

∣f�( + z�)∣ =
∑
∈I

∏
�∈S!

∣f�( + z�)∣ =
∑
∈I

∣f!( + z!∣,

where

f! =
∏
�∈S!

f� ∈ S(
∏
�∈S!

K�) and z! = (z�)�∈S! .

In the previous chapter, we showed that K is a discrete subgroup of AK . Hence, I is a

discrete subgroup of
∏

�∈S! K� . Since for � ∈ S!, f� ∈ S(K�) has a uniform bound on the

compact set C� of K� and decreases rapidly with z� , then the analogous statement for f! is

true. We now will want to show that for all but finitely many  ∈ I, f!( + z!) = 0. Since

I is a discrete subgroup of
∏

�∈S! K� , where K� is either isomorphic to ℝ or ℂ, the number

of  ∈ I that occur in any shell of radius B and thickness ΔB can only grow at most by

powers of the radius B. However, since ∣f!∣ goes to zero more rapidly than any polynomial,

then we know that the number of terms in the summation above is finite. We have shown

above that the Fourier transform maps S(AK) to S(AK); thus, f̂ is normally convergent by

the above.

We are now ready to prove the Poisson Summation Formula.

Theorem 4.7.9. Let f ∈ S(AK). Then f̃ =
˜̂
f ; that is,∑

∈K

f( + x) =
∑
∈K

f̂( + x)

for all x ∈ AL.

Proof. If � ∈ AK is a K-invariant function on AK , then � induces a function on AK/K.

Then the Fourier transform of � : AK/K → ℂ can be realized as a function on K since K is

the dual group of AK/K. That is, for all z ∈ K,

�̂(z) =

∫
AK/K

�(t) K(tz)dt,
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where dt is the quotient Haar measure on the compact group AK/K induced by dt on AK .

The quotient measure dt is characterized by the relation∫
AK/K

f̃(t)dt =

∫
AK/K

(∑
∈K

f( + t)

)
dt =

∫
AK

f(t)dt

for all continuous and admissible functions f on AK . In order to proceed, we will establish

two lemmas.

Lemma 4.7.10. For every f ∈ S(AK), we have

f̂ ∣K = ˆ̃f ∣K .

Proof. Fix z ∈ K. By definition, and the fact that  K ∣K = 1, we obtain

ˆ̃f(z) =

∫
AK/K

f̃(t) K(tz)dt =

∫
AK/K

(∑
∈K

f( + t)

)
 K(tz)dt =

=

∫
AK/K

(∑
∈K

f( + t) K(( + t)z)

)
dt =

∫
AK

f(t) K(tz)dt = f̂(z).

Lemma 4.7.11. For every f ∈ S(AK) and x ∈ K, we have

f̃(x) =
∑
∈K

ˆ̃f() K(x).

Proof. Since f̂ ∣K = ˆ̃f ∣K, then∣∣∣∣∣∑
∈K

ˆ̃f() K(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
∈K

f̂() K(x)

∣∣∣∣∣ ≤∑
∈K

∣f̂()∣

because  K is unitary. Therefore, the expression on the right-hand side of the lemma is

normally convergent, since f ∈ S(AK) is admissible. Also,∑
∈K

ˆ̃f()
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is convergent for the same reason. Recall that ÂK/K ∼= K. In this way, ˆ̃f ∈ L1(K). Since K

is discrete, then ∑
∈K

ˆ̃f() K(x)

is the Fourier transform of ˆ̃f evaluated at −x. Since
ˆ̃̂
f(−x) = f̃(x) by the Fourier inversion

formula, then the lemma is proved. Note that it is here where self-duality is needed

Let us return to the proof of the Poisson summation formula. Applying the second

lemma with x = 0 and then the first lemma, we obtain

f̃(0) =
∑
∈K

ˆ̃f() K(0) =
∑
∈K

ˆ̃f() =
∑
∈K

f̂().

Since f̃(0) =
∑

∈K f(), then ∑
∈K

f() =
∑
∈K

f̂().

We now will proceed with the number field analogue of the geometric Riemann-Roch

Theorem.

Theorem 4.7.12 (Riemann-Roch). Let x ∈ IK. Let f ∈ S(AK). Then∑
∈K

f(x) =
1

∣x∣AK

∑
∈K

f̂(x−1).

Proof. Fix an x ∈ IK . Since f is admissible, then fx, defined by fx(y) = f(xy), is in

S(AK), and hence admissible. So, the sum on the left is normally convergent. The Poisson

summation formula applied to fx yields∑
∈K

fx() =
∑
∈K

f̂x().

Computing the Fourier transform of fx we obtain

f̂x() =

∫
AK

f(yx) K(y)dy =
1

∣x∣AK

∫
AK

f(y) K(yx−1)dy =
1

∣x∣AK
f̂(x−1).
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This completes the proof.

4.8 Idele-Class Characters

Proposition 4.8.1. Every idele-class character � has the factorization �=�̃∣ ⋅ ∣s where �̃ is a

unitary character.

Proof. Let � ∈ Homcont(IK/K∗,ℂ×). Let �∞ be an infinite place of K. Consider the subgroup

V (IK) = {(t�∞ , 1, 1, . . .) : t�∞ ∈ ℝ×+} of IK . Then ∣ (t�∞ , 1, 1, . . .) ∣AK = t�∞ if �∞ is a real place

and = t2�∞ if �∞ is a complex place. We have at once that the map ∣ ⋅ ∣AK : V (IK)→ ℝ×+ is an

isomorphism. Since we uniquely can write any idele in the form x = ∣x∣AK ⋅ y where y ∈ I1
K ,

then the map � : V (IK)× I1
K → IK , defined by (�, �) 7→ ��, is an isomorphism. Moreover, we

have the short exact sequence

1→ C1
K = I1

K/K
∗ → CK = IK/K∗ → V (IK) = ℝ×+ → 1.

Recall that C1
K = I1

K/K
∗ is compact, where I1

K = Ker(∣ ⋅ ∣AK ). Since a quasi-character

is continuous, then �(I1
K/K

∗) is a compact subgroup of ℂ×, and hence is contained in S1.

Therefore, �∣I1K/K∗ = �̃ is a unitary character on I1
K/K

∗. Now, consider �̃−1�, which, by

definition, is trivial on I1
K/K

∗. Since IK/I1
K
∼= ℝ×+, then �̃−1� = ∣ ⋅ ∣s for some s ∈ ℂ. See Prop

4.1.3 for a proof of this fact. Therefore, an arbitrary quasi-character on CK is of the form

� 7→ �̃(�̃)∣�∣s where �̃ is characterized by the relation � = �̃�, for some unique � ∈ C1
K .

Remark 4.8.2. An idele-class character, �, is called unramified if �∣I1 = 1. We say that two

idele-class characters are equivalent if their quotient is unramified. Each equivalence class is

of the form

{�̃∣ ⋅ ∣s : s ∈ ℂ}

for some fixed unitary character �̃. Let us investigate the idele-class characters of ℚ.

Example 4.8.3. Let K = ℚ. In the adele and idele chapter, we showed that Iℚ ∼=

ℚ∗ × ℝ×+ × ℤ̂×, where ℤ̂× = lim
←
n

(ℤ/nℤ)× =
∏

p ℤ×p . Recall from the chapter concerning

topological groups that ℤ̂× = lim
←
n

(ℤ/nℤ)× is a projective limit of discrete groups, and hence
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is a profinite group. Since ℤ̂× is a profinite group, then, by Theorem 1.1.40, it is compact

and totally disconnected.

We see that Cℚ = Iℚ/ℚ∗ ∼= ℝ×+ × ℤ̂×. The quotient topology on Cℚ is equivalent to

the product topology on ℝ×+ × ℤ̂×. Let � be a quasi-character of Iℚ that is trivial on ℚ∗, or,

equivalently, an idele-class character. More specifically, let � be a finite order character. If

� is a finite-order quasi-character, then � must be trivial on ℝ×+ because ℝ×+ is a divisible

group. As such, � is a character on ℤ̂×, a totally disconnected compact group. Furthermore,

� =
∏

p �p, where �p is a continuous unitary character on ℤ×p such that �p∣ℤ×p = 1 for all

but finitely many primes p. See Proposition 3.1.5 for a proof of this fact. It relies on the fact

that � is continuous and that there are no small subgroups of S1. For the remaining �pi ,

i = 1, . . . , r that are not trivial on ℤpi , there exists a largest subgroup Uni = 1 + pnii ℤpi such

that �pi ∣Uni = 1. Again, we use a “no small subgroups” argument. Consequently, the kernel

of � contains

ℝ×+ ×
r∏
i=1

Uni ×
∏
p∕=pi

ℤ×p ,

and � factors through the quotient group

r∏
i=1

ℤ×pi/
r∏
i=1

Uni
∼=

r∏
i=1

(ℤ/pnii ℤ)× ∼= (ℤ/nℤ)×,

where n = pn1
1 p

n2
2 ⋅ ⋅ ⋅ pnrr by the Chinese remainder theorem. Therefore, � induces a multi-

plicative character �n : (ℤ/nℤ)× → S1. Such a character is called a Dirichlet character. In

sum, any idele-class character � of ℚ takes the form � = �̃∣ ⋅ ∣sAK , where �̃ is a finite order

character induced from a Dirichlet character mod n.

In general, let � be an idele-class character of a number field K. Let S be the finite set

of finite places � of K such that �� ∣o×� ∕= 1. Let S∞ be the finite set of infinite primes. Let p�

be the unique prime associated to a finite place � of K. Then there exists a largest subgroup

Un� = 1 + pn�� of o×� such that �� ∣Un� = 1. As such∏
�∈S∞

{1} ×
∏
�∈S

Un� ×
∏

� ∕∈S∪S∞

o×� ⊂ Ker(�).

We call m =
∏

�∈S p
n�
� the modulus of �.

We will now show how a a Dirchlet character on (ℤ/nℤ)× induces a finite order idele-

class character. A Dirichlet character first can be extended to ℤ/nℤ by extending by 0, and
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then extended again to a map �N : ℤ → S1 ∪ {0} by pulling back under the projection

prN : ℤ → ℤ/nℤ. We call such a character �N a classical Dirichlet character. Suppose N ∣M .

Then �N determines a character �M = �N ∘ prM,N of ℤ/mℤ by pulling back under the

projection

prM,N : (ℤ/Mℤ)× → (ℤ/Nℤ)×.

Furthermore, we can extend this character �M to a character �M on ℤ. The projection maps

prN : ℤ̂× → (ℤ/nℤ)×

are surjective and continuous. As such, every Dirichlet character �N can be viewed as

a continuous character � of ℤ̂×. The conductor of � is the smallest N0 such that � is

trivial on the kernel of the projection prN0
. Note that the smallest N0 corresponds to the

largest subgroup (kernel) of ℤ̂×. It follows that N0∣N and that � is the pullback of a unique

character �N0 of ℤ/N0ℤ. As such, there is a collection of Dirichlet characters that pullback

to �; we call �N0 a primitive classical Dirichlet character and all others imprimitive classical

Dirichlet characters. Therefore, Dirichlet characters are in bijective correspondence with

continuous characters of ℤ̂× and, moreover, of continuous finite order characters of the

idele-class group Cℚ.

The equivalence classes of quasi-characters of Cℚ = Iℚ/ℚ∗ are of the form

{�̃∣ ⋅ ∣s : s ∈ ℂ},

where �̃ is a character on ℤ̂× induced from a Dirichlet Character. Since there are countably

many conductors of �̃, and only finitely many Dirchlet Characters for a given conductor,

then domain of idele-class characters is isomorphic to countably many copies of the complex

plane.

4.9 The Meromorphic Continuation and Functional Equation of the Global Zeta
Function

Let K be a number field and let  K the standard adelic character. Let dx� be the

self-dual additive measure with respect to  � . We set

d∗x� =
q�

q� − 1
⋅ dx�
∣x� ∣�
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to be the Haar measure of the multiplicative group of the completion of K with respect to

finite places, �, of K. We have seen that Vol(o×� , d
∗x�) = Vol(o� , dx) = N(D−1

K�
) = q

−d�/2
� .

Also, we set d∗x� = dx�/∣x� ∣� to be the Haar measure for the multiplicative group of the

completion of K with respect to the infinite places. Since D−1
K�

= o� for all but finitely many

primes, then Vol(o×� , d
∗x�) = 1 for all but finitely many places � of K. Therefore,

∏
� d
∗x� is

a Haar measure on IK by Proposition 3.1.8.

Definition 4.9.1. Let � ∈ Homcont(IK/K∗,ℂ×). For f ∈ S(AK), define the global zeta

function by

Z(f, �) =

∫
IK

f(x)�(x)d∗x.

Note that since the restricted direct product topology of IK is stronger than the subspace

topology induced by AK , then f is necessarily continuous on IK .

Just as the local zeta function was a function on the domain of quasi-characters of a

local field F , Z(f, �) is a function on the domain of idele-class characters of a given number

field K. In the following theorem, we first will prove that Z(f, �) is absolutely and uniformly

convergent on the domain of idele-class characters of exponent greater than 1. Then we will

prove that in the equivalence class of unramified characters, Z(f, �) can be meromorphically

continued to the whole s-plane with two simple-poles at s = 0 and s = 1; on all other

equivalence classes, Z(f, �) can be analytically continued to the whole s-plane.

Theorem 4.9.2. For all idele-class characters � = �̃∣ ⋅ ∣s and f ∈ S(AK), the global zeta

function Z(f, �) is normally convergent in � = ℜ(s) > 1. Furthermore, Z(f, �) extends to a

meromorphic function of s and satisfies the functional equation

Z(f, �) = Z(f̂ , �̌).

The continuation is entire in all classes of idele-class characters except for the class of

unramified characters, which is given by the set

{� ∈ Homcont(IK/K∗,ℂ×) : �̃ = ∣ ⋅ ∣−i� with � ∈ ℝ}.
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For a given class representative � = ∣ ⋅ ∣s−i� , Z(f, ∣ ⋅ ∣s−i� ) has simple poles at s = i� and

s = 1 + i� , with corresponding residues given by

−Vol(C1
K)f(0) and Vol(C1

K)f̂(0),

respectively. The volume of C1
K is taken with respect to the quotient measure on CK defined

by both d∗x and the counting measure on K∗. We will compute Vol(C1
K) in the last section of

this chapter.

Proof. Since f ∈ S(AK), then f� is a characteristic function of o� for all but finitely many

finite places � of K. Let S be the finite set of finite places for which f� ∈ S(K�) is not

a characteristic function of o� . For all finite places � of K, let p� be the unique prime

of K� and let �� be a uniformizing parameter of p� . We may take f� for � ∈ S to be a

characteristic function of pm�� = �m�� o� by linearity and translation invariance of the Haar

measure. Let S! be the set of infinite places of K. As such, the product∏
�

c�

∫
K�−{0}

∣f�(x�)∣∣x� ∣�−1
� dx� ,

where c� = q�/(q� − 1) for finite places and c� = 1 for infinite places, is equal to∏
�∈S

c�

∫
�m�� o�−{0}

∣x� ∣�−1
� dx� ×

∏
�∈S!

∫
K�−{0}

∣f�(x�)∣∣x� ∣�−1
� dx� ×

∏
� ∕∈S∪S!

c�

∫
o�−{0}

∣x� ∣�−1
� dx� .

In part (i) of Theorem 4.5.3, for Archimedean fields (� ∈ S!) we showed that the integral∫
K�−{0}

∣f�(x�)∣∣x� ∣�−1
� dx�

is finite for � > 0. Since the number of infinite places is finite, then the product of the

Archimedean integrals is equal to some positive real M . Furthermore, for non-Archimedean

fields, and hence � finite, we showed that

c�

∫
�m�� o�−{0}

∣x� ∣�−1
� dx� = Vol(o×� , d

∗x�)
q−m���

1− q−��

163



for � > 0. Also, c� = q�
(q�−1)

was chosen so that Vol(o×� , d
∗x�) = N(D−1

K�
). We obtain at once

that the product of integrals is equal to

M

(∏
�∈S

q−m���

1− q−��
⋅N(D−1

K�
)

)( ∏
� ∕∈S∪S!

1

1− q−��
⋅N(D−1

K�
)

)
.

The convergence of the global zeta function is determined completely by the convergence of

the infinite product ∏
� ∕∈S∪S!

1

1− q−��
,

since S and S! is finite and D−1
K�

= o� for all but finitely many places � of K. An infinite

product of complex numbers
∏∞

n=1 an of complex numbers an is said to converge if the

sequence of partial products Pn = a1 ⋅ ⋅ ⋅ an has a nonzero limit. If we fix the principal branch

of logarithm, then
∏∞

n=1 an converges if and only if the series
∑

n=1 log an converges, where

log denotes the principal branch of the logarithm. See Alfhors, Complex Analysis Chapter

V 2.2 ([1]). A product is called absolutely convergent if the series converges absolutely.

Therefore, in order to determine the region of convergence of the product, we examine the

logarithm ∑
� ∕∈S∪S!

log

(
1

1− q−��

)
=

∑
� ∕∈S∪S!

∞∑
m=1

q−m��

m
.

The number of � lying over a given rational prime p is bounded by n = [K : ℚ]. Also, q� = pf

where f is the residue degree of K�/ℚp . That is q� is a positive integer power of p So, if p�

lies above p, then q−m�� ≤ p−m� for m positive. Letting p run over the set of positive rational

primes, we obtain

∑
� ∕∈S∪S!

log

(
1

1− q−��

)
=
∑
p

∑
�∣p,

� ∕∈S∪S!

∞∑
m=1

q−m��

m
≤
∑
p

∞∑
m=1

p−m�

m
.

The product on the right converges absolutely for � ≥ 1 + � for every � > 0. Indeed,

mpm� ≥ pm(1+�) for m > 0 so the series has the convergent majorant

∑
p

∞∑
m=1

p−m(1+�) =
∑

p(p1+� − 1)−1 ≤ 2
∑
p

1

p1+�
,
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which converges by the p-test. Since∏
�

c�

∫
K�−{0}

∣f�(x�)∣∣x� ∣�−1
� dx�

is convergent in � > 1, then ∏
�

∫
K∗�

f�(x�)��(x�)dx
∗
�

is normally convergent in � > 1. We have that � = �̃∣ ⋅ ∣sAK =
∏

� �̃� ∣ ⋅ ∣s� from a proposition in

the adele and idele chapter. By the analysis from the adele and idele chapter, we have that

∣Z(f, �)∣ =

∣∣∣∣∣∣
∫
IK

f(x)�(x)d∗x

∣∣∣∣∣∣ =
∏
�

∣∣∣∣∣∣∣
∫
K∗�

f�(x�)��(x�)d
∗x�

∣∣∣∣∣∣∣ ≤
∏
�

c�

∫
K�−{0}

∣f�(x�)∣∣x� ∣�−1
� dx� .

Therefore,, Z(f, �) = Z(f, �̃, s) is normally convergent in � = ℜ(s) > 1. In order to

show that Z(f, �) is holomorphic for � > 1, we need to justify exchanging the order of the

derivative d/ds and the integral. We see that

d

ds
f(x)�̃(x)∣x∣sAK = f(x)�̃(x)

d

ds
es log(∣x∣AK ) = f(x)�̃(x) log(∣x∣AK )∣x∣sAK ,

which is continuous and absolutely integrable for � > 1. Therefore,

d

ds
Z(f, �̃, s) =

d

ds

∫
IK

f(x)�̃(x)∣x∣sAKd
∗x =

∫
IK

f(x)�̃(x) log(∣x∣AK )∣x∣sAKd
∗x,

which proves that Z(f, �) is holomorphic in � > 1.

If we fix an infinite place of K, then IK ∼= ℝ×+ × I1
K . We see by our choice of measures

above that d∗x on IK is equivalent to dt
t
⋅ d∗x on ℝ×+ × I1

K . Therefore, if � > 1, then applying

Fubini’s theorem with both f ∈ S(AK) and � ≥ 1, we obtain

Z(f, �) =

∫
IK

f(x)�(x)d∗x =

∫∫
ℝ×+×I1K

f(tx)�(tx)
dt

t
d∗x =

∞∫
0

∫
I1K

f(tx)�(tx)d∗x
dt

t
,

where the product tx takes place at the fixed infinite component of x. Define

Zt(f, �) =

∫
I1K

f(tx)�(tx)d∗x.
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We will now apply Riemann-Roch to establish a functional equation for Zt(f, �).

Proposition 4.9.3. The function Zt(f, �) satisfies the relation

Zt(f, �) = Zt−1(f̂ , �̌) + f̂(0)

∫
C1
K

�̌(x/t)d∗x− f(0)

∫
C1
K

�(tx)d∗x.

Proof. By definition, C1
K = I1

K/K
∗. Since K∗ is discrete in I1

K , then the Haar measure on K∗

is the counting measure. Then

Zt(f, �) =

∫
C1
K

(∑
a∈K∗

f(atx)�(atx)

)
d∗x =

∫
C1
K

(∑
a∈K∗

f(atx)

)
�(tx)d∗x

since �∣K∗ = 1, by hypothesis. To apply the Riemann-Roch theorem, we need to sum over K,

not K∗. In order to do this, we add f(0)
∫
C1
K

�(tx)d∗x to Zt(f, �). That is,

Zt(f, �) + f(0)

∫
C1
K

�(tx)d∗x =

∫
C1
K

(∑
a∈K

f(atx)

)
�(tx)d∗x.

Applying the Riemann-Roch theorem to the sum on the right-hand side and then using the

change of variable x 7→ x−1, we obtain∫
C1
K

(∑
a∈K

f(atx)

)
�(tx)d∗x =

∫
C1
K

(∑
a∈K

f̂(at−1x−1)

)
�(tx)

∣tx∣AK
d∗x

=

∫
C1
K

(∑
a∈K

f̂(at−1x)

)
∣t−1x∣AK�(tx−1)d∗x

=

∫
C1
K

(∑
a∈K∗

f̂(at−1x)

)
�̌(x/t)d∗x+ f̂(0)

∫
C1
K

�̌(x/t)d∗x

= Zt−1(f̂ , �̌) + f̂(0)

∫
C1
K

�̌(x/t)d∗x

since �̌ = �−1∣ ⋅ ∣. This completes the proof of the functional equation of Zt(f, �).

We may break up Z(f, �) as follows:

Z(f, �) =

1∫
0

Zt(f, �)
1

t
dt+

∞∫
1

Zt(f, �)
1

t
dt.
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We see that
∞∫

1

Zt(f, �)
1

t
dt =

∫
{x∈IK :∣x∣AK≥1}

f(x)�(x)d∗x.

The integral on the right-hand side is normally convergent for � > 1. However, for smaller

� and ∣x∣AK > 1, the convergence is better. Therefore, the integral is normally convergent

for all s ∈ ℂ. We now will use the functional equation for Zt(f, �) to investigate the integral

from 0 to 1:

1∫
0

Zt(f, �)
1

t
dt =

1∫
0

⎛⎜⎝Zt−1(f̂ , �̌) + f̂(0)�̌(t−1)

∫
C1
K

�̌(x)d∗x− f(0)�(t)

∫
C1
K

�(x)d∗x

⎞⎟⎠ 1

t
dt.

Applying the change of variable t 7→ t−1 to the first integral in the sum, we obtain

1∫
0

Zt−1(f̂ , �̌)
1

t
dt =

∞∫
1

Zt(f̂ , �̌)
1

t
dt,

which is convergent for all � by the argument above (recall that f̂ ∈ S(AK)). Now we are left

to analyze

R(f, �) :=

1∫
0

f̂(0)�̌(t−1)

∫
C1
K

�̌(x)d∗x
1

t
dt−

1∫
0

f(0)�(t)

∫
C1
K

�(x)d∗x
1

t
dt.

There are two cases to consider.

(i) If � is nontrivial on I1
K , then∫

C1
K

�̌(x)d∗x and

∫
C1
K

�(x)d∗x

are both zero by orthogonality of characters (R(f, �) = 0). Therefore,

1∫
0

Zt(f, �)
1

t
dt =

∞∫
1

Zt(f̂ , �̌)
1

t
dt

, and hence

Z(f, �) =

∞∫
1

Zt(f, �)
1

t
dt+

∞∫
1

Zt(f̂ , �̌)
1

t
dt.

So, when � is nontrivial on I1
K , then Z(f, �) extends to an entire function.
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(ii) If � = �̃∣ ⋅ ∣s is trivial on I1
K , then � = ∣ ⋅ ∣s′ , where s′ = s− i� , and

R(f, �) = f̂(0)Vol(C1
K)

1∫
0

ts
′−2dt− f(0)Vol(C1

K)

1∫
0

ts
′−1dt

=
f̂(0)Vol(C1

K)

s′ − 1
− f(0)Vol(C1

K)

s′
.

Consequently,

1∫
0

Zt(f, �)
1

t
dt =

∞∫
1

Zt(f̂ , �̌)
1

t
dt+

f̂(0)Vol(C1
K)

s′ − 1
− f(0)Vol(C1

K)

s′

, and hence

Z(f, �) =

∞∫
1

Zt(f, �)
1

t
dt+

∞∫
1

Zt(f̂ , �̌)
1

t
dt+

f̂(0)Vol(C1
K)

s′ − 1
− f(0)Vol(C1

K)

s′
.

If � = �̃∣ ⋅ ∣s is trivial on I1
K and �̃ ∕= ∣ ⋅ ∣i� , then the global zeta function Z(f, �) is

holomorphic everywhere However, if �̃ = ∣ ⋅ ∣i� , then Z(f, �) has simple poles at s = i� and

s = 1 + i� , with respective residues −Vol(C1
K) and Vol(C1

K).

In either case, we have

Z(f, �) =

∞∫
1

Zt(f, �)
1

t
dt+

∞∫
1

Zt(f̂ , �̌)
1

t
dt+R(f, �)

=

∞∫
1

∫
I1K

f(tx)�(tx)d∗x
1

t
dt+

∞∫
1

∫
I1K

f̂(tx)�̌(tx)d∗x
1

t
dt+R(f, �).

We have that
ˆ̂
f(x) = f(−x), since dx is self-dual relative to  K on AK . In addition, ˇ̌� = � by

definition. Applying these two facts, we obtain

Z(f̂ , �̌) =

∞∫
1

Zt(f̂ , �̌)
1

t
dt+

∞∫
1

Zt(
ˆ̂
f, ˇ̌�)

1

t
dt+R(f̂ , �̌)

=

∞∫
1

∫
I1K

f̂(tx)�̌(tx)d∗x
1

t
dt+

∞∫
1

∫
I1K

f(−tx)�(tx)d∗x
1

t
dt+R(f, �).
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By inspection, R(f̂ , �̌) = R(f, �). Furthermore, since � is an idele-class character, and hence

trivial on K∗, then �(−tx) = �(tx). Finally, we have that

Z(f, �) = Z(f̂ , �̌).

4.10 Hecke L-Functions

Let � ∈ Homcont(IK/K∗,ℂ×) (an idele-class character), for a number field K. We saw in

Proposition 4.8.1 that every � can be written as �̃∣ ⋅ ∣sAK , where �̃ is a unitary character and

where s ∈ ℂ. Denote by � the real part of s and call it the exponent of �. Furthermore, by

Proposition 3.1.5, we may, at each place � of K, define a local character

�� : K∗� → ℂ×

t 7→ �(1, . . . , 1, t, 1, . . . , 1),

where t is in the �th component. Then �(y) =
∏

� ��(y). Since the restriction of �� ∣o� = 1 for

all but finitely many places, then this product makes sense.

Definition 4.10.1. Let L(��) be defined as in 4.1, 4.2, 4.3, We define the global L-function

of � in terms of its local versions by the product expansion

L(�) =
∏
�

L(��),

whenever this is convergent.

Lemma 4.10.2. L(�) is absolutely convergent, nonzero, and holomorphic whenever the

exponent � = ℜ(s) of � is greater than 1.

Proof. L(�) is nonzero because L(��) is nonzero for all quasi-characters �� . See Remark

4.1.6. Write � = �̃∣ ⋅ ∣s with � = ℜs. By definition, L(��) = 1 if � is a finite place and

�� is ramified (�� ∣o� ∕=1). Since �� ∣o� = 1 for all but finitely many finite places, then �� is

unramified for almost all �. In addition, there are only a finite number of non-Archimedean

places, �; L(��) is holomorphic for all ℜ(s) > 0 since they come from gamma functions.
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Hence, we may ignore infinite places and those finite places for which �� is ramified.∏
�

∣L(��)∣ =
∏
�

1

∣1− �̃�(��)∣�� ∣s� ∣
=
∏
�

1

∣1− �̃�(��)q−s� .∣

In order to show that the product is convergent for � > 1, then we must show that the

logarithm of the product converges for � > 1. See [20], page 373, for an explanation of

complex products. Taking the logarithm, we obtain

log

(∏
�

∣L(��)∣

)
=
∑
�

log

(
1

∣1− �̃�(��)q−s� ∣

)
= ℜ

(∑
�

∑
m>0

�̃�(��)
mq−ms�

m

)
.

Since �̃ is unitary (image in S1) and since ∣q−ms� ∣ = ∣e−ms log q� ∣ = ∣e−m� log q� ∣∣e−imℑ(s) log q� ∣ =

∣e−m� log q� ∣ = q−m�� , then it suffices to show the convergence of∑
�

∑
m>0

q−m��

m
.

Replicating the argument from the beginning of Theorem 4.9.2, we can establish the conver-

gence of this infinite sum for � > 1.

We will adopt the notation of [24] and define the Hecke L-function as follows.

Definition 4.10.3. Let � ∈ Homcont(IK/K∗,ℂ×) (an idele-class character). For complex s,

define the Hecke L-function L(s, �) by

L(s, �) = L(�∣ ⋅ ∣s). (4.20)

Let �f =
∏

� finite �� and �∞ =
∏

�∣∞ �� , where �� is the restriction of � to the �th place.

We define the finite and infinite versions of L(�) by

L(s, �f ) =
∏
� finite

L(s, ��)

and

L(s, �∞) =
∏
�∣∞

L(s, ��),

respectively.

Traditionally, L(s, �f ) is denoted L(s, �), and L(s, �) is denoted Λ(s, �). Let us consider

the trivial idele-class character � = 1. Note that � = 1 belongs to the class of unramified
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idele-class characters {∣ ⋅ ∣−i�AK : � ∈ ℝ}. Then

L(s, 1f ) =
∏
� finite

1

1− ∣�� ∣s
=
∏

� finite

1

1−N(p�)−s
,

where p� is the unique prime associated to the completion of K at � and N is the absolute

norm. That is N(p�) = [oK : p�oK ] = [o� : p�o� ] = q� .

For an arbitrary number field K, L(s, 1f ) is called the Dedekind zeta function of K and

is denoted �K(s). Let x ∈ ℝ and x > 0. Applying the unique factorization of integral ideals of

K into prime ideals (finite places of K) and multiplicity of the norm, we have

∏
N(p)≤x

(
1−N(p)−�

)−1
=

∏
N(p)≤x

(
∞∑
m=0

N(p)−m�

)
≥
∑

N(a)≤x

N(a)−�,

where the last sum is over nonzero integral ideals a of K. Since the product on the left

converges uniformly and absolutely for ℜs = � ≥ 1 + � for any � > 0 by the above lemma,

then
∑

aN(a)−s converges uniformly and absolutely for ℜs = � ≥ 1 + � for any � > 0. In

addition, we have ∣∣∣∣∣∣
∏

N(p)≤x

(
1−N(p)−s

)−1 −
∑

N(a)≤x

N(a)−s

∣∣∣∣∣∣ ≤
∑

N(a)≥x

N(a)−�.

Since
∑

aN(a)−s is absolutely and normally convergent for � > 1, then the right-hand side

converges to zero, proving that

�K(s) =
∏
p

1

1−N(p)−s
=
∑
a

N(a)−s (4.21)

is absolutely and uniformly convergent for � > 1. We will now prove the main theorem. If

K = ℚ, then, for ℜ(s) > 1, we have that

L(s, 1f ) =
∏
p

1

1− p−s
=
∑
n≥1

1

ns

is the Riemann zeta function.

Theorem 4.10.4. Let �̃ be a unitary idele-class character with factorization �̃ =
∏

� �̃� Let

 =
∏

�  � be a non-trivial adelic character that is trivial on K. Then L(s, �̃), which is a
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priori defined and holomorphic in {s ∈ ℂ : ℜ(s) > 1}, admits a meromorphic continuation to

the whole s-plane, and satisfies the functional equation

L(1− s, �̃) = �(s, �̃)L(s, �̃)

where

�(s, �̃) =
∏
�

�(�̃� ∣ ⋅ ∣s,  � , dx�) ∈ ℂ×,

for some choice of self-dual pair ( =
∏

�  � and dx =
∏

� dx� .) The global epsilon factor

is, in fact, independent of the this pair. Furthermore, L(s, �̃f ), as defined above, admits a

meromorphic continuation to the whole s-plane and satisfies the functional equation

L(1−s, �̃f )
∏
� real

Γℝ(1−s+n�)
∏
� cplx

Γℂ(1−s+ ∣n� ∣
2

) = �(s, �̃)
∏
� real

Γℝ(s+n�)
∏
� cplx

Γℂ(s+
∣n� ∣
2

)L(s, �̃f ),

where n� is defined as follows:

(i) If � is a finite place, then let n� > 0 be the integer such that pn�� is the conductor of �̃�.

(ii) If � is a complex place, then let n� ∈ ℤ be the integer such that �̃� : re−i� 7→ e−in�.

(iii) If � is a real place, then let n� = 0 if �̃� = 1, and n� = 1 if �̃� = sgn.

Let r2 be the number of complex places of K (i.e. the number of non-conjugate complex

embeddings of K). Let dK be the global discriminant. The meromorphic continuation of

L(s, �) is entire unless � is unramified – that is, � = ∣ ⋅ ∣−i�AK for some � ∈ ℝ – in which

case there exists simple poles at s = i� and s = i + i� , with residues −(2�)−r2Vol(C1
K) and

(2�)−r2∣dK ∣1/2Vol(C1
K), respectively.

Also, the meromorphic continuation of L(s, �f ) is entire unless � is unramified, in

which case there exists a simple pole at s = i + i� with residue Vol(C1
K). Since L(s, �f ) =

L(s − i�, 1f ) = �K(s − i�), then we see that �K(s) admits a meromorphic continuation to the

entire s-plane with a simple pole at s = 0 and corresponding residue Vol(C1
K), and satisfies

the functional equation

�K(1− s)Γr1ℝ (1− s)Γr2ℂ (1− s) = ∣dK ∣1/2−s Γr1ℝ (s)Γr2ℂ (s)�K(s).

Proof. Let us fix the standard non-trivial adelic character  K and the unique Haar measure

dx that is self-dual relative to  K . If we can show that L(s, �̃) is meromorphic everywhere,

then the functional equation will follow. Indeed, let us choose a factorizable f = ⊗�f� ∈
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S(AK) such that each f� ∈ S(K�) and f� = �o� for all but finitely many places � of K; these

functions generate S(AK). In Theorem 4.7.6, we proved that f̂ = ⊗� f̂� for such a function.

Let d∗x be the multiplicative measure on IK used in the proof of the global functional

equation. Thus, d∗x =
∏

� d
∗x� , where Vol(o� , d

∗x�) = N(D�)
−1/2 = 1 for all but finitely

many places � of K. For every idele-class character

� := �̃∣ ⋅ ∣sAK ,

we have � =
∏

� �� , where

�� = �̃� ∣ ⋅ ∣s�

and �� ∣o� = 1, hence �̃� ∣o� = 1 for all but finitely many places of K (Proposition 3.1.5). As

such, f��� and f̂��̌� are characteristic functions of o� for all but finitely many finite places

� of K. Note that we also have f̂� ∈ S(K�) for all places � of K. Therefore, by Proposition

3.1.9, we have that

Z(f̂ , �̌) =

∫
IK

f̂(x)�̌(x)d∗x =
∏
�

∫
K∗

f̂�(x�)�̌�(x�)d
∗x� =

∏
�

Z(f̂� , �̌�)

and

Z(f, �) =
∏
�

Z(f� , ��).

The global functional equation (Theorem 4.9.2), in combination with the above product

decomposition, yields

∏
�

Z(f� , ��) =
∏
�

Z(f̂� , �̌�) ⇔ 1 =
∏
�

Z(f̂� , �̌�)

Z(f� , ��)
.

In order to apply the global functional equation, we needed that dx be the unique measure

which is self-dual with respect to  K . Explicitly, this is used in the proof of the global

functional equation when applying the Riemann-Roch theorem. Applying the local functional

equation (Theorem 4.5.3) we have that

1 =
∏
�

�(�̃� ∣ ⋅ ∣s� ,  � , dx�)L(1− s, �̃�−1)

L(s, �̃�)
=

∏
� �(�̃� ∣ ⋅ ∣s� ,  � , dx�)L(1− s, �̃−1)

L(s, �̃)

by the definitions of L(s, �̃) and L(1−s, �̃−1). Note that �̃�
−1 = �̃� , since �̃� is unitary. Now,

suppose we pick another non-trivial � ∈ ÂK/K. Since ÂK/K ∼= K, then � =  K,b for some
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b ∈ K∗. As such, � =
∏

�  �,b, where  � is the standard non-trivial additive character on K� .

Unlike the local functional equation, where we freely could choose an additive character and

not worry about adjusting the measure to be self-dual with respect to that character, here we

cannot do so. The measure dx′ that is self-dual with respect to � is precisely
∏

� dx
′
� , where

dx′� is the self-dual measure with respect to  � . The measure ∣b∣1/2� dx� is the corresponding

self-dual measure with respect to  �,b. Indeed,

By Proposition 4.6.1, we have that∏
�

�(�̃� ∣ ⋅ ∣s� ,  �,b, ∣b∣1/2� dx�) =
∏
�

∣b∣s−1/2
� �̃�(b)�(�̃� ∣ ⋅ ∣s� ,  � , dx�)

= ∣b∣s−1/2
AK �̃(b)

∏
�

�(�̃� ∣ ⋅ ∣s� ,  � , dx�)

=
∏
�

�(�̃� ∣ ⋅ ∣s� ,  � , dx�).

Set

�(s, �̃) =
∏
�

�(�̃� ∣ ⋅ ∣s,  � , dx�).

Therefore, if L(s, �̃) is meromorphic as a function of s, then the requisite functional equation

and meromorphic continuation of L(s, �) holds. Because Z(f, �) = Z(f, �̃∣ ⋅ ∣sAK ) is a

meromorphic function in the whole s-plane (Theorem 4.9.2), if we find a function f = ⊗�f� ∈

S(AK) with the property that

Z(f, �̃∣ ⋅ ∣sAK ) = ℎ(s, �̃)L(s, �̃), (4.22)

where ℎ is a nonzero meromorphic function, then we will have that L(s, �̃) is a meromorphic

function of s. Let  � be the additive characters induced by the adelic character  K . Since we

chose the standard non-trivial adelic character  K , then  � =  p(trK�/ℚp(⋅)) for all finite �

with �∣p. The conductor of  � is D−1
� = �−d�� o� . If � is a finite place, then let n� > 0 be the

integer such that pn�� is the conductor of �̃� . If � is a complex place, then let n� ∈ ℤ be the

integer such that �̃� : re−i� 7→ e−in�. If � is a real place, then let n� = 0 if �̃� = 1 and n� = 1

if �̃� = sgn. In Theorem 4.5.3, we picked a local function f� ∈ S(K�) such that

Z�(f� , �̃� ∣ ⋅ ∣s�) = ℎ�(f� , �̃� ∣ ⋅ ∣s� ,  � , dx�)L(s, �̃�)
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and

Z�(f̂� , �̃� ∣ ⋅ ∣1−s� ) = ℎ�(f̂� , �̃� ∣ ⋅ ∣1−s� ,  � , dx�)L(1− s, �̃�),

where ℎ� is an entire and everywhere nonzero function for all places � of K . Note that

f� and ℎ� are dependent on �� ,  � , dx� , and, technically, d∗x� if one does not specify

the multiplicative measure d∗x� = dx�/∣ ⋅ ∣� . In this case, the measures dx� and d∗x�

correspond to the product decomposition of the chosen dx and d∗x on the adeles and ideles,

respectively. That is, dx� is the unique Haar measure that is self-dual with respect to  � (i.e.

ˆ̂
f�(x) = f(−x)) and satisfies Vol(o� , dx) = N(p�)

−1/2 = q
−d�/2
� , where p� is the unique prime

of K� and q� is the order of the residue field o�/p�o� . Also, d∗x� is the unique measure such

that Vol(o� , d
∗x) = N(DK)−1/2 = q

−d�/2
� .

In the table below, we will list f� , ℎ(s, �̃�), and ℎ′(1− s, �̃�−1) by local field (completion

type), as computed in Theorem 4.5.3, relative to n� ,  � , dx� , and d∗x� , induced from �̃� ,  K ,

dx and d∗x, respectively:

K� f�(x) ℎ�(f� , �̃� ∣ ⋅ ∣s� ,  � , dx�) ℎ�(f̂� , �̃� ∣ ⋅ ∣1−s� ,  � , dx�)

ℝ

⎧⎨⎩e
−�x2 if n� = 0

xe−�x
2

if n� = 1

1

⎧⎨⎩1 if n� = 0

i if n� = 1

ℂ

⎧⎨⎩
xn� e−2�xx

2�
for n� ≥ 0

x−n� e−2�xx

2�
for n� < 0

1 i∣n� ∣

n-A

⎧⎨⎩ �(x) if x ∈ (p−d�−n�� )

0 otherwise

⎧⎨⎩q
d�(s−1/2)
� if n� = 0

q
d�(s−1/2)+n�(s−1)
� G′� if n� > 0

⎧⎨⎩1 if n� = 0

�̃�(−1) if n� > 0,

where

G′� =
q�

q� − 1

∑
x∈U�/U�,n

�̃�(x) �(�
−d�−n�
� x).

As we can see, specific test functions, f� ∈ S(K�), were chosen for certain equivalence classes

of quasi-characters, hence the dependence of f� on n� . Recall that Z(f� , ��) is a function on

the equivalence class of local quasi-characters. The test functions also were dependent on the

additive character and measure chosen. For the Archimedean cases, the dependence of f� on
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the additive characters and measure is characterized by the property f̂ = f . Whereas, in

the non-Archimedean case, the dependence is more apparent with a d� (the valuation of the

conductor of the additive character  �) appearing in the definition of the function. While the

function ℎ� is dependent on f� , the gamma and epsilon factors are not (Lemma 4.5.4).

For the idele-class character � defined by � = �̃∣ ⋅ ∣sAK , we have �� ∣o� = 1 for all

but finitely many places of K, hence �� is unramified (n� = 0) for all but finitely many

finite places of K. Since we have fixed  K , the standard non-trivial adelic character, then

 K = ⊗� � , where  � is the standard non-trivial additive character of K� . The conductor

of  � is o� for all but finitely many finite places � of K because the inverse different is

trivial for all but finitely many finite places � of K. Hence, d� = 0 for all but finitely many

finite places of K. Let S0 denote the finite set of finite places of K for which �� is ramified

(n > 0). Let T denote the finite set of finite places of K for which D−1
� ∕= o� (d� ∕= 0). As

such, we have f� = 1o� for all but finitely many finite places � ∈ S0∪T and f� ∈ S(K�) for all

places of K. Also, ℎ� = 1 for all places � ∕∈ S0 ∪ T . Therefore, the function f = ⊗�f� ∈ S(K)

satisfies 4.22 with

ℎ(s, �̃) =
∏

�∈S0∩T

qd�(s−1/2)+n�(s−1)
� G′� ⋅

∏
�∈S0∩T c

qd�(s−1/2)
� G′� ⋅

∏
�∈Sc0∩T

qd�(s−1/2). (4.23)

Since ℎ is a nonzero meromorphic function, then L(s, �̃) is meromorphic as a function of s.

In the table below, we will list �(�̃� ∣ ⋅ ∣s� ,  � , dx) by local field (completion type), as

computed in Theorem 4.5.3, relative to n� ,  � , dx� , and d∗x� induced from �̃� ,  K , dx and

d∗x, respectively:

K� �(�̃� ∣ ⋅ ∣s� ,  � , dx)

ℝ

⎧⎨⎩1 if n� = 0

i if n� = 1

ℂ i∣n� ∣

n-A

⎧⎨⎩q
d�(1/2−s)
� = N(D�)

1/2−s for n� = 0

q
d�(1/2−s)
� q−n�s� G� for n� > 0,
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where

G� =
∑

x∈U�/U�,n

�̃�(x) �(�
−d�−n�
� x).

Therefore,

�(s, �̃) = i∞ ⋅
∏

�∈S0∩T

qd�(1/2−s)
� q−n�s� G� ⋅

∏
�∈S0∩T c

qd�(1/2−s)
� G� ⋅

∏
�∈Sc0∩T

N(D�)
1/2−s, (4.24)

where

i∞ =
∏

� complex

i∣n� ∣ ⋅
∏
� real

i4(1−n�)+n� .

Hence,

L(1− s, �̃) = �(s, �̃)L(s, �̃).

Separating the finite and infinite components of the L-series, we obtain

L(1− s, �̃f )L(1− s, �̃∞) = �(s, �̃)L(s, �̃f )L(s, �̃∞),

where

L(s, �̃∞) =
∏
� real

Γℝ(s+ n�) ⋅
∏
� cplx

Γℂ(s+
∣n� ∣
2

) (4.25)

and

L(1− s, �̃∞) =
∏
� real

Γℝ(1− s+ n�) ⋅
∏
� cplx

Γℂ(1− s+
∣n� ∣
2

).

Consequently,

L(1−s, �̃f )
∏
� real

Γℝ(1−s+n�)
∏
� cplx

Γℂ(1−s+ ∣n� ∣
2

) = �(s, �̃)
∏
� real

Γℝ(s+n�)
∏
� cplx

Γℂ(s+
∣n� ∣
2

)L(s, �̃f ).

The simple poles and residues of L(s, �̃) are determined completely by the simple poles

and residues of Z(f, �̃∣ ⋅ ∣sAK ) since ℎ is nonzero. In Theorem 4.9.2, we determined that the

poles of Z(f, �̃∣ ⋅ ∣sAK ) are in the equivalence class of unramified characters, �̃ = ∣ ⋅ ∣−i�AK , at

s = i� and s = 1 + i�. Recall that unramified means that �̃∣I1K = 1. Since �̃ = ∣ ⋅ ∣−i�AK , then

n� = 0 for all places � of K. Consequently, we choose test functions:

f�(x) =  �(x) ⋅ 1p−d��
(x) = 1p−d��

(x) for � finite,

f�(x) = e−�x
2

for � real,
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and

f�(x) = (2�)−1e−2�xx for � complex.

Again, note that the local different is trivial for all but finitely many places �, so ⊗�f� ∈

S(AK). For all real and non-Archimedean places �, we see that f�(0) = 1. However, for

complex places �, we have f�(0) = (2�)−1. Let r2 be the number of complex places (number

of non-conjugate embeddings). Then f(0) =
∏

� f�(0) = (2�)−r2 and the residue at s = i� is

−(2�)−r2Vol(C1
K).

Let us compute f̂(0). By Lemma 4.5.8, we have that

f̂� = 1̂p−d��
= Vol(p−d� , dx)1o� = ∣p−d� ∣�Vol(o� , dx)1o� = N(p−d� )−1N(D�)

−1/21o� = N(D�)
1/21o� ,

for finite places �. Since f̂�(0) = N(D�)
1/2 for all finite places � and f̂�(0) = (2�)−1 for all

complex places �, then

f̂(0) = (2�)−r2
∏
� finite

N(D�)
1/2 = (2�)−r2∣dK ∣1/2.

Therefore, the residue at s = 1 + i� is equal to (2�)−r2∣dK ∣1/2Vol(C1
K).

Let T denote the finite set of finite places of K for which D−1
� ∕= o� (d� ∕= 0). Then

�(s, ∣ ⋅ ∣−i�AK ) =
∏
�∈T

�(s, ∣ ⋅ ∣AK ) =
∏
�∈T

N(D�)
1/2−s+i� = ∣dK ∣1/2−s+i� . (4.26)

Therefore,

L(1− s, ∣ ⋅ ∣i�AK ) = ∣dK ∣1/2−s−i�L(s, ∣ ⋅ ∣−i�AK ). (4.27)

We have that L
(
s, ∣ ⋅ ∣−i�AK

)
= L(s − i�, 1), and the same relation holds for the finite and

infinite parts of the L-series. Then by separating the L-function into finite and infinite parts,

we obtain

L(1− s+ i�, 1f )Γ
r1
ℝ (1− s+ i�)Γr2ℂ (1− s+ i�) = ∣dK ∣1/2−s−i�Γr1ℝ (s− i�)Γr2ℂ (s− i�)L(s− i�, 1f ).

Let � = 0 and replace L(1 − s + i�, 1f ) with �K(s) in order to obtain the functional equation

for the Dedekind zeta function. Since by equation 4.23, ℎ(s, ∣ ⋅ ∣−i�AK ) = ℎ(s − i�, 1) =
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∏
� q

d�(s−i�−1/2) = ∣dK ∣s−i�−1/2, then we have that

L(s− i�, 1f ) = ∣dK ∣1/2−s+i�Z(f, ∣ ⋅ ∣s−i�AK )(L(s− i�, 1∞))−1

= ∣dK ∣1/2−s+i�Z(f, ∣ ⋅ ∣s−i�AK )Γ−r1ℝ (s− i�)Γ−r2ℂ (s− i�)L(s− i�, 1f ).

The gamma function has a simple pole at s = 0 and no zeroes, so L(s − i�, 1∞) has no

zeroes and a pole of order r1 + r2 at s = i� (see 4.25). Being that Z(f, ∣ ⋅ ∣s−i�AK ) has a

simple pole at i� , then L(s, �̃f ) is actually holomorphic at s = 0; the order of the poles of

L(s − i�, 1∞), which is necessarily greater than 1, always out number the simple pole of the

global zeta function . Therefore, L(s − i�, 1f ) is meromorphic with a only simple pole at

s = 1 + i� . Evaluating the gamma functions at 1, we obtain Γℝ(1) = �−1/2Γ(1/2) = 1 and

Γℂ(1) = (2�)−1Γ(1) = (2�)−1, and hence L(1, 1∞) = (2�)−r2 . Therefore,

Ress=1+i�L(s− i�, 1f ) = ∣dK ∣−1/2(2�)−r2Ress=1+i�Z(f, ∣ ⋅ ∣s−i�AK )Ress=1+i� = Vol(C1
K).

Proposition 4.10.5. Let K be a global field. For any unitary idele-class character �̃ = (�̃�),

put

W (�) =
∏
�

W (��).

Then ∣W (�)∣ = 1.

Proof. Let � = �̃∣ ⋅ ∣sAK (Proposition 4.8.1). Then �� = �̃� ∣ ⋅ ∣s� . Recall that W (��) =

�(�� ,  , dx)∣s=1/2 = �(�̃� ∣ ⋅ ∣1/2� ,  , dx) and ∣W (�̃�)∣ = 1 by Proposition 4.6.3. Then

W (�)W (�) =
∏
�

W (��)W (��) = 1.

4.11 The Volume of C1
K and the Regulator

Let K be a number field. As the section title suggests, our main goal is to compute

Vol(C1
K). Recall that the volume of C1

K is taken with respect to the quotient measure on CK ,

defined by d∗x and the counting measure on K∗. In doing so we will obtain the residue of
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�K(s) = L(s, 1f ) at s = 1. Let us define ∣ ⋅ ∣� for all completions of K at �, as in the beginning

of the chapter. For a finite set S of places of K, let us define the set of S-ideles of K by

IK,S = {x = (x�) ∈ IK : ∣x� ∣� = 1, ∀� ∕∈ S}.

If S = ∅, then IK,S ⊆ I1
K . However, even if S is not the empty-set, then we define the

norm-one version of the S-ideles by

I1
K,S := I1

K ∩ IK,S.

Note that I1
K,S is a subgroup of I1

K . We have not made the requirement that S include the set

of infinite places. We will follow Ramakrishnan and Valenza [24], Chapter 7, Section 4, and

will find the volume of C1
K = I1

K/K
∗ in three steps.

Step One. Let us assume that S is nonempty. We know that K∗ is a subgroup of I1
K ,

but not necessarily I1
K,S. That is, for k ∈ K∗ we have ∣(k, k, . . .)∣AK =

∏
� ∣k∣� = 1, but

this doesn’t imply that ∣k∣� = 1 for � ∈ S. However, we can consider K∗ ∩ I1
K,S, which

is necessarily a subgroup of I1
K,S and consists precisely the elements of K∗ with ∣k∣� = 1

for all � ∕∈ S. In this way, it makes sense to consider the quotient group I1
K,S/K

∗ ∩ I1
K,S,

which, by the second isomorphism theorem, is isomorphic to I1
K,S ⋅ K∗/K∗. Furthermore,

I1
K,S/K

∗ ∩ I1
K,S is a subgroup of the norm-one idele-class group C1

K = I1
K/K

∗. Consider the

following projection map

� : C1
K = I1

K/K
∗ −→

(
I1
K/K

∗) / (I1
K,S ⋅K∗/K∗

)
.

Clearly, Ker� = I1
K,S ⋅K∗/K∗. By the third isomorphism theorem, we have

(
I1
K/K

∗) / (K∗ ⋅ I1
K,S/K

∗) ∼= I1
K/K

∗ ⋅ I1
K,S,

which we denote by CK,S. Summarizing, we obtain the short exact sequence of abelian

groups:

1 −→ I1
K,S/K

∗ ∩ I1
K,S

inc−→ C1
K

�−→ CK,S −→ 1.
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Note that

IK,S = {x = (x�) ∈ IK : x� ∈ o×� , ∀� ∕∈ S} =
∏
�∈S

K∗� ×
∏
� ∕∈S

o×� ,

where o×� = {±1} if � is a real place, o×� = S1 if � is a complex place, and o×� are the

elements of norm 1 in the ring of integers if � is a finite place. Hence, IK,S is open in IK

because the restricted direct product topology on IK,S, induced by IK , is the same as the

product topology on
∏

� K
∗
� . We proved this in Proposition 3.1.2. As such, I1

K,S = IK,S ∩ I1
K is

an open subgroup of I1
K . In the adeles and ideles chapter, we proved that I1

K/K
∗ is compact.

Since I1
K/K

∗ is compact and I1
K,S is open, then by Proposition 1.1.13, we have that CK,S is a

finite group.

Let ℎS denote the order of CK,S. Therefore,

Vol(C1
K) = ℎS ⋅ Vol(I1

K,S/K
∗ ∩ I1

K,S). (4.28)

We now are reduced to computing the volume of the second factor.

Step Two. Take S = S∞, the set of Archimedean places of K. Let r1 be the number of

real places. Let r2 be the number of complex places (one half of the number of conjugate

embeddings). Let ∣ ⋅ ∣ denote the usual complex absolute value, which restricts to the usual

real absolute value. Define

� : IK,S∞ → ℝr1+r2

(x�) 7→ (log ∣x� ∣)�∈S∞ .

Then we have

� ((x� ⋅ y�)�) = (log (∣x� ⋅ y� ∣))�∈S∞ = (log (∣x� ∣) + log (∣y� ∣))�∈S∞ = � ((x�)) + � ((y�)) .

Therefore, � is a homomorphism of groups. Since log(∣ ⋅ ∣) : K∗� → ℝ is continuous for all

� ∈ S∞, then � is continuous. Let H denote a hyperplane in ℝr1+r2 given by

H := {t = (t�) ∈ ℝr1+r2 :
∑
�real

t� + 2
∑

�complex

t� = 0}.

181



This construction is analogous to the Minkowski lattice theory used to prove Dirichlet’s unit

theorem. See Neukirch [23], Chapter 1, Sections 4, 5, and 7, for a proof of the Dirichlet’s unit

theorem.

Lemma 4.11.1. The logarithm map has the following properties:

(i) Im(�) = H

(ii) Ker(�) = I1
K,∅(= IK,∅).

Proof. (i) Let x = (x�) ∈ I1
K,S∞ . Since

∏
� ∣x� ∣� = ∣x∣AK = 1 and ∣x� ∣� = 1 for all � ∕∈ S∞,

then ∏
�∈S∞

∣x� ∣� = 1 ∀ x = (x�) ∈ I1
K,S∞ .

Note that ∣ ⋅ ∣� is the square of the usual absolute value for � complex and is equal to the

usual absolute value for � real. Let x = (x�) ∈ I1
K,S∞ . Then

∑
� real

log ∣x� ∣+2
∑

� complex

log ∣x� ∣ =
∑
� real

log ∣x� ∣+
∑

� complex

log ∣x� ∣2 = log

( ∏
�∈S∞

∣x� ∣�

)
= log(1) = 0.

Therefore, Im(�) ⊆ H. Let t = (t�) ∈ H. Then pick the idele x such that x� = 1 for

all � finite and x� ∈ K� such that ∣x� ∣ = t� for all � ∈ S∞. By construction, �(x) = t.

Consequently, Im(�) = H. This proves part (i).

(ii) Let x = (x�) ∈ I1
K,∅. Then ∣x� ∣� = 1 for all � of K, which implies that ∣x� ∣ = 1

for all � ∈ S∞. Consequently, �(x) = (0, . . . , 0), which implies that I1
K,∅ ⊆ Ker(�). Let

x ∈ Ker(�). Then log ∣x� ∣ = 0 for all �, which implies that ∣x� ∣� = 1 for all � ∈ S∞. Since

x ∈ I1
K,S∞ , then ∣x� ∣� = 1 for all finite places �. Therefore, x ∈ I1

K,∅, which implies that

Ker(�) = I1
K,∅(= IK,∅).

Let us define RS := K ∩ AK,S, the ring of S-integers of K, where

AK,S = {x ∈ AK : x� ∈ o� , ∀ � ∕∈ S}.

Then R∞ = K ∩ AK,S∞ consists of the elements that are in o� for all finite places �. Since

oK = ∩� finite o� , then RS∞ = oK . The group of invertible elements of AK,S is clearly IK,S.

In addition, by Proposition ??, we know from that the elements of K∗ have adelic norm 1.
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Therefore,

R×S = K∗ ∩ IK,S = K∗ ∩ I1
K,S,

which implies that o×K = R×S∞ = K∗ ∩ I1
K,S.

Definition 4.11.2. We will call the restriction of � to K∗ ∩ I1
K,S∞ = o×K the regulator map,

and will denote it as reg(x).

The above lemma tells us that

Ker(reg) = K∗ ∩ I1
K,∅.

Let k ∈ K∗ ∩ I1
K,∅. Then ∣k∣� = 1 for all places � of K. Therefore K∗ ∩ I1

K,∅ is a subgroup of

K∗, consisting of elements whose absolute values are bounded. It must therefore be a finite

subgroup of K∗, and hence consists precisely of the group of roots of unity in K, denoted �K .

That is,

Ker(reg) = �K .

Let

wK = Card(�K) and L = reg(o×K).

As such, L is a discrete subgroup of H, which is isomorphic to ℝr, where r = r1+r2−1. Since

IK,S∞ is open in I1
K , then its image in IK,S∞/K∗ ∩ I1

K,S is an open subgroup of the compact

group I1
K/K

∗. Since every open subgroup of a topological group is closed (Proposition 1.1.9),

then IK,S∞/K∗ ∩ I1
K,S is a closed subgroup of the compact group I1

K/K
∗, which implies that

IK,S∞/K∗ ∩ I1
K,S is compact. Therefore, H/L is compact. In sum, L is a discrete and compact

subgroup of H. This makes L a full lattice in H. See Neukirch [23], Chapter 1, Proposition

4.2 and Lemma 4.3, for proofs that a discrete subgroup is a lattice and that a lattice is full if

and only if the quotient is compact .

Step Three. By definition, IK,∅ admits the product decomposition

∏
� real

o� ×
∏

� complex

o� ×
∏
� finite

o� .
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Let us construct the product Haar measure d×x on I1
K,∅ as follows:

(i) For � real, we let d×x� be a clounting measure on o×� = {±1}.

(ii) For � complex, we let d×x� be the Lebesgue measure on o×� = S1.

(iii) For � finite, we let d×x� = d∗x� , the normalized measure on K∗� , such that Vol(o×� , d
∗x�) =

N(D�)
−1/2, where D� is the different of K� .

Then

Vol(o�) =

⎧⎨⎩
2 for � real

2� for � complex

N(D)−1/2 for � finite.

The discriminant of K, denoted ΔK/ℚ, is equal to NK/ℚ(DK). Let dK be the integer defined

up to a sign by ΔK = dKℤ. We also have that DK =
∏

� D� (See Neukirch [23], Chapter 3

Section 2). Therefore,

∣dK ∣ =
∏
� finite

N(D�).

As such, we get, relative to this measure,

Vol(IK,∅, d×x) = 2r1(2�)r2∣dK ∣1/2. (4.29)

Theorem 4.11.3. Let K be a number field. Then

Ress=i�Z(f̂ , �) = −2r1(2�)r2ℎKRK

wK
√
∣dK ∣

and Ress=1+i�Z(f̂ , �) =
2r1ℎKRK

wK
.

and

Ress=1�K(s) =
2r1(2�)r2ℎKRK

wK
√
∣dK ∣

,

where ℎk is the class number of K and where RK is the regulator of K, which is the volume

of H/L relative quotient measure induced by the map �∗ defined below.
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Proof. From the analysis done in step two, we have the following commutative diagram, all of

whose columns and rows are exact:

1 1 0

1 > �K
∨

→ o×K

∨ reg
> L
∨
→ 0

1 > I1
K,∅

∨
→ I1

K,s∞

∨ �
> H
∨
→ 0

1 > I1
K,∅/�K

∨
→I1

K,s∞/o
×
K

∨ �∗
> H/L
∨
→ 0

1
∨

1
∨

0
∨

The regulator RK of K is computed with respect to the quotient measure induced by both

the measure on I1
K,∅ established in step three and the standard measure on the idele group.

From equations 4.28 and 4.29, we obtain Vol(C1
K) = 2r1 (2�)r2ℎKRK

wK
√
∣dK ∣

. The residues then follow

from Theorem 4.9.2 and Theorem 4.10.4.
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Conclusion

Recall that in section 8 of Chapter 4, we constructed idele-class characters

� : IK/K∗ → ℂ×.

Later in that chapter, in section 10, we saw that � can be factored into a product of local

quasi-characters �� : K∗� → ℂ×. Let us now change our notation to

K∗� = GL1(K�), IK = GL1(AK), and K∗ = GL1(K).

With this difference in notation, we can see that the idele-class character

� : GL1(K)∖GL1(AK)→ ℂ×

factors into a product of local quasi-characters ⊗��� , where �� : GL1(K�) → ℂ×. For

K = ℚ, we know there are many classical Dirichlet characters that are associated to a

single idele-class character �, but only one of which is primitive. In Kudla’s article [17],

“From Modular Forms to Automorphic Representations”, the author sketches the passage

of holomorphic modular forms f of weight k and level N to automorphic representations

� = �(f) of GL2(Aℚ). Like the idele-class characters, the automorphic representations have

the factorization � = ⊗��� into representations of the groups GL2(ℚp). Additionally, there

will be many modular forms associated to � , but there will be only one primitive form.

The major difference between the two approaches is that the representation � and local

components �� are infinite dimensional and involve nonabelian harmonic analysis. Kudla’s

article provides a comprehensive, but brief, introduction to the Langland correspondence and

the Langland L-function; it is highly recommended in concert with this work.
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